最新CCS智能船舶规范Rules for Intelligent Ships (2015)
《智能船舶规范》(2020)
中国船级社智能船舶规范2020中国船级社智能船舶规范20202020年3月1日生效北京目录第1章通则 (1)1.1一般要求 (1)1.2等效与免除 (1)1.3变更与修理 (2)1.4智能船舶附加标志 (2)1.5计算机系统 (3)1.6人员要求 (3)1.7网络安全要求 (3)1.8保安系统 (4)第2章智能航行 (6)2.1一般要求 (6)2.2智能航行功能标志 (6)2.3功能要求 (6)2.4设备配备及性能要求 (10)2.5检验与试验要求 (11)第3章智能船体 (14)3.1一般要求 (14)3.2智能船体功能标志 (14)3.3船体维护保养 (14)3.4船体监测及辅助决策 (18)第4章智能机舱 (22)4.1一般要求 (22)4.2智能机舱功能标志 (26)4.3图纸资料 (26)4.4系统要求 (27)4.5检验和试验 (30)第5章智能能效管理 (32)5.1一般要求 (32)5.2智能能效管理功能标志 (32)5.3图纸资料 (33)5.4船舶能效在线智能监控 (34)5.5航速优化 (36)5.6基于纵倾优化的最佳配载 (37)5.7检验 (38)第6章智能货物管理 (40)6.1一般要求 (40)6.2智能货物管理功能标志 (40)6.3参数监测 (40)6.4货物装/卸方案优化 (42)6.5辅助决策 (43)6.6自动装卸货 (44)6.7图纸资料 (45)6.8检验 (46)第7章智能集成平台 (47)7.1一般要求 (47)7.2智能集成平台功能标志 (47)7.3系统层次 (47)7.4系统要求 (48)7.5检验 (49)第8章远程控制船舶 (51)8.1一般要求 (51)8.2远程控制站 (51)8.3无线电通信与信号设备 (55)8.4R1功能标志的附加要求 (57)8.5R2功能标志的附加要求 (63)8.6检验与试验要求 (84)第9章自主操作船舶 (87)9.1一般要求 (87)9.2A1功能标志的附加要求 (87)9.3A2功能标志的附加要求 (91)9.4A3功能标志的附加要求 (92)9.5设备配备与性能要求 (93)9.6检验与试验要求 (93)第1章通则1.1一般要求1.1.1本规范适用于申请CCS智能船舶附加标志的船舶。
全球主要船级社智能船舶规范比较
智能航运 Intelligent Shipping进入21世纪第二个十年,无人艇在全球范围内如火如荼地发展起来,各类产品开始广泛地应用在多个领域,从环境保护到安防巡逻,从海洋调查到军事应用,从应急救援到科技文旅,到处都可以看到无人艇的身影。
随着无人艇技术的快速发展,大型船舶的智能化和无人化也呼之欲出,智能船舶和智能航运成为全球关注的新热点。
在各国政府的大力支持下,业界开展了广泛而深入的研究。
各利益相关方一致认为规范、标准、公约和法规是指导水面船舶设计、生产、检验、认证、运营的重要依据。
在传统船舶行业,这些文本较为完备,为行业的规范、健康发展提供了有力保障。
而无人艇、智能船舶等属于新生事物,目前与之对应的规范、标准、公约和法规等极不健全,严重阻碍了行业的规范、健康发展。
规范化和标准化成为行业发展的当务之急。
在这个背景下,2015年中国船级社发布了全球首个智能船舶规范,并于2016年3月正式生效。
此后,英国船级社、日本船级社、美国船级社、挪威船级社、法国船级社等全球主要船级社陆续发布了智能船舶相关的规范或者指南,为各国智中国船级社 孙 武全球主要船级社智能船舶规范比较珠海云洲智能科技股份有限公司 潘 登珠海云洲智能科技股份有限公司 赵继成能船舶行业的规范化发展打下了基础,促进了行业的健康、有序发展。
在此期间,国际海事组织也对智能船舶的自主等级进行了定义。
本文研究了各国船级社规范的主要内容和特点,并通过横向和纵向对比,分析了这些规范关注的侧重点以及规范之间的差异,从而对智能船舶形成了更加深刻的认识,在此基础上提出关于智能船舶规范发展的一些建议。
各主要船级社智能船舶规范概述截至目前,有六家船级社(见表1)发布了智能船舶相关规范,其中中国船级社最早行动,其智能船舶规范发布于2015年12月,并于2016年3月正式生效。
其规范采用GBS 框架,按照目标、功能、要求的层次,基于模块化的思路进行编写,涵盖航行、轮机、船体、能效管理、货物管理、集成平台六大智能功能。
游艇规格标准ccs
游艇规格标准ccs英文回答:When it comes to yacht specifications, the China Classification Society (CCS) has certain requirements that need to be met. CCS is a well-known classification society in China that sets standards for various types of vessels, including yachts.First and foremost, CCS requires that yachts adhere to certain safety standards. This includes having proper navigation and communication equipment, as well as fire protection and life-saving appliances. For example, a yacht must have a functioning GPS system, VHF radio, and fire extinguishers on board.In terms of design and construction, CCS has guidelines that need to be followed. Yachts must be built with materials that are suitable for marine environments and must have a strong and stable structure. The yacht's hull,deck, and superstructure must be designed to withstand the forces of nature, such as waves and wind. Additionally, the yacht's stability and buoyancy must be carefully calculated to ensure safe operation. For instance, the yacht's hull may be made of fiberglass or aluminum, which are commonly used materials in yacht construction.CCS also has requirements for the yacht's systems and equipment. This includes the electrical system, plumbing system, and propulsion system. Yachts must have reliable and efficient systems in place to ensure smooth operation. For example, the electrical system must be able to powerall the necessary equipment on board, such as lights, air conditioning, and navigation instruments. The propulsion system, whether it's a diesel engine or an electric motor, must be capable of providing sufficient power to move the yacht through the water.Furthermore, CCS requires that yachts meet certain environmental standards. Yachts must have proper waste management systems in place to prevent pollution of the marine environment. For example, yachts must have holdingtanks for sewage and gray water, and these tanks must be emptied at designated facilities on land. Additionally, yachts must comply with regulations regarding emissionsfrom their engines, to reduce air pollution.中文回答:游艇规格标准ccs要求游艇在各个方面都要符合一定的要求。
游艇规格标准ccs
游艇规格标准ccs游艇规格标准CCS一直以来都是国际上公认的游艇行业标准,其制定的标准严格而细致,涵盖了游艇的各个方面。
CCS标准不仅仅是为了确保游艇的安全性能和质量,更是为了提升整个游艇行业的水平和竞争力。
在全球范围内,许多游艇制造商和船东都视CCS标准为游艇设计和建造的重要依据,通过遵循CCS标准可以确保游艇采用最优质的材料和最先进的技术。
本文将针对游艇规格标准CCS进行深入研究,探讨其在游艇行业中的作用和影响。
首先,CCS标准对游艇的设计和建造起着重要的指导作用。
在游艇设计阶段,设计师需要根据CCS标准的要求来确定游艇的结构、稳性、推进系统等各项参数。
CCS标准规定了游艇的各项指标和要求,设计师必须确保游艇的设计符合这些标准,才能通过CCS的认证。
在游艇建造阶段,船厂需要按照CCS标准的要求来选择材料、工艺和建造方法,确保游艇的质量和安全性能。
通过遵循CCS标准,游艇设计师和船厂可以保证游艇的设计和建造达到国际先进水平,提升游艇的市场竞争力。
其次,CCS标准对游艇的安全性能和使用性能有着严格的要求。
游艇作为一种高端的休闲娱乐产品,其安全性能至关重要。
CCS标准规定了游艇在各种环境条件下的安全性能要求,包括耐波性、稳性、结构强度等。
设计师和船厂必须根据这些标准来设计和建造游艇,确保其在海上航行时能够稳定、安全。
此外,CCS标准还规定了游艇在使用过程中的各项性能指标,如推进性能、航行性能等。
遵循这些标准可以保证游艇在实际使用中具有良好的性能表现,满足船东和用户的需求。
再次,CCS标准对游艇行业的发展和规范化起着积极的推动作用。
随着人们对休闲生活的需求不断增加,游艇作为一种高端的休闲产品越来越受到青睐。
然而,游艇行业的发展也面临着一些挑战,如产品质量参差不齐、市场混乱等问题。
CCS标准的出现可以规范游艇行业的产品质量和标准,提升整个行业的水平和声誉。
遵循CCS标准的游艇制造商和船东可以获得CCS 认证,证明其产品符合国际标准,增强消费者的信心和认可度。
智能船舶航行事故的刑法归责与教义展开
预示着未来船舶的发展方向,也关乎整个航运业的转型升级。 相比传统船舶,智能船舶不仅能够提升航行安
全、运载效力,而且在降低能效消耗方面更加具有优势。 然而,智能船舶这一运动模型不同于自动驾驶汽车,
其操作和控制具有巨大的惯性,气象情况和通航环境本身对船舶运动也会产生不确定的干扰。 基于智能船
舶的特性,如何在刑事领域厘清岸基远程操控人员、智能系统生产者、航运公司或者船东等多重主体的注意
https: / / www.zj.msa.gov.cn / zj / zwgk / gkml / xzqz / 201912 / t20191224_590231.html。
② 参见《 DNV 船级社证实:70 家客户、1 000 艘船舶受网络攻击影响》 ,载搜狐网 2023 年 1 月 18 日,http: / / news.sohu.com / a / 631634753_
统安装、智能航行测试后交付运营。② 为适应全球智能化的发展趋势,结合中国的海洋强国战略部署,国际
公约和 国 内 规 范 层 面 也 率 先 开 启 智 能 航 运 的 法 规 梳 理 和 规 则 运 用。 在 国 际 层 面, 国 际 海 事 组 织
(International Maritime Organization,简称 IMO) 海上安全委员会自 2017 年第 98 届会议将“ 自主无人船舶” 纳
能船舶为研究主体展开论证。
⑤ 中国工业和信息化部印发的《 船舶总装建造智能化标准体系建设指南(2020 版) 》 提出,将在 2025 年建立较完善的船舶总装建造智能
化标准体系。
⑥ 也有学者认为,智能运输船舶将沿着“ 需要少部分船员” 到“ 岸上远程操控” 再到“ 完全自动化驾驶” 的路径发展,逐步过渡到“ 完全无
ccs船级社标准
ccs船级社标准
CCS(China Classification Society,中国船级社)是中国最大
的船级社,成立于1956年,总部位于北京。
它是中国商船安
全法规的主要起草组织之一,负责监督和评估船舶的安全性和可靠性。
CCS的标准主要包括以下几个方面:
1. 船舶规范和设计标准:CCS制定了适用于各类船舶的设计、建造和维护标准,包括船体结构、设备安装、船载系统等方面。
2. 船舶安全规范:CCS制定了船舶安全管理体系、船舶货物
装载和固定、舾装和危险品管理等标准,确保船舶在航行中的安全运行。
3. 船舶检验和认证标准:CCS负责对船舶进行检验和认证,
确保符合标准要求,包括船舶结构和设备的状态、安全管理制度的执行情况等。
4. 船级规则和指南:CCS发布了一系列船级规则和指南,包
括船舶建造规则、船舶维修和检验规则等,为船舶设计、建造和运营提供指导。
5. 系统认证服务:CCS提供了船舶管理体系认证、产品认证
等服务,帮助企业提升管理水平和产品质量。
CCS的标准在中国船舶行业具有很高的权威性,符合CCS标
准的船舶在国际市场上也享有良好的声誉。
同时,CCS还与
国际船级社保持合作关系,在国际航运领域也发挥着重要的作用。
智能船舶专用标准属性和驱动力探讨
智能航运Intelligent Shipping“智能船舶,标准先行”已成为业界共识,工业与信息化部于2019年发布了《智能船舶标准体系建设指南》(征求意见稿),指导智能船舶标准体系建设。
ISO/TC8/WG10也提出了初步的智能航运国际标准化路线图,根据路线图各造船强国先后提出了10余项智能船舶国际标准提案。
智能船舶标准与智能船舶技术研制上升到同等重要的高度。
智能船舶标准也成为各国抢占智能船舶技术发展方向话语权的重要途径。
现阶段,国际在研或预备的智能船舶相关标准项目如表所示:现有国际智能船舶标准中除了《ISO 4891 智能航海日志》为针对系统及设备的专用标准,其它标准为基础通用标准,基础标准一般是指具有广泛指导意义的术语、定义、基本原则等标准;通用标准一般是指具有较大覆盖范围的共性标准,如通用安全、环保、通信、数据、接口等方面的标准。
智能航海日志不属于业界共识的典型智能船舶系统及设备,因此,现阶段国际智能船舶标准研究的重点为基础通用标准,针对智能感知、智能航行、智能机舱、智能能效等典型智能船舶系统及设备专用标准的研究尚处于起步阶段。
基础通用标准相对于专用标准来说更加容易制订,也是智能船舶标准体系的重要组成部分,中国船级社 孙 旭智能船舶专用标准属性和驱动力探讨中国船检 CHINA SHIP SURVEY 2021.1562021.1 CHINA SHIP SURVEY 中国船检57为智能船舶的研制和专用标准的制订奠定了坚实的基础,但是业界往往更关注智能船舶系统及设备的专用标准,投入了更多的资源进行相关研究。
智能船舶专用标准的研究比较复杂,如何制订需要从以下几个维度进行探讨。
智能船舶专用标准是科学技术还是工程技术?科学技术一般用来解决理论问题,把自然界中发生的现象建立理论体系,使我们更好地理解现在和探索未来,研究成果往往是难以预料的;工程技术一般用来解决应用问题,即把科学技术研究的成熟理论进行应用,提高我们的生产力,因为使用相对成熟的理论,成果可规划且比较精准。
船舶智能航行及关键技术最新发展
中国船检 CHINA SHIP SURVEY 2020.1152规范1.0》,对智能航行、智能船体、智能机舱、智能能效管理、智能货物管理和集成平台等功能要求进行了规定,并于2020年补充了远程控制船舶和自主操作船舶的相关规范内容。
其中,智能航行技术作为智能船舶的典型功能之一,融合了信息感知与融合、态势认知与学习、智能决策与控制等先进技术内容,是当前智能船舶领域的研究热点。
船舶智能航行的发展现状在船舶智能航行方面,国外航运企业以及海事相关机构的研究较早。
早在2012年,由Fraunhofer CML公司、MARINTEK 公司、Chalmers 大学等8家研究机构共同合作,开始了“MUNIN”(图1)(Maritime Unmanned Navigation through Intelligence in Networks)项目,首次以无人散货轮船舶智能航行及其关键技术的发展为智能船舶在水上交通中的应用奠定了基础。
近年来,智能船舶成为国际海事、交通领域的研究热点。
国际主要船级社先后发布了有关智能船舶及相关技术的规范或指导性文件,以大力推进和指导智能船舶研制与应用。
中国船级社早在2015年就发布了第一部完整的智能船舶规范《智能船舶船舶智能航行及关键技术最新发展中国船级社马吉林 谢 朔智能航运 Intelligent Shipping为对象开展大型船舶的智能航行研究,并首次提出了无人驾驶概念。
在此后的智能航行项目研究中,主要以劳斯莱斯(Rolls-Royce)等大型船舶公司和运营商为首,形成了丰富的成果。
2015年,Rolls-Royce与芬兰Aalto大学合作启动了AAWA项目,旨在实现船舶的远程驾驶与无人运输。
在AAWA的白皮书中,对船舶航行过程中自动避碰能力的重要性进行了说明。
2016年,Rolls-Royce在其制定的无人驾驶船舶应用开发计划中展示了岸基控制中心的运营模式和无人化航运的概念,并于2017年与全球拖船运营商Svitzer合作在丹麦哥本哈根港成功展示了全球首艘远程驾驶商船“SvitzerHermod”号。
我国智能船舶指导文件
我国智能船舶指导文件近年来,随着科技的不断进步和发展,智能船舶已经逐渐成为我国航运业的重要组成部分。
为了进一步推动智能船舶的发展,我国制定了智能船舶指导文件,以规范和引导智能船舶的研发和运营。
智能船舶指导文件明确了智能船舶的定义和分类。
智能船舶是指通过人工智能、自动化控制和传感技术等手段,提高船舶的运行效率和安全性的船舶。
根据不同的功能和应用领域,智能船舶可以分为自主导航船舶、智能维修船舶和智能物流船舶等多个类型。
指导文件明确了智能船舶的研发要求和标准。
对于智能船舶的研发,需要充分考虑船舶的自主性、智能化程度和可靠性等方面。
同时,还需要确保智能船舶与现有航运系统的兼容性,以便实现智能船舶与其他船舶、港口和物流系统的无缝对接。
指导文件还强调了智能船舶的安全性和可持续发展。
智能船舶的安全性是智能船舶研发的重中之重。
需要采取有效的安全措施,确保船舶的自主导航和智能化控制系统的稳定性和可靠性。
此外,智能船舶的可持续发展也是指导文件关注的重点。
需要在研发和运营中注重节能减排和环保技术的应用,以减少对环境的不良影响。
指导文件还明确了智能船舶的推广和应用。
为了推动智能船舶的普及和应用,指导文件提出了相应的政策和措施。
例如,鼓励船舶企业加大对智能船舶的研发投入,提供相应的财政支持和税收优惠。
同时,还需要加强智能化技术和标准的研究和制定,以提高我国智能船舶的核心竞争力。
我国智能船舶指导文件的出台,对于推动智能船舶的发展和应用具有重要意义。
通过明确智能船舶的定义和分类,规范智能船舶的研发和运营,以及推动智能船舶的普及和应用,我国的航运业将迎来新的发展机遇。
让我们共同努力,推动智能船舶行业的创新发展,为我国航运业的繁荣做出贡献。
智能船舶规范
中 国 船 级 社智 能 船 舶 规 范20152016年3月1日生效地址 Add: 北京市东直门南大街9号船检大厦CCS Mansion, 9 Dongzhimen Nan Da Jie电话 Tel: 0086-010-********传真 Fax: 0086-010-********邮码 Postcode: 100007电子邮箱: ccs@目录第1章通则 (1)1.1一般要求 (1)1.2新技术应用 (1)1.3变更与修理 (2)1.4智能船舶附加标志 (2)1.5计算机系统 (2)1.6人员要求 (3)第2章智能航行 (4)2.1一般要求 (4)2.2智能航行功能标志 (4)2.3送审图纸资料 (4)2.4航路设计和优化 (5)2.5自主航行 (6)2.6高级自主航行 (7)2.7检验和试验 (7)第3章智能船体 (8)3.1一般要求 (8)3.2智能船体功能标志 (8)3.3船体全生命周期管理 (8)3.4船体监测及辅助决策系统 (12)第4章智能机舱 (16)4.1一般要求 (16)4.2智能机舱功能标志 (17)4.3图纸资料 (18)4.4系统要求 (19)4.5检验和试验 (22)第5章智能能效管理 (24)5.1一般要求 (24)5.2船舶能效在线智能监控 (26)5.3航速优化 (28)5.4基于纵倾优化的最佳配载 (29)5.5检验和试验 (30)第6章智能货物管理 (32)6.1一般要求 (32)6.2智能货物管理功能标志 (32)6.3图纸资料 (32)6.4货物、货舱监测报警和辅助决策系统 (33)6.5货物保护系统的监测报警和辅助决策系统 (33)6.6货物配载系统 (34)6.7自动装卸货系统 (35)6.8检验 (35)第7章智能集成平台 (36)7.1一般要求 (36)7.2智能集成平台功能标志 (36)7.3系统层次 (36)7.4系统要求 (38)7.5检验 (38)附录1 常用的状态监测技术 (40)1.1振动监测技术 (40)1.2油液分析技术 (43)1.3噪声监测技术 (44)1.4热成像技术 (44)1.5电气信号分析技术 (45)第1章通则1.1 一般要求1.1.1 本规范适用于申请CCS智能船舶附加标志的船舶。
智能船舶技术和无人驾驶技术研究
智能船舶技术和无人驾驶技术研究龚瑞良;吉雨冠【摘要】智能船舶概念的兴起以及智能船舶技术的日益发展,已使船舶智能化成为全球航运的大势所趋。
文中结合中国船级社今年3月正式发布的《智能船舶规范》,具体介绍了智能船舶技术的六大功能模块(智能航行、智能船体、智能机舱、智能能效管理、智能货物管理和智能集成平台)的主要功能、技术要求,以及实现无人驾驶技术的主要功能和实现难点,对相关技术人员依据《智能船舶规范》进行设计、制造智能船舶方面具有一定借鉴作用。
%As the concept and technology of intelligent ships are increasingly developing, the intelligent ship has become the global shipping trend. Combined with the CCS"Rules for Intelligent Ships"which has been released in March, 2016, this paper introduces the main function and technical requirement of the six functional modules of the intelligent ship, including intelligent navigation, intelligent hull, intelligent machinery, intelligent energy efficiency management, intelligent cargo management and intelligent integration platform. It also discusses the main function and realization difficulties of unmanned navigation, which can provide references for the relevant designers to design and manufacture intelligent ships according to"rulesfor intelligent ships".【期刊名称】《船舶》【年(卷),期】2016(027)005【总页数】6页(P82-87)【关键词】智能船舶技术;无人驾驶技术;智能船舶规范【作者】龚瑞良;吉雨冠【作者单位】常熟瑞特电气股份有限公司常熟215500;中国船舶及海洋工程设计研究院上海200011【正文语种】中文【中图分类】U6662016年3月1日,由中国船级社(CCS)编制的《智能船舶规范》已正式生效,这意味着智能船舶及无人驾驶时代的到来。
ccs 船舶综合安全评估应用指南
ccs 船舶综合安全评估应用指南下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!CCS船舶综合安全评估应用指南一、导言CCS是中国对外开放的唯一一家国际海事认可机构,拥有强大的技术实力和丰富的经验,其船舶综合安全评估应用指南是指导船舶进行全面安全评估的重要文件。
“智能船舶”发展与国际公约的不适用性
“智能船舶”发展与国际公约的不适用性智能船舶作为作为新出现的一种事物,必将挑战现行的法律法规,如无人驾驶汽车必将挑战现行交通法一样。
本文主要讨论现行IMO公约对智能船舶的限制和对策。
一、智能船舶定义随着大数据、人工智能等技术的快速发展,船舶智能化已经成为船舶制造与航运领域发展的必然趋势。
目前业界对“智能”船舶的表述各式各样,例如Smart、Intelligent、Digital、Connected,Automatic等等。
中国船级社所理解的智能船舶是指利用传感、通信、物联网等技术手段,自动感知和获得船舶自身、海洋环境、物流、港口等方面的信息和数据,并基于计算机技术、自动控制技术、大数据技术、智能技术,在航行、管理、维护保养、货物运输等方面实现智能化运行的船舶,以使船舶更加安全、更加环保、更加经济、更加可靠。
智能船舶的发展是一个循序渐进的过程,所以CCS用了“更安全、更环保、更经济、更可靠”的说法。
(一)智能船舶的特点1、具有感知能力,即具有能够感知船舶自身以及周围环境信息的能力。
2、具有记忆和思维能力,即具有存储感知信息及管理知识的能力,并能够利用已有的知识对信息进行分析、计算、比较、判断、联想、决策。
3、具有学习和自适应能力,即通过专家知识以及与环境的相互作用,不断学习积累知识并适应环境变化。
4、具有行为决策能力,即对自身状况及外部环境做出反应,形成决策并指导船岸人员,甚至控制船舶。
(二)“智能船舶”的发展1.互联互通:是智能船舶的最初阶段,布置感知系统,建设系统间以及船岸间的通信和数据共享能力,实现对船舶的远程监测(产品库求购供应)。
2.系统整合:制定统一的船舶数据标准,逐步将多源异构系统整合为单一集成系统,实现平台化管理。
为实现“一平台+多应用”的目标奠定基础。
3.远程控制:管理人员在岸基控制中心、母船等位置,通过远程通信手段,实现对被控制船舶的操控。
远程控制应用的前提是需要解决设备的健康管理等一系列技术问题。
新版CCS《智能船舶规范》介绍
新版CCS《智能船舶规范》介绍
刘孟云;刘军朴
【期刊名称】《中国船检》
【年(卷),期】2024()3
【摘要】2024年4月1日,中国船级社《智能船舶规范》(2024)将生效实施。
为
持续提升智能船舶规范标准的先进性、适用性、准确性和可操作性,中国船级社通
过科研立项的方式,在特殊任务/作业、特别水域、新型推进动力、辅助航行、远程遥控/自主操作等领域开展了一系列智能技术应用研究,基于科研成果制定了拖轮、内河船舶、极地航行船舶、辅助航行、远程遥控等新规范。
新版规范将进一步引导工业界智能产品迭代升级,增强市场竞争力和应用实效,促进智能技术在拖轮、内河
船舶、极地航行船舶等领域的应用和推广,更好地服务于工业界。
【总页数】4页(P60-63)
【作者】刘孟云;刘军朴
【作者单位】中国船级社
【正文语种】中文
【中图分类】U66
【相关文献】
S《智能船舶规范》六大功能模块要求
2.ASME 锅炉压力容器规范第Ⅸ卷新版焊接规范介绍(一)
3.中国船级社发布新版《智能船舶规范》和《绿色生态船舶规范》
S《智能船舶规范》3月1日生效
5.中国船级社(CCS)发布《智能船舶规范》(2023)
因版权原因,仅展示原文概要,查看原文内容请购买。
ccs船舶规范
竭诚为您提供优质文档/双击可除ccs船舶规范篇一:ccs船舶设计建造标准一览表中国船级社chinaclassiFicationsociety船舶设计建造标准一览表listofcurrentRules,Regulationsandconventionsapplica bletothevessel(s)designandconstruction篇二:ccs锚机规范第2章锚机装置2.1适用范围2.1.1本章适用于海船的电动、液压、蒸汽或外力驱动的锚机装置。
2.1.2本章所指的“锚机装置”在适当处应理解为“起锚机和起锚绞盘”。
2.1.3对于起锚系泊组合机,除本章外,还应参阅本篇第3章绞车。
2.2认可和检验依据2.2.1本章采用的认可和检验依据如下:(1)ccs《钢质海船入级规范》(20xx)及其修改通报(20xx);(2)ccs《材料与焊接规范》(20xx)及其修改通报;(3)iso4568-20xx《造船-海船-起锚机和起锚绞盘》。
2.3定义2.3.1iso3828、iso4568和ccs《钢质海船入级规范》(20xx)中给出的定义适用本章。
2.3.2本章有关定义如下:(1)跳链:起锚机在起锚或抛锚的过程中,因锚链与锚链轮的啮合发生错位,锚链向其抛出方向窜出一节或数节的现象。
跳链现象对起锚机会产生较大的冲击。
(2)卡链:起锚机在起锚的过程中,因锚链与锚链轮的啮合原因,锚链在进入锚链舱方向与锚链轮不能正常脱开的现象。
卡链现象对锚链筒和分链器(链舌)会产生冲击。
2.4图纸资料2.4.1下列图纸资料应提交批准:(1)产品主要性能规格;(2)总装配图;(3)主要零部件图;(4)主要系统原理图及安全报警装置;(5)计算书;(6)主要零件材料理化性能一览表;(7)型式试验大纲。
2.4.2下列图纸资料应提交备查:(1)有关主要的验收标准;(2)产品使用说明书。
2.5重要零部件2.5.1起锚机中的下列(如有)外购件应持有ccs产品证书:(1)电动机(50kw及以上);(2)液压泵;(3)液压马达;(4)齿轮箱(100kw及以上);(5)电气控制箱;(6)主令控制器。
CCS《智能船舶规范》正式生效——中国水运网
CCS《智能船舶规范》正式生效——中国水运网近年来,由于智能船舶概念的兴起以及智能船舶技术的日益发展,船舶智能化已经成为全球航运的大势所趋。
出于通过船舶智能化降低船舶控制和管理难度、减少人为误操作、提高设备及船舶营运的安全,优化船舶航行,控制燃油消耗、降低成本,提高收益等目的,目前智能船舶的研究已在全球范围内开展。
考虑到未来船舶智能化的发展方向和发展趋势,为了引领行业发展,同时也为船舶航行更加安全,更加环保、更加经济和更加可靠,中国船级社基于近年来对计算机技术、通信导航技术、先进传感器技术、先进控制技术等国际智能船舶技术的发展研究成果,充分参考国内外有关智能船舶的应用经验和发展现状,编制了CCS《智能船舶规范》,并于2016 年3 月1 日正式生效。
CCS智能船舶规范对智能船舶的定义如下:智能船舶系指利用传感器、通信、物联网、互联网等技术手段,自动感知和获得船舶自身、海洋环境、物流、港口等方面的信息和数据,并基于计算机技术、自动控制技术和大数据处理和分析技术,在船舶航行、管理、维护保养、货物运输等方面实现智能化运行的船舶。
智能船舶分为六大功能模块:智能航行、智能船体、智能机舱、智能能效管理、智能货物管理和智能集成平台。
当船舶的各项功能均符合CCS智能船舶规范要求时,可授予智能船舶附加标志:i-Ship (Nx, Hx, Mx, Ex, Cx, Ix)括号内的字母是智能船舶的功能标志,其与智能船舶功能模块的对应如下:N-- 智能航行功能标志;H-- 智能船体功能标志;M-- 智能机舱功能标志;E-- 智能能效管理功能标志;C--智能货物管理功能标志;I--智能集成平台功能标志;x--可选功能补充标志。
当船舶具有某一智能功能,即可单独授予相关的智能功能标志。
智能船舶规范对各项智能船舶功能模块的要求如下:1、智能航行规范要求智能航行应具有以下基本功能:对气象、经济性和物流信息进行分析处理;基于分析结果对船舶航路和航速进行设计和优化。
ccs船检内河24米以下小船建造技术要求
CCS船检内河24米以下小船建造技术要求1.概述CCS船检内河24米以下小船建造技术要求是指我国船级社(CCS)对内河小船建造的技术标准和要求。
内河小船在我国的水上交通中起着至关重要的作用,其建造技术要求对船舶的安全性和性能有着重要的影响。
本文将从设计要求、建材选用、工艺技术、质量控制等方面对CCS船检内河24米以下小船建造技术要求进行全面探讨,以便读者能够深入了解相关内容。
2.设计要求在CCS船检内河24米以下小船建造中,设计要求是至关重要的一环。
设计要考虑船舶的结构强度和稳性,以确保船舶在航行中能够承受外部环境和负荷的影响。
设计要充分考虑船舶的航行性能和操纵性,以满足内河航行的特殊要求。
设计还需考虑船舶的舱容、货物装载能力和燃油经济性等方面的要求。
3.建材选用建造内河小船所选用的建材需符合CCS的要求,包括钢材、焊接材料、防腐涂料等。
这些建材不仅需要具有良好的机械性能和耐腐蚀性能,还需要符合环保要求和可持续发展的理念。
在材料的选用上,还需充分考虑成本、加工工艺和市场供应等因素。
4.工艺技术在CCS船检内河24米以下小船建造中,工艺技术的运用至关重要。
包括船体的建造工艺、焊接工艺、涂装工艺等方面。
各项工艺技术需要严格按照CCS的要求进行操作,确保船舶的质量和性能。
还需要注重工艺技术的创新和改进,以提高船舶建造的效率和质量。
5.质量控制质量控制是CCS船检内河24米以下小船建造中不可或缺的环节。
从材料的验收到船舶的最终交付,质量控制需要贯穿整个建造过程。
在质量控制方面,还需要重点关注焊接质量、涂装质量、尺寸精度等关键环节,以确保船舶的质量符合标准。
6.个人观点和理解作为一个船舶建造领域的专家,我对CCS船检内河24米以下小船建造技术要求有着深刻的理解和丰富的实践经验。
在实际操作中,我深深体会到严格执行CCS的技术要求对船舶建造的重要性,并且在工艺技术和质量控制方面进行了不少的探索和实践。
我相信,随着技术的不断创新和发展,CCS船检内河24米以下小船建造技术要求将会得到进一步的完善和提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CHINA CLASSIFICATION SOCIETY RULES FOR INTELLIGENT SHIPS2015CHINA CLASSIFICATION SOCIETY RULES FOR INTELLIGENT SHIPS2015Effective from March 1 2016Add:CCS Mansion,9 Dongzhimen Nan Jie,Bejing 100007,ChinaTel: 0086-010-********Fax: 0086-010-********Postcode:100007Email:ccs@CONTENTSChapter 1General1.1General requirements1.2Application of new technology1.3Alterations and repairs1.4Class notation for intelligent ships1.5Computer systems1.6Personnel requirementsChapter 2Intelligent Navigation2.1General requirements2.2Functional notation for intelligent navigation2.3Plans and documents submitted for approval2.4Route design and optimization2.5Autonomous navigation2.6Advanced autonomous navigation2.7Survey and testChapter 3Intelligent Hull3.1General requirements3.2Functional notation for intelligent hull3.3Hull lifecycle management3.4Hull monitoring and assistant decision-making systemChapter 4Intelligent Machinery4.1General requirements4.2Functional notation for intelligent machinery4.3Plans and documents4.4System requirements4.5Survey and testChapter 5Intelligent Energy Efficiency Management5.1General requirements5.2Ship energy efficiency on-line intelligent monitoring5.3Speed optimization5.4Optimal stowage based on trim optimization5.5Survey and testChapter 6Intelligent Cargo Management6.1General requirements6.2Functional notation for intelligent cargo management6.3Plans and documents6.4Cargo and cargo hold monitoring alarm and assistant decision-making systems6.5Cargo protection system monitoring alarm and assistant decision-making systems 6.6Cargo stowage system6.7Automatic cargo loading and unloading system6.8SurveyChapter 7Intelligent Integration Platform7.1General requirement7.2Functional notation for intelligent integration platform7.3System layer7.4System requirements7.5SurveyAppendix 1Common Condition Monitoring Techniques1.1 Vibration monitoring techniques1.2Oil analysis technique1.3Noise monitoring techniques1.4 Thermography technique1.5Electrical signal analysis techniqueChapter 1General1.1General requirements1.1.1The Rules apply to ships for which CCS Intelligent Ship class notation is requested.1.1.2Intelligentization means applications specific to certain object which are integrated by means of modern communication and information technology, computer network technology and intelligent control technology. Such applications generally include, but not limited to, assessment, diagnosis, prediction and decision making. Intelligentization is generally characterized by:(1) Perception, i.e. the ability to perceive the outside world and obtain outside information;(2) Memory and thinking, i.e. the ability to store perceived outside information and knowledge arising from thinking, and at the same time analyze, calculate, compare, judge, associate and make decisions on information by making use of available knowledge;(3) Learning and self-adaptability, i.e. the ability to continuously learn and accumulate knowledge by interacting with the environment so as to be adaptable to environmental changes;(4) Behavioral decision making, i.e. the ability to respond to external stimulus, make decisions and convey relevant information.1.1.3Intelligent ships are those ships which automatically perceive and obtain information and data on ship itself, marine environment, logistics and port by making use of sensors, communication, the Internet of Things, the Internet and other technical means, and achieve intelligent operation in terms of ship navigation, management, maintenance and cargo transportation based on computer technology, automatic control technology and big data processing and analyzing technology, so that ships can become safer, more environmentally friendly, economical and reliable.1.1.4The functions of intelligent ships consist of intelligent navigation, intelligent hull, intelligent machinery, intelligent energy efficiency management, intelligent cargo management and intelligent integration platform.1.1.5Ships, for which an Intelligent Ship class notation is requested, are also to comply with the relevant requirements of CCS rules and those of the Administration of the flag State.1.2Application of new technology1.2.1The intelligent ship technology is developing continuously. Where the application of CCS rules hinders the application of new technologies, the design of system and equipment adopting the new technology may deviate from the requirements of CCS rules provided that such system and equipment can provide an equivalent level of safety to that required by CCS rules subject to risk assessment and test.1.2.2The risk assessment may be carried out in accordance with CCS Guidelines for Application of Formal Safety Assessment of Ships (2015) or a method given in relevant national or international standards.1.2.3The new technology may be approved by referring to the Guidelines for the Approval of Alternatives and Equivalents as provided for in Various IMO Instruments (MSC/Circ.1455).1.3Alterations and repairs1.3.1For a ship assigned Intelligent Ship class notation, which has undergone any alteration or repair of its equipment or system in association with intelligent ship functions, is to be subject to asurvey, as appropriate, for confirming compliance with the technical requirements for the existing notation.1.4Class notation for intelligent ships1.4.1 A ship, which has, upon its request, undergone plan approval and surveys by CCS and its compliance with the requirements of the Rules in terms of intelligent navigation, intelligent hull, intelligent machinery, intelligent energy efficiency management, intelligent cargo management and intelligent integration platform is confirmed, may be assigned the following Intelligent Ship class notation:i-Ship (Nx, Hx, Mx, Ex, Cx, Ix)where the letters in the parentheses stand for functional notations of intelligent ships, which may be assigned in accordance with the functions possessed by the ship. Functional notations can be added based on the development of technology.1.4.2Functional notations are defined as follows:N – functional notation for intelligent navigation, for which the requirements of Chapter 2 of the Rules are to be satisfied;H – functional notation for intelligent hull, for which the requirements of Chapter 3 of the Rules are to be satisfied;M – functional notation for intelligent machinery, for which the requirements of Chapter 4 of the Rules are to be satisfied;E – functional notation for intelligent energy efficiency management, for which the requirements of Chapter 5 of the Rules are to be satisfied;C – functional notation for intelligent cargo management, for which the requirements of Chapter 6 of the Rules are to be satisfied;I – functional notation for intelligent integration platform, for which the requirements of Chapter 7 of the Rules are to be satisfied;x – additional notation for optional function. One small letter stands for one additional notation for function and a functional notation may have multiple additional notations for function. Detailed requirements are given in Chapters 2 to 7.1.4.3The assignment, maintenance, suspension, cancellation and reinstatement of Intelligent Ship class notation are to be in accordance with the requirements of Section 9, Chapter 2 of PART ONE of CCS Rules for Classification of Sea-Going Steel Ships.1.5Computer systems1.5.1Relevant hardware and software of intelligent systems covered by the Rules are to satisfy the relevant requirements of Section 6, Chapter 2, PART SEVEN of CCS Rules for Classification of Sea-Going Steel Ships and to be subject to plan approval and survey by CCS.1.5.2Software development is to satisfy the requirements of CCS Guidelines for Assessment of Security and Reliability of Marine Software (GD11-2015).1.5.3Risk assessment is to be carried out to the system. During system design and analysis, relevant failure conditions and system response to such failure conditions are to be determined. The interaction between faults is to be eliminated or restricted by means of design of software and hardware of relevant equipment while fault detection and tolerance are to be provided. In addition to the software testing within the normal range, the testing in abnormal range is also to be carriedout, in order to ensure correct response ability of equipment and software under abnormal input and condition.1.6Personnel requirements1.6.1The owner or ship management company is to develop corresponding management regulations, training plans and operational procedures for intelligent systems, in order to specify requirements such as responsibilities, qualifications and training of personnel operating and using intelligent systems.1.6.2Relevant personnel are to receive pre-post training, obtain qualification, and be familiar with the operation of intelligent system.Chapter 2Intelligent Navigation2.1General requirements2.1.1The requirements of this Chapter apply to ships for which the functional notation for intelligent navigation is requested.2.1.2Intelligent navigation makes use of computer technology and control technology to carry out analysis and processing of information that is perceived and obtained, as well as design and optimization of ship’s route and speed; if feasible, the ship can prevent collision automatically in open water, narrow channel and complex environmental condition and realize autonomous navigation.2.1.3The basic function of intelligent navigation is route design and optimization.2.1.4In addition to the basic function of 2.1.3, intelligent navigation may also have the following additional functions:(1) Autonomous navigation;(2) Advanced autonomous navigation.2.2Functional notation for intelligent navigation2.2.1Upon request, the following functional notation for intelligent navigation may be assigned subject to satisfactory plan approval and survey by CCS:Nxwhere: N – the ship with the basic function of intelligent navigation;x – notation for additional function, expressed by the following small letters:o – the ship with function of autonomous navigation;n – the ship with function of advanced autonomous navigation; in this case, the assignment of notation for additional function of autonomous navigation o is notnecessary.2.3Plans and documents submitted for approval2.3.1For route design and optimization, the following plans and documents are to be submitted to CCS:(1) System composition diagram;(2) Software functions of route design and optimization;(3) Mooring test and sea trial programme.2.3.2For autonomous navigation and advanced autonomous navigation, the following plans and documents are to be submitted to CCS:(1) Description on composition and function of shore-based supporting center, navigation system in severe weather, emergency handling, automatic collision prevention system and track monitoring system;(2) Risk analysis of autonomous navigation and advanced autonomous navigation, including failure mode and effect analysis of propulsion system, ship’s steering gear system, navigation system and auxiliary system;(3) Mooring test and sea trial programme.2.4Route design and optimization2.4.1For route design and optimization, the route and ship speed are designed and optimized to minimize the fuel consumption, which is continuously optimized throughout the navigation period, in accordance with the technical condition and performance of ship, specific navigation task, draft, cargo characteristics and sailing schedule and by taking into full consideration such factors as wind, wave, current and swell, provided that the safety of ship, personnel and cargo is guaranteed.2.4.2Route design and optimization generally consist of shipborne systems and shore-based supporting center.2.4.3Ship performance calculation model is to be available for route design and optimization. The following data (if available) is in general to be considered:(1) Ship general arrangement drawing;(2) Ship lines plan and midship section with bilge keel details;(3) Hydrostatic curves;(4) Main engine particulars and shaft generator details;(5) Main engine shop test results;(6) Model test or ship trial reports;(7) Typical past voyage reports showing ship speed, rate of revolution, power and fuel oil consumption (such data may be obtained from relevant systems of Chapter 5);(8) Ship’s performance of resistance against wind and wave.Where such data is unavailable, the model may be established by means of theoretical analysis and empirical curves. Improvement is made continuously by data obtained from real ship.2.4.4The short-term and long-term weather data is to be considered and updated for route design and optimization. The following data is to be obtained periodically:(1) Wind speed and direction;(2) Wave height and mean period;(3) Swell height, direction and mean period;(4) Current speed and direction;(5) Tropical cyclone (or typhoon): maximum wind speed, gust speed, radius etc.;(6) Extratropical cyclone: central pressure, moving path and speed, cold/warm front etc.;(7) Warning of strong cold high pressure (cold wave and gale);(8) Ice condition (where applicable).2.4.5The following optimized functions are in general to be available for route design and optimization:(1) Determined time of arrival;(2) Shortest navigation period;(3) Minimum fuel oil consumption;(4) Minimum total cost;(5) Highest wind and wave scale the ship withstands.2.4.6The ship is to be provided with:(1) Data communication equipment: communication connection is to be established to the shore base to facilitate exchange of information;(2) Electronic chart display and information system;(3) Electronic positioning equipment;(4) Anemorumbometer;(5) Gyro-compass;(6) Speed and distance measuring device.2.4.7Route design and optimization systems are to comply with the requirements for category I computer systems.2.5Autonomous navigation2.5.1The ship has the ability of autonomous navigation in open water.2.5.2The ship is provided with integrated navigation system1, as well as shore-based supporting center, navigation system in severe weather and emergency handling system etc.2.5.3The ship is provided with automatic collision prevention system in open water, which can realize automatic collision prevention in accordance with intended route and conduct autonomous navigation.2.5.4For ships applying for autonomous navigation, any foreseeable risk due to autonomous navigation in open water is to be considered and comprehensive risk assessment is to be carried out.2.5.5Autonomous navigation systems are to comply with the requirements for category III computer systems.2.6Advanced autonomous navigation2.6.1The ship is to have the ability of autonomous navigation.2.6.2The ship is provided with automatic collision prevention system for narrow channel and has the ability of realizing autonomous navigation in complex environmental conditions.2.6.3The ship can realize automatic approaching and leaving docks.2.6.4For ships applying for advanced autonomous navigation, any foreseeable risk due to autonomous navigation in open water and narrow channel and during the process of automatic approaching and leaving docks is to be considered and comprehensive risk assessment is to be carried out.2.6.5Advanced autonomous navigation systems are to comply with the requirements for category III computer systems.2.7Survey and test2.7.1Initial survey2.7.1.1Relevant plans have been examined.2.7.1.2Confirming that the system is furnished with relevant certificate.2.7.1.3Confirming the input, output and communication functions of intelligent navigation system.2.7.1.4Based on different input conditions, route simulation as well as ship speed design and optimization are carried out, and software function is verified.2.7.1.5Confirming that relevant charts have been updated as appropriate.2.7.1.6Verifying the function of autonomous navigation and advanced autonomous navigation (where applicable) as well as the ability to handle severe weather and emergency at sea trial.2.7.2Survey after construction1The requirements of performance standards for Integrated Navigation Systems (INS) as amended by resolution MSC.252(83) are to be complied with.2.7.2.1Previous service condition of systems are reviewed at annual, intermediate and special surveys to confirm that they are in normal condition.2.7.2.2 Functions of the equipment and system are to be re-verified after their repair and renewal. Sea trial is to be carried out after repair or renewal of the automatic collision prevention system and autonomous navigation system.Chapter 3Intelligent Hull3.1General requirements3.1.1The requirements of this Chapter apply to ships for which the functional notation for intelligent hull is requested.3.1.2Intelligent hull provides assistant decision-making on safety and structural maintenance within the lifecycle of hull based on the establishment and maintenance of hull database; Meanwhile it provides assistant decision-making on ship manoeuvring by means of automatic acquisition and monitoring of data related to hull.3.1.3Hull lifecycle management includes the following functions:(1) Hull construction monitoring and management;(2) Thickness monitoring and strength assessment of hull structures;(3) Hull inspection and maintenance scheme;(4) Damage stability and residual strength assessment of structure.3.1.4Hull monitoring and assistant decision-making system includes the following functions:(1) Hull monitoring system;(2) Assistant decision-making system of navigation.3.1.5System software covered by this Chapter is to satisfy the requirements for category II computer software.3.2Functional notation for intelligent hull3.2.1Upon request, the following functional notation for intelligent hull may be assigned subject to satisfactory plan approval and survey by CCS:Hxwhere: H – the ship with the function of hull lifecycle management;x – notation for additional function, expressed by the following small letter:m – the ship with hull monitoring and assistant decision-making system.3.3Hull lifecycle management3.3.1General requirements3.3.1.1Hull database for the hull lifecycle management is to be established, where the data generated by various stages of hull design, construction and service is stored and transmitted in the form of standardized electronic data, and maintained and updated timely within the lifecycle of ship. Meanwhile digital transmission technology is used to integrate hull monitoring data with inspection and maintenance data of hull structures, providing technical safeguard for effective structural inspection, maintenance and repair. The condition of hull structures is known on real-time basis and the maintenance plan is developed in advance for the purpose of implementing lifecycle management of hull from construction to service, in order to achieve the objective of reducing maintenance cost of structures and prolonging service life of structures.3.3.1.2Hull database for the lifecycle management is to include geometric model of hull structures, structural strength analysis model and calculation model of hull performance. The requirements for structural strength analysis and hull performance models are as follows:(1) The structural strength analysis model is to comply with the requirements of relevant CCS rules/guidelines, including FE model of cargo tank and/or ship and calculation model of hullgirder longitudinal strength and local strength of structural members. The calculation and analysis related to yielding, buckling, fatigue strength, ultimate strength and residual strength are realized based on the applicable requirements of relevant CCS rules/guidelines.(2) The calculation model of hull performance is to comply with statutory requirements, realizing calculation and analysis of intact stability and damage stability.3.3.1.3The electronic files of ship construction management are established based on geometric model of hull structures at construction stage, including critical location/precision of structures and record of process of survey during construction.3.3.1.4The structural thickness measurement database is to be established based on geometric model of hull structures at in-service stage, in order to monitor change of thickness of hull structures, predict trend of corrosion and conduct assessment of hull structural strength. A periodical inspection and maintenance scheme specific to hull structures is to be developed, in order to provide guidance to crew on routine inspection and maintenance.3.3.1.5Calculation and analysis of damage stability and residual strength are to be provided, in order to provide technical assessment for the ship in emergency.3.3.2Plans and documents3.3.2.1For the lifecycle management, the following information is to be submitted to CCS:(1) Instruction of design of hull database;(2) Hull construction monitoring plan;(3) Relevant information on computer systems of hull construction monitoring and management;(4) Relevant information on computer systems of hull inspection and maintenance scheme;(5) Relevant information on shore-based organization for calculation and analysis of damage stability and residual strength.3.3.2.2The following information is to be readily available on board the ship:(1) Hull thickness measurement report for the last 5 years;(2) Analysis report of hull thickness measurement data for the last 5 years;(3) Assessment report of longitudinal strength for the last 5 years (where applicable);(4) Assessment report of fatigue strength (where applicable);(5) Relevant information on hull inspection and maintenance scheme.3.3.3Hull construction monitoring and management3.3.3.1Hull construction monitoring and management carry out monitoring and management of hull construction process by using computer systems, maintain records and documents of surveys of newbuildings and form electronic files of hull construction and monitoring, in order to provide basis for routine maintenance and repair in shipyard of hull in service. The system is to satisfy the requirements of 3.3.3.2 and 3.3.3.3.3.3.3.2All hull survey items in the survey checklist jointly developed by the owner, shipyard and classification society are covered. Based on the geometric model of hull structures, the hull block, block assembly and survey history of compartments during construction process are recorded, and the comments, conclusions, photos and electronic files during survey process are recorded.3.3.3.3In accordance with CCS Guidelines for Construction Monitoring of Hull Structures, monitoring is carried out to alignment, fit-up, groove preparation and workmanship of the criticallocations of the relevant hull structures, to ensure that the critical locations are built to both an acceptable quality standard and approved construction procedures. Construction monitoring of hull structures is to satisfy the requirements of CCS Guidelines for Construction Monitoring of Hull Structures.3.3.4Thickness monitoring and strength assessment of hull structures3.3.4.1For thickness monitoring and strength assessment of hull structures, the database of structural thickness is established within the in-service period of ship from completion of construction to decommissioning by using computer systems and based on the geometric model of hull structures, for which the requirements of 3.3.4.2 to 3.3.4.4 are to be satisfied.3.3.4.2Previous thickness measurement data and renewal history of structural members are recorded. Statistical analysis is carried out to previous thickness measurement data. Corrosion condition of hull structures is shown intuitively and the trend of corrosion is predicted based on the change of thickness of structural members and the environment.3.3.4.3The thickness measurement data is analyzed and graded in accordance with the following requirements based on collected thickness measurement data:(1) The hull structure is divided into several compartments/spaces/areas, e.g. ballast tanks, cargo tanks (including void spaces, pump rooms etc.) and external structures (exposed strength deck and shell plating). For the thickness measurement data of each compartment/space/area, the statistical analysis method of 90% reliability (S-Curve method) is used for analysis.(2) For the boundary and structural members of each compartment/space/area, they are in general divided into several structural elements (including plates and attached stiffeners): deck structure, side structure, bottom structure, inner bottom structure, transverse bulkhead structure, longitudinal bulkhead structure and internal structure (hatch cover and coaming are also to be included where applicable). Each structural element is divided into grade 1 to 4 as follows:Grade1 2 3 4Diminution percentage,r≤33% 33%<r≤75% 75%<r≤100% r>100% r(3) The grading result of thickness measurement is determined based on the grading section where the intersection point of 90% horizontal line (e.g. the horizontal dotted line in the figure below) and thickness measurement curve is located (e.g. the thickness measurement of deck is assessed as grade 2 in the figure below).(4) For compartments/spaces with common boundaries, the thickness measurement data of the common boundary is to be included in the compartment/space on both sides respectively.3.3.4.4The strength assessment of hull structures may be carried out as necessary based on the hull database.3.3.5Hull inspection and maintenance scheme3.3.5.1For hull inspection and maintenance scheme, a periodical inspection and maintenance scheme of hull structures is developed based on the geometric model of hull structures, in connection with the characteristics of hull structures and survey records of newbuildings and in accordance with class/statutory survey requirements and the needs of ship companies during the service life by using computer systems, for the purpose of providing guidance to crew on routine inspection and maintenance. The system is to satisfy the requirements of 3.3.5.2 to 3.3.5.6.3.3.5.2General inspection items, critical area and typical defect diagram are to be developed in accordance with the characteristics of hull structures, ship design, construction, plan approval and calculation and guidelines for survey of ships in service as well as strength assessment during the service life.3.3.5.3The inspection results of coating and structure as well as structural defects in each structural area of ship compartments are to be recorded. The inspection results of coating and structure, structural corrosion condition, defects and repair history are to be shown intuitively, including the following:(1) Inspection standards and grading principle are to be established for “coating, average corrosion, pitting corrosion, grooving corrosion, deformation and crack”, generally consisting of GOOD, FAIR and POOR.(2) In accordance with the inspection results of each structural area of ship compartments, the condition of each structural area and the compartment as a whole is to be graded, generally consisting of GOOD, FAIR and POOR.(3) For structural areas graded as FAIR or POOR, the system is to provide necessary reminder and follow up.3.3.5.4The survey history of construction of hull structures, information on the size of structural members of hull structures, historical data of thickness measurement, defect and repair history are reviewed.3.3.5.5The coating area and the weight of structural members during ship repair are calculated. The repair work amount is assessed.3.3.5.6In addition to the periodical inspection and maintenance scheme, the hull monitoring system is integrated with the hull inspection and maintenance scheme by digital transmission technology. In connection with the thickness monitoring and strength assessment of hull structures, the practical condition and reliability of ship are analyzed comprehensively and an interim inspection and maintenance scheme of hull structures is developed.3.3.6Survey3.3.6.1Prior to completion of construction of ship, the initial survey is at least to include the following items:(1) The geometric model of hull structures, structural strength analysis model and calculation model of hull performance specified in the design instruction of hull database satisfy relevant requirements of this Chapter.(2) Examining the approval certificate of system software.(3) The hull construction monitoring plan is implemented satisfactorily.(4) The survey items in the computer system of hull construction monitoring and management are complete; system records are complete and consistent with practical conditions.(5) The computer system of hull inspection and maintenance scheme has been installed on board the ship and operates normally.(6) General inspection items, critical areas and inspection interval of hull inspection and maintenance scheme satisfy requirements.(7) Personnel carrying out hull inspection and maintenance on board the ship have been trained by CCS or an organization accepted by CCS.3.3.6.2The annual/intermediate/special survey is at least to include the following items:(1) The information specified by 3.3.2.2 is to be readily available on board the ship.(2) The thickness data of structural members and renewal history recorded in the structural thickness database are consistent with practical conditions.(3) The analysis report of hull thickness measurement data satisfies the requirements of 3.3.4.3.(4) Personnel carrying out hull inspection and maintenance on board the ship have been trained by CCS or an organization accepted by CCS.(5) Witnessed by the surveyor, inspectors on board the ship randomly select at least two ballast tanks for internal inspection, correctly determine the coating and structural conditions of the structural area under inspection and correctly enter the identified problem and assessed grade into the computer system.(6) The records in the computer system of hull inspection and maintenance scheme are complete。