中心对称图形免费课件下载PPT
合集下载
中心对称图形(优质课比赛课件)
中心对称图形(优质课比赛课件)
目录 Contents
• 中心对称图形的定义与性质 • 中心对称图形的分类与特点 • 中心对称图形的性质证明 • 中心对称图形在日常生活中的应用 • 中心对称图形的美学价值 • 中心对称图形的拓展与思考
01
中心对称图形的定义与性质
定义
总结词
中心对称图形是指关于某一点对称的图形,即图形绕着某点 旋转180度后与自身重合。
建筑学中的应用
1 2
建筑设计中的中心对称
中心对称的建筑形式给人以稳重、庄严和平衡的 感觉,常用于大型公共建筑和宗教建筑。
建筑立面和内部布局
建筑立面和内部布局中,中心对称的元素可以增 强建筑的视觉效果,给人以和谐、统一的感觉。
3
建筑结构和功能
中心对称的建筑结构有助于提高建筑的稳定性和 抗震性能,同时也有利于建筑的功能布局和使用。
艺术创作中的应用
绘画和雕塑
中心对称的构图和造型在绘画和 雕塑中广泛应用,可以创造出平
衡、和谐的艺术作品。
摄影
在摄影中,通过中心对称的构图 可以突出主题,增强画面的视觉
冲击力。
图案设计
中心对称的图案设计在纺织品、 平面设计等领域应用广泛,可以 创造出富有艺术感的视觉效果。
其他领域的应用
自然科学
在物理学、化学和生物学中,中心对称的现象广 泛存在,如晶体结构、分子形状等。
检查其是否能与原图重合来进行判断。
02
中心对称图形的分类与特点
中心对称图形的分类
中心对称图形可以分为两类:旋 转对称图形和镜面对称图形。
旋转对称图形是指围绕一个固定 点旋转一定角度后能与自身重合 的图形,如圆形、正多边形等。
镜面对称图形是指关于某一直线 对称的图形,如长方形、正方形
目录 Contents
• 中心对称图形的定义与性质 • 中心对称图形的分类与特点 • 中心对称图形的性质证明 • 中心对称图形在日常生活中的应用 • 中心对称图形的美学价值 • 中心对称图形的拓展与思考
01
中心对称图形的定义与性质
定义
总结词
中心对称图形是指关于某一点对称的图形,即图形绕着某点 旋转180度后与自身重合。
建筑学中的应用
1 2
建筑设计中的中心对称
中心对称的建筑形式给人以稳重、庄严和平衡的 感觉,常用于大型公共建筑和宗教建筑。
建筑立面和内部布局
建筑立面和内部布局中,中心对称的元素可以增 强建筑的视觉效果,给人以和谐、统一的感觉。
3
建筑结构和功能
中心对称的建筑结构有助于提高建筑的稳定性和 抗震性能,同时也有利于建筑的功能布局和使用。
艺术创作中的应用
绘画和雕塑
中心对称的构图和造型在绘画和 雕塑中广泛应用,可以创造出平
衡、和谐的艺术作品。
摄影
在摄影中,通过中心对称的构图 可以突出主题,增强画面的视觉
冲击力。
图案设计
中心对称的图案设计在纺织品、 平面设计等领域应用广泛,可以 创造出富有艺术感的视觉效果。
其他领域的应用
自然科学
在物理学、化学和生物学中,中心对称的现象广 泛存在,如晶体结构、分子形状等。
检查其是否能与原图重合来进行判断。
02
中心对称图形的分类与特点
中心对称图形的分类
中心对称图形可以分为两类:旋 转对称图形和镜面对称图形。
旋转对称图形是指围绕一个固定 点旋转一定角度后能与自身重合 的图形,如圆形、正多边形等。
镜面对称图形是指关于某一直线 对称的图形,如长方形、正方形
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)
(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
《中心对称图形》课件
中心对称图形
发现中心对称图形,探索对称之美。本课程介绍中心对称图形的定义、特点、 应用和画法,并探讨其中蕴含的美学价值和意义。
中心对称图形的定义
符号
通过中心点将图形对称的 操作称为中心对称,用“S” 表示。
定义
中心对称图形是指将图形 中每个点关于中心点做对 称变换后仍能重合的图形。
性质
中心对称图形有奇偶性, 若使用射线将图形划分为 两个相同部分,这两部分 的点数在形状、大小面积 上都相等,且互为镜像。
中心对称图形在许多文化中都有重要地位,如佛 教、印度教、伊斯兰教等,代表着不同的历史、 信仰和文化意义。
挑战:创意中心对称
1 主题
以生活中的常见事物为 灵感,创建一个中心对 称的图形。
2 要求
3 分享
注重创意和美感,表现 出中心对称图形的对称、 均衡和和谐美感。
交流分享各自的创意作 品,欣赏中心对称的无 限可能。
教学总结
通过本课程的学习,我们了解了中心对称图形的定义、特点、应用和画法,认识了中心对称的美学价值 和文化意义,灵活掌握了几种常见的排版方式和呈现手法,作为一名有自我创造精神的学习者和实践者, 我们可以尝试用中心对称图形来装点自己的生活和学习,简单的中心对称图形的步骤
确定中心点和需要对称的点,以中心点为中心做线段或圆,确定对称点的位置。
画复杂的中心对称图形的技巧
采用多个对称中心,结合其他变换,一步步引导图形的变化,增加艺术性和创意性。
中心对称图形的意义和价值
美学价值
文化背景
中心对称图形具有许多美学特点,如平衡、对称、 和谐、优美,被广泛应用于设计、美术、工艺等 领域。
中心对称图形的例子
基本图形的中心对称
常见的基本图形如圆、正方形、正三角形等都具 有中心对称性质。
发现中心对称图形,探索对称之美。本课程介绍中心对称图形的定义、特点、 应用和画法,并探讨其中蕴含的美学价值和意义。
中心对称图形的定义
符号
通过中心点将图形对称的 操作称为中心对称,用“S” 表示。
定义
中心对称图形是指将图形 中每个点关于中心点做对 称变换后仍能重合的图形。
性质
中心对称图形有奇偶性, 若使用射线将图形划分为 两个相同部分,这两部分 的点数在形状、大小面积 上都相等,且互为镜像。
中心对称图形在许多文化中都有重要地位,如佛 教、印度教、伊斯兰教等,代表着不同的历史、 信仰和文化意义。
挑战:创意中心对称
1 主题
以生活中的常见事物为 灵感,创建一个中心对 称的图形。
2 要求
3 分享
注重创意和美感,表现 出中心对称图形的对称、 均衡和和谐美感。
交流分享各自的创意作 品,欣赏中心对称的无 限可能。
教学总结
通过本课程的学习,我们了解了中心对称图形的定义、特点、应用和画法,认识了中心对称的美学价值 和文化意义,灵活掌握了几种常见的排版方式和呈现手法,作为一名有自我创造精神的学习者和实践者, 我们可以尝试用中心对称图形来装点自己的生活和学习,简单的中心对称图形的步骤
确定中心点和需要对称的点,以中心点为中心做线段或圆,确定对称点的位置。
画复杂的中心对称图形的技巧
采用多个对称中心,结合其他变换,一步步引导图形的变化,增加艺术性和创意性。
中心对称图形的意义和价值
美学价值
文化背景
中心对称图形具有许多美学特点,如平衡、对称、 和谐、优美,被广泛应用于设计、美术、工艺等 领域。
中心对称图形的例子
基本图形的中心对称
常见的基本图形如圆、正方形、正三角形等都具 有中心对称性质。
《 中心对称图形》课件
• 中对称也被认为是现代装饰 美学的基础
对称形式的其他特性
1
缩放对称
2
图形在对称轴的同侧相对称,比例相等
3
旋转对称
图形以对称轴为旋转中心旋转180度后与原 图重合
轴对称的性质判断
如果曲线在对称轴两侧左、右看起来形状相 同,则称其在该对称构图的轴上对称
制作方法和注意事项
• 确定对称中心和对称轴 • 选取相应的纸张、颜色和画具 • 绘制几何图形 • 将图形放在中心处,用铅笔画一条对称轴,再将正反称放在一起比较 • 要注意图形的比例和对称精度
中心对称图形
中心对称图形指通过某一点作为中心,将图形旋转一定角度后,使其与原图 完全重合的图形。
定义和性质
• 经过中心对称轴的直线称为对称轴 • 任意一点P与中心O的距离相等,则称点P对称于中心O • 中心对称图形具有对称性,旋转对称和缩放对称
常见形状
正方形
四条边长度相等,四个顶点均为90度
圆形
各点到圆心的距离相等
正三角形
三条边长度均相等,三个角均为60度
正六边形
六条边长度均相等,六个角均为120度
对称特征
对称轴
经过图形中心的直线
重合
所有被旋转的点都与原图重合
中心
旋转对称轴一定角度后与原图重合的点
两倍角问题
两个角度的中心对称图形相当于他们平均后的位置
在日常生活中的应用
• 对称图案的设计和制作 • 对称切割技术的应用,如包装盒制作 • 对称造型的应用,如建筑物的设计等 • 制作刀模或纸折
艺术设计中的运用
绘画
• 对称构图稳定平衡、雅致 和谐,往往作品更加美观
• 内对敛称关系常常被用来表现 安全感和收敛性,在花鸟 和岩石园林中广泛运用
对称形式的其他特性
1
缩放对称
2
图形在对称轴的同侧相对称,比例相等
3
旋转对称
图形以对称轴为旋转中心旋转180度后与原 图重合
轴对称的性质判断
如果曲线在对称轴两侧左、右看起来形状相 同,则称其在该对称构图的轴上对称
制作方法和注意事项
• 确定对称中心和对称轴 • 选取相应的纸张、颜色和画具 • 绘制几何图形 • 将图形放在中心处,用铅笔画一条对称轴,再将正反称放在一起比较 • 要注意图形的比例和对称精度
中心对称图形
中心对称图形指通过某一点作为中心,将图形旋转一定角度后,使其与原图 完全重合的图形。
定义和性质
• 经过中心对称轴的直线称为对称轴 • 任意一点P与中心O的距离相等,则称点P对称于中心O • 中心对称图形具有对称性,旋转对称和缩放对称
常见形状
正方形
四条边长度相等,四个顶点均为90度
圆形
各点到圆心的距离相等
正三角形
三条边长度均相等,三个角均为60度
正六边形
六条边长度均相等,六个角均为120度
对称特征
对称轴
经过图形中心的直线
重合
所有被旋转的点都与原图重合
中心
旋转对称轴一定角度后与原图重合的点
两倍角问题
两个角度的中心对称图形相当于他们平均后的位置
在日常生活中的应用
• 对称图案的设计和制作 • 对称切割技术的应用,如包装盒制作 • 对称造型的应用,如建筑物的设计等 • 制作刀模或纸折
艺术设计中的运用
绘画
• 对称构图稳定平衡、雅致 和谐,往往作品更加美观
• 内对敛称关系常常被用来表现 安全感和收敛性,在花鸟 和岩石园林中广泛运用
《中心对称图形》PPT课件
C'
___平__行__或__在__同__一__直__线__上____.
A
(3)对应角的关系是__相__等___.
B
B'
A'
O
C
(4)对应点的连线AA',BB',CC'与对称中心的关系
是_经__过__对__称__中__心__,__并___被_对__称__中__心___平__分____.
知识讲解
结论:
知识讲解
2.成中心对称:如果一个图形绕某一点旋转180°后与另 一个图形重合,那么就把这两个图形叫做成中心对称.这 个点叫做对称中心.
C'
A
O
B
B'
A'
C
知识讲解
思考: 中心对称图形与成中心对称有什么关系?
如果把成中心对称的两个图形看做整体,则 它就是中心对称图形;同样,中心对称图形 也可以看做两个图形成中心对称.
知识讲解
做一做 如图,△ABC和△DEF的顶点A,C,F,D在同一直线上,点O为线段 CF的中点,AC=DF,BC=EF,∠ACB=∠DFE.
将△ABC绕点O旋转180°后,它能与△DEF重合吗? 能
如果能重合,那么线段AB,AC和BC分别与哪些线段重合? AB与DE重合,AC与DF重合,BC与EF 重合
n/ 语文 课件 /kejia
n/yu wen/ 数学 课件
它们都/nk/es不jhia 是轴对称图形,经过旋转后可以与自身重合. uxue /
知识讲解
一、中心对称图形与成中心对称的图形
观察与思考:(1)观察下面几幅图,将它们分别绕着各图中标 注的“中心点”旋转180°后,能不能与它们自身重合?
中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
16.4 中心对称图形课件(共17张PPT)
A
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
《中心对称图形》PPT课件
夯实基础
*8.(中考·宁波)如图,小明家的住房平面图呈长方形,被分割成 3 个正方形和 2 个长方形后仍是中心对称图形.若只知道原住 房平面图长方形的周长,则分割后不用测量就能知道周长的 图形的标号为( ) A.①② B.②③ C.①③ D.①②③
夯实基础
【点拨】由题意知标①的两个长方形全等,标②的两个正方形全
1.把一个图形绕着某一个点旋转 180°,如果旋转后的图形能够 与原来的图形__重__合____,那么这个图形叫做 __中__心__对__称__图__形____,这个点就是它的_对__称__中__心____________.
夯实基础
2.(2018·达州)下列图形中是中心对称图形的是( B )
夯实基础
人教版 九年级上
第二十三章 旋转
第2节 中心对称 第2课时 中心对称图形
提示:点击 进入习题
1
重合;中心对称图 形;对称中心
2B
3B 4B 5 全等
6D 7A 8A 9 中点;交点 10 C
答案显示
提示:点击 进入习题
11 A 12 见习题 13 见习题 14 见习题 15 见习题
答案显示
夯实基础
【点拨】过中心对称图形的对称中心的 任意一条直线都能把图形分成面积相等的两部分.
类型
解:如图所示的三种方法均可.
探究培优
15.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分 别是 A(-3,2),B(0,4),C(0,2).
(1)将△ABC 以点 C 为旋转中心旋转 180°,画出旋转后对应的 △A1B1C;平移△ABC,若点 A 的对应点 A2 的坐标为(0, -4),画出平移后对应的△A2B2C2.
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
23.2.2 中心对称图形课件(共30张PPT)
B C 答:观察图2可以发现,平行 四边形ABCD绕它的两条对角线的 0 点 交O旋转1 8 0后与它本身重合。
广东省怀集县怀城镇城东初级中学 梁伟
观察总结
A
D
O
B
C
把一个图形绕着某一个点旋转180,如果旋转后的 图形能够与原来的图形重合,那么这个图形叫做 中心对称图形;这个点叫做它的对称中心;互相 重合的点叫做对称点.
心的对称点.
中心对称性质
A C B O A'
B' C'
(1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称与轴对称有什么区别?又有什么联系?
观察思考
(1)这些图形有什么共同的特征? 都是旋转对称图形。
后三个图形都是旋转1800后能与自身重合
梁伟 广东省怀集县怀城镇城东初级中学
探索发现
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
还有其它英文字 母是中心对称的
练一练
知识点一 5、在英文字母VWXYZ中,是 中 心对称的英文字母的个数有( B)个. A . 1 B . 2 C . 3 D. 4 6、所有的平行四边形都是
【小组讨论1】 (1)判断一个图形是否是中心对称 图形的关键是什么 ?
探索
(1)平行四边形是中心对称图形吗?如果是,
请找出它的对称中心,并设法验证你的结论。
(2)根据上面的过程,你能验证平行四边形的 哪些性质?
O
(1)平行四边形是中心对称图形,对称中心是两 条对角线的交点。 (2)能验证平行四边形的对边相等、对角相等、 对角线互相平分等性质。
广东省怀集县怀城镇城东初级中学 梁伟
观察总结
A
D
O
B
C
把一个图形绕着某一个点旋转180,如果旋转后的 图形能够与原来的图形重合,那么这个图形叫做 中心对称图形;这个点叫做它的对称中心;互相 重合的点叫做对称点.
心的对称点.
中心对称性质
A C B O A'
B' C'
(1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称与轴对称有什么区别?又有什么联系?
观察思考
(1)这些图形有什么共同的特征? 都是旋转对称图形。
后三个图形都是旋转1800后能与自身重合
梁伟 广东省怀集县怀城镇城东初级中学
探索发现
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
还有其它英文字 母是中心对称的
练一练
知识点一 5、在英文字母VWXYZ中,是 中 心对称的英文字母的个数有( B)个. A . 1 B . 2 C . 3 D. 4 6、所有的平行四边形都是
【小组讨论1】 (1)判断一个图形是否是中心对称 图形的关键是什么 ?
探索
(1)平行四边形是中心对称图形吗?如果是,
请找出它的对称中心,并设法验证你的结论。
(2)根据上面的过程,你能验证平行四边形的 哪些性质?
O
(1)平行四边形是中心对称图形,对称中心是两 条对角线的交点。 (2)能验证平行四边形的对边相等、对角相等、 对角线互相平分等性质。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
翻转前后的图形完全重合 旋转前后的图形完全重合
对应点的连线被对称轴垂 直平分 对称点连线经过对称中心, 且被对称中心平分
4
例1,已知四边形ABCD和O点,画出四边形ABCD 关于O点的对
.
B
C
D´
A´
画法:
1.连结AO 并延长到A´,使OA=OA´,得到点A的对称点A´ .
A
D
B
C
长方形既是轴对称图形,又是中心对称图形。 对称轴是经过每组对边中点的直线,对称中心 是两条对角线的交点 。
圆既是轴对称图形,又是中心对称图形。对称轴 是每一条直径所在直线;对称中心是圆心 。
轴对称图形与中心对称图形的比较
对 图 形 称
轴对称图形
图形 对称轴条数
中心对称图形
图形 对称中心
性
第一课时
观 察思考
下面图形,它们有何共同特征:
在平面内,一个图形绕某个点旋转180°,如 果旋转前后的图形互相重合,那么这个图形叫做中 心对称图形,这个点叫做它的对称中心.
你举出生活应用中心对称的例子吗?
做一做:下列哪些图形是中心对称图形?
(1)
(2)
(3)
(4)
中心对称图形的性质
定理1 中心对称图形上的每一对对应点所连 的线段都经过对称中心,并且被对称中心所平分。 定理2 关于中心对称的两个图形是全等形。
线段 角 等腰三角形 等边三角形 平行四边形 矩形 菱形 正方形
2条 1条 1条 3条
中点
对角线交点
2条
对角线交点 对角线交点 对角线交点
2条
4条
中心对称图形与轴对称图形有 什么区别与联系?
轴对称图形 1 有一条对称轴—— 直线 中心对称图形 有一个对称中心—— 点 图形绕中心旋转180°
) 2 图形沿轴对折(翻转180°
2.同样画B、C、D的对称点B´、C´、D´
3、顺次连结A´、B´、C´、D´各点 四边形A´B´C´D´就是所求的四边形
小结:1.线段,矩形,菱形,正方
形不仅是中心对称图形,而且是轴对 称图形。平行四边形是中心对称图形, 不是轴对称图形,角,等腰三角形, 等边三角形是轴对称 图形,不是中心 对称图形。
2.中心对称图形只有一个对称中心, 而轴对称可有几条不同的对称轴,
3.如果一个图形既是轴对称图形 , 又是中心对称图形,那么对称中心 一定在对称轴上。
O
等边三角形不是中心对称图形!
下面图形中,哪些是中心对称图形?哪些是轴 对称图形?指出它们的对称中心或对称轴? A ( C)
D ( B)
O
B (D)
C ( A)
平行四边形是中心对称图形, 对称中心是两条对角线的交点
A
D
C B 等腰梯形是轴对称图形,对称轴是经过上底和下 底中点的直线。
A D
B
C
菱形既是轴对称图形,又是中心对称图形。 对称轴是对角线所在的直线,对称中心是两条对 角线的交点 。
26个英文大写正体字母中,哪些是轴对称图 形,哪些是中心对称图形?
A G M S Y
B H N T Z
C D E F I J K L O P Q R U V W X
下面扑克牌中,哪些牌的牌面是中心对称图形?
观察下列标志,它们分别是何种对称图形?
填一填
中 心 对 称 图 形 轴 对 称 图 形 既是中 心对称 图形又 是轴对 称图形
A D O B E C F
比 较
中心对称与中心对称图形是两个既有 联系又有区别的概念.
区别: 中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系: 如果将中心对称图形的两个图形看成一个整体, 则它们是中心对称图形. 如果将中心对称图形对称的部分看成两个图形, 则它们成中心对称.