北京理工大学1999年考研专业课试卷信号与系统
北理工《信号与系统》习题答案第2章答案(纯手写)
xt*)*?23 u.D
k,r*t-^ at+L (aN)
hLt-4nb)
)= qa)(4t*x t&xI
L tt-t1=Gt + z
=) l, 'xt = ({'- e-121 ) u,t*1
btl L ul = + (e-t- u-%) LtLt)
@) | ht ft) = a{m+ cyte
{) a=o
(I C, =l
\ lU Ur= C e-c atrr 7 C,ito;t
,
hnttl:
t
+
O-l) ,at
ht-r{*/-t)+--e "tr;t +e "C.rDt
) i, Lt) = 0o D i,,*t
)l =
dr (-b-A) ryz/L) clx = 1z Lt)x 4, th)
t Crto
-o) (D'-+?/D+zl!/ot=o t flr.o)=1, g'ttro)=z
; ; :t,r,il,Aln= co-m + cro''6 -J
) h,n*)= L'vt-o-'t-tzo
0, kl = d N bt) l,u*) = lw> u u,4,L) = ,f! U
= Lb, ct+t) _ 2 + g *-,., ] *, J -I r/" Lzr) al t -, I-t*r,ol,
-t,-ttt-itUt --;t,e---*rkt) = (+L-t-)tu-'+*wt ) t,LLt)
(NEW)北京理工大学信息与电子学院《826信号处理导论》历年考研真题汇编
2006年北京理工大学426信号处理 导论考研真题
2005年北京理工大学426信号处理 导论考研考研真题
2003年北京理工大学426信号处理 导论考研真题
2002年北京理工大学411信号与系 统考研真题
2012年北京理工大学826信号处理 导论考研真题
2011年北京理工大学826信号处理 导论考研真题
2009年北京理工大学826信号处理 导论考研真题
2008年北京理工大学826信号处理 导论考研真题
2007年北京理工大学426信号处理 导论考研真题
2001年北京理工大学411信号与系 统考研真题
2000年北京理工大学411信号与系 统考研真题
目 录
2012年北京理工大学826信号处理导论考研真题 2011年北京理工大学826信号处理导论考研真题 2009年北京理工大学826信号处理导论考研真题 2008年北京理工大学826信号处理导论考研真题 2007年北京理工大学426信号处理导论考研真题 2006年北京理工大学426信号处理导论考研真题 2005年北京理工大学426信号处理导论考研真题 2004年北京理工大学426信号处理导论考研真题 2003年北京理工大学426信号处理导论考研真题 2002年北京理工大学411信号与系统考研真题 2001年北京理工大学411信号与系统考研真题 2000年北京理工大学411信号与系统考研真题
北京理工大学(已有10试题)
北京理工大学信息科学技术学院自动控制理论1999——2000,2002——2008自动控制理论(非控类)2004电子技术(含模拟、数字部分)1999——2000,2002——2008模拟电子技术与数字电子技术2000——2002模拟与数字电路1999——2000,2002微机控制与应用技术2002——2008控制工程基础2003——2008物理光学2003——2004,2007——2008应用光学1999——2008,2010(2010为回忆版)波动光学2002大学物理2006——2008精密机械设计2003——2008(其中2003年称“精密机械基础”)激光原理1999——2001,2005——2008电子电路2003——2005,2007——2008电路分析基础1999——2000信号处理导论2003——2008信号与系统1996——2002半导体物理学1999——2008电磁场理论1999——2000,2002——2008微机原理及应用2004——2005电动力学2003——2004理论力学1996——2008(96——98非原版)生物化学1999——2008(注:2007年试卷共11页,缺P5-6页)生物化学(A)2005——2006,2008计算机专业基础(含计算机组织与结构、数据结构)2007计算机技术基础(含计算机组成原理、操作系统和数据结构)2003——2006计算机原理(含操作系统)1999——2002程序设计1999——2000计算机系统结构基础(含计算机组成原理、计算机网络和数据结构)2004——2005 软件理论基础(含离散数学、操作系统、数据结构)1999——2005数据结构与程序设计2004——2008微波技术基础1999——2000晶体管理原理与制造1999——2000机电工程学院电子技术(含模拟、数字部分)1999——2000,2002——2008电子技术基础2007——2008自动控制理论1999——2000,2002——2008自动控制理论(非控类)2004电磁学2005——2008量子力学2005——2008运筹学2001——2008工程力学基础2007——2008流体力学基础2006工程流体力学2005数学物理方程2002——2006数学物理方法2000材料力学1997——1999,2002——2008理论力学1996——2008(96——98非原版)电动力学2003——2004微机控制与应用技术2002——2008控制工程基础2003——2008精密机械设计2003——2008(其中2003年称“精密机械基础”)应用光学1999——2008,2010(2010为回忆版)波动光学2002微机原理及应用2004——2005有机化学1997——2008无机化学(A)2003——2007无机化学(B)2003——2005,2007——2008分析化学2003——2008分析化学(A)2006物理化学2003——2008高分子物理2005——2008高分子化学及高分子物理2003——2004安全系统工程2003——2005,2008工程热力学(不含传热学)2003——2008爆炸与安全技术2005爆炸及其作用2006爆轰理论2003——2005化学2002——2005传感与测试技术2004——2005算法语言1998微波技术基础1999——2000晶体管理原理与制造1999——2000传热学2000应用电子技术2004机械与车辆工程学院电子技术(含模拟、数字部分)1999——2000,2002——2008 电子技术基础2007——2008自动控制理论1999——2000,2002——2008自动控制理论(非控类)2004机械设计2001——2008机械设计原理2001机械制造工程基础2003——2008机械制造工艺学2002理论力学1996——2008(96——98非原版)微机控制与应用技术2002——2008应用光学1999——2008,2010(2010为回忆版)电路分析基础1999——2000模拟电子技术与数字电子技术2000——2002模拟与数字电路1999——2000,2002精密机械设计2003——2008(其中2003年称“精密机械基础”)控制工程基础2003——2008微机原理及应用2004——2005工程热力学(不含传热学)2003——2008物理化学2003——2008工程力学基础2007——2008流体力学基础2006工程流体力学2005交通运输系统工程学2005,2007——2008微波技术基础1999——2000晶体管理原理与制造1999——2000数字电路与数字信号处理2008材料科学与工程学院物理化学(A)2008高分子物理2005——2008高分子化学及高分子物理2003——2004材料科学基础2003——2007材料力学1997——1999,2002——2008普通化学2008综合化学2008有机化学1997——2008无机化学(A)2003——2007无机化学(B)2003——2005,2007——2008分析化学2003——2008分析化学(A)2006理论力学1996——2008(96——98非原版)电化学原理2003——2006微波技术基础1999——2000晶体管理原理与制造1999——2000化工与环境学院自动控制理论1999——2000,2002——2008自动控制理论(非控类)2004过程控制原理2000——2005,2007——2008化工原理2002——2008有机化学1997——2008无机化学(A)2003——2007无机化学(B)2003——2005,2007——2008分析化学2003——2008分析化学(A)2006物理化学2003——2008电化学原理2003——2006环境微生物学2007——2008工程热力学(不含传热学)2003——2008微波技术基础1999——2000晶体管理原理与制造1999——2000生命科学与技术学院生物化学1999——2008(注:2007年试卷共11页,缺P5-6页)生物化学(A)2005——2006,2008分析化学2003——2008分析化学(A)2006细胞生物学2004——2006微生物学2005——2008分子生物学2007——2008有机化学1997——2008无机化学(A)2003——2007无机化学(B)2003——2005,2007——2008药理学2007信号处理导论2003——2008信号与系统1996——2002电子电路2003——2005,2007——2008物理光学2003——2004,2007——2008应用光学1999——2008,2010(2010为回忆版)波动光学2002信号理论基础2007——2008计算机专业基础(含计算机组织与结构、数据结构)2007计算机技术基础((含计算机组成原理、操作系统和数据结构)2003——2006计算机原理(含操作系统)1999——2002程序设计1999——2000计算机系统结构基础(含计算机组成原理、计算机网络和数据结构)2004——2005 软件理论基础(含离散数学、操作系统、数据结构)1999——2005数据结构与程序设计2004——2008理学院电子技术(含模拟、数字部分)1999——2000,2002——2008大学物理2006——2008数学分析1995,1999——2000,2003——2008高等代数2003——2008电磁学2005——2008量子力学2005——2008电动力学2003——2004普通化学2008综合化学2008无机化学(A)2003——2007无机化学(B)2003——2005,2007——2008分析化学2003——2008分析化学(A)2006物理化学(A)2008物理化学2003——2008有机化学1997——2008理论力学1996——2008(96——98非原版)材料力学1997——1999,2002——2008工程热力学(不含传热学)2003——2008数学物理方程2002——2006数学物理方法2000电路分析基础1999——2000模拟电子技术与数字电子技术2000——2002模拟与数字电路1999——2000,2002激光原理1999——2001,2005——2008微机控制与应用技术2002——2008爆炸与安全技术2005爆炸及其作用2006电化学原理2003——2006工程力学基础2007——2008流体力学基础2006工程流体力学2005微波技术基础1999——2000晶体管理原理与制造1999——2000管理与经济学院宏微观经济学2008管理学2003——2008(2003,2004名称叫做“管理学基础”。
北京理工大学2019-2020-学年-第二学期《信号与系统》期末试题
北京理工大学 2019 - 2020 学年 第二学期
2017 级《信号与系统 B》期末试题 A 卷
班级
学号
姓名
成绩
答题说明: 1. 如无特别说明,试卷中的“系统”均为线性时不变系统; 2. 必须写出解题步骤和必要的文字说明,只写答案不给分。
一、(本题共 60 分,6 道小题,每小题 10 分) 1) 计算卷积 u(t) eatu(t) 。
F
2)已知函数 f t e-3tu(t) ,通过傅里叶变换得出其频谱函数
。
3)若信号
x(
t 2
)
最高角频率为
m
,求对
x(
t) 3
采样的最大时间间隔
Tmax
。
1
4) 线性时不变离散系统的单位抽样响应 hn 1 n u1 n,试判定系统的因果性和
2 稳定性。
5)已知因果序列 x[n] 的y(zt)变换 X (z)
2
5z2 1
1 ,试求 x[n] 的初值 x[0] 和
(z )(z )
32
终值 x[]。
6)知系统函数 Hs
s2 3s 2
,完整见172,7791,836,试判断系统的稳定性,并
8s4 2s3 3s2 s 5 说明是否有
位于 s 平面右半平面上的极点,有几个。 )
二、(本题 10 分)
7)已知某系统 S 由两个子系统 S1 并联而成,子系统 S1 在信号 x1 t cost ut 激 励下的零状态响应为 y1 t Asint ut 。
(a) 求系统 S 的单位冲激响应;
(b) 计算系统 S 在信号 x t ut ut 2 激励下的零状态响应 y t ;
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)
图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出
和
的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:
和
可化简为
故
,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航
北京理工大学信号与系统考研复习题
目录目录 (1)复习题一 (2)答案 (4)复习题二 (8)答案 (13)复习题三 (25)答案 (40)复习题四 (71)答案 (72)复习题五 (74)答案 (81)复习题六 (96)答案 (97)复习题七 (99)复习题八 (108)复习题一1.1 选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( ) (1)f (-2t )右移5 (2)f (-2t )左移5 (3)f (-2t )右移25 (4)f (-2t )左移251.2 是非题(下述结论若正确,则在括号内填入√,若错误则填入×) 1.偶函数加上直流后仍为偶函数。
( )2. 不同的系统具有不同的数学模型。
( )3. 任何信号都可以分解为偶分量与奇分量之和。
( ) 4.奇谐函数一定是奇函数。
( ) 5.线性系统一定满足微分特性 ( )1.3 填空题1.=⋅t t cos )(δ=+t t 0cos )1(ωδ=-⋅)(cos )(0τωδt t=--)2()cos 1(πδt t=--⎰∞∞-dt t t )2()cos 1(πδ ⎰+∞∞-=⋅tdt t cos )(δ⎰+∞∞-=tdt t 0cos )(ωδ ⎰∞-=td ττωτδ0cos )(⎰+∞∞-=+tdt t 0cos )1(ωδ⎰∞-=+td ττωτδ0cos )1(2.=⋅-at e t )(δ=⋅-t e t )(δ⎰∞--=td e ττδτ)(⎰∞∞--=--dt t e t t )1(][22δ⎰∞∞--=dt e t at )(δ1.4 简答题1.画出题图一所示信号f (t )的偶分量f e (t )与奇分量f o (t )。
图一2.)(t f 如图二所示,试画出)(t f 的偶分量)(t f e 和奇分量()o f t 的波形。
t图二3.某线性时不变系统在零状态条件下的输入e (t )与输出r (t )的波形如题图三所示,当输入波形为x (t )时,试画出输出波形y (t )。
北京理工大学信号与系统试题
1 .按照信号的能量或功率为有限值,信号可分为和。
2 .一个离散时间系统可由、、等基本部件组成。
3 .如图所示 LTIS ,若, , ,则系统的输出为。
4 .应用卷积积分的方法可以得到系统的。
5 .6 .试写出下列函数的频谱密度函数(a) , 所以(b) , 所以7. x(n) 的离散时间傅立叶变换为 X(e ), 则 y(n)= 的傅立叶变换为8. 果而稳定的 LTI 系统,单位冲击响应为 h(t) , 系统 H(s) 有一极点在s= -2, 则是9. 知一因果而稳定系统的单位脉冲响应为 h(n),H(z) 是有理的,且, 则10 .二、计算题1 .设三个因果 LTI 系统的级联如图 1 所示,其中冲激响应而总的冲激响应如图 2 所示,求(a)冲激响应(b) 整个系统对输入的响应2 .考虑一个 LTI 系统它对输入的响应为(a) 求该系统的频率响应(b) 确定该系统的冲激响应(c) 求出联系输入、输出的微分方程,并用积分器、相加器和系数相乘器实现该系统。
3 .如图所示,系统(1) 以为状态变量列出其状态方程与输出方程(2) 求状态转移矩阵4.的单边拉氏反变换5.已知信号 x(n) 的傅立叶变换, 求的傅立叶反变换试题一答案一. 填空题1 .答案:(能量信号,功率信号)2 .答案:(单位延时器、相加器、倍乘器)3 .4 .答案:(零状态响应)5 .答案:6 .答案:(a)7.8.9.10 .二、计算题1 .答案:2 .解 :(a)(b)(c)3 .解 :(1)(2)4.解:(分子阶次与分母阶次相同,降阶)(分母多项式带有重根的部分分式展开法)又因为求单边拉氏变换所得信号为因果信号5.解:(注:文档可能无法思考全面,请浏览后下载,供参考。
)。
10.北京理工大学信号与系统精品课程习题及答案.doc
第一章习题1.函数式x(t)=(1-)[u(t+2)-u(t-2)]cos所表示信号的波形图如图()(A) (B) (C) (D)2 .函数式的值为()( A )0 (B )1 ( C ) 2 (D )3 .已知x(3-2) 的波形如图1 所示,则x (t )的波形应为图()图1 (A)(B)(C)(D)4.已知信号x[n]波形如图2,信号的波形如图()图2 (A)(B)(C) (D)5 .卷积积分等于()(A)(B)-2 (C)(D)-2 (E)-26 .卷积和x[n] u[n-2] 等于()( A )( B )( C )( D )( E )7 .计算卷积的结果为()( A )(B )( C )(D )8 .已知信号x(t) 的波形如图3 所示,则信号的波形如图()图3 (A)(B)(C) (D) 题九图9 .已知信号x (t )如图所示,其表达式为()(A) (B)(C) (D)10 .已知x(t)为原始信号,y(t)为变换后的信号,y(t) 的表达式为()( A )(B )( C )(D )11 .下列函数中()是周期信号( A )(B )( C )( D )( E )12 .函数的基波周期为()。
( A )8 (B )12 (C )16 ( D )2413 .某系统输入—输出关系可表示为,则该系统是()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定14 .某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定15.某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定16.某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定17 .某系统输入—输出关系可表示为,则系统为()系统( A )线性( B )时不变( C )无记忆(D )因果()稳定18 .下列系统中,()是可逆系统(A)y[n]=nx[n] (B)y[n]=x[n]x[n-1] (C)y(t)=x(t-4) (D)y(t)=cos[x(t)] (E )y[n]=19 .如图系统的冲激响应为()( A )( B )( C )(D )20 .某系统的输入x (t )与输出y (t )之间有如下关系,则该系统为()(A)线性时变系统(B)线性非时变系统(C)非线性时变系统(D)非线性非时变系统21 .一个LTI 系统在零状态条件下激励与响应的波形如图,则对激励的响应的波形()(A) (B) (C) (D)22. 线形非时变系统的自然(固有)响应就是系统的()( A )零输入响应( B )原有的储能作用引起的响应( C )零状态响应(D )完全的响应中去掉受迫(强制)响应分量后剩余各项之和23 .零输入响应是()( A )全部自由响应( B )部分零状态响应( C )部分自由响应( D )全响应与强迫响应之差24 .下列叙述或等式正确的是()(A) (B)(C)若,则(D)x(t) 和h(t) 是奇函数,则是偶函数25.设是一离散信号,,,则下列说法( )是正确的(A) 若是周期的,则也是周期的(B) 若是周期的,则也是周期的(C) 若是周期的,则也是周期的(D) 若是周期的,则也是周期的26 .有限长序列经过一个单位序列响应为的离散系统,则零状态响应为()(A) (B)(C) (D)第二章习题1. 某LTI 连续时间系统具有一定的起始状态,已知激励为x (t )时全响应,t 0 ,起始状态不变,激励为时,全响应y (t )=7e +2e ,t 0 ,则系统的零输入响应为()( A )( B )( C )(D )2 .微分方程的解是连续时间系统的()(A) 零输入响应(B) 零状态响应(C) 自由响应(D) 瞬态响应(E)全响应3 .单位阶跃响应是()(A) 零状态响应(B) 瞬态响应(C) 稳态响应(D) 自由响应(E) 强迫响应4 .已知系统如图所示,其中h (t) 为积分器,为单位延时器,h (t) 为倒相器,则总系统的冲激响应h (t) 为()( A )( B )( C )(D )5 .如图所示电路以为响应,其冲激响应h (t) 为()(A) (B)(C) (D)6. 某LTI 系统如图所示,该系统的微分方程为()(A ) (B)(C) (D)7 .已知系统的微分方程, 则求系统单位冲激响应的边界条件h(0 ) 等于()(A) -1 (B) 0 (C) 2 (D) +18 .已知系统的微分方程则系统的单位冲激响应为()(A) (B) (C) (D)9 .已知描述系统的微分方程和初始状态0 值如下;y (0 ) =2 ,, , ,则初始条件0 值为()(A) (B)(C) (D)10 .已知描述系统的微分方程和初始状态0 值如y(t) +6 y (t) +8 y (t) =x (t) +2x (t) ,y (0 ) =1 ,y (0 ) =2 ,x (t) =(t )则初始条件0 值为()。
北京理工大学信号与系统考研真题1996
北京理工大学1996年攻读硕士学位研究生入学考试信号与系统试题注:ω数字频率,Ω为模拟频率一.(17分)已知图1 LTI系统由几个子系统构成,各个子系统分别描述如下:tℎ1(t)=δ(t−1),H2(ω)=e−jω,y(t)=∫x2(t)dt−∞试用时域分析法回答:(1)系统的单位冲击响应h(t),画出h(t)的波形;(2)当x(t)=u(t)-u(t-1),求系统输出y(t),并画出波形。
二.(17分)已知离散LTI系统框图如图2所示:(a)写出系统的差分方程;(b)求系统的单位抽样响应h[n];(c)当输入x[n]=u[n-1],用时域分析法求零状态响应y[n],并画出波形。
三.(17分)已知离散时间系统的差分方程为:y [n ]-3y [n -1]+2y [n -2]=x [n -1]-2x [n -2]若21)1(-=-y ,0)0(=y ,且从n=0时对系统施加输入)(n f ,得到系统的全响应)()12(2)(n u n y n -=。
(1)用z 变换法求x [n ];(2)求系统频率响应H (e jΩ),画出系统的频率特性(包括幅频特性和相频特性)。
四,(17分)已知一个连续时间信号x(t)=sinπt[u(t)−u(t−2)]sgn(t),其中sgn(t)={1, t>0−1,t<0(1)画出x(t)的波形以及由x(t)以为T=2周期开拓的周期信号x T(t)的波形;(2)求x(t), x T(t)的频谱X(w),c k,并画出幅度谱图(其中|c k|作图要精确);五.(16分)已知序列x[n]的频谱如图5(a),该序列通过如图5(b)所示系统,其中p[n]=cos nπ2,H(Ω)={1 ,|Ω|<π20 ,其余Ω,在(−π,π)内。
(1)画出p[n]、z[n]、y[n]的频谱图与H(Ω)的图形;(2)求系统输出)(nyX(Ω)六,(16分)已知电路如图所示,在t=0以前开关K1断开,K2闭合,且电路已进入稳态。
《信号与系统》第一章 北京理工大学
t ' at b
t 1 ' (t b) a
7移位
t ' t b (a 1) t t' b
若b>0,信号波形左移;b<0,信号波形右移
8 反转
t ' t (a 1, b 0)
P8 图1-11
反转的结果就是使原信号波形绕纵轴反折180度。
9 尺度变换
声音发射接收系统
1.2 信号的定义与描述 1.2.1 信号的定义
信号:载有一定信息的一种变化着的物理量。
1 信号不是信息; 2 信号是物理量,可以是力信号、电信号、声音信号、 图象信号
1.2.2 信号的描述
1 数学公式: 信号可以表示为一个或多个独立变量的函数。 •物理量值为一个独立变量的函数时,称为一维函数 x(t ) •物理量值是两个独立变量的函数,称为二维函数 f ( x, y) •物理量值是三个独立变量的函数,称为三维函数 f ( x, y, t ) 2 波形图形:
1.3 信号的分类
按照x(t)是否按照一定时间间隔重复 周期信号 周期信号和非
周期信号 :按一定的时间间隔重复变化
周期信号的重复周期由其最小重复间隔确定,连续时 间信号以T表示,序列以整数N表示。
f (t)
f (t)
A … … -4 -2 0 2 4 6 k
-T
T 2
o
T 2 -A
T
u (t )
1, t 0
延迟冲激函数的积分等于延迟阶跃函数,即
(t t 0 ) dt
1, t t 0 0, t t 0
2) 函数等于单位阶跃函数的导数,即 (t ) du(t )
北京理工大学信号与系统考研真题1999
北京理工大学1999年研究生入学考试信号与系统试题一.(17分)连续时间系统如图(a),其子系统单位冲激响应ℎ1(t)=δ(t+1)−δ(t),ℎ3(t)=δ(t)−δ(t−2),子系统ℎ2(t)的输入、输出如图(b)。
要求在时域回答:(a) 子系统的单位冲击响应ℎ2(t);(b) 系统的单位冲激响应ℎ(t),画出其波形;(b) 当x(t)=u(t)时系统的输出y(t),画出其波形。
t二.(16分)离散时间系统如图,其中D为单位延时器,要求在时域回答:(a) 写出系统的差分方程;(b) 当x[n]=δ[n]时,y[0]=1,y[−1]=−1,求系统的零输入响应y0[n];(c) 当x[n]=δ[n]时,求系统的零状态响应y x[n],并说明此系统是否因果、稳定。
+ +三.(17分)已知系统框图如图所示,其中为宽度等于1的门函数,子系统的单位冲激响应为ℎ1(t)=∑δ(t−2n)∞n=−∞,ℎ2(t)=sin3π2tπt系统输入x(t)=cosπt,−∞<t<∞。
(a) 用频域法求子系统输出ω(t)的傅里叶变换;(b) 证明ω(t)的傅里叶系数c k=1π(1−k2)cos kπ2;(c) 求系统的稳态响应y(t)。
)四.(17分)已知离散时间序列x[n]=u[n+2]−u[n−3](a) 求x[n]的离散时间傅里叶变换X[Ω],分别画出x[n]和X[Ω]的图形(Ω=0~4π区间);(b) 按周期N=10,把x[n]延拓为周期序列,求其离散傅里叶系数c k,画出幅谱图(k=0,1,2,…,20);(c) 令此周期序列通过一个LTI系统,系统的单位脉冲响应为ℎ[n]=sin πn 6πn +sinπn2πn,求系统的零状态响应y[n]。
五.(17分)已知电路如图,其中运算放大器的输入阻抗为无穷大,输出阻抗为0,放大倍数为K ,电容器的初始电压皆为0,各元件下所示的方向为假定的电压降方向。
信号与线性系统名校真题解析及典型题精讲精练
1.【北京理工大学】 已知 f(t)的波形如下图所示,试作出 f(-2t-1)的波形。
D.0 D.2f(1)
D.-3
2.【中国矿业大学】 已知 f(-0.5t)的波形如图所示,画出 y(t) =f(t+1)ε(-t)的波形。
— 2—
3.【中国矿业大学】
若 f(t)是已录制声音的磁带,则下列叙述错误的是( )
A.线性时不变系统
B.非线性时不变系统
C.线性时变系统
D.非线性时变系统
(2)某连续系统满足 y(t) =T[ f(t)] =tf(t),其中 f(t)为输入信号,则该系统为( )
A.线性时不变系统
B.非线性时不变系统
C.线性时变系统
D.非线性时变系统
3【北京航空航天大学】
判断下列叙述的正误,正确的打“√”,错误的打“×”。
A.对于有界激励信号产生有界响应的系统是稳定系统
B.系统稳定性是系统自身的性质之一。
C.系统是否稳定与激励信号有关
D.当 t趋于无穷大时,h(t)趋于有限值或 0,则系统可能稳定。
— 4—
第二章 连续时间系统的时域分析
【考情分析】
本章的考题主要涉及连续时间系统的时域分析。 重点考点: 1.LTI系统的零输入响应,零状态响应和全响应 2.单位冲激响应的求解 3.卷积积分的定义、性质及应用
t)e-j6t 3
的频谱
Y(jω)。
4.【江苏大学】
若实信号
f(t)的傅里叶变换为
F(jω) =R(jω)+jX(jω),则信号
y(t) =
1[ 2
f(t)+f(-t)]
的
傅里叶变换为 ( )
— 9—
A.2R(jω)
B.R(jω)
《信号与系统》考研试题解答第一章信号与系统
第一章信号与系统一、单项选择题X1.1 (北京航空航天大学 2000 年考研题)试确定下列信号的周期:( 1) x(t )3cos 4t3;(A ) 2( B )( C )2(D )2( 2) x(k ) 2 cosk sin8k 2 cosk642(A ) 8 ( B ) 16 ( C )2 (D ) 4X1.2 (东南大学 2000 年考研题)下列信号中属于功率信号的是。
(A ) cost (t)(B ) e t (t)(C ) te t (t )t( D ) eX1.3 (北京航空航天大学 2000 年考研题)设 f(t)=0 ,t<3,试确定下列信号为 0 的 t 值:(1) f(1- t)+ f(2- t);(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1( D ) t>-2(2) f(1- t) f(2- t) ;(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1 ( D ) t>-2(3) ft ;3(A ) t>3 (B ) t=0 (C ) t<9 (D ) t=3X1.4 (浙江大学 2002 年考研题)下列表达式中正确的是 。
(A ) ( 2t )(t)( B ) ( 2t)1(t)2(C ) ( 2t )2 (t )( D )2 (t)1(2 )2X1.5 (哈尔滨工业大学 2002 年考研题)某连续时间系统的输入f( t) 和输出 y(t)满足y(t) f (t ) f (t 1) ,则该系统为。
(A )因果、时变、非线性 ( B )非因果、时不变、非线性 (C )非因果、时变、线性( D )因果、时不变、非线性X1.6 (东南大学 2001 年考研题)微分方程 y (t) 3y (t) 2 y(t) f (t 10) 所描述的系统为。
(A)时不变因果系统(B)时不变非因果系统(C)时变因果系统(D)时变非因果系统X1.7 (浙江大学2003 年考研题)y(k) f ( k 1) 所描述的系统不是。
北京理工大学信号与系统考研真题2000
北京理工大学2000年研究生入学考试信号与系统试题一.(16分)画出以下各题所求信号的波形。
1. 已知x 1(t)如图所示,画出12[x 1(t )+x 1(−t )]和12[x 1(t )−x 1(−t )]的波形;2. 已知x 2[n]如图所示,画出∑x 2[m]n m=−∞的序列图;3. 已知x 3(2−0.5t)如图所示,画出x 3(t)的波形;4. 已知x 4[n]如图所示,画出x 4[2−2n]tnx 2[n]1 21 123−1二.(17分)已知如图所示电路系统,其中R1=2kΩ,R2=1kΩ,C=1500μF,输入信号f(t)如图所示,求输出电压v C(t)。
1.首先使用时域分析法求解v C(t)的单位冲激响应h(t);2.然后用时域卷积积分法和频域傅里叶变换法求出在输入信号f(t)作用下的v C(t)表达式,并概略画出v C(t)的波形。
+v C(t)−三.(17分)已知系统框图如图所示,其中x1(t)=sin100tπtx2(t)=T∑δ(t−nT)∞n=−∞1.画出x1(t)和x2(t)的频谱图;2.在如图(a)所示系统中,若要求y(t)=x1(t−0.03),试确定x2(t)的周期T及框图中H(jω);3.在如图(b)所示系统中,若要求y(t)=x1(t),试确定x2(t)的周期T及框图中H(jω);)四.(16分)已知如图所示离散时间函数x [n ]。
1. 求x [n ]的离散时间傅里叶变换X [Ω];2. 以周期N=10,把x [2n ]开拓成一个周期信号x̅[2n ]。
(1) 画出周期信号x̅[2n ]的波形图;(2) 把x̅[2n ]展开成为离散傅里叶级数,并画出频谱图; (3) 若把周期信号x̅[2n ]通过一个单位抽样响应ℎ[n ]=sinπn 2πn的系统,求此系统的输出响应y [n ]。
nx[n] 121 −21 1234五.(17分)如图所示电路系统,R =1Ω,L =0.5H ,C =1.6F 。
北京理工大学信息系统信号历年考研真题
2016年826信号与系统部分一、简答(5×6=30分)1.物理上是否存在这样的信号,既持续时间有限,又频带宽度有限?说出理由2.)(x t 如下图,画出)15.-0(x +t 的波形3.一个线性时不变系统,初试时刻无储能,当输入)(1t x 为单位阶跃信号,即)()(1t u t x =时,系统的输出为)(2)()(y 21t t u e t t δ+=-,试通过时域方法计算输入为)()(x 2t u e t t -=时,系统的零状态响应)(y 2t 4.计算)]([)(x )1(3t u e dtd t t --=的傅立叶变换)(ΩX 5.如图所示系统,输入为)(x t,输出为)(y t ,该系统的三个子系统的单位冲激响应分别为)(h 1t ,)(h 2t ,)(h 3t ,其中)(u )(h 1t t =,)()(h 3t t δ=,)(h 2t 由微分方程)(2)(2)(y 11'1t x t y t =+ 确定。
试利用拉普拉斯变换求该系统的系统函数)(s H 和单位冲激响应)(h t二、(25分)两种调制器如下图所示。
图中,输入信号)(x t频谱)(ΩX 、系统)(ΩM H 的单位冲激响应)(h m t 、)(p 1t 和)(p 2t 的波形分别如图a 、b 、c 、d 所示,且T10<<Ω,T <<τ(1)(15分)试画出已调信号)(y 1t 和)(y 2t 的频谱)(1ΩY 和)(2ΩY ,并说明)(1ΩY 和)(2ΩY 有何区别(2)(10分)试判断能否在接收端通过滤波器)(1ΩH 和)(2ΩH 分别恢复出信号)(x t 。
若能恢复,设计给出)(1ΩH 和)(2ΩH 。
若不能恢复,请给出理由三、(20分)已知一个系统的结构如图a ,输入信号)(x t的频谱)(ΩX 、理想低通滤波器频率响应)(ΩH 和周期信号)(p t 的波形分别如b 、c 、d 所示(1)(12分)分别画出图a 中A B C D 处的信号频谱(2)(8分)如果上述系统中信号)(p t 的周期改为原周期的一半,画出D 处的频谱四、(15分)图为一个线性系统模型,假设已知该反馈系统是稳定的,试证明若)z (H 在z=1处有极点,则该系统能够跟踪输入单位阶跃序列)()(x n u n =,即0)]()([lim n =-+∞→n x n y数字信号处理部分一、简答(20分)1.(5分)已知信号)1(*)3()(21+-+=n x n x n y ,其中)()21()(1n u n x n =,)()41()(2n u n x n=,利用Z 变换性质求)(n y 的Z 变换)(Z Y 2.(5分)已知序列)3()1()(2)(-+-+=n n n n x δδδ的5点DFT 为)(k X ,求)()(2k X k Y =的DFT 的逆变换)(n y 3.(4分)设实连续信号是频率为12.85Hz 的正弦信号,现用100Hz 的采样频率对其进行采样,并利用N=1000点DFT 分析信号的频谱。
一个《信号与系统》考了147分的考研者的经历
一个《信号与系统》考了147分的考研者的经历信号与系统我考了147,总分438!我考的成绩挺平均:政治83,英语,77,数学131,专业课信号与系统147分,总分438。
但我在这里不说别的,只说说我复习专业课的经验。
由于我工作很不顺心,所以才有了考研的想法,本来打算边工作边考。
后来在一次老同学的聚会上,原来的同学有几个关系好的鼓励我要好好复习。
所以我就下了决心辞去了工作考,因此复习时我特别认真和重视,下定决心要比别人付出双倍时间和金钱。
我在六月初买了专业课的课本和参考书,然后利用公司的上网条件搜集到了我要用得的资料(这个工作确实太花时间,我几乎用了整整三个月天天趴在网上搜集,对工作影响大了,老板批评了我几次,后来在老板炒我鱿鱼之前我先交了辞职书了)我在7月以前是利用空闲时间学习,主要看了上海交大胡光锐和中科大徐守时的信号与系统,还有北理工的数字信号处理,然后决定先学信号与系统后学数字信号处理。
7月后就抓紧一切可以利用的时间学习了,甚至上班也偷偷看。
用一个月细读了清华大学郑均理信号与系统上下二册,并对照答案看过了大多数课后题(第一版的课后题包含了全部第二版的课后题,因此第一版的答案可以用)。
8月结合笔记细读了西安交大刘树堂翻译的奥本海姆的信号与系统,并对照答案做课后题(也是用第一版的答案,题号要自己找)。
这本书不愧为经典,后悔没早点看。
课后题基础题没做,提高题几乎全作了,有一些明显不像考试题得只看了看答案的思想。
用时一个月。
9月先把上交胡光锐的解题指导,和张小虹的学习指导与实践的例题看完了,用时15天。
然后开始做第一次作试卷,做了8份杂的+上交大7份+中科大的11份,受打击极大,不过还是硬着头皮挑会做得先做了,留下了不会的和所有的数字信号处理的题。
这个时候是我第一次也是唯一一次产生放弃的念头。
我的感谢我在母校上研的老同学们,是他们的鼓励让我坚定了一定要坚持到底的信念。
10月开始辞职在家全力复习,从10月1号开始做西安交大的15份卷子,感觉能做的题目占到了一半。
北京理工大学信号与系统实验报告1 信号的时域描述与运算
实验1 信号的时域描述与运算(基础型实验)一、实验目的1.掌握信号的MATLAB表示及其可视化方法。
2.掌握信号基本时域运算的MATLAB实现方法。
3.利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理及方法1.连续时间信号的MATLAB表示连续时间信号在连续时间范围内除若干不连续点外在任何时刻都有定义,在MATLAB中的表示法包括向量表示法和符号对象表示法。
1)向量表示法MATLAB从严格意义上来说并不能处理连续时间信号,但可以通过等时间间隔采样后的采样值来近似表示,如果采样间隔足够小,则采样值就可以很好地近似表示出连续时间信号。
这种方法称为向量表示法。
表示一个连续时间信号需要用到两个向量,一个表示时间范围,另一个表示连续时间信号在相对应时间范围内的采样值。
2)符号对象表示法如果连续时间信号可以用表达式来描述,则可以采用符号对象表达法。
例:对于余弦信号,采用两种方式来表示:>> t=0:0.01:10;>> x=sin(t);>> subplot(121)>> plot(t,x)>> title('向量表示法')>> clear>> syms t>> x=sin(t);>> subplot(122)>> ezplot(x)>> title('符号对象表示法')符号对象表示法向量表示法2. 连续时间信号的时域运算连续时间信号的运算包括两信号相加、相乘、微分、积分,以及移位、反转、尺度变换等。
1) 相加和相乘信号的相加和相乘指两信号对应时刻值相加或相乘。
两个采用向量表示法的信号可以直接使用‘+’和‘*’进行运算,此时要求二者的向量时间范围以及采样间隔相同。
两个采用符号对象表示法的信号,可直接依据符号对象的运算规则运算。