大学物理第4章机械振动例题
《大学物理学》机械振动练习题
《大学物理学》机械振动自主学习材料一、选择题9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )【旋转矢量转法判断初相位的方法必须掌握】9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )(A )222cos()33x t ππ=-;(B )222cos()33x t ππ=+;(C )422cos()33x t ππ=-;(D )422cos()33x t ππ=+。
【考虑在1秒时间内旋转矢量转过3ππ+,有43πω=】9-3.两个同周期简谐运动的振动曲线如图所示,1x 的相位比2x 的相位( )(A )落后2π; (B )超前2π; (C )落后π; (D )超前π。
【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2ν; (B )ν; (C )2ν; (D )4ν。
【考虑到动能的表达式为22211sin ()22kE mv kA t ωϕ==+,出现平方项】9-5.图中是两个简谐振动的曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为( )(A )32π; (B )2π; (C )π; (D )0。
【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则()A ()B()C()D )s--'/T T 为( )(A )2; (B )1; (C; (D )12。
【弹簧串联的弹性系数公式为12111k k k =+串,弹簧对半分割后,其中一根的弹性系数为2k ,两弹簧并联后形成新的弹簧整体,弹性系数为4k ,公式为12k k k =+并,利用ω=2T πω=,所以,'22T T π==】9--2.一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( ) (A )12;(B;(C)2;(D )34。
大学物理课后习题答案第四章
第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
《大学物理学》机械振动练习题
《大学物理学》机械振动自主学习材料一、选择题9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )【旋转矢量转法判断初相位的方法必须掌握】9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )(A )222cos()33x t ππ=-;(B )222cos()33x t ππ=+;(C )422cos()33x t ππ=-;(D )422cos()33x t ππ=+。
【考虑在1秒时间内旋转矢量转过3ππ+,有43πω=】9-3.两个同周期简谐运动的振动曲线如图所示,1x 的相位比2x 的相位( )(A )落后2π; (B )超前2π;(C )落后π; (D )超前π。
【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2ν; (B )ν; (C )2ν; (D )4ν。
【考虑到动能的表达式为22211sin ()22kE mv kA t ωϕ==+,出现平方项】9-5.图中是两个简谐振动的曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为( )()A ()B()C()D )s--(A )32π; (B )2π; (C )π; (D )0。
【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则'/T T 为( )(A )2; (B )1; (C; (D )12。
【弹簧串联的弹性系数公式为12111k k k =+串,弹簧对半分割后,其中一根的弹性系数为2k ,两弹簧并联后形成新的弹簧整体,弹性系数为4k ,公式为12k k k =+并,利用ω=2T πω=,所以,'22T T π==】9--2.一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( ) (A )12;(B;(C(D )34。
大学物理 机械振动 试题(附答案)
w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。
解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。
2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。
若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。
弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。
3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。
清华大学《大学物理》习题库试题及答案 04 机械振动习题
清华大学《大学物理》习题库试题及答案 04 机械振动习题清华大学《大学物理》习题库试题及答案--04-机械振动习题清华大学《大学物理》习题库试题及答案机械振动习题一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度?,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(a)?(b)?/2(c)0(d)??[]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x1=acos(?t+?)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:11x2?acos(?tπ)x2?acos(?tπ)2(b)2(a)3x2?acos(?tπ)2(d)x2?acos(?t?)(c)[]3.3007:一质量为m的物体挂在劲度系数为k的轻弹簧下面,振动角频率为?。
若把此弹簧分割成二等份,将物体m挂在分割后的一根弹簧上,则振动角频率是(a)2??(b)2?(c)?/2(d)?/2[]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律v(m/s)用余弦函数叙述,则其初适当为vm(a)?/6(b)5?/612vm(c)-5?/6(d)-?/6o(e)-2?/3[]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为t1和t2。
将它们拿到月球上去,相应的周期分别为t1?和t2?。
则有(a)t1??t1且t2??t2(b)t1??t1且t2??t2(c)t1??t1且t2??t2(d)t1??t1且t2??t2[]t(s)1x?4?10?2cos(2?t??)3(si)。
6.5178:一质点沿x轴作四极振动,振动方程为从t=0时刻起,到质点位置在x=-2cm处,且向x轴正方向运动的最短时间间隔为11111sssss86432(a)(b)(c)(d)(e)[]7.5179:一弹簧振子,重物的质量为m,弹簧的劲度系数为k,该振子并作振幅为a 的四极振动。
大学物理答案机械振动作业答案.ppt
3. 质点作周期为T,振幅为A的谐振 动,则质点由平衡位置运动到离平 衡位置A/2处所需的最短时间是: ( )
A.T/4 B.T/6 C.T/8 D.T/12
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s,其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动,则质点第二次通过 x=-2cm,处时刻为:[]
A.1s B.3s/2 C.4s/3 D.2s
5. 一质点同时参与两个在同一直线上的
谐振动,其振动方程分别为
7
x1 4cos(2t 6 ), x2 3cos(2t 6 )
则关于合振动有结论:[]
A.振幅等于1cm, 初相等于
B.振幅等于7cm, 初相等于 4
3
C.振幅等于1cm, 初相等于 7
7.上面放有物体的平台,以每秒5周的频 率沿竖直方向做简谐振动,若平台振幅 超过(1cm),物体将会脱离平 台.(g=9.8m/s)
8.两个同方向同频率的简谐振动,其合振 动的振幅20cm,与第一个简谐振动的相
位差为Ф- Ф1= π/6.若第一个简谐振动
的振幅为 10 3cm 17.3c则m 第二个简谐振 动的振幅为( 10 )cm,第一,二个简谐振
12.两个线振动合成为一个圆振动的条件 是(1)同频率;(2)同振幅;(3) 两振动相互垂直;(4)相位差为 (2k+1)π/2, k=0, ±1, ±2,……
计算题
1. 一倔强系数为k的轻弹簧,竖直悬挂一质量为m 的物体后静止,再把物体向下拉,使弹簧伸长 后开始释放,判断物体是否作简谐振动?
解:设物体平衡时弹簧的伸长量为x0 ,则有 以 该平衡位置为坐标原点,向下为正方向建立坐
大学物理(第四版)课后习题与答案_机械振动
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为m m x 21007.7)25.040cos()10.0(-⨯=+=ππ )25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
大学物理习题机械振动机械波
机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的A 物体处在运动正方向的端点时,速度和加速度都达到最大值;B 物体位于平衡位置且向负方向运动时,速度和加速度都为零;C 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D 物体处在负方向的端点时,速度最大,加速度为零;2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =T 为周期时,质点的速度为A φωsin A v -=;B φωsin A v =;C φωcos A v-=; D φωcos A v =;3.一物体作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+=4cos πωt A x ;在4T t =T 为周期时刻,物体的加速度为 A 2221ωA -; B 2221ωA ; C 2321ωA -; D 2321ωA ; 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相A 落后2π;B 超前2π; C 落后π; D 超前π;5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x SI ;从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 A s 8/1; B s 4/1;C s 2/1;D s 3/1; 6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示;此振动的周期为A s 12;B s 10;C s 14;D s 11;8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是A 动能为零,势能最大;B 动能为零,机械能为零;C 动能最大,势能最大;D 动能最大,势能为零;9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J;当振子处于最大位移的1/4时,此时的动能大小为A250J ; B750J ; C1500J ; D 1000J;10.当质点以频率ν作简谐振动时,它的动能的变化频率为 A ν; B ν2 ; C ν4; D2ν;11.一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 AT /4; BT/2; CT ; D2T;12.两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个振动的相位差为A π/3;B π/3; C2π/3; D5π/6;xABC D)s21-13.已知一平面简谐波的波动方程为()bx at A y -=cos ,a 、b 为正值,则 A 波的频率为a ; B 波的传播速度为a b /; C 波长为b /π; D 波的周期为a /2π;14.一个波源作简谐振动,周期为,以它经过平衡位置向正方向运动时为计时起点,若此振动的振动状态以s m u 400=的速度沿直线向右传播;则此波的波动方程为A ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=23400200cos ππx t A y ; B ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=23400200cos ππx t A y ; C ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=2400200cos ππx t A y ; D ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2400200cos ππx t A y ; 15.当波从一种介质进入另一种介质中时,下列哪个量是不变的 A 波长; B 频率; C 波速; D 不确定;16.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 AA 点相位为π; BB 点静止不动; CC 点向下运动; DD 点向下运动;17.一简谐波沿x 轴正方向传播,4/T t =时的波形曲线如图所示;若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 A 0点的初位相为00=φ;B1点的初位相为2/1πφ-=;C2点的初位相为πφ=2;D3点的初位相为2/3πφ-=;18.频率为Hz 100,传播速度为s m /300的平面简谐波,波线上两点振动的相位差为3/π,则此两点相距A m 2;B m 19.2;C m 5.0;D m 6.28;二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示;若0=t 时,uOYX1 2 3 4第题图1振子在负的最大位移处,则初位相为______________________; 2振子在平衡位置向正方向运动,则初位相为________________; 3振子在位移为2/A 处,且向负方向运动,则初位相为______; 2.一物体作余弦振动,振幅为m 21015-⨯,圆频率为16-sπ,初相为π5.0,则振动方程为=x ________________________SI ;3.一放置在水平桌面上的弹簧振子,振幅为A ,周期为T ;当0=t 时,物体在2/A x =处,且向负方向运动,则其运动方程为 ;4.一物体沿x 轴作简谐运动,振幅为cm 10,周期为s 0.4;当0=t 时物体的位移为cm x 0.50-=,且物体朝x 轴负方向运动;则s t 0.1=时,此物体的位移为 m ;5.一简谐运动曲线如图a 所示,图b 是其旋转矢量图,则此简谐振动的初相位为 ;s t 1=与0=t 的相位差φ∆= ;运动周期是 ;6.两列满足相干条件的机械波在空间相遇将发生干涉现象,其中相干条件包括:1频率_____________;2振动方向_____________和相差恒定; 7.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为___________; 8.同方向同频率振幅均为A ,相位差为2π的两个简谐运动叠加后,振幅为________;9.一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为 ()6/2cos 10421π+⨯=-t x ,()6/52cos 10322π-⨯=-t x SI则其合成振动的振幅为___________,初相为_______________;10.两个同方向同频率的简谐振动,其合振动的振幅为cm 20,与第一个简谐振动的位相差为6/1πφφ=-;若第一个简谐振动的振幅为cm cm 3.17310=,则第二个简谐振动的振幅为__________cm ,第一、二两个简谐振动的位相差21φφ-为__________;11.一平面简谐波沿x 轴正方向传播,波速s m u /100=,0=t 时刻的波形曲线如图所示;波长=λ____________;12.惠更斯原理表明,介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的_______________就是新的波前; 包络包迹或包络面13.干涉型消声器结构原理如图所示,构可以消除噪声;达点A 时,分成两路而在点B 相遇,而相消;已知声波速度为s m /340,如果要消除频率为Hz 300的发动机排气噪声,则图中弯道与直管长度差至少应为____________;三、判断题1.对于给定的振动系统,周期或频率由振动系统本身的性质决定,而振幅和初相则由初始条件决定;2.对于一定的谐振子而言,振动周期与振幅大小无关; 3.简谐振动的能量与振幅的平方成正比;4.在简谐振动的过程中,谐振子的动能和势能是同相变化的; 5.两个同方向同频率简谐运动合成的结果必定是简谐运动;6.在简谐波传播过程中,沿传播方向相距半个波长的两点的振动速度必定大小相同,方向相反7.在平面简谐波传播的过程中,波程差和相位差的关系是21122x ∆=∆λπφ;8.频率相同、传播方向相同、相差恒定的两列波在空间相遇会发生干涉;第题图) 0-0。
大学物理(第四版)课后习题及答案-机械振动
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
大学物理机械振动习题附答案要点
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
(完整版)大学机械振动课后习题和答案(1~4章总汇)
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
大学物理(第四版)课后习题及答案机械振动.docx
13机械振动解答13-1 有一弹簧振子,振幅A=2.0 X 10-2m,周期T=1.Os ,初相=3 π /4。
试写岀它的运动方程,并做岀x--t图、v--t图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相「、角频率•■是简谐运动方程X=ACoSlQt亠。
的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、「已知外,2 Tr-■ ■可通过关系式•=—确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解因.=Z ,则运动方程TX=ACOS讥=ACOS i2 t t : !■ I1W尸I T丿根据题中给出的数据得X =(2.0 10 ^m)cos[( 2":S A)t 0.75二]振子的速度和加速度分别为V =dχ∕dt - 10^m s1)sin[(2∏s')t 亠0.75二]a =d2χ∕dt2二2 10 2m S 丄)cos[(2二S 丄)t 0.75二x-t、v-t及a-t图如图13-1所示13-2 若简谐运动方程为X =(0.01m)cos(20:s」)t ',求:(1)振幅、频率、角频率、周期和- 4初相;(2) t=2s时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式X=ACOS ∙∙t ■作比较,即可求得各特征量。
运用与上题相同的处理方法,写岀位移、速度、加速度的表达式,代入t值后,即可求得结果。
解 (l )将X =(0.10m)cos[(20 7s ^)t • 0.25 二]与X=ACOS lU t w]比较后可得:振幅A= 0.10m 角频率• =20二S1,初相=0.25二,则周期T =2TJ=0∙1s ,频率=1∕T =10Hz。
(2) t= 2s时的位移、速度、加速度分别为X =(0.10m)cos(40 二0.25 二)=7.07 10i mV =dx∕dt - -(2~'m S^)Sin(40,亠0.25二)a =d2x∕dt2 = J40 二2m s?)cos(40 ;亠0.25二)13-3设地球是一个半径为R的均匀球体,密度P 5.5 X 103kg? m3。
大学物理机械振动试题
专业班级 学号 姓名 批阅机械振动本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始速率之比1020:=v v .7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(10321m t x ππ+⨯=-;))(4cos(10422m t x ϕπ+⨯=-当ϕ= 时合振动的振幅最大,其值max A = ;当ϕ= 时合振动的振幅最小,其值min A = .11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x x(____________________)。
大物习题答案第4章 机械振动模板
第4章 机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
4大学物理机械振动习题解答
4-1符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:
(1)拍皮球时球的运动;
(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).
题4-1图
解:要使一个系统作谐振动,必须同时满足以下三个条件:一,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用.或者说,若一个系统的运动微分方程能用
(1) ;
(2)过平衡位置向正向运动;
(3)过 处向负向运动;
(4)过 处向正向运动.
试求出相应的初位相,并写出振动方程.
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有
4-6一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 .求:
(1) 时,物体所在的位置及此时所受力的大小和方向;
(1) (2)
解:(1)∵
∴合振幅
(2)∵
∴合振幅
4-13一质点同时参与两个在同一直线上的简谐振动,振动方程为
试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
解:∵
∴
∴
其振动方程为
(作图法略)
*4-14如题4-14图所示,两个相互垂直的谐振动的合振动图形为一椭圆,已知 方向的振动方程为 ,求 方向的振动方程.
(2)图(b)中可等效为并联弹簧,同上理,应有 ,即 ,设并联弹簧的倔强系数为 ,则有
故
同上理,其振动周期为
4-3如题4-3图所示,物体的质量为 ,放在光滑斜面上,斜面与水平面的夹角为 ,弹簧的倔强系数为 ,滑轮的转动惯量为 ,半径为 .先把物体托住,使弹簧维持原长,然后由静止释放,试证明物体作简谐振动,并求振动周期.
机械振动 课后习题和答案 第四章 习题和答案
4.1 按定义求如图所示三自由度弹簧质量系统的刚度矩阵,并用能量法检验。
求系统的固有频率和振型。
(设132142356;2;;2;3;m m m m m k k k k k k k k k =========)解:1)以静平衡位置为原点,设123,,m m m 的位移123,,x x x 为广义坐标,画出123,,m m m 隔离体,根据牛顿第二定律得到运动微分方程:11112122222132352623333243()0()()0()0m x k x k x x m x k x x k x x k x k x m x k x x k x ++-=⎧⎪+-+-++=⎨⎪+-+=⎩所以:[][]1231222235633340010000020;01032021020023m M m m m k k k K k k k k k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦+--⎡⎤⎡⎤⎢⎥⎢⎥=-+++-=--⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220x x M K x x ⎧⎫⎧⎫+=⎨⎬⎨⎬⎩⎭⎩⎭…… (a)或者采用能量法:系统的动能和势能分别为=++ 222112233111222T E m xm xm x=+-+-+++22222112123234356211111()()()22222U k x k x x k x x k x k k x=+++++++--22212123562343212323111()()()222U k k x k k k k x k k x k x x k x x求偏导也可以得到[][],M K2)设系统固有振动的解为: 112233cos x u x u t x u ω⎧⎫⎧⎫⎪⎪⎪⎪=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,代入(a )得:[][]1223()0u K M u u ω⎧⎫⎪⎪-=⎨⎬⎪⎪⎩⎭…… (b)得到频率方程:2222320()21022023k mk k k mk kk mωωωω--=---=--即:222422()(3)(21622)0k m m km k ωωωω=--+=解得:2(4k mω=±和23k mω=所以:123ωωω=<=<=………… (c)将(c)代入(b)可得:1233(4202102(420023(4kk m km ukk k m k umukk k mm⎡⎤-±-⎢⎥⎧⎫⎢⎥⎪⎪⎢⎥--±-=⎨⎬⎢⎥⎪⎪⎢⎥⎩⎭⎢⎥--±⎢⎥⎣⎦和123332021023200233kk m km ukk k m k umukk k mm⎡⎤--⎢⎥⎧⎫⎢⎥⎪⎪⎢⎥---=⎨⎬⎢⎥⎪⎪⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:112131::1:2u u u≈;122232::1:0:1u u u≈-;132333::1:2u u u≈;令31u=,得到系统的振型为:0 1-1 0.618 111.6181 14.2 按定义求如图T—4.2所示三自由度扭转系统的刚度矩阵和质量矩阵。
大学物理机械波振动题目
0318一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图. 设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正)ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m 3.060=k 有50/==m k ω rad ·s -1 2分系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得 2/ωg A >=19.6 cm . 1分3014一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为t A x ωcos =,则 t A ωωsin -=v(1) 在x = 6 cm ,v = 24 cm/s 状态下有t ωcos 126=t ωωsin 1224-=解得 3/4=ω,∴ 72.2s 2/3/2=π=π=ωT s 2分(2) 设对应于v =12 cm/s 的时刻为t 2,则由t A ωωsin -=v得 2sin )3/4(1212t ω⨯⨯-=,解上式得 1875.0sin 2-=t ω相应的位移为 8.10sin 1cos 222±=-±==t A t A x ωω cm 3分3021一木板在水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速率是24 cm/s .如果一小物块置于振动木板上,由于静摩擦力的作用,小物块和木板一起运动(振动频率不变),当木板运动到最大位移处时,物块正好开始在木板上滑动,问物块与木板之间的静摩擦系数μ为多少?解:若从正最大位移处开始振动,则振动方程为)cos(t A x ω=, t A x ωωsin -= N mg在6=x cm 处,24=xcm/s ∴ 6 =12|cos ω t |, 24=|-12 ω sin ω t |,解以上二式得 3/4=ωrad/s 3分t A x ωωcos 2-=, 木板在最大位移处x 最大,为 2ωA x= ① 2分 若mA ω2稍稍大于μmg ,则m 开始在木板上滑动,取2ωμmA mg = ② 2分∴ 0653.0/2≈=g A ωμ ③ 1分 3022一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分 (2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分 3027在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T= 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板?解:选平板位于正最大位移处时开始计时,平板的振动方程为t A x π=4cos (SI)t A x π4cos π162-=(SI) 1分 (1) 对物体有 x m N mg=- ① 1分 t A mg x m mg N ππ+=-=4cos 162(SI) ② 物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4cos 28.16.192 ③ 2分x(2) 物体脱离平板时必须N = 0,由②式得 1分04cos 162=ππ+t A mg (SI)A q t 2164cos π-=π 1分 若能脱离必须 14cos ≤πt (SI)即 221021.6)16/(-⨯=π≥g A m 2分3264 一质点作简谐振动,其振动方程为 )4131cos(100.62π-π⨯=-t x (SI) (1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 221kx W P = 总能量 221kA E = 由题意,4/2122kA kx =, 21024.42-⨯±=±=A x m 2分 (2) 周期 T = 2π/ω = 6 s从平衡位置运动到2Ax ±=的最短时间 ∆t 为 T /8.∴ ∆t = 0.75 s . 3分3265在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯= N/m 11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分3273一弹簧振子沿x 轴作简谐振动(弹簧为原长时振动物体的位置取作x 轴原点).已知振动物体最大位移为x m = 0.4 m 最大恢复力为F m = 0.8 N ,最大速度为v m = 0.8π m/s ,又知t =0的初位移为+0.2 m ,且初速度与所选x 轴方向相反.(1) 求振动能量;(2) 求此振动的表达式.解:(1) 由题意 kA F m =,m x A =,m m x F k /=.16.021212===m m m x F kx E J 3分 (2) π===2mm m x A v v ω rad /s 2分 O x由 t = 0, φcos 0A x ==0.2 m , 0sin 0<-=φωA v可得π=31φ 2分 则振动方程为 )312cos(4.0π+π=t x 1分 3391在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =. 选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得 220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分π===1.958.28/0l g ω 2分设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分 ∴ )1.9cos(1022t x π⨯=- 2分3827 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 2分(2) )318sin(1042π+π⨯π-==-t x v (SI) )318cos(103222π+π⨯π-==-t x a (SI) 2分 (3) 2222121A m kA E E E P K ω==+==7.90×10-5 J 3分 (4) 平均动能 ⎰=T K t m T E 02d 21)/1(v ⎰π+π⨯π-=-Tt t m T 0222d )318(sin )104(21)/1( = 3.95×10-5 J = E 21+x )同理 E E P 21== 3.95×10-5 J 3分 3828一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.解:(1) 1s 10/-==m k ω 1分63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分 ∵ x 0 > 0 ,∴ π=31φ (3) )3110cos(10152π+⨯=-t x (SI) 2分 3834一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求 (1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.解:(1) 221kA E E E p K =+= 2/1]/)(2[k E E A p K +== 0.08 m 3分(2)222121v m kx = )(sin 22222φωωω+=t A m x m)(sin 222φω+=t A x 2222)](cos 1[x A t A -=+-=φω 222A x =, 0566.02/±=±=A x m 3分(3) 过平衡点时,x = 0,此时动能等于总能量221v m E E E p K =+= 8.0]/)(2[2/1±=+=m E E p K v m/s 2分3835在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分 2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分 解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ), kA F = 2分 2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分 (2) 总能量 221011.12121-⨯===FA kA E J 2分 当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分5191一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ;(2) 加速度的最大值a m ;(3) 振动方程的数值式.解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2 m/s 2 2分 (3) π=21φ 5511如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x . 恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即: OF x m5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分x = 0.02)215.1cos(π+t (SI) 3分 3078一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为 )2cos(φν+π=t A y由图可知,t = t '时 0)2cos(=+'π=φνt A y 1分0)2sin(2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ221 2分 x = 0处的振动方程为 ]21)(2cos[π+'-π=t t A y ν 1分 (2) 该波的表达式为 ]21)/(2cos[π+-'-π=u x t t A y ν 3分 3082如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式; (2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分(2) 以B 点为坐标原点,则坐标为x 点的振动相位为 ]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-x t y (SI) 2分 3083一平面简谐纵波沿着线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0 cm ,振动频率为25 Hz ,弹簧中相邻两疏部中心的距离为24 cm .当t = 0时,在x = 0处质元的位移为零并向x 轴正向运动.试写出该波的表达式.解:由题 λ = 24 cm, u = λν = 24×25 cm/s =600 cm/s 2分A = 3.0 cm , ω = 2πν = 50 π/s 2分y 0 = A cos φ = 0, 0sin 0>-=φωA yx u O t =t ′yA B x uπ-=21φ 2分 ]21)6/(50cos[100.32π--π⨯=-x t y (SI) 2分 3084一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程. (3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为0cos 0==φA y , 0sin 0<-=φωA v所以 π=21φ波的表达式为 ]21)/(cos[π+-=u x t A y ωω4分 (2) 8/λ=x 处振动方程为]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω1分 8/3λ=x 的振动方程为]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω1分 (3) )21/2sin(/d d π+π--=λωωx t A t yt = 0,8/λ=x 处质点振动速度]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -=1分 t = 0,8/3λ=x 处质点振动速度]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =1分 3108两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速;(2) 两波叠加后的节点位置;(3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m ,各1分 波速 u = λν = 6.00 m/s1分 (2) 节点位置 )21(3/4π+π±=πn x x u Oy)21(3+±=n x m , n = 0,1,2,3, … 3分(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, … 2分3109设入射波的表达式为 )(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分 (3) 波腹位置: π=π+πn x 21/2λ, 2分 λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分 λn x 21= , n = 1, 2, 3, 4, (3110)一弦上的驻波表达式为 t x y ππ⨯=-550cos )6.1(cos 1000.32 (SI).(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t = t 0 = 3.00×10-3 s 时,位于x = x 0 = 0.625 m 处质点的振动速度.解:(1) 将 t x y ππ⨯=-550cos 6.1cos 1000.32与驻波表达式 )2cos()/2cos(2t x A y νλππ= 相对比可知:A = 1.50×10-2 m, λ = 1.25 m , ν = 275 Hz波速 u = λν = 343.8 m/s 5分(2) 相邻波节点之间距离 λ21=∆x = 0.625 m 2分 (3) 2.4600,-=∂∂=t y t x v m/s 3分 3111 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2cos[1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分 合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分 因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分 3138某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程 )22cos(06.00π+π=t y )cos(06.0π+π=t (SI) 3分 (2) 波动表达式 ])/(cos[06.0π+-π=u x t y 3分])21(cos[06.0π+-π=x t (SI) (3) 波长 4==uT λ m 2分 3141图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式;(2) P 处质点的振动方程. 解:(1) O 处质点,t = 0 时0cos 0==φA y ,0sin 0>-=φωA v所以 π-=21φ 2分 又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x ty (SI) 4分 (2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分 3142 (m) -图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =, φωsin 00A -=<v , 故 π-=21φ 2分 又t = 2 s ,O 处质点位移为 )214cos(2/π-π=νA A 所以 π-π=π-21441ν, ν = 1/16 Hz 2分振动方程为 )218/cos(0π-π=t A y (SI) 1分 (2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式 ]21)16016(2cos[π-+π=x t A y (SI) 3分 3143如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求 (1) 该波的表达式; (2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 3分 由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) 2分 (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分 3144一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程;(2) 求此波的波动表达式;t (s)0-A 1y P (m)(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程. 解:(1) 由振动曲线可知,P 处质点振动方程为])4/2cos[(π+π=t A y P )21cos(π+π=t A (SI) 3分 (2) 波动表达式为 ])4(2cos[π+-+π=λd x tA y (SI) 3分(3) O 处质点的振动方程 )21cos(0t A y π= 2分 3158在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.解:(1) 设振幅最大的合振幅为A max ,有φ∆⋅++=cos 22)2(222max A A A A A式中 λφ/4x π=∆,又因为 1/4cos cos =π=∆λφx 时,合振幅最大,故π±=πk x 2/4λ合振幅最大的点 λk x 21±= ( k = 0,1,2,…) 4分 (2) 设合振幅最小处的合振幅为A min,有 φ∆⋅++=cos 22)2(222min A A A A A因为 1cos -=∆φ 时合振幅最小且 λφ/4x π=∆故 π+±=π)12(/4k x λ 合振幅最小的点 4/)12(λ+±=k x ( k = 0,1,2,…) 4分3335一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = λ /4处质点的位移;(3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) 3分 (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t t y -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 x O P d26.1)21sin(4.02-=π-ππ-=v m/s 3分 3410一横波沿绳子传播,其波的表达式为 )2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22cos(λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m 各1分u = λν = 50 m/s 1分(2) 7.152)/(max max =π=∂∂=A t y νv m /s 2分322max 22max 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 2分(3) π=-π=∆λφ/)(212x x ,二振动反相 2分3476一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分 ∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的 初相一样为π21. 4分 合振动方程 )212cos(π+π=t A y ν 1分 (2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν )2cos(2π+ππ=t A νν 3分 5199有一沿x 轴正方向传播的平面简谐波,其波速u = 400 m/s ,频率ν = 500 Hz .(1) 某时刻t ,波线上x 1处的相位为φ 1,x 2处的相位为φ 2,试写出 x 2 - x 1与φ 2 - φ 1的关系式,并计算出当x 2 - x 1 = 0.12 m 时φ 2 - φ 1的值.(2) 波线上某定点 x 在t 1时刻的相位为1φ',在t 2时刻的相位为2φ', 试写出t 2 - t 1与12φφ'-'的关系式,并计算出t 2 - t 1 = 10-3 s 时12φφ'-'的值. 解:该波波长 λ = u /ν = 0.8 m(1) x 2点与x 1点的相位差为λφφ/)(2)(1212x x -π=--λφφ/)(21212x x -π-=- 3分当=-12x x 0.12 m 时 π-=-3.012φφ rad 1分(2) 同一点x ,时间差12t t -,相应的相位差T t t /)(21212-π='-'φφ)(212t t -π=ν 3分 当 31210-=-t t s 时,π='-'12φφ rad 1分5319已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 1分由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 1分 波速 u = νλ = 2 m/s 1分(2) 波峰的位置,即y = A 的位置.由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m . 2分所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4的波峰离坐标原点最近. 2分(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s 1分 ∴ 该波峰经过原点的时刻 t = 4 s 2分 5516平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )cos(0φω+=t A y ,已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 2分 由波的传播概念,可得该平面简谐波的表达式为 )/22cos(0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) 2分 x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI) 1分 该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv 2分 = 6.28 m/s 1分5519在绳上传播的入射波表达式为)2cos(1λωxt A y π+=,入射波在x = 0处绳端反射,反射端为自由端.设反射波不衰减,求驻波表达式.解:入射波在x = 0处引起的振动方程为 t A y ωcos 10=,由于反射端为自由端,所以反射波在O 点的振动方程为 t A y ωcos 20= 2分∴反射波为 )2cos(2λωxt A y π-= 3分合成的驻波方程为 21y y y +=)2cos(λωx t A π+=)2cos(λωx t A π-+ t x A ωλcos )2cos(2π= 3分5520 在绳上传播的入射波表达式为)2cos(1λπωx t A y +=,入射波在x = 0处反射,反射端为固定端.设反射波不衰减,求驻波表达式. 解:入射波在x = 0处引起的振动方程为 t A y ωcos 10=,由于反射端为固定端,∴反射波在 x = 0处的振动方程为)cos(20π+=t A y ω 或 )cos(20π-=t A y ω 2分 ∴反射波为 )2cos(2λωxt A y π-π+=或 )2cos(2λωxt A y π-π-=3分 驻波表达式为 21y y y += )2cos(λωxt A π+=)2cos(λωxt A π-π-+)21cos()212cos(2π+π-π=t xA ωλ3分 或 )21cos()212cos(2π-π+π=t xA y ωλ。
1大学物理习题_机械振动机械波
机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的(A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。
2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v-=; (D )φωcos A v =。
3.一物体作简谐振动,振动方程为⎪⎭⎫⎝⎛+=4cos πωt A x 。
在4T t =(T 为周期)时刻,物体的加速度为 (A )2221ωA -; (B )2221ωA ; (C )2321ωA -; (D )2321ωA 。
4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相(A )落后2π; (B )超前2π;(C )落后π; (D )超前π。
5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x (SI )。
从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 (A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。
6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示。
此振动的周期为(A )s 12; (B )s 10;(C )s 14; (D )s 11。
8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是(A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。
大学物理-机械振动习题-含答案
大学物理-机械振动习题-含答案LT根据所给初始条件,作出简谐振动的矢量图 , 并写出振动方程式或初位相。
(1) 0t =时物体在正方向端点,其振动方程为22.010cos 4x t π-=⨯(2)0t =物体在负方向端点,其初位相为 π (3)0t =物体在平衡位置,向负方向运动, 其初位相为 /2 π(4)物体在平衡位置,向正方向运动,其初位相为 3/2 π(5)物体在 x = 1.0×10-2m 处向负方向运动,其初位相为/3π(6)物体在 x = 1.0×10-2m 处向正方向运动,其初位相为5/3π2.一竖直悬挂的弹簧振子,平衡时弹簧的伸长量为x 0 ,此振子自由振动的周期为 02x g解:0mg kx =,022x mT k g==3.自然长度相同,劲度系数分别为K 1,K 2的弹簧,串联后其劲度系数为1/K=1/K 1+1/K 2,并联后劲度系数为K=K 1+K 2。
解:弹簧串联,其劲度系数为K设弹簧伸长x ,两弹簧分别伸长x 1,x 2,则有:212121221121111k k k x k k x k k x xx x k x k kx F x x x +=∴+=+=∴===+=弹簧并联,其劲度系数为K 设弹簧伸长x , 2121k k k kx x k x k F +==+=4.一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B 点。
该振动的振幅为7﹒78cm,周期为8s 。
解:将题中三状态在旋转矢量图中用OA,OB,OC 表示,图中A,B 相位差为,φ∆B,C 相位差为φ,状态经历时间为s t t 221=∆=∆ 由旋转矢量图cm x A cmA x t T sT t T t T t T t T 78.7cos 5.52/11cos 482222,221121221==∴====∆==∴=∆+∆∴∆=∆=∆=∆+φφππφππππφπφπφφ5.简谐振动的总能量是E ,当位移是振幅的一半时,kE E =34,PE E = 14,当x A = 22±k PE E =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2π 3
π 3
o 3 5 x/cm
21
物理学
第五版
第九章补充例题
15 在竖直平面内半径为R的一段光滑圆 弧形轨道上,放一小物体,使其静止于轨道 最低处,然后轻碰一下此物体,使其沿轨道 作来回小幅度运动,试证: (1)此物体作简谐运动
(2)此简谐运动的周期为
R
R T 2π g
第九章 振 动
第九章
振 动
20
物理学
第五版
第九章补充例题
2
1 解 x1 5 10 cos(4t π) 3 1 2 x2 3 10 sin( 4t π) 6 1 1 2 3 10 cos(4t π π) 6 2 2 2 3 10 cos(4t π) 3 1 2 x x1 x2 2 10 cos(4t π)m 3
1 π 3
o
0.24 x/m
11
物理学
第五版
第九章补充例题
10 已知某简谐运动的运动曲线如图所 示,位移的单位为厘米,时间的单位为秒, 求此简谐运动的方程.
x/cm
解 用矢量图法求解 设运动方程为
x A cos(t )
0 -1 -2
1
t/s
第九章
振 动
12
物理学
第五版
第九章补充例题
第九章 振 动
o
x/cm
t=0
7
物理学
第五版
第九章补充例题
8
火车的危险速率与轨长
车轮行驶到两铁轨接缝处时,受到一次 撞击,使车厢受迫振动. 当车速达某一速率 时发生激烈颠簸,这一速率即为危险速率.
第九章
振 动
8
物理学
第五版
第九章补充例题
设车厢总负荷为m=5.5×104 kg,车厢弹 簧每受力F=9.8× 103 N被压缩x=0.8 mm, 铁轨长L=12.6 m,求危险速率. F 解 F kx k x m m mx k T 2π 2π k F
第五版
第九章补充例题
9 一质点作简谐运动,其振动方程为 x 0.24 cos( 1 πt 1 π) m 试用旋转矢量法求 2 3 出质点由初始状态运动到 x=-0.12 m, v<0的 状态所经过的最短时间t.
π 解 3 2 t s 3
第九章 振 动
-0.12
o
t/s
-vm
vm /(m s 1 )
第九章 振 动
15
物理学
第五版
第九章补充例题
12 一单摆的悬线长l=1.5 m,在顶端固 定点的铅直下方0.45 m处有一小钉,如图 设两方摆动均较小,问单摆的左右两方振 幅之比 A1 A2 为多少? 解 左右摆长分别为: l1=1.5-0.45=1.05 m l2=1.5 m,
o t=1 2 x/cm 4π
3
振 动
13
物理学
第五版
第九章补充例题
11 用余弦函数描述一谐振子的运动, 若其速度-时间关系曲线如图所示,求运动 的初相位. 解 x A cos(t )
v/ (m s )
-1
v A sin(t ) vm sin(t )
2π π 3π T 3T t or t or T 4 4 8 8
第九章
振 动
19
物理学
第五版
第九章补充例题
14 一质点同时参与两个同方向的简谐 运动,其运动方程分别为: 1 2 x1 5 10 cos(4t π)m 3 1 2 x2 3 10 sin( 4t π)m 6 画出两运动的旋转矢量图,并求合运 动的运动方程.
x A cos t 1 2 2 Ek kA sin t 2 1 2 1 2 Ep kx kA cos2 t 2 2
第九章 振 动
18
物理学
第五版
第九章补充例题
Ep Ek
1 2 2 1 2 2 kA sin t kA cos t 2 2
tan2t 1 tant 1
物理学
第五版
第九章补充例题
1 一弹簧振子,弹簧的劲度系数为0.32 N/m,重物的质量为0.02 kg,则这个系统的 固有频率为________,相应的振动周期为 0.64Hz π/2 _________.
k 解 2 π m 1 k 0.64 Hz 2π m
第九章 振 动
T
2π
0.5π
1
物理学
第五版
第九章补充例题
2 两个简谐振动曲线如图所示,两个 2:1 简谐振动的频率之比 1 : 2 _____,加速 度最大值之比a1m:a2m=______,初始速率之 4:1 比 v10 : v20 ______. 2:1
x
解 T1 : T2 1 : 2
x2
x1 t
第九章 振 动
6
物理学
第五版
第九章补充例题
7 一质点作简谐振动,速度的最大值 1 ,振幅A=2 cm.若令速度具有 vm 5 cm s 正最大值的那一时刻为t=0,求振动表达式. 解 x 2 cos(t ) 5 vm A 5 2 5 π x 2 cos( t ) cm 2 2
2π (1) 的确定 3
(2) 的确定
x A cos(t )
x/cm
0 -1 -2
1
t/s
x A cos(t 2π / 3) 4π 4π t 3 3 4π 2π x 2 cos( t ) cm 3 3
第九章
t=0
2π 3
-2
-1
Δ
0.45
第九章
振 动
16
物理学
第五版
第九章补充例题
1 1 2 2 m(1 A1 ) m( 2 A2 ) 2 2 g 因单摆的 l
A1 l1 1.05 0.84 A2 l2 1.5
A1 2 A2 1
0.45
第九章
振 动
17
物理学
第五版
第九章补充例题
13 系统作简谐运动,周期T,以余弦 1 函数表达运动时,初相位为零. 在 0 t T 2 范围内,系统在t=_________时动能和势 能相等. 解
第九章 振 动
5
物理学
第五版
第九章补充例题
6 将频率为348 Hz的标准音叉振动与一 待测频率的音叉振动合成,测得拍频为3 Hz, 若在待测频率音叉的一端加上一小物块,拍 频数将减少,则待测音叉的固有频率为 351Hz ________. 解 2 1 3 设 1 348Hz 则 v2 345 Hz 或v2 351Hz 由题意得 v2 351Hz
1 : 2 2 : 1 2 am ω A
vm ωA
第九章
o
振 动2物理学来自第五版第九章补充例题
3 一质点作周期为T的简谐运动,质点 由平衡位置正方向运动到最大位移一半处 所需的最短时间为( ) (A)T/2 (B)T/4 A (C)T/8 (D)T/12 解 用矢量图法求解 t π / 6
1 2 1 1 2 Ep kx kA 2 2 16 1 2 1 1 2 15 Ek Esum Ep kA kA Esum 2 2 16 16
第九章 振 动
4
物理学
第五版
第九章补充例题
5 当质点以频率 作简谐振动时,它的 动能的变化率为
(A)
(C) 4 (D) / 2 (B)2 解 E 1 mv 2 1 kA2sin 2 (ωt φ) k 2 2 1 2 1 cos(2ωt 2φ) kA 2 2 ' ' 2 2π 2π
-0.5vm
o
t/s
-vm
第九章
振 动
14
物理学
第五版
第九章补充例题
1 1 t 0, v vm sin 2 π 2 由矢量图得 6
- vm /(m s1 )
π 5π or 6 6
- vm 2
π 6
v/ (m s )
-1
t=0
o
5π 6
-0.5vm
55 10 0.8 10 2π 3 9.8 10
3
第九章
3
0.42 s
9
振 动
物理学
第五版
第九章补充例题
L 12.6 1 -1 v 29.9(m s ) 108 km h T 0.42
长轨有利于高速行车;无缝轨能 避免受迫振动.
第九章
振 动
10
物理学
mg
22
物理学
第五版
第九章补充例题
d Ft mg sin mat mR mR 2 dt 2 d g g 2 sin 2 dt R R
2
g R 2π R T 2π g
第九章 振 动
R FN mg
23
o
A/2 N
x
2π / T
t T / 12
第九章 振 动
M
3
物理学
第五版
第九章补充例题
4 一弹簧振子作简谐振动,当其偏离平 衡位置的位移的大小为振幅的1/4时,其动 能为振动总能量的( )
(A)7/16
(D)13/16
(B)9/16
(E)15/16
(C)11/16
1 解 x A 4