飞机结构与系统

合集下载

飞机结构与系统(起落架系统)课件

飞机结构与系统(起落架系统)课件

03
起落架系统的关键技术与设计
起落架的材料与制造工艺
要点一
总结词
起落架材料需具备高强度、耐腐蚀、轻质等特点,常用的 材料包括铝合金、钛合金和复合材料等。制造工艺涉及精 密铸造、机械加工、焊接和复合材料成型等多种技术。
Hale Waihona Puke 要点二详细描述起落架是飞机的重要承力结构,需要承受飞机的重量和着 陆时的冲击载荷,因此要求材料具备高强度和耐腐蚀性。 铝合金、钛合金和复合材料等是目前广泛应用的起落架材 料。在制造过程中,精密铸造和机械加工技术用于形成复 杂形状的起落架部件,焊接技术用于将各个部件连接在一 起,而复合材料成型技术则用于制造复合材料起落架。
起落架系统的分类
01
02
03
按收放方式
前三点式起落架、后三点 式起落架。
按支柱结构
构架式起落架、支柱式起 落架。
按轮组布置
单轮式起落架、多轮式起 落架。
02
起落架系统的工作原理
起落架的收放
正常收起
当飞机准备起飞时,起落架通过液压 作动筒和机械连杆等机构,从机翼下 伸出到机腹下,支撑着飞机并承受着 飞机的重量。
起落架的疲劳寿命分析
总结词
考虑到飞机起落架承受循环载荷的特点,疲劳寿命分析是评估起落架可靠性的重要环节 。通过疲劳试验和损伤容限分析等方法,可以预测起落架的使用寿命并制定相应的维护
策略。
详细描述
飞机起落架在服役期间会承受大量的循环载荷,这种载荷会导致起落架材料的疲劳损伤 。为了评估起落架的可靠性,疲劳寿命分析是必不可少的环节。通过疲劳试验和损伤容 限分析等方法,可以了解起落架在不同循环载荷下的性能退化规律,预测其使用寿命,
起落架的刹车与滑行

飞机各个系统的组成及原理

飞机各个系统的组成及原理

一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。

在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。

机翼通常有平直翼、后掠翼、三角翼等。

机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。

近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。

即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。

为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。

襟翼平时处于收上位置,起飞着陆时放下。

3)尾翼尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。

飞行员利用方向舵进行方向操纵。

当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。

同样,蹬左舵时,方向舵左偏,机头左偏。

某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。

低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。

即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。

飞机结构与系统

飞机结构与系统

飞机结构与系统飞机结构和系统是构成飞机的重要组成部分,它们确保飞机的安全性、可靠性和性能。

以下是飞机结构和系统的主要内容:1.飞机结构:飞机结构由机身、机翼、机尾、机舱等组成。

它们承受飞机自身的重量、飞行载荷和外界环境的影响,提供良好的气动特性和结构强度。

飞机结构通常由金属、复合材料等耐用材料构成,包括框架、蒙皮、加强结构和连接件。

2.动力系统:飞机的动力系统包括发动机、燃油系统和推进系统。

发动机负责提供推力,推动飞机前进。

燃油系统负责存储和供给燃料,以支持发动机的工作。

推进系统则包括推进器、涡轮风扇等,以增加发动机的效率和推力。

3.操纵系统:操纵系统用于控制飞机的操纵面,包括副翼、方向舵、升降舵和扰流板。

这些操纵面通过控制杆、脚踏板和操纵系统传递驾驶员的输入,实现对飞机姿态、方向和高度的控制。

4.电气系统:电气系统提供飞机所需的电力和电子设备工作所需的电能。

它包括起动系统、发电机、电池、电路保护和隔离设备,以及用于控制和监测飞机各个系统的电子设备和航空电子仪器。

5.环控系统:环境控制系统负责维持飞机内部的温度、湿度、压力和空气质量,在不同的气候条件下为乘客和机组人员提供舒适的工作和生活环境。

它包括空调系统、机舱通风系统和氧气系统。

6.降落装置:降落装置用于起飞和降落阶段的着陆。

它通常由起落架和轮胎组成,有时还包括减震装置、刹车系统和襟翼。

这些结构和系统在飞机设计和制造过程中密切相互关联,确保飞机的安全运行。

它们通过复杂的工程设计和测试,满足飞机性能、航空安全和乘客舒适度的要求。

飞机结构与系统

飞机结构与系统

4.
主要应用于副翼和升降舵构造,也称为副翼平衡板
5. 和升降舵平衡板。
副翼平衡板
飞行操纵与传动机构
3. 内封补偿
三、舵面补偿装置
飞行操纵与传动机构
三、舵面补偿装置
4. 随动补偿片 安装在舵面后缘,
不能单独操纵。
飞行操纵与传动机构
三、舵面补偿装置
5. 反补偿片 多用于方向舵,与方
向舵同向偏转,以增加 方向舵效能。
1〕配平调整片
9.
舵面后缘的活动
小片,可以在飞行中操
纵。
10. 减少、消除操纵力;
11. 控制飞机姿态。
飞行操纵与传动机构
三、舵面补偿装置
6. 调整片
7.
2〕伺服调整片〔
操纵〕
8.
舵面后缘的活
动小片,直接和操纵系
统的操纵摇臂连接,驾
驶员直接操纵的不是舵
面,而是伺服调整片。
主操纵系统
一、副翼操纵系统 横向〔滚〕运动
求,稳定性缺乏; 7. 将人工操纵系统与自动控制系统结合,参加增稳系统。 8. 增稳系统操纵权限为 9. 舵面全权限的3%~6%。
飞行操纵系统概述
四、飞机主操纵系统的开展
5. 具有控制增稳功能的全助力操纵系统 • 将飞行员操纵驾驶杆的指令信号变换为电信号, 并经过一定处理后引入到增稳系统; • 可以较好解决操纵性和稳定性的矛盾; • 控制增稳权限增大到30%。

飞机横滚稳定性强
于偏航稳定性时发生的的
横侧短周期振荡,是一种
同时既偏航又滚转的横航
向耦合运动。
主操纵系统
➢ 偏航阻尼器
四、方向舵操纵系统
• 偏航阻尼器系统使飞机沿飞机的偏航〔垂直〕轴 保持稳定。在飞行过程中,偏航阻尼器给出指令使 方向舵与飞行的偏航力矩成比例并与其相反的方向 挪动。这样可以保持不需要的偏航挪动为最小并使 飞行平滑。

飞机结构与系统(第九章 座舱环境控制系统)

飞机结构与系统(第九章 座舱环境控制系统)

南京航空航天大学民航学院
座舱增压系统
二、增压控制原理 通过控制座舱供气量和排气量,控制座舱压力及其变化 规律。为保持压力控制与温度控制相互独立,飞机座舱压力 控制一般都采用保持供气量不变,而改变排气量的方法。
南京航空航天大学民航学院
座舱增压系统
三、主要控制参数 1. 座舱高度 一般不超过8000ft(2400m)。 2. 座舱高度变化率 爬升过程不超过500ft/min;下降 时不超过350ft/min。 3. 座舱余压 一般不超过8.6~9.1psi
南京航空航天大学民航学院
座舱环境控制系统概述
三、克服不利环境的技术措施
2. 气密座舱(增压座舱) 3)气密座舱环境参数 • 座舱高度 座舱内空气的绝对压力值所对应的标准气压高度; – 一般要求飞机在最大设计巡航高度,必须能保持 大约2400m的座舱高度; – 现代一些大中型飞机,座舱高度达到10000ft( 3050m)时告警。
南京航空航天大学民航学院
气源系统
B737-800
南京航空航天大学民航学院
气源系统
典型飞机气源系统 高(中压)引气 引气活门 (PRSOV、调压关断阀) • 调压 • 关断 • 限制下游温度
预冷器控制 (737NG- 199~229度)
南京航空航天大学民航学院
空调系统
控制通往座舱空气的流量、调节温度、排除空气中过多的 水分,最后将空调空气分配到座舱的各个出气口。 • 冷却系统 • 冲压空气系统 • 温度控制系统 • 再循环系统 • 分配系统
南京航空航天大学民航学院
座舱环境控制系统概述
二、大气物理特性及其对人体生理的影响
3. 大气物理特性对人体生理的影响 2)大气压力变化速度 • 飞机急剧上升或下降时 人体脏室内压力来不及与座舱压力平衡,引起 组织器官膨胀或压缩。 • 爆炸减压 座舱高空突然失密,座舱内外压力迅速平衡, 产生气浪冲击,导致高空缺氧、低温、低压。

起落架系统--飞机结构与系统-图文

起落架系统--飞机结构与系统-图文



气体反抗压缩变形能
滑行时飞机颠簸严 重;
油气减震装置油气量充灌标
❖ 油量充灌标准

减震支柱完全压缩时,油液与充气 口平齐;
❖ 气压充灌标准
按照起落架充气勤务曲线进行充气 ;
油气减震装置的维护
❖ 减震器充灌程序:
顶起飞机,伸出减震支柱;
放气,取下充气活门;
灌入规定油液,直到与充油口上部齐平;
❖ 紧固并锁定试验前安装的设备
安124运输机起落架
起落架结构形式
构架式起落架
❖ 构造较简单,重量较轻
承力构架中减震支柱及其它杆件相互铰 接,只承受轴向力,不承受弯矩
❖ 起落架外形尺寸大,很难收入飞机内部
撑杆
减震支柱 机轮
支柱套筒起落架
❖ 结构特点:减震支柱由套筒、活塞杆构成 ❖ 形式:张臂式、撑杆式 ❖ 优点:体积小,易收放 ❖ 缺点:不能很好地吸收水平撞击载荷
过程是介于等温和
绝热过程间的多变
过程;
P2
0 V1
V2 V
减震器工作特性分析
❖ 气体工作特性 :
减震器工作过程中 ,气体压缩、膨胀 过程是介于等温和 绝热过程间的多变 过程;
气体压力与减震器 压缩量的关系曲线 如右图所示:
P Pmax
0
Smax S
减震器工作特性分析
❖ 液体工作特性 P

液体通过阻尼孔时 ,产生与减震器压 缩、膨胀方向相反 的的阻尼力,该阻 尼力与压缩量的关 系如右图所示:
❖ 经若干压缩和伸张行程,全部撞击 动能被耗散,飞机很快平稳下来!
飞机减震过程的能量转换
❖ 压缩行程
飞机接地前的位能 飞机接地撞击动能

飞机结构与系统

飞机结构与系统
换向阀的工作原理:利用阀芯相对阀体的相对位移来时油路发生变化
溢流阀工作原理:利用液流压力和预定弹簧压力向平衡的原理实现压力控制
减压阀的工作原理:利用阀口节流降压
卸荷阀的工作原理:依靠降低定量泵的出口压力来实现卸荷
执行元件分为:旋转运动型(液压马达或液动机)和往复运动型(往复直线运动型(作动筒)、往复摇摆运动型(摆动缸))
绝对粘度分:动力粘度 和运动粘度
动力粘度:面积各为1m2并相距1m的2层流体,以1m/s的速度作相对运动时所产生的内摩擦力
泵分为定量泵和变量泵
齿轮泵是定量泵,分为外啮合式和内啮合式
柱塞泵是变量泵,分为轴向式(直轴式和斜轴式)和径向式
液压控制元件分为:方向控制元件、压力控制元件、流量控制元件
方向控制元件分为:单向阀(锥阀式和钢球式)、换向阀
(矿物油系工作液的润滑性好、腐蚀性小、化学安全性较好
不燃或难燃性油系分:水基液压油和合成液压油)
工作液的最主要的特性是:润滑性、粘度、容积弹性模数和其防火特性
液体的粘度是液体在单位速度梯度下流动时产生的剪切应力。它是液体抵抗液层之间发生剪切变形的能力,是衡量液体粘性的指标
粘度分为:绝对粘度和相对粘度
气源空气来自外涵道
空调空气来自外界大气
温度控制包括制冷和加温
制冷系统的形式:空气循环制冷系统(简单式、升压式、三轮式)、蒸发循环制冷系统
简单式空气循环制冷系统的工作原理:由发动机或座舱增压器引出的高温高压空气,先经过初级热交换器和第二级热交换器冷却,然后在涡轮中膨胀降温,供向座舱。在系统中,涡轮、初级和第二级热交换器串联在一条主供气管道上,而第二级热交换器又与风扇串联在一条冲压空气管道上,涡轮所驱动的风扇抽吸热交换器的冷却空气

飞机结构与系统

飞机结构与系统

飞机结构与系统一、引言飞机结构与系统是飞机设计与制造中至关重要的一部分。

它涵盖了飞机的设计、材料选择、结构安全性、机载系统等多个方面。

本文将介绍飞机结构与系统的基本概念、主要组成部分以及设计原则。

二、飞机结构的基本概念1.主要组成部分–机身:飞机的主体结构,通常包括机头、机尾和机翼的连接部分。

–机翼:产生升力的关键部件,通常由主翼和副翼组成。

–尾翼:控制飞机姿态的部件,通常由水平尾翼和垂直尾翼组成。

–起落架:支撑飞机在地面行驶和起降的部件。

–发动机支架:固定安装发动机的结构。

2.结构材料–金属材料:如铝合金、钛合金等,常用于飞机的结构部件。

–复合材料:如碳纤维、玻璃纤维等,具有较高的强度和轻质化特性,广泛应用于现代飞机。

–纺织品:如织物、缝合线等,用于飞机内饰和安全带等部件。

三、飞机系统的主要组成部分1.动力系统–发动机:提供飞机所需的推力,通常有涡轮喷气发动机和涡桨发动机等类型。

–燃油系统:负责存储和供应燃油。

–冷却系统:确保发动机和其他关键部件的温度控制。

2.控制系统–飞行控制系统:包括飞行操纵系统、自动驾驶系统等,用于控制飞机的姿态和操纵。

–电气控制系统:用于飞机各个系统的电力供应和控制。

–液压控制系统:用于操纵和控制飞机的液压系统。

3.气源系统–压气机:用于提供机载气源,供应给相关系统使用。

4.辅助系统–环境控制系统:负责飞机的空调、供氧等工作。

–消防系统:用于应对可能发生的火灾事故。

–导航系统:用于飞机的导航和定位。

–通信系统:用于飞机与地面的通信。

四、飞机结构与系统的设计原则1.安全性:飞机结构与系统的设计必须满足航空器运行的安全要求,保证在各种工况下的结构安全和系统可靠性。

2.结构轻量化:采用轻质材料和合理的结构设计,以降低飞机自重,提高机载有效载荷和航程。

3.系统模块化:将飞机系统划分为独立的模块,并通过标准化接口进行连接,以方便维护和升级。

4.节能环保:优化动力系统和控制系统设计,降低燃料消耗和排放。

飞机结构与系统(飞行操纵系统)课件

飞机结构与系统(飞行操纵系统)课件
理方案,提高飞行经济性安全性。
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持

飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。

《飞机结构与系统》课件

《飞机结构与系统》课件

尾翼结构
01
尾翼是飞机的重要部件之一,其主要功能是提供方向控制和稳定性。
02
尾翼通常由垂直安定面、水平安定面和升降舵等组成,其结构设计需 要考虑到气动性能、强度和刚度等多个因素。
03
尾翼的形状和尺寸需要根据飞机的总体设计要求进行选择和优化,以 确保尾翼能够满足气动性能和结构性能的要求。
04
尾翼的结构设计还需要考虑到制造工艺和维修要求,以确保尾翼易于 制造、维修和使用。
飞机结构的设计要求
强度和刚度
满足飞行过程中的各种载荷要 求,保证飞机的安全性和稳定
性。
耐腐蚀性
能够承受各种环境因素,如大 气、水和化学物质等的影响。
重量和成本
尽可能减轻重量并降低成本, 以提高飞机的经济性和市场竞 争力。
可维护性和安全性
便于维护和检修,同时保证乘 客和机组人员的安全。
02
飞机机体结构
05
飞机安全性与可靠性
飞机安全性设计
安全性设计原则
应急设施设计
确保飞机在正常和异常情况下都能保 障乘员安全,遵循国际民航组织的安 全标准和建议。
为应对紧急情况,飞机上应配备紧急 出口、救生设施和氧气面罩等,以确 保乘员在紧急情况下能够迅速撤离。
结构安全设计
对飞机结构进行详细分析,确保其能 够承受飞行过程中的各种载荷和应力 ,防止因结构失效而引发安全事故。
机身结构
机身是飞机的主体结构,其主 要功能是装载乘客、货物和燃 料等,并承受飞机的各种载荷

机身通常由筒体、框架、蒙皮 等组成,其结构设计需要考虑 到强度、刚度和疲劳等多个因
素。
机身的形状和尺寸需要根据飞 机的总体设计要求进行选择和 优化,以确保机身能够满足气 动性能和结构性能的要求。

飞机结构与系统(看几遍,背背就过)

飞机结构与系统(看几遍,背背就过)

飞机的外载荷飞行时,作用在飞机上的外载荷主要有:重力、升力、阻力和推力分类:1.飞机水平直线飞行时的外载荷2.飞机做机动飞行时的外载荷(垂直平面、水平平面)3.飞机受突风作用时的外载荷(垂直突风、水平突风)飞机的重心过载过载:作用在飞机某方向的除重力之外的外载荷与飞机重量的比值,称为飞机在该方向的飞机重心过载。

飞机的结构强度主要取决于y轴方向的过载n y=Y/G过载的意义通过过载值可求出飞机所受的实际载荷大小与其作用方向,便于设计飞机结构,检验其强度、刚度是否满足要求。

标志着飞机总体受外载荷的严重程度。

过载与速压最大使用过载:设计飞机时所规定的最大使用过载值,称为最大使用过载。

●飞机在飞行中的过载值n y表示了飞机受力的大小。

通常把飞机在飞行中出现的过载值ny称为使用过载。

●最大使用过载是在设计飞机时所规定的,它主要由飞机的机动飞行能力、飞机员的生理限制和飞行中因气流不稳定而可能受到的外载荷等因素确定的。

在某一个特定的高度,由于发动机的推力有限,所以所能达到的速度有限,因此所能达到的速压也就有限。

使用限制速压:通常规定某一高度H0上对应的最大q值为使用限制速压。

最大允许速压:飞机在下滑终了时容许获得的最大速压,称为最大允许速压(强度限制速压)。

最大允许速压比使用限制速压更加重要。

飞机飞行中不能超过规定的速压值,否则,飞机会由于强度、刚度不足而使蒙皮产生过大的变形或者撕离骨架,有时还可能引起副翼反效,机翼、尾翼颤振现象。

速压和过载的意义过载的大小——飞机总体受力外载荷的严重程度速压的大小——飞机表面所承受的局部气动载荷的严重程度●因此,由最大使用过载和最大允许速压所确定的飞机强度和刚度,反映了飞机结构的承载能力。

飞行包线一系列飞行点的连线。

以包络线的形式表示允许航空器飞行的速度、高度范围。

同一翼型,机翼的迎角与升力系数一一对应。

要确定飞机的严重受载情况,就要同时考虑过载ny、速压q和升力系数Cy的大小。

飞机结构与系统(起落架系统)课件

飞机结构与系统(起落架系统)课件

04
飞机起落架系统的发展趋 势
轻量化设计
总结词
随着航空工业的发展,轻量化设计已成 为飞机起落架系统的重要趋势。
VS
详细描述
轻量化设计有助于减少飞机重量,降低油 耗,提高飞行效率。起落架系统作为飞机 的重要部分,其轻量化设计对于整个飞机 的性能提升具有重要意义。目前,采用先 进的材料和结构设计技术是实现起落架系 统轻量化的主要手段。
起落架的刹车原理
起落架的刹车系统用于在飞机着陆后减速和停机。
刹车系统通常由多组刹车盘组成,当飞行员踩下刹车踏板时,液压系统会向刹车盘施加压力,使刹车 盘与跑道产生摩擦力,从而使飞机减速。为了提高制动效果,现代飞机还配备了反推装置,通过改变 发动机气流方向来产生反向推力。
起落架的转向原理
起落架的转向系统使飞机能够在滑行道和跑道上灵活转向。
详细描述
绿色环保设计主要表现在对材料的选择和回 收再利用上。采用可再生、可回收材料,减 少对环境的污染,同时降低能源消耗,是起 落架系统未来的重要发展方向。此外,减少 飞机起降过程中的噪音和排放也是绿色环保 设计的重要内容。
05
飞机起落架系统的应用实 例
波音737起落架系统应用实例
波音737起落架系统采用了液压刹车和防滑装置,以确保在各种系统的各项功能 进行测试,确保其正常工 作并符合适航要求。
起落架系统的故障排除
故障诊断
通过分析飞行数据和检查系统部 件,确定起落架系统故障的原因

修复与更换
对故障部件进行修复或更换,以恢 复起落架系统的正常功能。
测试与验证
在完成修复后,对起落架系统进行 测试和验证,确保其性能达到预期 标准。
空客A320起落架系统还包括了 自动展开装置,可在着陆时自 动展开起落架,提高着陆稳定 性。

飞机结构--飞机结构与系统

飞机结构--飞机结构与系统

飞机结构适航性要求
结构的强度 结构的刚度 结构的稳定性 结构的抗疲劳性能
结构的强度要求
CCAR-25部要求要点
结构强度要用限制载荷和极限载荷来确定 要根据机动包线和突风包线典型的各点得到各部
分结构的最大载荷。 用真实载荷对飞机进行静力实验以确定其强度时,
结构必须能够承受极限载荷至少3秒而不破坏。
合用于外场修理。 具有较高的抗蚀能力,能与多类金属一起使用
实心铆钉
按材料和热处理状态分类
L W

1
cos
突风超载
突风超载
L

C
y

1 2
v 2

S
L

C
y



1 2
v 2

S
v0u v v0
u
v0
n L W

1

1 2
C
y

v
0
u
S G
部件超载
ny部件 ny Δn y
部件超载-沿纵轴变化
εz ny Δny ny部件
部件超载-沿纵轴变化
CCAR-25部对各种组合和相应的限制载荷系数 都有具体规定。
飞机结构承载余量
安全系数
设计载荷与使用载荷之比。表示飞机在使用中结构不会 破坏而又有一定强度储备的的系数。
CCAR-25部规定:除非另有规定,必须采用安全系数1.5。
剩余强度系数
构件的破坏应力与它在某受载情况设计载荷作用下的计 算应力之比成为在此受载情况下该构件的剩余强度系数。 该值一般应略大于l.0。它表示结构强度的实际富裕程度。
弯矩:由大梁缘条和桁条及蒙皮组成的上和下壁板 以受拉和受压的轴向力形式承受,引起壁板拉伸和 压缩变形,在上和下壁板内产生正应力(正弯矩使 上壁板受压下壁板受拉,负弯矩则相反)。

飞机结构与系统(飞机机身结构)通用课件

飞机结构与系统(飞机机身结构)通用课件

铝合金飞机机身结构中最常材料 之一,因其具较高比强度、耐腐
蚀性易加工等特点。
铝合金可变形铝合金铸造铝合金 ,广泛应飞机大梁、机身蒙皮、
翼肋等部件。
铝合金缺点疲劳性能较差,易发 生疲劳裂纹,因此设计时需进行
疲劳强度析试验。
复合材料
复合材料由两种或多种材料组成新型材料,具高强度、高刚性、抗疲劳等优点。
热稳定性析
评估机身高温环境稳定性,保证结构 因温度变化而发生变形或失效。
05
机身结构损伤容限与疲劳寿命
损伤容限设计
01
损伤容限设计指飞机结构受损伤后仍能保持一定承载能力设计方 法。它通过合理设计结构细节、选择适当材料工艺,提高结构抗
损伤能力。
02
损伤容限设计包括结构进行强度析、疲劳析损伤评估,确保预期 服役期内,结构能够承受各种载荷环境条件影响。
中段
包括机身中部后部,主承 载着机身纵向横向受力, 并连接机翼行稳定性,发动 机吊舱则安装固定发动机 。
机身结构设计求
01
02
03
04
强度求
机身结构必须能够承受飞行过 程中各种载荷,包括气动载荷
、惯性载荷重力载荷等。
刚度求
机身结构必须具一定刚度,确 保飞机飞行过程中稳定性舒适
焊接工艺
总结词
焊接工艺飞机机身结构制造中重连接方式,通过熔融金属将 两零件连接一起。
详细描述
焊接工艺具强度高、密封性好、重量轻等特点,广泛应飞机 机身结构制造中。焊接工艺可电弧焊、激光焊、等离子焊等 多种方式,根据同材料连接求选择合适焊接工艺。
铆接工艺
总结词
铆接工艺飞机机身结构制造中传统连 接方式,通过铆钉将两零件连接一起 。
参数优化

涡轮发动机飞机结构与系统

涡轮发动机飞机结构与系统

涡轮发动机飞机结构与系统第一章:飞机结构1.分布载荷实例:空气动力对机翼的载荷,作用在机体表面的气动载荷2.动载荷实例;飞机着陆时起落架受到的地面撞击力.3.过载;沿纵轴过载n x沿立轴过载n y:对飞机结构影响较大的过载是n y沿横轴过载n z飞行过载n y:作用在飞机上的升力L和飞机重量W之比n y=L/W部件过载:根据作用在飞机重心处升力L和飞行重量W之比得出过载n Y值n x=p x/p o;n y=p y/p o;n z=p z/p on X,n y,n z——-—--起落架的水平垂直侧向载荷系数P x,p y,p z---—-—起落架承受的水平,垂直和侧向载荷P o——-—-——起落架的停机载荷4.飞机结构的承载能力表现在对飞机的使用限制和飞机结构余量两个方面5.(1)飞行包线是以飞机在飞行中的使用限制条件。

可将飞行中可能出现的空速和过载系数的各情况用速度-----过载飞行包线表示出来。

(2)飞行包线是以飞行速度,高度和过载等作为界限的封闭几何图形,用以表示飞机的飞行范围和飞行限制条件。

6.飞机结构承载余量----—-—安全系数和剩余强度数值7.设计载荷与使用载荷之比叫安全系数fF=p设计/p使用(安全系数采用1.5)8.剩余强度系数应该略微大于11。

1.2飞机结构适航性要求和结构分类1.飞机结构的适航性要求:(1)结构的强度,(2)结构的刚度(3)结构的稳定性(4)结构的稳定性2.载荷作用下的5种基本变形:a.拉伸变形b。

压缩变形c。

剪切变形d.扭转变形e。

弯曲变形3.飞机结构基本元件1。

杆件2。

梁元件3。

板件4.飞机结构件:1。

杆系结构2。

平面薄壁结构3.空间薄壁结构飞机结构疲劳设计1.安全寿命设计:是建立在无裂纹的基础上,当结构在疲劳载荷作用下出现客观的可检裂纹时,就到了结构的安全寿命终点了2。

安全寿命设计有如下几点不足之处:1。

不能确保飞机结构的使用安全2。

不能充分发挥飞机结构的使用价值3。

飞机的构造与系统

飞机的构造与系统

飞机的构造与系统飞机的基本组成飞机的主要组成部分及其功能如下:1、推进系统:包括动力装置(发动机和保证其正常工作所需的附件)、能源及工质。

其主要功能是产生推动附件前进的推力(或拉力)。

2、操作系统:其主要功能是形成(自动或有驾驶员)与传递操纵指令,驱动舵面和其他机构,控制飞机按预定航线飞行。

3、机体:包括机身、机翼和尾翼等。

其主要功能是产生升力;装载有效载荷、燃油及机载设备;将其他系统和装置连成一个整体,构成适于稳定及操纵飞行的气动外形。

4、起落装置:其主要功用是飞机在地面停放、滑行、起降滑跑时,用以支持以及吸收撞击能量并操纵滑行方向。

5、机载设备:包括方向仪表、导航、通信、环境控制、生命保障、能源供给等设备以及客舱生活服务设施(对民用飞机)或武器和火控系统(对军用飞机)。

航空发动机为航空器(主要指飞机)提供所需动力的发动机。

目前,飞机常用的发动机主要有四类:1、活塞式航空发动机:早期在飞机和直升机上应用的发动机,用它带动螺旋浆或旋翼。

活塞式航空发动机的优点是省油,螺旋浆在低速飞行时推进效率高,在相同功率下能产生较大的拉力,有利于提高飞机的起飞性能。

缺点是结构复杂,重量大而输出功率小,螺旋浆在高速飞行时推进效率低,因此不适用于大型和高速飞机。

但是对低速飞机而言,它具有喷气式发动机不可比拟的优点,那就是耗油率低。

此外,由于燃烧较完全,对环境的污染相对较低,噪音也较小。

因此,小功率的活塞式航空发动机还广泛使用在轻型飞机、直升机以及超轻型飞机上。

2、涡轮螺旋浆发动机:燃气涡轮发动机构造简单、功率大、体积小和重量轻,可以用在大型飞机上。

但由于螺旋浆的限制,仍限用于速度低于800公里/小时的飞机上。

3、涡轮喷气发动机:具有重量轻、体积小和功率大的特点,适于超音速飞行。

但在高亚音速范围内推进效率较低,耗油也多。

在发动机涡轮后的喷管中补充燃油,构成加力燃烧室,可以大幅度提高推力,但是耗油量增加很多,只能用在短时间作超音速飞行的超音速歼击机和轰炸机上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞机的外载荷飞行时,作用在飞机上的外载荷主要有:重力、升力、阻力和推力分类:1.飞机水平直线飞行时的外载荷2.飞机做机动飞行时的外载荷(垂直平面、水平平面)3.飞机受突风作用时的外载荷(垂直突风、水平突风)飞机的重心过载过载:作用在飞机某方向的除重力之外的外载荷与飞机重量的比值,称为飞机在该方向的飞机重心过载。

飞机的结构强度主要取决于y轴方向的过载n y=Y/G过载的意义通过过载值可求出飞机所受的实际载荷大小与其作用方向,便于设计飞机结构,检验其强度、刚度是否满足要求。

标志着飞机总体受外载荷的严重程度。

过载与速压最大使用过载:设计飞机时所规定的最大使用过载值,称为最大使用过载。

●飞机在飞行中的过载值n y表示了飞机受力的大小。

通常把飞机在飞行中出现的过载值ny称为使用过载。

●最大使用过载是在设计飞机时所规定的,它主要由飞机的机动飞行能力、飞机员的生理限制和飞行中因气流不稳定而可能受到的外载荷等因素确定的。

在某一个特定的高度,由于发动机的推力有限,所以所能达到的速度有限,因此所能达到的速压也就有限。

使用限制速压:通常规定某一高度H0上对应的最大q值为使用限制速压。

最大允许速压:飞机在下滑终了时容许获得的最大速压,称为最大允许速压(强度限制速压)。

最大允许速压比使用限制速压更加重要。

飞机飞行中不能超过规定的速压值,否则,飞机会由于强度、刚度不足而使蒙皮产生过大的变形或者撕离骨架,有时还可能引起副翼反效,机翼、尾翼颤振现象。

速压和过载的意义过载的大小——飞机总体受力外载荷的严重程度速压的大小——飞机表面所承受的局部气动载荷的严重程度●因此,由最大使用过载和最大允许速压所确定的飞机强度和刚度,反映了飞机结构的承载能力。

飞行包线一系列飞行点的连线。

以包络线的形式表示允许航空器飞行的速度、高度范围。

同一翼型,机翼的迎角与升力系数一一对应。

要确定飞机的严重受载情况,就要同时考虑过载ny、速压q和升力系数Cy的大小。

●以飞行速度Vd为横坐标、飞机过载ny为纵坐标的坐标轴,以飞机过载ny、速压q和升力系数Cy为基本参数,画出机动飞行的飞机包线。

P11OA:正失速线,表示在相应的当量速度下,飞机能达到的最大正过载值,超过这条曲线,飞机就会失速。

(Cy的限制)OD:负失速线,表示在相应的当量速度下,飞机能达到的最大负过载值,超过这条曲线,飞机就会失速。

(Cy的限制)AA’:最大正过载DD’:最大负过载A’D’:最大速度(限制当量速度)机身的分类构架式、硬壳式、半硬壳式机翼的外载荷作用在机翼上的外载荷有:空气动力、机翼结构质量力、部件及装载质量力。

空气动力可以看成一种分布线载荷。

是飞机在飞行中作用在机翼上的最主要的外载荷。

单位长度下,弦长越大,空气动力也就越大;空气动力作用在机翼的压力中心线上。

机翼结构质量力可以近似地认为与空气动力的方向相反,大小与机翼弦长成正比。

在弦向的作用点的连线就是机翼结构的重心线。

部件集中质量力作用在机翼上的部件质量力是指发动机、起落架等部件的质量力,其大小和方向与过载有关。

部件的重心位置就是部件质量力的作用点。

刚心轴梁受拉和压(即弯);缘条受拉或压;板件受剪机翼结构的典型元件纵向:翼梁、长桁、腹板横向:翼肋、蒙皮蒙皮1.直接功用是形成流线型的机翼外表面。

2.此外,还参与机翼的总体受力——和翼梁或翼墙的腹板组合在一起,形成封闭的盒式薄壁梁承受机翼的扭矩。

长桁1.支持蒙皮,防止在空气动力作用下产生过大的局部变形,并与蒙皮一起把空气动力传到翼肋上去;2.提高蒙皮的抗剪和抗压稳定性,使蒙皮能更好地参与承受机翼的扭矩和弯矩;3.长桁还能承受由弯矩引起的部分轴力。

翼肋1.功用是构成并保持机翼的形状;2.把蒙皮和长桁传递给他的空气动力载荷传递给翼梁腹板,而把空气动力形成的扭矩,通过铆钉以剪流的形式传递给蒙皮;3.支持蒙皮、长桁和翼梁腹板,提高它们的稳定性。

翼梁承受机翼的剪力和部分或全部弯矩。

纵墙可以与蒙皮组成封闭的盒段来承受机翼的扭矩。

作用在机翼上气动载荷的传递过程1.空气动力直接作用在机翼蒙皮上2.蒙皮将外载荷传递到长桁与翼肋上3.传递到长桁上的载荷向翼肋传递4.传递到翼肋上的载荷向翼梁传递5.传递到翼梁上的载荷向机翼根部传递6.根部载荷通过加强肋传递到机翼—机身对接接头7.通过接头传向机身梁式和单块式的特点梁式纵向有很强的翼梁;蒙皮较薄;长桁较少且弱,梁缘条的剖面面积比长桁大得多;有时还同时布置有纵墙。

梁式机翼通常分成左右两个机翼。

单块式长桁较多且较强,蒙皮较厚,长桁、蒙皮组成可受轴力的壁板。

液压起落架的收放、前轮转弯操纵、刹车操纵及飞行操纵系统几乎都离不开液压传动和伺服控制技术。

液压传动的定义和基本原理定义:液压传动是一种以液体为工作介质,利用液体静压能来完成传动功能的一种传动形式,也称容积式传动。

基本原理:帕斯卡原理,作用时对力进行放大。

四要素1.液压传动是以液体作为传递能量的介质而且必须在封闭的容器内进行。

2.为克服负载必须给油液施加足够大的压力,负载越大所需压力也越大。

这就是液压传动的一个基本原理——压力决定于负载。

3.输出速度取决于流量4.代表液压传动性能的主要参数是压力p和流量Q液压系统的组成(按液压元件的功能划分)动力元件:指液压泵,其作用是将电动机或发动机产生的机械能转换成液压的压力能。

执行元件:其职能是将液体的压力能转换为机械能。

包括液压作动筒和液压马达。

控制调节元件:即各种阀。

用来调节各部分液压的压力、流量和方向。

辅助元件:除了上面的,包括油箱、油滤、散热器、蓄压器及导管、接头和密封件等。

(按组成系统的分系统划分)液压源系统工作系统工作液的基本分类和特性分为两大类:矿物油系和不燃或难燃性油系。

矿物油系工作液的主要成分是石油。

润滑性好、腐蚀性小、化学安全性好,但价格较贵。

不燃或难燃性液压油系分为水基液压油和合成液压油。

水基液压油:价格便宜,不怕火,缺点是润滑性差、腐蚀性大及适用温度范围较小。

合成液压油:润滑性好、凝固点低、防火性能好,广泛用于民航机上。

主要特性指标润滑性、粘度、容积弹性模数和其防火特性。

粘度静止的液体是不呈现粘性的。

粘性的大小用粘度来进行标定。

液体的粘度是液体在单位速度梯度下流动时产生的剪切应力。

它是液体抵抗液层之间发生剪切变形的能力,是衡量液体粘性的指标。

粘度的分类分为绝对粘度和相对粘度●动力粘度又称绝对粘度,但是较难于直接测量,因此在工程上液压油的粘度都以相对粘度单位给出。

●油液粘度随温度升高而减小,这是油液的粘温特性。

油液的粘度随压力的升高而增大防火特性航空上常用的液压油为石油基液压油和磷酸酯液压油。

后一种属于耐燃性液压油类。

衡量耐燃性的一般指标为闪点、着火点和自然着火点。

闪点:在此温度下,液体能产生足够的蒸汽,在特定条件下以一个微小的火焰接近它们时,在油液表面上的任何一点都会出现火焰闪光的现象。

着火点:油液所达到的某一温度,在该温度下油液能连续燃烧5s自然着火点:油液在该温度下会自动着火。

动力装置液压系统中常用的动力源为液压泵液压泵的基本工作原理液压系统使用的液压泵都是容积式的,其工作原理都是利用容积变化来进行吸油、压油的。

1.液压泵工作是靠密封工作腔的容积变化来吸油和压油的。

其输出的油量是由这个密封腔的容积变化量和变化率来决定的。

2.吸油过程中,油液是依靠油箱中油液液面压力与泵密封腔内的压力差来完成的,压油过程,输出压力的大小取决于油液从单向阀排出时所遇到的阻力,即泵的输出压力决定于负载。

3.泵在吸油和压油时,必须使密封腔的油液通路进行转换。

使泵油路进行转换的装置叫作配流装置。

从工作原理来说,大部分液压泵都是可逆的,即输入压力油,就可输出转速和扭矩,即把液压能转换为机械能,这便成为执行元件——液压马达。

液压泵的类型按结构形式可以分为齿轮式、柱塞式和叶片式三类。

按输出流量能够调节可分为定量泵和变量泵两类。

液压泵的主要性能参数额定压力是指泵规定允许的最佳工作压力。

其值取决于泵的密封件和制造材料的性质和寿命。

排量和流量指在没有泄露的情况下,泵轴每转所排除的液体体积。

它是由泵的密封工作腔的大小决定。

功率和效率输入功率是电动机或发动机的机械功率,是转矩和角速度的乘积。

泵的输出功率是流量Q 和工作压力p的乘积。

液压泵的功率损失主要是由两种损失造成的:一为容积损失,二为机械损失。

与其对应的是容积效率和机械效率。

容积效率:是指泵的流量损失的程度。

机械效率:是指输入泵的转矩损失程度。

●造成泵流量损失的主要原因是泵的内漏和在吸油过程中油液不能全部充满油腔引起的。

即称为泄流损失和填充损失。

●由于泵在工作时存在相对运动部件之间的机械摩擦和油液在泵内的流动表现出来的粘性作用都会引起转矩损失。

齿轮泵1.是定量泵,分为外啮合式和内啮合式2.功率小,噪声大,齿数越多,容积越小。

3.适用于中低压系统工作原理P92下腔(吸油腔)因啮合的齿轮齿逐渐脱开,其密封容积逐渐增大,形成部分真空,油箱中的油液在油箱内压力作用下被吸进来,并随着齿轮转动。

当油进入上腔(压油腔)时,由于齿轮的进入啮合使密封腔容积逐渐减小,从而将油从排油口挤压出去。

齿轮不断旋转,油液便不断地吸入和排出。

柱塞泵1.是变量泵2.分为轴向式(更好)和径向式;3.适用于高压系统工作原理P96斜盘角度不变时,缸体转动带动柱塞在斜盘上滑动,从而改变柱塞孔容积变化。

吸油:柱塞随缸体自下而上回转排油:柱塞随缸体自上而下回转液压泵的限压与卸荷限压定量泵一般都采用溢流阀来限制系统的压力。

当系统的压力高于某个调定压力值时,溢流阀将把多余的油液徘回油箱。

变量泵的变量特性已经使系统最高压力受到限制。

卸荷对装有定流量泵的飞机液压系统,都采用使液压泵出口压力在工作部分不工作时降到最小限度的方法,使其输出功率也最小,这就是定量泵的卸荷。

变量泵具有自动卸荷功能。

P103三种基本回路1.利用工作部分控制开关在中立位卸荷这种方式只能在单一工作系统情况,对于一个泵供压给几个并联工作回路的系统是不适用的。

2.利用卸荷阀自动卸荷(中小型飞机常用)这种方式可以使负载瞬时获得高的工作压力,并使系统压力基本保持恒定。

系统内漏和储压器充气压力不足是使卸荷阀频繁工作的主要原因。

通过卸荷阀工作频率亦可估计系统的内漏严重程度。

3.利用液压继电器卸荷这种卸荷方式可以使卸荷时泵的消耗功率为零。

油液的发热发现“油温过高”指示灯亮时,首先应该使泵停转,并对壳体排油滤和压力油滤进行检查,滤芯的脏物表明泵的缺陷。

液压执行元件直接将液压能转换成机械能。

1.旋转运动型——液压马达2.往复运动型——作动筒(直线往复运动型)作动筒利用液压来克服负载,利用流量来维持运动速度。

输入参数:液体压力和流量——液压功率。

输出参数:力和速度——机械功率。

形式1.单作用式2.双作用式(双向双杆式、双向单杆式)工作原理:当筒体固定时,若筒左腔输入工作液体,液体压力升高到足以克服外界负载时,活塞就开始运动。

相关文档
最新文档