2017_2018学年高中数学第二章随机变量及其分布2.2二项分布及其应用2.2.1课件新人教A版选修2_3
第二章 随机变量及其分布(第2讲)
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ
⎨
e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效
应用数理统计第二章
3、右连续性:F ( x 0) F ( x); 至多可列个间断点.
4、F () lim F ( x) lim P( X x) 0; F () lim F ( x) lim P( X x) 1.
n
称X 服从参数为n, p的二项分布,记X ~ B(n, p).
2、二项分布 B(n, p) 当n 1时即退化为两点分布.
参数n, p对分布的影响.
若P( X k0 ) max P( X k ), 则称k0为最可能出现次数.
k
b(k ; n, p) (n 1) p k 1 . 设0 p 1, b(k; n, p) P( X k ), 则有 b(k 1; n, p) k (1 p)
解 :由性质4得, F () A 1;
x 0 0
故B 1.
又由右连续性得, lim F ( x) A B F (0) 0;
1 e x , x 0; 从而r.v. X 的分布函数为F ( x) 0, x 0.
例2 : 在半径为2的圆内等可能地任意投点,以X 表示投 的点与圆心的距离试求 . X的分布函数.
解 : a 若x 0, 则{X x}是不可能事件, 于是F ( x) 0;
x2 b 若0 x 2, 则F ( x) P{ X x} P{0 X x} ; 4
c 若x 2, 则{X x}是必然事件, 于是F ( x) 1.
0, x 0; 1 2 从而X 的分布函数F ( x) x , 0 x 2; 4 1, x 2.
k 2
第二章随机变量及其分布函数
28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
概率论与数理统计第二章随机变量及其分布
设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新
2.1.2 离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求某些简单的离散型随机变量的分布列.3.理解两点分布和超几何分布及其推导过程,并能简单的运用.,1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即X 0 1 … mPC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.(1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n .(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( ) (2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( ) (4)超几何分布的模型是放回抽样.( ) 答案:(1)× (2)× (3)√ (4)×下列表中能成为随机变量ξ的分布列的是( ) A.ξ -1 0 1 P0.30.40.4B.ξ 1 2 3 P0.40.7-0.1C.ξ -1 0 1 P0.30.40.3D.ξ 1 2 3 P0.30.10.4答案:C若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y 为整数,则ξ=0;若x y为小于1的分数,则ξ=-1;若x y为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使x y为整数的有以下8种: (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 离散型随机变量的分布列的性质设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值;(2)求P (X ≥35);(3)求P (110<X <710).【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=ck (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为X 0 1 2 3 P120920920 1201.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为η 0 1 P12122.[变条件]将本例的条件“一次随机抽取3个球”改为“有放回地抽取3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为X 0 1 2 3 P18383818求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.(2018·昆明质检)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220 B.2755C.27220D.2125解析:选C.X =4表示取出的3个球为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.3.随机变量η的分布列如下η 1 23 4 5 6 P0.2x0.350.10.150.2则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2). 解:由题意可知,ξ的可能取值为0,1,2,3. 则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为ξ 0 1 2 3 P13512351835435P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.知识结构深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义., [A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10D .25解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14C.16D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C.3.设随机变量X 的概率分布列为则P (|X -3|=1)=A.712 B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B.4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2D .1≤x <2解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )287C.1556 D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.68.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, 所以m =0.3. 列表为:(1)2X +1的分布列为:(2)|X -1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率; (2)记所取出的非空子集的元素个数为X ,求X 的分布列. 解:(1)记“所取出的非空子集满足性质r ”为事件A . 基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A 包含的基本事件数m =3.所以P (A )=m n =331.(2)依题意,X 的所有可能值为1,2,3,4,5. 又P (X =1)=C 1531=531,P (X =2)=C 2531=1031,P (X =3)=C 3531=1031,P (X =4)=C 4531=531,P (X =5)=C 5531=131.故X 的分布列为11.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13 B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3]D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列. 解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为Y 0 1 2 P6313028651113014.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为则P (C )=P (X =3)+P (X =4)=215+310=1330.。
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案
第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为
重点!!第二章随机变量及其分布
例如:◆ 掷一颗骰子面上出现的点数;
◆ 昆虫的产卵数; ◆五月份北京的最高温度; ◆ 每天进入上海站的旅客数;
(2)在有些试验中,试验结果看来与数值无 关,但我们可以引进一个变量来表示它的各 种结果.也就是说,把试验结果数值化。
例如:裁判员在运动场上不叫运动员的名 字而叫号码,名字与号码之间建立了一种
0 X ~ 1 2 1 1 4 2 1 8 3 1 8
即
例2.7 一骰子掷两次,用X表示所得点数之和,求X取可能
值的概率。
解 X的所有可能取值为2,3,4,…,12,其分布律为
二、常用的离散型随机变量及其分布
(1) (0—1)分布
如果随机变量X的分布律为
P X = k = p 1 - p , k = 0,1, 0 < p < 1 .
它是一个随机变量。
事件{收到不少于1次呼叫} {没有收到呼叫} {X= 0}
{ X 1}
三、 随机变量的分类
离散型随机变量 随机变量 非离散型随机变量 混合型随机变量 我们将研究两类随机变量: (1)离散型随机变量 (2)连续型随机变量 连续型随机变量
例2.1 对一均匀硬币抛一次,观察正反面情况。 =>样本空间 {H , T }, 定义随机变量
注:若将本例中的“有放回”改为”无放回”, 那么各次试 验条件就不同了, 不在是伯努利试验, 只能用古典概型求解。
1 C95 C52 P( X 2) 3 0.00618 C100
定理2.3泊松(Poisson) 设>0,n是正整数,若npn=,则对任
一固定的非负整数k,有
n k k lim C n pn (1 pn ) n k
2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3
解:记“甲射击 1 次,击中目标”为事件 A,“乙射击 1 次, 击中目标”为事件 B,则 A 与 B,A 与 B,A 与 B ,A 与 B 为相互 独立事件,
(1)2 人都射中目标的概率为: P(AB)=P(A)·P(B)=0.8×0.9=0.72.
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况: 一种是甲射中、乙未射中(事件 A B 发生),另一种是甲未射中、乙 射中(事件 A B 发生).根据题意,事件 A B 与 A B 互斥,根据互斥 事件的概率加法公式和相互独立事件的概率乘法公式,所求的概 率为:
(2)D= C ,P(D)=1-P(C)=1-0.8=0.2, P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.
11.某项选拔共有四轮考核,每轮设有一个问题,能正确回 答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回 答第一、二、三、四轮问题的概率分别为45、35、25、15,且各轮问 题能否正确回答互不影响:
(3)分别抛掷 2 枚相同的硬币,事件 M:“第 1 枚为正面”,
事件 N:“两枚结果相同”.
这 3 个问题中,M,N 是相互独立事件的有( )
A.3 个
B.2 个
C.1 个
D.0 个
解析:(1)中,M,N 是互斥事件;(2)中,P(M)=35,P(N)=12.
即事件 M 的结果对事件 N 的结果有影响,所以 M,N 不是相互
P(A B )+P( A B)=P(A)·P( B )+P( A )·P(B) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性 新人教A
解析:根据相互独立事件的概念知,这三个说法都是 正确的.
答案:(1)√ (2)√ (3)√
2.袋内有 3 个白球和 2 个黑球,从中不放回地摸球, 用 A 表示“第一次摸得白球”,用 B 表示“第二次摸得白 球”,则 A 与 B 是( )
A.互斥事件 B.相互独立事件 C.对立事件 D.不相互独立事件 解析:根据互斥事件、对立事件和相互独立事件的定
(3)条件概率法:当 P(A)>0 时,可用 P(B|A)=P(B) 判断.
[变式训练] 下面所给出的两个事件 A 与 B 相互独立
吗? ①抛掷一枚骰子,事件 A=“出现 1 点”,事件 B=
“出现 2 点”; ②先后抛掷两枚均匀硬币,事件 A=“第一枚出现正
面”,事件 B=“第二枚出现反面”;
③在含有 2 红 1 绿三个大小相同的小球的口袋中,任 取一个小球,观察颜色后放回袋中,事件 A=“第一次取 到绿球”,B=“第二次取到绿球”.
解:①事件 A 与 B 是互斥事件,故 A 与 B 不是相互
独立事件.
②第一枚出现正面还是反面,对第二枚出现反面没有
影响,所以 A 与 B 相互独立.
③由于每次取球观察颜色后放回,故事件 A 的发生 对事件 B 发生的概率没有影响,所以 A 与 B 相互独立.
义可知,A 与 B 不是相互独立事件.
答案:D
3.国庆节放假,甲去北京旅游的概率为13,乙、丙去
北京旅游的概率分别为14,15.假定三人的行动相互之间没
有影响,那么这段时间内至少有 1 人去北京旅游的概率为
()
A.5690
B.35
1
1
C.2
D.60
解析:因甲、乙、丙去北京旅游的概率分别为13,14, 15.因此,他们不去北京旅游的概率分别为23,34,45,所以, 至少有 1 人去北京旅游的概率为 P=1-23×34×45=35.
人教版高中数学第二章2.2-2.2.1条件概率
类型 3 条件概率的性质及其应用
[典例 3] 在一个袋子中装有 10 个球,设有 1 个红球, 2 个黄球,3 个黑球,4 个白球,从中依次摸 2 个球,求 在第一个球是红球的条件下,第二个球是黄球或黑球的 概率.
解:法一 设“摸出第一个球为红球”为事件 A,“摸 出第二个球为黄球”为事件 B,“摸出第三个球为黑球” 为事件 C,则 P(A)=110,P(AB)=110××29=415,P(AC)= 110××39=310.
答案:甲抽到的数大于 4 的情形有(5,1),(5,2), (5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),共 12 个,其中甲、乙抽到的两 数之和等于 7 的情形有(5,2),(6,1),共 2 个.所以 P(B|A) =122=16.
第二章 随机变量及其分布
2.2 二项分布及其应用 2.2.1 条件概率
[学习目标] 1.通过对具体情景的分析,了解条件概 率的定义(重点). 2.掌握求条件概率的两种方法(难 点). 3.利用条件概率公式解决一些简单的问题(重点、 难点).
[知识提炼·梳理]
1.条件概率
条件 设 A,B 为两个事件,且 P(A)>0
解析:由题意可知,n(B)=C1322=12,n(AB)=A33=6.
所以 P(A|B)=nn((ABB))=162=12.
答案:12
5.在 5 道题中有 3 道数学题和 2 道物理题.如果不 放回地依次抽取 2 道题,则在第 1 次抽到数学题的条件下, 第 2 次抽到数学题的概率是________.
生的条件下,事件 B 不会发生.
(2)对,因为事件 A 等于事件 B,所以事件 A 发生, 事件 B 必然发生.
人教版高中数学章节目录
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
人教版高中数学必修二目录
第一章空间几何体
空间几何体的结构
空间几何体的三视图和直观图
空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
人教版高中数学选修1-2目录
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
2.2 二项分布及其应用
2.3 离散型随机变量的均值与方差
2.4 正态分布
第三章 统计案例
3.1 回归分析的基本思想及其初步应用
3.2 独立性检验的基本思想及其初步应用
人教版高中数学选修4-1目录
第一讲 相似三角形的判定及有关性质
一 平行线等分线段定理
二 平行线分线段成比例定理
三 相似三角形的判定及性质
2.2 直接证明与间接证明
2.3 数学归纳法
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
人教版高中数学选修2-3目录
第一章 计数原理
1.1 分类加法计数原理与分步乘法计数原理
1.2 排列与组合
1.3 二项式定理
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分
所以P(X=0)=CC06C13034=310,P(X=1)=CC16C13024=330, P(X=2)=CC26C13014=12,P(X=3)=CC36C13004=130. 所以X的概率分布为:
X
0
1
2
3
P
1 30
3 10
1
1
2
6
(2)由(1)知他能及格的概率为P(X=2)+P(X=3)=
4.从4名男生和2名女生中选3人参加演讲比赛,则 所选3人中女生人数不超过1人的概率是________.
解析:设所选女生人数为X,则X服从超几何分布, 其中N=6,M=2,n=3,
则P(X≤1)=P(X=0)+P(X=1)=CC02C36 34+CC12C36 24=45. 答案:45
5.在掷一枚图钉的随机试验中,令X=
复习课件
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分布与超几何分布同步课件 新人教A版选修2-3
1
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.2 离散型随机变量的分布列 第 2 课时 两点分布与超几何分布
[学习目标] 1.理解两点分布,并能进行简单的应用 (重点). 2.理解超几何分布及其推导过程,并能进行简 单的应用(重点、难点).
X0
1 …M
P
C0MCnN--0M CnN
C1MCnN--1M CnN
…
CmMCnN--mM CnN
如果随机变量 X 的分布列为超几何分布列,则称随
机变量 X 服从超几何分布.
温馨提示 两点分布的随机变量 X 只能取 0 和 1,否 则,只取两个值的分布不是两点分布.
第二章随机变量及其分布
3 4
C
4 4
P( X k ) C4k pk ( 1 p )4k k 0,1,2, 3,4
设试验 E 只有两个结果:A和 A,
记: P( A ) p, P( A ) 1 p q ( 0 p 1 )
将 E 独立地重复 n 次,则称这一串重 复的独立试验为 n 重贝努利( Bernoulli )试 验,简称为贝努利( Bernoulli )试验
1、随机变量取那些值或取值的范围???
2、随机变量取这些值或落在某一范围的概 率???
§2.2 离散型随机变量及其分布律
例 有奖储蓄,20万户为一开奖组,设特等 奖20名,奖金4000元;一等奖120名,奖金 400元;二等奖1200名,奖金40元;末等奖 4万名,奖金4元。考察得奖金额 X 。
例有奖储蓄,20万户为一开奖组,设特等奖 20名,奖金4000元;一等奖120名,奖金400 元;二等奖1200名,奖金40元;末等奖4万名, 奖金4元。考察得奖金额 X 。
X ~( )
泊松分布应用:
一本书一页上的印刷错误数 某医院一天内的急诊病人数 某公共汽车站候车的乘客数 母鸡的下蛋数 一平方米内,玻璃上的气泡数
它常与单位时间(单位面积、单位产品) 上的计数过程相联系。
二项分布的Poisson近似
泊松定理
设λ是一个正整数,
pn
,则有:
我们来求X的概率分布。
X表示随机抽查的4个婴儿中男孩的个 数,生男孩的概率为 p.
X=0 X =1 X =2 X =3 X =4
p0 ( 1 p )4
p4 ( 1 p )44
p1( 1 p )41
p3 ( 1 p )43
随机变量及其分布--二项分布及其应用
二项分布及其应用知识点一、条件概率1.一般的,设A,B 为两个事件,且0)(>A P ,则称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
)|(A B P 读作:A 发生的条件下B 发生的概率。
2.条件概率的性质: (1)1)|(0≤≤A B P ;(2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P += 二、相互独立事件1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。
2.条件概率的性质:(1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。
(2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
2.二项分布:一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则n k p p C k X P k n kk n ,,2,1,0,)1()( =-==-。
此时称随机变量X 服从二项分布,记作),(~p n B X题型一 条件概率【例1】已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35D.45【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝⎛⎭⎫0,13内的概率是多少? (2)在(1)的条件下,求该点落在⎝⎛⎭⎫15,1内的概率.【过关练习】1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48D .0.202.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.4.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次摸出新的条件下,第二次也取到新球的概率为( ) A.35 B.110 C.59D.255.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.题型二 独立事件的概率【例1】把标有1,2的两张卡片随机地分给甲、乙;把标有3,4的两张卡片随机地分给丙、丁,每人一张,事件“甲得1号纸片”与“丙得4号纸片”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件D .以上答案都不对【例2】在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.78【例3】甲、乙两名学生通过某种听力测试的概率分别为12和13,两人同时参加测试,其中有且只有一人能通过的概率是( ) A.13 B.23 C.12D .1【例4】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列.【过关练习】1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118 C.13 D.232.某条道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内平均开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是________.3.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.4.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是________.5.从一副除去大小王的扑克牌(52张)中任取一张,设事件A 为“抽得K ”,事件B 为“抽得红牌”,事件A 与B 是否相互独立?是否互斥?是否对立?为什么?题型三 二项分布及其应用【例1】某一试验中事件A 发生的概率为p ,则在n 次独立重复试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k p n -kC .(1-p )kD .C k n (1-p )k pn -k【例2】甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( ) A .0.216 B .0.36 C .0.432D .0.648【例3】若随机变量ξ~B ⎝⎛⎭⎫5,13,则P (ξ=k )最大时,k 的值为( ) A .5 B .1或2 C .2或3D .3或4【例4】甲、乙两人各射击一次击中目标的概率分别是23和34,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.【过关练习】1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( ) A .6 B .5 C .4D .32.连续掷一枚硬币5次,恰好有3次正面向上的概率为________.4.甲、乙两人投篮命中的概率分别为p 、q ,他们各投两次,若p =12,且甲比乙投中次数多的概率恰好等于736,则q 的值为________.5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两位有效数字)课后练习【补救练习】1.为考察某种药物预防疾病的效果,科研人员进行了动物试验,结果如下表:A.35B.37C.911D.11152.某种动物活到20岁的概率是0.8,活到25岁的概率是0.4,则现龄20岁的这种动物活到25岁的概率是( ) A .0.32 B .0.5 C .0.4D .0.83.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14D.164.某人参加一次考试,4道题中答对3道为及格,已知他的解题正确率为0.4,则他能及格的概率约为( ) A .0.18 B .0.28 C .0.37D .0.485.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.【巩固练习】1.分别用集合M ={}2,4,5,6,7,8,11,12中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另一个元素与之构成可约分数的概率是( ) A.712 B.512 C.47D.1122.国庆节放假,甲,乙,丙去北京旅游的概率分别为13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12D.1603.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放在验钞机上检验发现是假钞,则第2张也是假钞的概率为________.5.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是多少?6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.7.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是________.8.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05.甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为________,________,________.9.甲、乙、丙三人在同一办公室工作,办公室内只有一部电话机,经该机打进的电话是打给甲、乙、丙的概率分别是12,14,14,在一段时间内共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是________.10.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是________.11.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.12.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率. (2)这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率.【拔高练习】1.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ) A .(110)2(910)n -kB .(110)k (910)n -kC .C k -1n -1(110)k (910)n -kD .C k -1n -1(110)k -1(910)n -k2.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动5次后位于点(2,3)的概率是( )A .(12)5B .C 25(12)5C .C 35(12)3D .C 25C 35(12)53.在某次考试中,要从20道题中随机地抽出6道题,考生能答对其中的4道题即可通过;能答对其中5道题就获得优秀.已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.4.某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率; (2)求该应聘者用方案二通过的概率.5.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{}a n :a n =⎩⎪⎨⎪⎧-1, 第n 次摸到红球,1, 第n 次摸到白球,如果S n 为数列{}a n 的前n 项和,求S 7=3的概率.。
福建省厦门市高中数学教材人教A版目录(详细版)
2.2.2反证法
第三章数系的扩充与复数的引入
3.1数系的扩充和复数的概念
3.3.1数系的扩充和复数的概念
3.3.2复数的几何意义
3.2复数代数形式的四则运算
3.2.1复数代数形式的加减运算及其几何意义
3.2.2复数代数形式的乘除运算
第四章框图
4.1流程图
4.2结构图
理科必考内容:
1.4.2存在量词
1.4.3含有一个量词的命题的否定
第二章圆锥曲线与方程
2.1曲线与方程
2.1.1曲线与方程
2.1.2求曲线的方程
2.2椭圆
2.1.1椭圆及其标准方程
2.1.2椭圆的简单几何性质
2.3双曲线
2.2.1双曲线及其标准方程
2.2.3双曲线的简单几何性质
2.4抛物线
2.3.1抛物线及其标准方程
2.2.1向量加法运算及其几何意义
2.2.2向量减法运算及其几何意义
2.2.3向量数乘运算及其几何意义
2.3平面向量的基本定理及坐标表示
2.3.1平面向量基本定理
2.3.2平面向量的正交分解及坐标表示
2.3.3平面向量的坐标运算
2.3.4平面向量共线的坐标表示
2.4平面向量的数量积
2.4.1平面向量数量积的物理背景及其含义
2.2.3双曲线的简单几何性质
2.3抛物线
2.3.1抛物线及其标准方程
2.3.2抛物线的简单几何性质
第三章导数及其应用
3.1变化率与导数
3.1.1变化率问题
3.1.2导数的概念
3.1.3导数的几何意义
3.2导数的计算
3.2.1几个常用函数的导数
3.2.2基本初等函数的导数公式及导数的运算法则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
件AB.
(1)从6个节目中不放回地依次抽取2个事件数为n(Ω)=
A 根据分步乘法计数原理n(A)=
【解析】朝上的一面数字之和为6的情况有5种,两次都
是偶数且数字之和为6的情况有2种,所求概率为 .
答案:
2 5
2 5
6.高二(1)班和高二(2)班两班共有学生120名,其中女 同学50名,若(1)班有70名同学,而女生30名,问在碰到
(1)班同学时,正好碰到一名女同学的概率.(仿照教材
P53例1的解析过程)
P AB PA
主题2
条件概率的性质
1.依据条件概率的定义以及概率的范围,试写出条件概 率的范围? 提示:因为P(B|A)=
P AB 都大于或等于0且小于或等于 1.所以0≤P(B|A)≤1. PA
(P(A)>0),且每个事件的概率
2.如果B和C是两个互斥事件,试写出求P(B∪C|A)的公 式?
P BB 也不正确;D选项应是P(AB|A)=P(B|A), P(B|A)=0,所以
故D不正确.
2.已知 P B | A = 1 ,P A = 3, 则P(AB)= ( ) 2 5 5 9 3 1 A. B. C. D. 6 10 10 10 【解析】选C.由P(B|A)= 得P(AB)=P(B|A)P(A)= P AB , P A 1 3 3 = . 2 5 10
2.2 二项分布及其应用
2.2.1 条件概率
ห้องสมุดไป่ตู้
主题1
条件概率的概念
1.三张奖券中只有一张能中奖,现分别由三名同学无放
回地抽取,问最后一名同学抽到中奖奖券的概率是否比 前两名同学小.
提示:若抽到中奖奖券用“Y”表示,没有抽到用“ 表示,那么三名同学的抽奖结果共有三种可能:
Y”
用B表示事件“最后一名同学抽到中奖奖券”,
【解析】在碰到(1)班同学时,正好碰到一名女同学的 概率即为A发生的条件下,B发生的概率,由题意可知n(A)
=70,n(AB)=30.由条件概率公式求得
PB | A
n AB n A
30 3 . 70 7
类型一
条件概率的计算
【典例1】现有6个节目准备参加比赛,其中4个舞蹈节 目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率. (2)第1次和第2次都抽到舞蹈节目的概率.
券”,试求P(A),P(AB),P(B|A)三者间的关系?
提示:P(A)= 2 ,P(AB)= 1 ,P(B|A)= 1 , 所以P(B|A)= P AB .
3
3
2
PA
结论: 条件概率的概念 设A,B为两个事件,且P(A)>0,称P(B|A)=
件A发生的条件下,事件B发生的条件概率. PA
P AB
为在事
P(B|A)读作__发生的条件下__发生的概率.
A B
【微思考】 1.若事件A,B互斥,则P(B|A)是多少? 提示:A与B互斥,即A,B不同时发生, 所以P(AB)=0,所以P(B|A)=0.
2.若P(A)≠0,则P(AB)=P(B|A)·P(A),这种说法正确吗?
提示:正确,由P(B|A)= 得P(AB)=P(B|A)·P(A).
提示:由于B与C是互斥事件,所以P(B∪C|A)=P(B|A)+
P(C|A).
结论: 条件概率的性质
(1)P(B|A)∈______. [0,1] (2)如果B与C是两个互斥事件,则 P(B∪C|A)=______________.
P(B|A)+P(C|A)
【微思考】 对任意的两两不相容的事件Ai(i=1,2,…),如何求
4.抛掷红、白两枚骰子,事件A=“红骰子出现3点”,事 件B=“白骰子出现的点数是奇数”,则P(A|B)=_______.
P AB 【解析】利用条件概率的定义求解.P(A|B)= P B 1 3 1 6 6 . 3 6 6: 答案 1 6
5.将一颗骰子先后抛掷两次,在朝上的一面数字之和为 6的条件下,两次都为偶数的概率是__________.
P(
提示:P(
i 1
n
Ai|B)的概率.
i 1
n
Ai|B)=
i 1
n
P(Ai|B).
【预习自测】 1.下列式子成立的是 ( )
A.P(A|B)=P(B|A)
C.P(AB)=P(B|A)·P(A)
B.0<P(B|A)<1
D.P(AB|A)=P(B)
【解析】选C.由P(B|A)= P AB 得P(AB)=P(B|A)P(A), P A 而P(A|B)= P AB 知A不正确,C正确;当P(B)为零时知
(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节 目的概率.
【解题指南】先设第1次抽到舞蹈节目为事件A,第2次 抽到舞蹈节目为事件B,再求P(A),P(AB),再由条件概率
的计算公式求P(B|A).
【解析】设第1次抽到舞蹈节目为事件A,第2次抽到舞 蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事
YYY,
YYY,YYY. 则B仅包含一个基本事件
.由古典概型计算概率
YYY 的公式可知,最后一名同学抽到中奖奖券的概率为
.
1 3
2.如果已经知道第一名同学没有抽到中奖奖券,那么最 后一名同学抽到中奖奖券的概率又是多少?
提示:因为已知第一名同学没有抽到中奖奖券,所以可 能出现的基本事件只有 而“最后一名同学
3.把一枚硬币任意抛掷三次,事件A=“至少一次出现正 面”,事件B=“恰有一次出现正面”,则P(B|A)=( )
3 A. 7
3 B. 8
7 C. 8
1 D. 8
3 3 1 7 【解析】选A.由题意, P AB 3 ,P A 1 3 , 2 8 2 8 所以P(B|A)= P AB 3 . P A 7
抽到中奖奖券”包含的基本事件仍是
YYY,YYY.
.由古典概
型计算概率的公式可知,最后一名同学抽到中奖奖券的
YYY
概率为
.
1 2
3.设A表示事件“第一名同学没有抽到中奖奖券”,AB 表示事件“第一名同学没有抽到中奖奖券,而最后一名 同学抽到中奖奖券”,B|A表示事件“已知第一名同学 没有抽到中奖奖券的条件下,最后一名同学抽到中奖奖