四川省高考数学试题及答案理数

合集下载

完整word版四川省高考数学试卷理科答案与解析

完整word版四川省高考数学试卷理科答案与解析

2021年四川省高考数学试卷〔理科〕参考答案与试题解析一、选择题:每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕〔2021?四川〕〔1+x〕7的展开式中x2的系数是〔〕A.42B.35C.28D .21考点:二项式定理.专题:计算题.分析:由题设,二项式〔1+x〕7,根据二项式定理知,x2项是展开式的第三项,由此得展开式中x2的系数是,计算出答案即可得出正确选项解答:解:由题意,二项式〔1+x〕7的展开式通项是Tr+1=xr故展开式中x2的系数是=21应选D点评:此题考查二项式定理的通项,熟练掌握二项式的性质是解题的关键2.〔5分〕〔2021?四川〕复数=〔〕A.1 B.﹣1 C.i D.﹣i考点:复数代数形式的混合运算.专题:计算题.分析:由题意,可先对分子中的完全平方式展开,整理后即可求出代数式的值,选出正确选项解答:解:由题意得,应选B点评:此题考查复合代数形式的混合运算,解题的关键是根据复数的运算规那么化简分子3.〔5分〕〔2021?四川〕函数在x=3处的极限是〔〕A.不存在B.等于6 C.等于3 D.等于0考点:极限及其运算.专题:计算题.分析:对每一段分别求出其极限值,通过结论即可得到答案.1解答:解:∵=x+3;∴f〔x〕=〔〕=6;而f〔x〕=[ln〔x﹣2〕]=0.即左右都有极限,但极限值不相等.故函数在x=3处的极限不存在.应选:A.点评:此题主要考察函数的极限及其运算.分段函数在分界点处极限存在的条件是:两段的极限都存在,且相等.4.〔5分〕〔2021?四川〕如图,正方形ABCD的边长为 1,延长BA至E,使AE=1,连接EC、ED那么sin∠CED=〔〕A.B.C.D.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的图像与性质.分析:法一:用余弦定理在三角形CED中直接求角的余弦,再由同角三角关系求正弦;法二:在三角形CED中用正弦定理直接求正弦.解答:解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.应选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.应选B.2点评:此题综合考查了正弦定理和余弦定理,属于根底题,题后要注意总结做题的规律.5.〔5分〕〔2021?四川〕函数 y=a x﹣〔a >0,a ≠1〕的图象可能是〔〕A .B .C .D .考点:函数的图象.专题:函数的性质及应用. 分析:讨论a 与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可. 解答:解:函数y=a x ﹣ 〔a >0,a ≠1〕的图象可以看成把函数 y=a x的图象向下平移 个单位得到的. 当a >1时,函数 y=a x ﹣ 在R 上是增函数,且图象过点〔﹣ 1,0〕,故排除 A ,B .B 当1>a >0时,函数 y=a x﹣ 在R 上是减函数,且图象过点〔﹣ 1,0〕,故排除 C ,应选D .点评:此题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,表达了分类讨论的数学思想,属于根底题.6.〔5分〕〔2021?四川〕以下命题正确的选项是〔 〕.假设两条直线和同一个平面所成的角相等,那么这两条直线平行.假设一个平面内有三个点到另一个平面的距离相等,那么这两个平面平行C .假设一条直线平行于两个相交平面,那么这条直线与这两个平面的交线平行D .假设两个平面都垂直于第三个平面,那么这两个平面平行考点:命题的真假判断与应用;空间中直线与平面之间的位置关系. 专题:简易逻辑.分析:利用直线与平面所成的角的定义,可排除 A ;利用面面平行的位置关系与点到平面的 距离关系可排除 B ;利用线面平行的判定定理和性质定理可判断 C 正确;利用面面垂 直的性质可排除 D .解答:解:A 、假设两条直线和同一个平面所成的角相等,那么这两条直线平行、相交或异面,故A 错误;、假设一个平面内有三个点到另一个平面的距离相等,那么这两个平面平行或相交,故 错误;3C 、设平面α∩β=a ,l ∥α,l ∥β,由线面平行的性质定理,在平面 α内存在直线 b ∥l , 在平面β内存在直线 c ∥l ,所以由平行公理知 b ∥c ,从而由线面平行的判定定理可证 明b ∥β,进而由线面平行的性质定理证明得 b ∥a ,从而l ∥a ,故C 正确;D ,假设两个平面都垂直于第三个平面,那么这两个平面平行或相交,排除 D . 应选C .点评:此题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属根底题.7.〔5分〕〔2021?四川〕设 、都是非零向量,以下四个条件中,使成立的充分条件是〔 〕A .B .C .D .且考点:充分条件. 专题:简易逻辑.分析:利用向量共线的充要条件,求等式的充要条件,进而可利用命题充要条件的定义得其充分条件 解答: 解: ? ? 与 共线且同向? 且λ>0,应选C .点评:此题主要考查了向量共线的充要条件,命题的充分和必要性,属根底题.8.〔5分〕〔2021?四川〕抛物线关于x 轴对称,它的顶点在坐标原点 O ,并且经过点M〔2,y 0〕.假设点M 到该抛物线焦点的距离为 3,那么|OM|=〔〕A .B .C .4D .考点:抛物线的简单性质.专题:计算题.分析:关键点M 〔2,y 0〕到该抛物线焦点的距离为3,利用抛物线的定义,可求抛物线方程,进而可得点 M 的坐标,由此可求|OM|.y 2=2px 〔p >0〕解答:解:由题意,抛物线关于x 轴对称,开口向右,设方程为∵点M 〔2,y 0〕到该抛物线焦点的距离为3,2+=3 p=2 抛物线方程为y 2=4x M 〔2,y 0〕 ∴∴ |OM|=4应选B.点评:此题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.9.〔5分〕〔2021?四川〕某公司生产甲、乙两种桶装产品.生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的方案中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产方案,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是〔〕A.1800元B.2400元C.2800元D.3100元考点:简单线性规划.专题:应用题.分析:根据题设中的条件可设每天生产甲种产品x桶,乙种产品y桶,根据题设条件得出线性约束条件以及目标函数求出利润的最大值即可.解答:解:设分别生产甲乙两种产品为x桶,y桶,利润为z元那么根据题意可得,z=300x+400y作出不等式组表示的平面区域,如下图作直线L:3x+4y=0,然后把直线向可行域平移,由可得x=y=4,此时z最大z=2800点评:此题考查用线性规划知识求利润的最大值,这是简单线性规划的一个重要运用,解题的关键是准确求出目标函数及约束条件10.〔5分〕〔2021?四川〕如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,那么A、P两点间的球面距离为〔〕5A .B .C .D .考点:反三角函数的运用;球面距离及相关计算. 专题:计算题.分析:由题意求出 AP 的距离,然后求出 ∠AOP ,即可求解 A 、P 两点间的球面距离.解答:解:半径为R 的半球O 的底面圆 O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,所以CD ⊥平面AOB ,因为∠BOP=60°,所以△OPB 为正三角形,P 到BO 的距离为PE= ,E 为BQ 的中点,AE== ,AP= =,AP 2=OP 2+OA 2﹣2OP?OAcos ∠AOP ,,cos ∠AOP=,∠AOP=arccos ,A 、P 两点间的球面距离为 , 应选A .点评:此题考查反三角函数的运用, 球面距离及相关计算,考查计算能力以及空间想象能力.11.〔5分〕〔2021?四川〕方程 ay=b 2x 2+c 中的a ,b ,c ∈{﹣3,﹣2,0,1,2,3},且a ,b , c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有〔 〕 A .60条 B .62条 C .71条 D .80条考点:排列、组合及简单计数问题. 专题:综合题;压轴题. 分析:方程变形得 ,假设表示抛物线,那么 a ≠0,b ≠0,所以分 b=﹣3,﹣2,1,2,6五种情况,利用列举法可解. 解答:解:方程变形得 ,假设表示抛物线,那么 a ≠0,b ≠0,所以分 b=﹣3,﹣2,1,2,3五种情况:1〕当b=﹣3时,a=﹣2,c=0,1,2,3或a=1,c=﹣2,0,2,3或a=2,c=﹣2,0, 1,3或a=3,c=﹣2,0,1,2;2〕当b=3时,a=﹣2,c=0,1,2,﹣3或a=1,c=﹣2,0,2,﹣3或a=2,c=﹣2, 0,1,﹣3或a=﹣3,c=﹣2,0,1,2; 以上两种情况下有 9条重复,故共有 16+7=23条; 3〕同理当b=﹣2或b=2时,共有16+7=23条;4〕当b=1时,a=﹣3,c=﹣2,0,2,3或a=﹣2,c=﹣3,0,2,3或a=2,c=﹣3,﹣2,0,3或a=3,c=﹣3,﹣2,0,2;共有16条. 综上,共有 23+23+16=62种 应选B .点评:此题难度很大,假设采用排列组合公式计算,很容易无视重复的 9条抛物线.列举法是 解决排列、组合、概率等非常有效的方法.要能熟练运用12.〔5分〕〔2021?四川〕设函数 f 〔x 〕=2x ﹣cosx ,{a n }是公差为 的等差数列,f 〔a 1〕+f 〔a 2〕+ +f 〔a 5〕=5π,那么 =〔 〕A .0B .C .D .考数列与三角函数的综合. 点 :专计算题;综合题;压轴题.题:分由f 〔x 〕=2x ﹣cosx ,又{a n}是公差为的等差数列,可求得125〕析f 〔a〕+f 〔a 〕++f 〔a:=10a ﹣cosa 〔1+ +〕,由题意可求得a=,从而可求得答案.333解解:∵f 〔x 〕=2x ﹣cosx ,答 ∴f 〔a 〕+f 〔a 〕++f 〔a 〕=2〔a+a++a 〕﹣〔cosa+cosa++cosa 〕,1 251 2 5 12 5:∵{a n }是公差为的等差数列,∴a 1+a 2+ +a 5=5a 3,由和差化积公式可得, cosa 1+cosa 2+ +cosa 5=〔cosa 1+cosa 5〕+〔cosa 2+cosa 4〕+cosa 3=[cos 〔a 3﹣ ×2〕+cos 〔a 3+ ×2〕]+[cos 〔a 3﹣〕+cos 〔a 3+ 〕]+cosa 37=2cos cos+2coscos+cosa3=2cosa3?+2cosa3?cos〔﹣〕+cosa3=cosa3〔1++〕,f〔a1〕+f〔a2〕++f〔a5〕=5π,∴10a33〕=5π,+cosa〔1++cosa3=0,10a3=5π,故a3=,∴2=π﹣〔﹣〕?=π2﹣.应选D.点此题考查数列与三角函数的综合,求得cosa3=0,继而求得a3=是关键,也是难点,考评:查分析,推理与计算能力,属于难题.二、填空题〔本大题共4个小题,每题4分,共16分.把答案填在答题纸的相应位置上.〕13.〔4分〕〔2021?四川〕设全集U={a,b,c,d},集合A={a,b},B={b,c,d},那么〔?U A〕∪〔?B〕={a,c,d}.U考点:交、并、补集的混合运算.专题:集合.分析:由题意全集U={a,b,c,d},集合A={a,b},B={b,c,d},可先求出两集合A,B 的补集,再由并的运算求出〔?U A〕∪〔?U B〕解答:解:集U={a,b,c,d},集合A={a,b},B={b,c,d},所以?U A={c,d},?U B={a},所以〔?U A〕∪〔?U B〕={a,c,d}故答案为{a,c,d}点评:此题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规那么14.〔4分〕〔2021?四川〕如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,那么异面直线A1M与DN所成的角的大小是90°.8考点:异面直线及其所成的角.专题:计算题.分析:以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.解答:解:以D为坐标原点,建立如下图的空间直角坐标系.设棱长为2,那么D〔0,0,0〕,N〔0,2,1〕,M〔0,1,0〕,A1〔2,0,2〕,=〔0,2,1〕,=〔﹣2,1,﹣2〕?=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.点评:此题考查空间异面直线的夹角求解,采用了向量的方法.向量的方法能降低空间想象难度,但要注意有关点,向量坐标的准确.否那么容易由于计算失误而出错.15.〔4分〕〔2021?四川〕椭圆的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是3.考点:椭圆的简单性质.专题:计算题;压轴题.分析:先画出图象,结合图象得到△FAB的周长最大时对应的直线所在位置.即可求出结论.解答:解:设椭圆的右焦点为E.如图:由椭圆的定义得:△FAB的周长:AB+AF+BF=AB+〔2a﹣AE〕+〔2a﹣BE〕=4a+AB9AE﹣BE;AE+BE≥AB;AB﹣AE﹣BE≤0,当AB过点E时取等号;AB+AF+BF=4a+AB﹣AE﹣BE≤4a;即直线x=m过椭圆的右焦点E时△FAB的周长最大;此时△FAB的高为:EF=2.此时直线x=m=c=1;把x=1代入椭圆的方程得:y=±.AB=3.所以:△FAB的面积等于:S△FAB=×3×EF=×3×2=3.故答案为:3.点评:此题主要考察椭圆的简单性质.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.解决此题的关键在于利用定义求出周长的表达式.16.〔4分〕〔2021?四川〕记[x]为不超过实数x的最大整数,例如,[2]=2,]=1,[﹣0.3]=﹣1.设a为正整数,数列{x n}满足x1=a,,现有以下命题:①当a=5时,数列{x n}的前3项依次为5,3,2;②对数列{x}都存在正整数k,当n≥k时总有x=x;n nk③当n≥1时,;④对某个正整数k,假设x k+1≥x k,那么.其中的真命题有①③④.〔写出所有真命题的编号〕考点:命题的真假判断与应用.专题:证明题;压轴题;新定义.分析:按照给出的定义对四个命题结合数列的知识逐一进行判断真假,①列举即可;②需10举反例;③可用数学归纳法加以证明;④可由归纳推理判断其正误.解答:解:①当a=5时,x1=5,,,∴①正确.②当a=8时,x1=8,∴此数列从第三项开始为3,2,3,2,3,2为摆动数列,故②错误;③当n=1时,x1=a,∵a﹣〔〕=>0,∴x1=a>成立,假设n=k时,,那么n=k+1时,,∵≥≥=〔当且仅当x k=时等号成立〕,∴>,∴对任意正整数 n,当n≥1时,;③正确;④≥x k,由数列①②规律可知一定成立11故正确答案为①③④点评:此题主要考查了数列递推公式的应用,归纳推理和演绎推理的方法,直接证明和间接证明方法,数学归纳法的应用,难度较大,需有较强的推理和思维能力三、解答题〔本大题共6个小题,共74分.解容许写出必要的文字说明,证明过程或演算步骤.〕17.〔12分〕〔2021?四川〕某居民小区有两个相互独立的平安防范系统〔简称系统〕A和B,系统A和B在任意时刻发生故障的概率分别为和p.〔Ⅰ〕假设在任意时刻至少有一个系统不发生故障的概率为,求p的值;〔Ⅱ〕设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:〔Ⅰ〕求出“至少有一个系统不发生故障〞的对立事件的概率,利用至少有一个系统不发生故障的概率为,可求p的值;〔Ⅱ〕ξ的所有可能取值为0,1,2,3,求出相应的概率,可得ξ的分布列与数学期望.解答:解:〔Ⅰ〕设“至少有一个系统不发生故障〞为事件C,那么∴;〔Ⅱ〕ξ的可能取值为0,1,2,3P〔ξ=0〕=;P〔ξ=1〕=;P〔ξ=2〕==;P〔ξ=3〕=;∴ξ的分布列为ξ0123P数学期望Eξ=0×+1×+2×+3×=点评:此题考查概率知识的求解,考查离散型随机变量的分布列与期望,属于中档题.18.〔12分〕〔2021?四川〕函数f〔x〕=6cos 2sinωx﹣3〔ω>0〕在一个周期内的图象如下图,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.〔Ⅰ〕求ω的值及函数f〔x〕的值域;12〔Ⅱ〕假设f 〔x 0〕=0 ∈〔﹣ 0〕的值.,且x 〕,求f 〔x+1考点:由y=Asin 〔ωx+φ〕的局部图象确定其解析式;三角函数的化简求值;正弦函数的定义域和值域.专题:计算题;综合题.分析:〔Ⅰ〕将f 〔x 〕化简为f 〔x 〕=2 sin 〔ωx+〕,利用正弦函数的周期公式与性质可求ω的值及函数f 〔x 〕的值域;〔Ⅱ〕由,知x 0+∈〔﹣, 〕,由,可求得即sin 〔 x 0+ 〕=,利用两角和的正弦公式即可求得f 〔x 0+1〕. 解答:解:〔Ⅰ〕由可得,f 〔x 〕=3cos ωx+ sin ωx=2sin 〔ωx+〕,又正三角形 ABC 的高为2 ,从而BC=4,∴函数f 〔x 〕的周期T=4×2=8,即 =8,ω= ,∴函数f 〔x 〕的值域为[﹣2 ,2].〔Ⅱ〕∵f 〔x 0〕= ,由〔Ⅰ〕有f 〔x 0〕=2 sin 〔 x 0+〕= ,即sin 〔x 0+〕=,由,知x 0+ ∈〔﹣,〕,∴cos 〔 x 0+ 〕==.∴f 〔x +1〕=2sin 〔x++〕=2sin[〔 x+〕+]=2[sin 〔x+〕cos+cos 〔 x 0+ 〕sin ]=2 〔 ×+× 〕.点评:此题考查由y=Asin 〔ωx+φ〕的局部图象确定其解析式,着重考查三角函数的化简求值与正弦函数的性质,考查分析转化与运算能力,属于中档题.1319.〔12分〕〔2021?四川〕如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.〔Ⅰ〕求直线PC与平面ABC所成角的大小;〔Ⅱ〕求二面角B﹣AP﹣C的大小.考点:用空间向量求平面间的夹角;直线与平面所成的角;用空间向量求直线与平面的夹角.分析:解法一〔Ⅰ〕设AB中点为D,AD中点为O,连接OC,OP,CD.可以证出∠OCP为直线PC与平面ABC所成的角.不妨设PA=2,那么OD=1,OP=,AB=4.在RT△OCP中求解.〔Ⅱ〕以O为原点,建立空间直角坐标系,利用平面APC的一个法向量与面ABP的一个法向量求解.解法二〔Ⅰ〕设AB中点为D,连接CD.以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.利用与平面ABC的一个法向量夹角求解.〔Ⅱ〕分别求出平面APC,平面ABP的一个法向量,利用两法向量夹角求解.解答:解法一〔Ⅰ〕设AB中点为D,AD中点为O,连接OC,OP,CD.因为AB=BC=CA,所以CD⊥AB,因为∠APB=90°,∠PAB=60°,所以△PAD为等边三角形,所以PO⊥AD,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD.PO⊥平面ABC,∠OCP为直线PC与平面ABC所成的角不妨设PA=2,那么OD=1,OP=,AB=4.所以CD=2,OC===在RT△OCP中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan.〔Ⅱ〕过D作DE⊥AP于E,连接CE.由,可得CD⊥平面PAB.根据三垂线定理知,CE⊥PA.所以∠CED为二面角B﹣AP﹣C的平面角.由〔Ⅰ〕知,DE=,在RT△CDE中,tan∠CED===2,故二面角B﹣AP﹣C的大小为arctan2.解法二:〔Ⅰ〕设AB中点为D,连接CD.因为O在AB上,且O为P在平面ABC内的射影,所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因为AB=BC=CA,所以CD⊥AB,设E为AC中点,那么EO∥CD,从而OE⊥PO,OE⊥AB.14如图,以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.不妨设PA=2,由可得,AB=4,OA=OD=1,OP=,CD=2,所以O〔0,0,0〕,A〔﹣1,0,0〕,C〔1,2,0〕,P〔0,0,〕,所以=〔﹣1,﹣2,〕=〔0,0,〕为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,那么sinα===.故直线PC与平面ABC所成的角大小为arcsin〔Ⅱ〕由〔Ⅰ〕知,=〔1,0,〕,=〔2,2,0〕.设平面APC的一个法向量为=〔x,y,z〕,那么由得出即,取x=﹣,那么y=1,z=1,所以=〔﹣,1,1〕.设二面角B﹣AP﹣C的平面角为β,易知β为锐角.而面ABP的一个法向量为=〔0,1,0〕,那么cosβ===.故二面角B﹣AP﹣C的大小为arccos.15点评:此题考查线面关系,直线与平面所成的角、二面角等根底知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题能力.20.〔12分〕〔2021?四川〕数列{a}的前n项和为S,且aa=S+S对一切正整数n都n n2n2n成立.〔Ⅰ〕求a1,a2的值;〔Ⅱ〕设a1>0,数列{lg}的前n项和为T n,当n为何值时,T n最大?并求出T n的最大值.考点:数列递推式;数列的函数特性;数列的求和.专题:计算题.分析:〔Ⅰ〕由题意,n=2时,由可得,a221222≠0,〔a﹣a〕=a,分类讨论:由a=0,及a分别可求a1,a2〔Ⅱ〕由a1>0,令,可知==,结合数列的单调性可求和的最大项解答:解:〔Ⅰ〕当n=1时,a2a1=S2+S1=2a1+a2①当n=2时,得②②﹣①得,a2〔a2﹣a1〕=a2③假设a2=0,那么由①知a1=0,假设a2≠0,那么a2﹣a1=1④①④联立可得或综上可得,a1=0,a2=0或或〔Ⅱ〕当a1>0,由〔Ⅰ〕可得当n≥2时,,∴∴〔n≥2〕∴=令16由〔Ⅰ〕可知= ={b n }是单调递减的等差数列,公差为﹣lg2b 1>b 2>>b 7=当n ≥8时,∴数列的前7项和最大, = =7﹣点评:此题主要考查了利用数列的递推公式求解数列的通项公式及利用数列的单调性求解数列的和的最大项,还考查了一定的逻辑运算与推理的能力.21.〔12分〕〔2021?四川〕如图,动点M 到两定点A 〔﹣1,0〕、B 〔2,0〕构成△MAB ,且∠MBA=2∠MAB ,设动点M 的轨迹为C .〔Ⅰ〕求轨迹C 的方程;〔Ⅱ〕设直线y=﹣2x+m 与y 轴交于点 P ,与轨迹C 相交于点Q 、R ,且|PQ|<|PR|,求的取值范围.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题. 专题:综合题;压轴题.分析:〔Ⅰ〕设出点M 〔x ,y 〕,分类讨论,根据∠MBA=2∠MAB ,利用正切函数公式,建立方程化简即可得到点 M 的轨迹方程;〔Ⅱ〕直线y=﹣2x+m 与3x 2﹣y 2﹣3=0〔x >1〕联立,消元可得x 2﹣4mx+m 2+3=0①, 利用①有两根且均在〔1,+∞〕内可知,m >1,m ≠2设Q ,R 的坐标,求出x R ,x Q ,利用 ,即可确定的取值范围.解答:解:〔Ⅰ〕设M 的坐标为〔x ,y 〕,显然有x >0,且y ≠0当∠MBA=90°时,点M 的坐标为〔2,±3〕当∠MBA ≠90°时,x ≠2,由∠MBA=2∠MAB 有tan ∠MBA=,化简可得3x 2﹣y 2﹣3=0而点〔2,±3〕在曲线3x 2﹣y 2﹣3=0上17综上可知,轨迹 C 的方程为 3x 2﹣y 2﹣3=0〔x >1〕;〔Ⅱ〕直线y=﹣2x+m 与3x 2﹣y 2﹣3=0〔x >1〕联立,消元可得x 2﹣4mx+m 2+3=0①∴①有两根且均在〔1,+∞〕内设f 〔x 〕=x 2﹣4mx+m 2+3,∴ ,∴m >1,m ≠2设Q ,R 的坐标分别为〔 x Q ,y Q 〕,〔x R ,y R 〕, ∵|PQ|<|PR|,∴x R =2m+ ,x Q =2m ﹣ ,∴= =m >1,且m ≠2∴,且∴,且∴的取值范围是〔 1,7〕∪〔7,7+4〕点评:此题以角的关系为载体,考查直线、双曲线、轨迹方程的求解,考查思维能力,运算能力,考查思维的严谨性,解题的关键是确定参数的范围.22.〔14分〕〔2021?四川〕 a 为正实数,n 为自然数,抛物线 与x 轴正半 轴相交于点 A ,设f 〔n 〕为该抛物线在点 A 处的切线在 y 轴上的截距. 〔Ⅰ〕用a 和n 表示f 〔n 〕;〔Ⅱ〕求对所有 n 都有成立的a 的最小值;〔Ⅲ〕当0<a <1时,比拟与 的大小,并说明理由.考圆锥曲线的综合;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中点:的应用. 专 综合题;压轴题. 题:18分析:〔Ⅰ〕根据抛物线与x 轴正半轴相交于点A ,可得A 〔 〕,进一步可求抛物线在点A 处的切线方程,从而可得f 〔n 〕;〔Ⅱ〕由〔Ⅰ〕知f 〔n 〕=a n,那么成立的充要条件是a n ≥2n 3+1,即n3n4 nn3知,a ≥2n+1对所有n 成立,当a= ,n ≥3时,a > =〔1+3〕>2n+1,当n=0,1,2时,,由此可得a 的最小值;〔Ⅲ〕由〔Ⅰ〕知f 〔k 〕=a k,证明当0<x <1时,,即可证明:.解答:解:〔Ⅰ〕∵抛物线 与x 轴正半轴相交于点A ,∴A 〔 〕对求导得y ′=﹣2x∴抛物线在点A 处的切线方程为,∴∵f 〔n 〕为该抛物线在点A 处的切线在y 轴上的截距,∴f 〔n 〕=a n;n成立的充要条件是n3〔Ⅱ〕由〔Ⅰ〕知f 〔n 〕=a ,那么a ≥2n+1即知,a n ≥2n 3+1对所有n 成立,特别的,取n=2得到a ≥当a=,n ≥3时,a n >4n=〔1+3〕n≥1+=1+2n 3+>2n 3+1当n=0,1,2时,∴a= 时,对所有n 都有 成立∴a 的最小值为 ;〔Ⅲ〕由〔Ⅰ〕知〔fk 〕=a k,下面证明:首先证明:当 0<x <1时,19设函数g 〔x 〕= x 〔x 2﹣x 〕+1,0<x <1,那么g ′〔x 〕= x 〔x ﹣〕当0<x < 时,g ′〔x 〕<0;当时,g ′〔x 〕>0故函数g 〔x 〕在区间〔0,1〕上的最小值 g 〔x 〕min =g 〔 〕=0∴当0<x <1时,g 〔x 〕≥0,∴由0<a <1知0<a k<1,因此 ,从而=≥ =>=点此题考查圆锥曲线的综合,考查不等式的证明,考查导数的几何意义,综合性强,属评:于中档题.20。

四川省2022年高考[理数]考试真题与答案解析

四川省2022年高考[理数]考试真题与答案解析

四川省2022年高考·理科数学·考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则( )1z =-1zzz =-A. B. C. D. 1-+1-13-+13-【答案】C【详解】1(1113 4.z zz =-=-+-=+=,故选 :C 113z zz ==--2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图,则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【详解】讲座前中位数为,所以错;70%75%70%2+>A 讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷80%,485%90%答题的正确率的平均数大于,所以B 对;85%讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为,100%80%20%-=讲座前问卷答题的正确率的极差为,所以错.95%60%35%20%-=>D 故选:B.3. 设全集,集合,则( ){2,1,0,1,2,3}U =--{}2{1,2},430A B x x x =-=-+=∣()U A B ⋃=ðA. B. C. D. {1,3}{0,3}{2,1}-{2,0}-【答案】D【详解】由题意,,所以,{}{}2=4301,3B x x x -+=={}1,1,2,3A B ⋃=-所以。

故选:D.(){}U 2,0A B ⋃=-ð4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 20【答案】B【详解】由三视图还原几何体,如图,则该直四棱柱的体积,故选:B.2422122V +=⨯⨯=5. 函数在区间的图象大致为( )()33cos x xy x -=-ππ,22⎡⎤-⎢⎥⎣⎦A. B.C. D.【答案】A【详解】令,()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦则,()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-所以为奇函数,排除BD ;()f x 又当时,,所以,排除C.0,2x π⎛⎫∈ ⎪⎝⎭330,cos 0x x x -->>()0f x >故选:A.6. 当时,函数取得最大值,则( )1x =()ln bf x a x x=+2-(2)f '=A. B. C.D. 11-12-12【答案】B【详解】因为函数定义域为,所以依题可知,,,而()f x ()0,∞+()12f =-()10f '=,所以,即,所以,因此函数()2a bf x x x '=-2,0b a b =--=2,2a b =-=-()222f x x x'=-+()f x 在上递增,在上递减,时取最大值,满足题意,即有.()0,1()1,+∞1x =()112122f '=-+=-故选:B.7. 在长方体中,已知与平面和平面所成的角均为,则( )1111ABCD A B C D -1B D ABCD 11AA B B 30°A. B. AB 与平面所成的角为2AB AD =11AB C D 30°C. D. 与平面所成的角为1AC CB =1B D 11BB C C 45︒【答案】D【详解】如图所示:不妨设,依题以及长方体的结构特征可知,与平面所成角为1,,AB a AD b AA c ===1B D ABCD ,与平面所成角为,所以,即,1B DB ∠1B D 11AA B B 1DB A ∠11sin 30c b B D B D ==b c =,解得.12B D c ==a =对于A ,,,,A 错误;AB a =AD b =AB =对于B ,过作于,易知平面,所以与平面所成角为,B 1BE AB ⊥E BE ⊥11AB C D AB 11AB C D BAE ∠因为,B 错误;tan c BAE a ∠==30BAE ∠≠对于C ,,,,C错误;AC ==1CB ==1AC CB ≠对于D ,与平面所成角为,,而1B D 11BB C C 1DB C∠11sin 2CD a DB C B D c ∠===,所以.D 正确.1090DB C <∠< 145DB C ∠= 故选:D .8. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在上,.“会 AB AB CD AB ⊥圆术”给出的弧长的近似值s 的计算公式:.当时, AB 2CDs AB OA=+2,60OA AOB =∠=︒s=( )A.B.C.D.【答案】B【详解】解:如图,连接,OC 因为是的中点,C AB 所以,OC AB ⊥又,所以三点共线,CD AB ⊥,,O C D 即,2OD OA OB ===又,60AOB ∠=︒所以,2AB OA OB ===则,故OC =2CD =所以B.22CD s AB OA=+=+=9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,2πS 甲S 乙体积分别为和.若,则( )V 甲V 乙=2SS 甲乙=V V甲乙A.B. C.D.【答案】C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公l 1r 2r 式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的122r r =12,r r l 高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,l 1r 2r 则,所以,11222S rl r S r l r ππ===甲乙122r r =又,则,所以,12222r r l l πππ+=121r r l +=1221,33r l r l ==所以甲圆锥的高,1h==乙圆锥的高,所以,故选:C.2h ==2112221313r h V V r h ππ===甲乙10. 椭圆的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直2222:1(0)x y Ca b a b+=>>线的斜率之积为,则C 的离心率为( ),AP AQ 14A.B.C.D.1213【答案】A【分析】设,则,根据斜率公式结合题意可得,再根据()11,P x y ()11,Q x y -2122114y x a =-+,将用表示,整理,再结合离心率公式即可得解.2211221x y a b+=1y 1x 【详解】解:,(),0A a -设,则,则,()11,P x y ()11,Q x y -1111,AP AQ y y k k x a x a ==+-+故,21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+又,则,所以,即,2211221x ya b +=()2221212b a x y a -=()2221222114b a x a x a -=-+2214b a =所以椭圆的离心率 A.C c e a ===11. 设函数在区间恰有三个极值点、两个零点,则的取值范围是π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭(0,π)ω( )A. B. C. D. 513,36⎫⎡⎪⎢⎣⎭519,36⎡⎫⎪⎢⎣⎭138,63⎛⎤ ⎥⎝⎦1319,66⎛⎤ ⎥⎝⎦【答案】C【详解】解:依题意可得,因为,所以,0>ω()0,x π∈,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:()0,πsin y x =,33x ππ⎛⎫∈⎪⎝⎭则,解得,即,故选:C .5323ππωππ<+≤13863ω<≤138,63ω⎛⎤∈ ⎥⎝⎦12. 已知,则( )3111,cos ,4sin 3244a b c ===A. B. C. D. c b a >>b a c >>a b c >>a c b>>【答案】A【分析】由结合三角函数的性质可得;构造函数14tan 4c b =c b >,利用导数可得,即可得解.21()cos 1,(0,)2f x x x x =+-∈+∞b a >【详解】因为,因为当,所以,即,所以;14tan 4c b =π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭11tan 44>1cb >c b >设,21()cos 1,(0,)2f x x x x =+-∈+∞,所以在单调递增,则,所以,()sin 0f x x x '=-+>()f x (0,)+∞1(0)=04f f ⎛⎫> ⎪⎝⎭131cos 0432->所以,所以,故选:Ab a >c b a >>二、填空题本题共4小题,每小题5分,共20分。

四川省高考理科数学答案解析

四川省高考理科数学答案解析

四川省高考理科数学答案解析数学(理工农医类)第Ⅰ卷一、选择题:(1)i 是虚数单位,运算23i i i ++=(A )-1 (B )1 (C )i - (D )i 解:原式11i i =--=-故选A(2)下列四个图像所表示的函数,在点0x =处连续的是(A ) (B ) (C ) (D ) 解:由图明显选D(8)已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则limnn na S →∞=(A )0 (B )12(C ) 1 (D )2 解:由已知可得1{}n s a +是以12a 为首项,2为公比的等比数列,1111112222n n n n n s a a a s a a -∴+=⋅=⇒=-1112n n n n a s s a --∴=-=⋅,11111211lim lim 12222n n n n n nn a a s a a -→∞→∞-===--,故选B(9)椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范畴是解:连接BM 、BN ,则,BM AC BN AD ⊥⊥,由三角形的面积相等,得,AB BC AB BD BM BN AC AD ⋅==,得到5BM R =,222165AM R AN ==,2229cos 210AC AD CD CAD AC AD +-∠==⋅,222162cos 25MN AM AN AM AN MAN =+-⋅∠=22217cos 225OM ON MN MON OM ON +-∠==⋅,那么M 、N 两点间的球面距离是17arccos 25R(12)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是 (A )2 (B )4 (C ) 5 (D )5解:原式22121025()a ac cb a b =+-+-,22()()24b a b a b a b +--≤=(当且仅当b a b =-)∴原式222222244210252510244a ac c a a c ac a a=+-+=+++-≥=(当且仅当222425a c a ==)∴选B 第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)63(2)x-的展开式中的第四项是 . (17)(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“感谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。

四川高考数学试题理科含答案

四川高考数学试题理科含答案

2021年普通高等学校招生全国统一考试 (四川卷)数 学(理工类)本试卷分第一局部(选择题)和第二局部(非选择题)。

第一局部 1至2页,第二局部 3至4 页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,总分值150分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回. 参考公式: 如果事件A 、B 互斥,那么 球的外表积公式P(A+B)=P(A)+P(B)s4R 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P(A·B)=P(A)·P(B)球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么v4R 23在n 次独立重复试验中事件 A 恰好发生k 次的概率其中R 表示球的半径P n (k)C n k p k (1p)nk(k 0,1,2,...n)第一局部〔选择题共60分〕考前须知:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。

2.本局部共12 小题,每题 5分,共 60分。

一、选择题:本大题共 12小题,每题5分,共60分,在每题给出的四个选项中,只有 一项为哪一项符合题目要求的。

〔11四川理 1〕有一个容量为 66的样本,数据的分组及各组的频数如下:,15.5) 2 [15.5,19.5)4 ,23.5)9[23.5,27.5)18,31.5) 1l ,35.5)12 .39.5)7[39.5,43.5)3 根据样本的频率分布估计,数据落在,43.5)的概率约是 (A) 1 (B) 1 (C) 1〔D 〕2631 23〔11四川理 2〕复数ii =〔B 〕1(A) 2i 〔〕 〔〕2iC 0Di2〔11四川理 3〕l 1,l 2,l 3是空间三条不同的直线,那么以下命题正确的选项是(A) l 1 l 2,l 2l 3 l 1 l 3〔B 〕l 1l 2,l 2l 3l 1 l 3 [ 来源:](C) l 2 l 3 l 3l 1,l 2,l 3共面〔D 〕l 1,l 2,l 3共点 l 1,l 2,l 3共面〔11四川理 4〕如图,正六边形 ABCDEF 中,BACDEF=(A)0(B)BE(C)AD(D)CF〔11四川理5〕函数,f(x)在点x x0处有定义是f(x)在点x x0处连续的(A)充分而不必要的条件(B)必要而不充分的条件(C)充要条件(D)既不充分也不必要的条件〔11四川理6〕在ABC中.sin2sin2B sin2C sinBsinC.那么A的取值范围是(A)(0,](B)[,)(c)(0,](D)[,)66331〔11四川理7〕f(x)是R上的奇函数,且当x0时,f(x)()x 1,那么f(x)的反2函数的图像大致是〔11四川理8〕数列a n的首项为3,b n为等差数列且b n a n1a n(nN*).假设那么b32,b1012,那么a8〔A〕0〔B〕3〔C〕8〔D〕11〔11四川理9〕某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理方案党团派用两类卡车的车辆数,可得最大利润〔A〕4650元〔B〕4700元〔C〕4900元〔D〕5000元〔11四川理10〕在抛物线y x2ax5(a0)上取横坐标为x14,x22的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆2236相切,那么抛5x5y物线顶点的坐标为〔A〕(2,9)〔B〕(0,5)〔C〕(2,9)〔D〕(1,6)〔11四川理11〕定义在0,上的函数f(x)满足f(x)3f(x2),当x0,2时,f(x)x22x.设f(x)在2n2,2n上的最大值为a n(n N*),且a n的前n项和为S n,那么limS nn〔A〕3〔B〕5〔C〕2〔D〕322〔11四川理12〕在集合1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为 n ,其中面积不超过 4的平行四边形的个数为 m ,那么m〔A 〕4〔B 〕1〔C 〕2〔D 〕2n153 53二、填空题:本大题共 4小题,每题4分,共 16分.13〕计算(lg11〔11四川理 lg25)1002=.4〔11四川理 x 2 y 2 4,那么点P 到左14〕双曲线=1上一点P 到双曲线右焦点的距离是64 36准线的距离是.〔11四川理 15〕如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大 是,求的外表积与改圆柱的侧面积之差是 . 〔11四川理 16〕函数f(x)的定义域为A ,假设x 1,x 2A 且f(x 1)f(x 2)时总有x 1x 2,那么称f(x)为单函数,例如,函数f(x) 2x 1(xR)是单函数.以下命题:①函数f(x)x 2(xR)是单函数;②假设f(x)为单函数,x 1,x 2A 且x 1x 2,那么f(x 1) f(x 2);③假设f :A B 为单函数,那么对于任意 bB ,它至多有一个原象;〔11四川理18〕本着健康、低碳的生活理念,租自行车骑游的人越来越多。

四川理科数学高考试卷

四川理科数学高考试卷

四川理科数学高考试卷四川理科数学高考试卷【一、选择题】1. 设函数 f(x) = x^2 - 2x + 1,若其图像与 x 轴交于一个点,则 x 的取值范围是:A. (-∞, 0)B. (0, 1)C. (1, +∞)D. (0, 1]2. 已知矩形 ABCD 中,AB = 4,BC = 3,点 E 是 AD 边上一点,且 AE = 1。

角 BEC 的度数为:A. 30°B. 45°C. 60°D. 90°3. 在坐标平面上,抛物线 y = ax^2 + bx + c(a ≠ 0)与 x 轴相交于两点P 和 Q。

若 P 的坐标为 (3, 0),Q 的坐标为 (9, 0),则抛物线的方程是:A. y = 2x^2 - 18x + 36B. y = -2x^2 + 18x - 36C. y = -2x^2 + 18x + 36D. y = 2x^2 - 18x - 36【二、填空题】1. 已知等差数列 {a_n} 的通项公式为 a_n = n^2 + 3n,若 a_m + a_n = 120,其中 m 和 n 为正整数,且 m < n,则 m 的最小值是________。

2. 若向量 u = (2, 1, 3) 和 v = (1, 1, -1),则向量 u 在 v 方向上的投影长度是________。

3. 设 A = {x | x^2 - 4x - 5 ≤ 0},则 A 的解集是________。

【三、解答题】1. 函数 f(x) = (3^x - 1) / (3^x + 1) 的图像关于直线 y = x 对称吗?请说明理由。

2. 已知三角形 ABC,其中∠A = 60°,D 是 BC 上一点,且 AD ⊥ BC。

若 BD = 6,CD = 12,则三角形 ABD 的面积是多少?3. 有一堆石头共 n 块,其中一块较重。

有一把天平可用来比较石头的重量。

四川高考理科数学试题含答案(Word版)

四川高考理科数学试题含答案(Word版)

普通高等学校招生全国统一考试理科参考答案(四川卷)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a bd c->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否则,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。

普通高等学校招生全国统一考试(四川卷)理数答案解析(正式版)(解析版).docx

普通高等学校招生全国统一考试(四川卷)理数答案解析(正式版)(解析版).docx

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =U ( ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3} 【答案】A 【解析】试题分析:{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<U ,选A. 考点:集合的基本运算. 2.设i 是虚数单位,则复数32i i-( ) A.-i B.-3i C.i. D.3i 【答案】C考点:复数的基本运算.3.执行如图所示的程序框图,输出S 的值是( ) A.32-B.32C.-12D.12【答案】D 【解析】试题分析:这是一个循环结构,每次循环的结果依次为:2;3;4;5k k k k ====,大于4,所以输出的51sin62S π==,选D. 考点:程序框图.4.下列函数中,最小正周期为且图象关于原点对称的函数是( ).cos(2)2A y x π=+ .sin(2)2B y x π=+ .sin 2cos 2C y x x =+ .sin cos D y x x =+【答案】A 【解析】试题分析:对于选项A ,因为2sin 2,2y x T ππ=-==,且图象关于原点对称,故选A. 考点:三角函数的性质.5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( ) (A )43(B )23 (C )6 (D )43 【答案】D考点:双曲线.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】试题分析:据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.考点:排列组合.7.设四边形ABCD 为平行四边形,6AB =u u u r ,4AD =u u u r.若点M ,N 满足3BM MC =u u u u r u u u u r ,2DN NC =u u u r u u u r ,则AM NM ⋅=u u u u r u u u u r( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】试题分析:311,443AM AB AD NM CM CN AD AB =+=-=-+u u u u r u u u r u u u r u u u u r u u u u r u u u r u u ur u u u r ,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯=u u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g ,选C.考点:平面向量.8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 ( ) (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B考点:命题与逻辑. 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B 【解析】试题分析:2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.226,182m nm n mn +⋅≤≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.28129,22n m n m mn +⋅≤≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B..考点:函数与不等式的综合应用.10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24xy–12123456789–1–2–3–4–5–6123456ABCFOM【答案】D考点:直线与圆锥曲线,不等式.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】试题分析:55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.考点:二项式定理.12.=+οο75sin 15sin . 【答案】62. 【解析】试题分析:6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o oo o . 考点:三角函数.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C ο)满足函数关系bkx ey +=(Λ718.2=e 为自然对数的底数,k 、b 为常数)。

四川高考数学试题答案

四川高考数学试题答案

四川高考数学试题答案四川省普通高等学校招生全国统一考试数学试题参考答案一、选择题1. C2. D3. A4. B5. C6. A7. B8. D9. C10. A二、填空题11. 212. -313. 5/414. √315. 3π/416. 4/9三、解答题17. 证明:(1)设P(x, y),则直线OP的方程为y=kx,即k=y/x。

(2)由题意知,点P在圆(x-1)^2+(y-1)^2=1上,代入圆的方程得(x-1)^2+(kx)^2=1。

(3)化简得(1-k^2)x^2-2x+1=0。

(4)由题意,此方程有解,故判别式Δ≥0,即4-4(1-k^2)≥0,解得k∈[-1,1]。

18. 解:(1)设f(x)=x^3-3x^2+4x+1,求导得f'(x)=3x^2-6x+4。

(2)令f'(x)=0,解得x=1或x=2。

(3)当f'(x)>0,即x<1或x>2时,函数f(x)单调递增;当f'(x)<0,即1<x<2时,函数f(x)单调递减。

(4)因此,函数f(x)在x=1处取得极大值f(1)=3,在x=2处取得极小值f(2)=3。

(5)又因为f(-1)=-1,f(3)=7,所以函数f(x)在[-1,3]上的最大值为7,最小值为-1。

19. 解:(1)设等差数列{an}的首项为a1,公差为d。

(2)由题意知,a3+a7-a5=3,即2a1+5d=3。

(3)又a1+a9=20,即2a1+8d=20。

(4)联立以上两式,解得a1=11,d=-2。

(5)所以等差数列的通项公式为an=11-2(n-1)=13-2n。

(6)求和公式为Sn=n(a1+an)/2,代入已知值得Sn=n(11+13-2n)/2=-n^2+12n。

20. 解:(1)设圆的方程为(x-a)^2+(y-b)^2=r^2。

(2)由题意知,圆与直线x+y-1=0相切,所以圆心到直线的距离d=r。

高考数学理(四川卷)WORD版有答案

高考数学理(四川卷)WORD版有答案

数学(理科)一、选择题:本大题共10 小题,每题 5 分,共50 分.在每题给出的四个选项中,只有一个是切合题目要求的.1.设会合A { x | x 2 0} ,会合 B { x | x2 4 0},则AI B()(A ){ 2} ( B){2} (C){ 2,2} ( D)x2 A z z C表示复数,则图中表示的共轭复数的点是() A.如图,在复平面内,点(A)A (B)B (C)C (D)D O y 3.一个几何体的三视图如下图,则该几何体的直观图能够是()B D 4.设x Z ,会合 A 是奇数集,会合 B 是偶数集.若命题p : x A,2 x B ,则()(A )(C)p : xp : xA,2 xA,2 xBB( B)( D)p :p :xxA,2 xA,2 xBB5.函数f ( x) 2sin( x ),(0, ) 的部分图象如下图,2 2则 , 的值分别是()(A)2, (B)2, (C)4, (D)4,33 6 66.抛物线y2 4x 的焦点到双曲线x2y 2 1的渐近线的距离是()3(A)1( B) 3 (C)1 (D)3 2 2x 2)7.函数y 的图象大概是(3x 18.从1,3,5,7,9这五个数中,每次拿出两个不一样的数分别为a, b,共可获得 lg a lg b 的不同值的个数是()(A )9(B)10(C)18(D)209.节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4 秒内任一时辰等可能发生,而后每串彩灯在内 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时辰相差不超出 2 秒的概率是()(A)1(B)1(C)3(D)7 424810.设函数 f ( x)e x x a ( a R ,e为自然对数的底数).若曲线y sin x 上存在( x0 , y0 ) 使得 f ( f ( y0 )) y0,则 a 的取值范围是()(A )[1,e](B)[e1,1](C)[1,1e](D)[e1,e1] 二、填空题:本大题共 5 小题,每题 5 分,共 25 分.11.二项式( x y) 5的睁开式中,含x2 y3的项的系数是_________.(用数字作答)uuur uuur uuur 12.在平行四边形ABCD中,对角线AC与BD交于点O,AB AD AO ,则_________.13.设sin 2sin,( , ) ,则tan2的值是_________.214.已知 f ( x) 是定义域为R 的偶函数,当x ≥0时, f ( x) x24x ,那么,不等式f ( x 2) 5 的解集是________.15.设P,P ,L ,P为平面12n的距离之和最小,则称点内的n 个点,在平面内的全部点中,若点 P 到P1, P2,L , P n点1 2n AB上的随意P 为P , P ,L , P点的一个“中位点”.比如,线段点都是端点A, B 的中位点.则有以下命题:①若 A, B, C 三个点共线, C 在线段上,则 C 是A, B,C的中位点;②直角三角形斜边的点是该直角三角形三个极点的中位点;③若四个点 A, B, C , D 共线,则它们的中位点存在且独一;④梯形对角线的交点是该梯形四个极点的独一中位点.此中的真命题是____________.(写出全部真命题的序号数学社区)三、解答题:本大题共6 小题,共75 分.解答应写出文字说明,证明过程或演算步骤.16. (本小题满分12 分)在等差数列{ a n }中,a 2a 18 ,且a 4 为 a 2 和 a 3 的等比中项,求数列{ a n }的首项、公差及前n 项和.17. (本小题满分12分) 在 ABC 中,角 A, B, C 的对边分别为 a,b,c ,且2cos 2A Bcos B sin( A B)sin B cos( A C )3 .25(Ⅰ)求 cosA 的值;35uuur uuur(Ⅱ) 若 a 4 2 , b5 ,求向量 BA 在 BC 方向上的投影.2218.(本小题满分 12 分 )某算法的程序框图如下图,其 中输入的变量 x 在 1,2,3, ,24 这 24 个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运转时输出 y 的值为 i 的概率 P i (i 1,2,3) ;(Ⅱ)甲、乙两同学依照自己对程序框图的理解,各自 编写程序重复运转n 次后,统计记录了输出y 的值为i (i 1,2,3) 的频数. 以下是甲、 乙所作频数统计表的部分数据.甲的频数统计表(部分)乙的频数统计表(部分)运转输出 y 的值 输出 y 的值 输出 y 的值 运转输出 y 的值 输出 y 的值 输出 y 的值 次数 n为 1的频数为 2的频数为 3的频数次数n为 1的频数为2的频数 为 3的频数3014 6103012 11721001027376 697 21001051696353当 n 2100 时,依据表中的数据, 分别写出甲、 乙所编程序各自输出y 的值为 i (i 1,2,3)的频次(用分数表示) ,并判断两位同学中哪一位所编写程序切合算法要求的可能性较大; (Ⅲ)按程序框图正确编写的程序运转 3 次,求输出 y 的值为 2 的次数的散布列及数学期望.19. ( 本小题满分12 分 ) 如图,在三棱柱ABC A1B1C 中,侧棱AA1底面ABC,AB AC 2 AA1,BAC 120o, D , D1分别是线段B C , B1C1的中点,P是线段AD的中点.(Ⅰ)在平面 ABC 内,试作出过点 P 与平面A1BC平行的直线 l ,说明原因,并证明直线 l 平面 ADD1 A1;(Ⅱ)设(Ⅰ)中的直线l 交 AB 于点 M ,交 AC 于点 N ,求二面角 A A1M N 的余弦值.CDA PBC1D 1A1B120.(本小题满分13 分) 已知椭圆Cx2 y 21,( a b 0) 的两个焦点分别为:b2a2F1 ( 1,0), F2 (1,0) ,且椭圆C经过点 P(4,1).3 3(Ⅰ)求椭圆 C 的离心率;(Ⅱ)设过点A(0, 2) 的直线l与椭圆C交于M、N两点,点 Q 是线段MN上的点,且2 1 1,求点 Q 的轨迹方程.|AQ|2 |AM |2 |AN|221.(本小题满分14 分 )已知函数f ( x) x2 2x a, x 0,此中 a 是实数.设 A(x1, f ( x1)) ,ln x, x 0 B( x2 , f ( x2 )) 为该函数图象上的两点,且x1 x2.(Ⅰ)指出函数 f ( x) 的单一区间;(Ⅱ)若函数 f ( x) (Ⅲ)若函数 f ( x) 的图象在点A, B 处的切线相互垂直,且x2 0 ,求 x2 x1的最小值;的图象在点A, B 处的切线重合,求 a 的取值范围.。

2022年四川省高考理科数学试卷及答案解析

2022年四川省高考理科数学试卷及答案解析

2022年四川省高考理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)若z=﹣1+i,则=()A.﹣1+i B.﹣1﹣i C.﹣+i D.﹣﹣i 2.(5分)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.(5分)设全集U={﹣2,﹣1,0,1,2,3},集合A={﹣1,2},B={x|x2﹣4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{﹣2,1}D.{﹣2,0} 4.(5分)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.(5分)函数y=(3x﹣3﹣x)cos x在区间[﹣,]的图像大致为()A.B.C.D .6.(5分)当x =1时,函数f (x )=alnx +取得最大值﹣2,则f ′(2)=()A .﹣1B .﹣C .D .17.(5分)在长方体ABCD ﹣A 1B 1C 1D 1中,已知B 1D 与平面ABCD 和平面AA 1B 1B 所成的角均为30°,则()A .AB =2ADB .AB 与平面AB 1C 1D 所成的角为30°C .AC =CB 1D .B 1D 与平面BB 1C 1C 所成的角为45°8.(5分)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在上,CD⊥AB .“会圆术”给出的弧长的近似值s 的计算公式:s =AB +.当OA =2,∠AOB=60°时,s =()A .B .C .D .9.(5分)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S 乙,体积分别为V 甲和V 乙.若=2,则=()A .B .2C .D .10.(5分)椭圆C:+=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为,则C的离心率为()A.B.C.D.11.(5分)设函数f(x)=sin(ωx+)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[,)B.[,)C.(,]D.(,]二、填空题:本题共4小题,每小题5分,共20分。

最新四川省高考数学试卷(理科)及答案(word版)

最新四川省高考数学试卷(理科)及答案(word版)

普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅2、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A )A (B )B (C )C (D )D3、一个几何体的三视图如图所示,则该几何体的直观图可以是( )4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∀∈∉ (B ):,2p x A x B ⌝∀∉∉(C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∉5、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( ) (A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π6、抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( ) (A )12(B)2(C )1 (D7、函数331x x y =-的图象大致是( )8、从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,a b ,共可得到lg lg a b -的不同值的个数是( )(A )9 (B )10 (C )18 (D )20 9、节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮。

2022四川高考真题—数学(理)解析版

2022四川高考真题—数学(理)解析版

2022四川高考真题—数学(理)解析版数 学(供理科考生使用)参考公式:假如事件互斥,那么 球的表面积公式 ()()()P AB P A P B 24SR假如事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B 球的体积公式假如事件A 在一次试验中发生的概率是p ,那么343VR 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p kn …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、21 [答案]D[解析]二项式7)1(x +展开式的通项公式为1+k T=k k x C 7,令k=2,则2273xC T 、= 21C x 272=∴的系数为[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,第一需要熟练把握二项展开式的通项公式,其次需要强化考生的运算能力. 2、复数2(1)2i i-=( )A 、1B 、1-C 、iD 、i - [答案]B. [解析]2(1)2i i-=12212-=-+iiiDCAEB[点评]突出考查知识点12-=i ,不需采纳分母实数化等常规方法,分子直截了当展开就能够. 3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 [答案]A[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限. [点评]关于分段函数,把握好定义域的范畴是关键。

4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、515[答案]B1010cos 1sin 10103EC ED 2CD -EC ED CED cos 1CD 5CB AB EA EC 2AD AE ED 11AE ][22222222=∠-=∠=•+=∠∴==++==+=∴=CED CED ,)(,正方形的边长也为解析[点评]注意恒等式sin 2α+cos 2α=1的使用,需要用α的的范畴决定其正余弦值的正负情形. 5、函数1(0,1)xy a a a a=->≠的图象可能是( )[答案]C[解析]采纳排除法. 函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C.[点评]函数大致图像问题,解决方法多样,其中专门值验证、排除法比较常用,且简单易用. 6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,因此A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面能够平行,也能够垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练把握课本基础知识的定义、定理及公式.7、设a 、b 差不多上非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =[答案]D [解析]若使||||a ba b =成立,则方向相同,与b a 选项中只有D 能保证,故选D.[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,同时通过点0(2,)M y 。

2023年四川高考数学(理)试题及答案

2023年四川高考数学(理)试题及答案

A.214.向量||||1,|a b ==- A.15-5.已知正项等比数列{A.76.有60人报名足球俱乐部,60若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为(A.0.87.“22sin sin αβ+=A.充分条件但不是必要条件C.充要条件(1)求证:1AC A C =;(2)若直线1AA 与1BB 距离为2,求19.为探究某药物对小鼠的生长抑制作用,加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为(2)测得40只小鼠体重如下(单位:g)对照组:17.318.420.120.425.426.126.326.4628.3实验组:5.4 6.6 6.810.411.214.417.319.2226.0(i)求40只小鼠体重的中位数m<m≥对照组实验组1.A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z ZZ ,U Z =,所以,(){}|3,U A B x x k k ==∈Z ð.故选:A.2.C【分析】根据复数的代数运算以及复数相等即可解出.【详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =.故选:C.3.B【分析】根据程序框图模拟运行,即可解出.【详解】当1n =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112n =+=;当2n =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213n =+=;当3n =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314n =+=;当4n =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.4.D【分析】作出图形,根据几何意义求解.【详解】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c === ,由题知,1,OA OB OC ==AB 边上的高2,2OD AD =所以2CD CO OD =+=1tan ,cos 3AD ACD CD ∠==∠cos ,cos a c b c ACB 〈--〉=∠23421510⎛⎫=⨯-= ⎪⎝⎭.故选:D.22考虑3π3π7π2,2,2222x x x =-==,即x 系,当3π4x =-时,3π3πsin 42f ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,y 当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,所以由图可知,()f x 与1122y x =-的交点个数为故选:C.11.C【分析】法一:利用全等三角形的证明方法依次证得得到PA PB =,再在PAC △中利用余弦定理求得中利用余弦定理与三角形面积公式即可得解;因为底面ABCD 为正方形,AB =又3PC PD ==,PO OP =,所以又3PC PD ==,42AC BD ==,所以在PAC △中,3,42,PC AC ==则由余弦定理可得22PA AC PC =+故17PA =,则17PB =,故在PBC 中,7,3,1P PB C ==所以22cos 2PC BC PB PCB PC BC +-∠=⋅又0πPCB <∠<,所以sin PCB ∠所以PBC 的面积为12S PC BC =⋅法二:连结,AC BD 交于O ,连结PO ,则因为底面ABCD 为正方形,AB =在PAC △中,3,45PC PCA =∠=则由余弦定理可得22PA AC PC =+17PA =,所以22cos 2PA PC AC APC PA PC +-∠=⋅cos 17PA PC PA PC APC ⋅=∠= 不妨记,PB m BPD θ=∠=,因为()(1122PO PA PC PB =+=+ 即2222PA PC PA PC PB PD ++⋅=+ 则()217923923m ++⨯-=++⨯⨯又在PBD △中,22BD PB PD =+26cos 230m m θ--=②,两式相加得22340m -=,故PB 故在PBC 中,7,3,1P PB C ==所以22cos 2PC BC PB PCB PC BC +-∠=⋅又0πPCB <∠<,所以sin PCB ∠所以PBC 的面积为12S PC BC =⋅故选:C.由图可知,当目标函数322z y x =-+过点A 时,z 有最大值,由题意可知,O 为球心,在正方体中,EF =即2R =,则球心O 到1BB 的距离为22OM ON MN =+=所以球O 与棱1BB 相切,球面与棱1BB 只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有所以以EF 为直径的球面与正方体每条棱的交点总数为故答案为:1216.2【分析】方法一:利用余弦定理求出AC ,再根据等面积法求出方法二:利用余弦定理求出AC ,再根据正弦定理求出【详解】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222b +-⨯⨯0,解得:13b =+,ABD ACD S S =+ 可得,11sin 602sin 3022AD AD ⨯=⨯⨯⨯+⨯ ()2313323312b AD b +===++.故答案为:2.方法二:由余弦定理可得,22222b +-⨯⨯由正弦定理可得,62sin 60sin sin b B C==,解得:362>>,所以45C = ,180B =30=o ,所以75ADB ∠= ,即AD 故答案为:2.本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.1n a n =-()1222nn ⎛⎫-+ ⎪⎝⎭1AC ⊥ 底面ABC ,BC ⊂面ABC 1AC BC ∴⊥,又BC AC ⊥,AC BC ∴⊥平面ACC 1A 1,又BC ⊂平面∴平面11ACC A ⊥平面11BCC B ,过1A 作11A O CC ⊥交1CC 于O ,又平面1AO ∴⊥平面11BCC B 1A 到平面11BCC B 的距离为1,在11Rt A CC △中,111,AC AC CC ⊥设CO x =,则12C O x =-,11111,,AOC AOC ACC △△△为直角三角形,且22211CO A O A C +=,2211A O OC +2211(2)4x x ∴+++-=,解得x 1112AC AC AC ∴===,1AC AC ∴=(2)111,,AC AC BC AC BC =⊥ 1Rt Rt ACB ACB ∴△≌△1BA BA ∴=,过B 作1BD AA ⊥,交1AA 于D ,则224【点睛】。

普通高等学校招生全国统一考试数学理试题(四川卷,解析版)

普通高等学校招生全国统一考试数学理试题(四川卷,解析版)

普通高等学校招生全国统一考试数学理试题(四川卷,解析版)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a bd c <【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a b d c <5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否则,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。

2022四川省高考数学试卷(理科数学)

2022四川省高考数学试卷(理科数学)

2022四川省高考数学试卷(理科数学)四川卷(理数)1.选择题必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上2.本部分共12小题,每小题5分,共60分.一、选择题:本大题共l2小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)1l[31.5,35.5)12[35.5.39.5)7[39.5,43.5)3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是(A)1112(B)(C)(D)63231i2.复数i=(A)2i(B)1i(C)0(D)2i23.l1,l2,l3是空间三条不同的直线,则下列命题正确的是(A)l1l2,l2l3l1l3(B)l1l2,l2l3l1l3(A)0(B)BE(C)AD(D)CF5函数,f(某)在点某某0处有定义是f(某)在点某某0处连续的(A)充分而不必要的条件(B)必要而不充分的条件(C)充要条件(D)既不充分也不必要的条件6.在ABC中.ininBinCinBinC.则A的取值范围是(A)(0,2226](B)[6,)(c)(0,3](D)[3,)7.已知f(某)是R上的奇函数,且当某大致是0时,f(某)()某1,则f(某)的反函数的图像128.数列an的首项为3,bn为等差数列且bnan1an(nN某).若则b32,b1012,则a89.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划党团派用两类卡车的车辆数,可得最大利润(A)4650元(B)4700元(C)4900元(D)5000元新课标第一网10.在抛物线y某2a某5(a≠0)上取横坐标为某14,某2的两点,过这两点引一2条割线,有平行于该割线的一条直线同时与抛物线和圆5某5y36相切,则抛物线顶点的坐标为(A)(2,9)(B)(0,5)(C)(2,9)(D)(1,6)11.已知定义在0,上的函数f(某)满足f(某)3f(某222,)当某0,2时,2设f(某)在2n2,2n上的最大值为an(nN某),且an的前n项和为f(某)某2.某Sn,则limSnn(A)3(B)53(C)2(D)2212.在集合1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量(a,b).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(四川卷)
数 学(理工类)
参考公式:
如果事件互斥,那么 球的表面积公式 如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ?g 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 343
V R p =
在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
第一部分 (选择题 共60分)
注意事项:
1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7
(1)x +的展开式中2
x 的系数是( )
A 、42
B 、35
C 、28
D 、21
2、复数
2
(1)2i i
-=( ) A 、1 B 、1- C 、i D 、i -
3、函数29
,3()3ln(2),3x x f x x x x ⎧-<⎪
=-⎨⎪-≥⎩
在3x =处的极限是( )
A 、不存在
B 、等于6
C 、等于3
D 、等于0
4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )
A 、10
B 、10
C 、10
D 5、函数
1
(0,1)x y a a a a
=->≠的图象可能是( )
6、下列命题正确的是( )
A 、若两条直线和同一个平面所成的角相等,则这两条直线平行
B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D 、若两个平面都垂直于第三个平面,则这两个平面平行
7、设a r 、b r 都是非零向量,下列四个条件中,使||||
a b
a b =r r
r r 成立的充分条件是( )
A 、a b =-r r
B 、//a b r r
C 、2a b =r r
D 、//a b r r 且||||a b =r r
8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

若点M 到该抛物线焦点的距离为3,则||OM =( )
A
、 B
、 C 、4 D
、9、某公司生产甲、乙两种桶装产品。

已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗
A 原料2千克,
B 原料1千克。

每桶甲产品的利润是300元,每桶乙产品的利润是400元。

公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。

通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A 、1800元
B 、2400元
C 、2800元
D 、3100元 10、如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面
α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45o 角的平
面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=o
,则A 、P 两点间的球面距离为( )
A
、arccos
4R B 、4R π C
、arccos 3R D 、3
R
π 11、方程2
2
ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )
A 、60条
B 、62条
C 、71条
D 、80条 12、设函数()2cos f x x x =-,{}n a 是公差为
8
π
的等差数列,125()()()5f a f a f a π++⋅⋅⋅+=,则
2313[()]f a a a -=( )
A 、0
B 、
2116π C 、218π D 、21316
π
第二部分 (非选择题 共90分)
注意事项:
(1)必须使用毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用毫米黑色签字笔描清楚。

答在试题卷上无效。

(2)本部分共10个小题,共90分。

二、填空题(本大题共4个小题,每小题4分,共16分。

把答案填在答题纸的相应位置上。

) 13、设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则()(
)U U
A B =U 痧___________。

14、如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

15、椭圆
2
2
143
x y
+=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________。

16、记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。

设a 为正整数,数列{}n x 满足1x a =,1[
][
]()2
n n
n a
x x x n N *++=∈,现有下列命题:
①当5a =时,数列{}n x 的前3项依次为5,3,2; ②对数列{}n x 都存在正整数k ,当n k ≥时总有n k x x =; ③当1n ≥时,1n
x a >;
④对某个正整数k ,若1k k x x +≥,则[n
x a =。

其中的真命题有____________。

(写出所有真命题的编号)
三、解答题(本大题共6个小题,共74分。

解答应写出必要的文字说明,证明过程或演算步骤。

) 17、(本小题满分12分)
某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故
障的概率分别为
1
10
和p 。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为49
50
,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期
望E ξ。

18、(本小题满分12分)
函数
2
()6cos 33(0)2
x
f x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高
点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形。

(Ⅰ)求ω的值及函数()f x 的值域; (Ⅱ)若083()f x =
,且0102
(,)33
x ∈-
,求0(1)f x +的值。

19、(本小题满分12分)
N M
B 1
A 1
C 1
D 1B
D B
C
P
如图,在三棱锥P ABC -中,90APB ∠=o ,60PAB ∠=o
,AB BC CA ==,平面PAB ⊥平
面ABC 。

(Ⅰ)求直线PC 与平面ABC 所成角的大小; (Ⅱ)求二面角B AP C --的大小。

20、(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立。

(Ⅰ)求1a ,2a 的值; (Ⅱ)设10a >,数列1
10{lg }n
a a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值。

21、(本小题满分12分)
如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB ∠=∠,设动点M 的轨迹为C 。

(Ⅰ)求轨迹C 的方程;
(Ⅱ)设直线2y x m =-+与y 轴交于点P ,与轨迹C 相交
于点
Q R 、,且||||PQ PR <,求
||
||
PR PQ 的取值范围。

22、(本小题满分14分)
已知a 为正实数,n 为自然数,抛物线2
2
n
a y x =-+与x
轴正
半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。

(Ⅰ)用a 和n 表示()f n ;
(Ⅱ)求对所有n 都有3
3()1()11
f n n f n n -≥++成立的a 的最小值;
(Ⅲ)当01a <<时,比较
1
1()(2)n
k f k f k =-∑
与27(1)()
4(0)(1)
f f n f f --
g 的大小,并说明理由。

y
x
B A
O
M。

相关文档
最新文档