人教版八年级数学上册分式的乘方运算
人教版八年级数学上册说课稿15.2分式的运算
人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
人教版八年级上册1.分式的乘方及乘方与乘除的混合运算
2.运算中的注意事项.
数的乘方的运算方法,然后采用类比的方法让学生得出分 1第2分课式时的乘分除式(的2课乘时方)及乘方与乘除的混合运算
教2.材运第算14中6的页注习意题事15项. .
本例题是本节课运算题目的拓展,对于(1)指数为字母, 不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进 一步让学生熟悉运算顺序,注意做题步骤.
教学设计
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
分第式2课的时除法分法式则的:乘分方式及除乘以方分与式乘,除把的除混式合的运分算子、分母颠倒位置后,与被除式相乘. 1第.2课分式时的分乘式除的法乘法方则. 及乘方与乘除的混合运算 第2课时 分式的乘方及乘方与乘除的混合运算 教分材式第 的1乘3法9页法练则习:第分1式,乘2题分.式,用分子的积作为积的分子,用分母的积作为积的分母. 第2课时 分式的乘方及乘方与乘除的混合运算
2x 3 x 教材第139页练习第1,2题. 解: ÷ · 2.理解分式乘方的原理,掌握乘方的规律,并能运2用乘方规律进行分式的乘方运算. 5x-3 25x -9 5x+3 1.分式的乘除法法则.
第1 2分课式时的分乘除式(的2课乘时方)及乘方与乘除的混合运算2
2x 25x -9 x 教材第139页练习第1,2题. = · · 第2课时 分式的乘方及乘方与乘除的混合运算 5x-3 3 5x+3 1.分式的乘除法法则.
(3)确定分式的符号,然后约分;
人教版八年级数学上册 15.2 分式的运算(含答案)
15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nna a -=。
2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。
八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级
乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)
(x
3)(x
3)
1.
课堂练习
7.(1)化简:a a
2 2
-
4 a
(
a -1 a2
)2
a a2
2 1 2a
.
解:原式 (a 2)(a 2) a(a 1)
a 12 a 22
a(a 2) (a 1)(a 1)
a a
2 1
.
1
(2)当a=5时,其结果为 2 .
(3)请你选择一个你喜欢的数作为a的值,则a不可以取 0,±1,-.2
(2)( 3xy 2 )3; 4z
解:(1)
( 2a2b )2 3c
( 2a 2b) 2 (3c)2
4a4b2 9c2
;
人教版八年级数学上册第15章 分式1 第2课时 分式的乘方
思考:a 可以取任何实数吗?
a 不可以取 0,±1,-2.
分式 乘除 混合 运算
混合运算
乘除法运算及乘方法则 先算乘方,再算乘除
乘方运算 乘方法则
注意
(1) 乘除运算属于同级运算,应按照 先出现的先算的原则,不能交换运算 顺序
(2) 当除变成乘的形式时,灵活运用 乘法交换律和结合律可以简化运算
分母分解因式,再进行约分化简.
x 2x 4 3x 42 x 2x 4 解:原式 = x 4 x 4 • x 22 • x 33x 4
= 3x 4 . x3
方法总结:进行分式的乘除、乘方混合运算时,要 严格按照运算顺序进行运算,先算乘方,再算乘除. 注意结果一定要化成一个整式或最简分式的形式.
1.
计算
(ab)2 ab2
的结果为(
B
)
A. b
B. a C. 1
D. 1
b
2.
化简
2b a
2
•
ac 6b2
的结果是
2c 3a
.
3. 计算:
1
3x
2
y
2x2 y
3
;
3
2
x y
y2
x
2
x2 y 2
z
.
解:(1) 原式 3x2 y
8x6 y3
3x2 y y3 8x6
(2) am÷an=am-n;
(3) (am)n=amn;
(4) (ab)n = anbn;
5
a n b
an bn .
例2 下列运算结果不正确的是( D )
√ A.
8a2bx2 6ab2 x
2
4ax 3b
人教版八年级数学上册第十五章 分式知识点总结和题型归纳
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
数学八年级上册《分式的加减乘除混合运算》教案
初中20 -20 学年度第一学期教学设计
一.复习回顾(3分钟)
1.分式的加、减、乘、除、乘方的法则分别是什么?
2.分数混合运算的顺序_____ _____ ___ ___ ____ 。
3.大胆猜一猜:分数的混合运算与分式的混合运算的顺序___ (是
否)相同。
二.自主学习(7分钟)
课本141例7,
归纳:(1)分式混合运算时,要注意运算顺序,在没有括号的情
况下,按从左到右的方向,先(),再(),然后( ). 有
括号要按 ( )的顺序.
(2)混合运算后的结果分子、分母要进行约分,注意最后的结果
是=).分子或分的系数是负数时,要把“-”号提到分式本身的前
面.结果要化为最简分式。
三.例题讲解(20分钟)
计算(1)
(2)
(3)
(4)(+)÷()
(5)(-)÷ 四.当堂自测(10分钟)
计算(1)
(2) 五.课时小结(2分钟)
六.分层作业(1分钟)
x
x x x x 22)242(2+÷-+-)11()(
b a a b b b a a -÷---)2
122()41223(
2+--÷-+-a a a a 21-a 2122---a a a 2
-a a 2x
x x 222-+4
412+--x x x x x 4-)1)(1(y
x x y x y +--+22242)44122(a
a a a a a a a a a -÷-⋅+----+。
八年级数学人教版上册课件:15.2.2 分式的乘除——分式的乘方运算
(m n)2
B. 6a2 C. 9a4
m2 n2
D. 9a4
5 计算:( 2 x2 )2 =________. y
6 计算:( 2a2b )3 =________. 3c
(来自《典中点》)
知识点 2 分式乘方与分式乘除混合运算
知2-讲
【例2】 计算:
(1)(
a2b cd 3
)3
2a d3
(来自《点拨》)
1 计算 ( n2 ) ( m )2 的结果是( 2m n
A. mn
2
B. mn
2
C. m
2
) D. m
2
2
若 (a2 b
)2
a ( b2
)2
3
,则a4b4的值是(
A. 6
B. 9
C.12
3
计算:
(
2ab3 c2d
)2
6a4 b3
(
3c b2
)3
) D.81
)2
的结果是(
)
A. 4b 9a 2
B. 4b2 6a6
C. 4b2 9a5
3
计算 ( x2 )2 y
的结果是(
A. x4 y2
B.
x4 y2
C. x4 y
D. 4b2 9a6
) D. x4
y
知1-练
知1-练
4
与
(
mn 3a 2
)2
相等的式子是(
)
A.
(
m 6a
n)2
2
(m n)2
=
4a 4b 2 9c 2
;
(2)原式=( 3x4 y
八年级-人教版-数学-上册-第2课时-分式的乘方
c2 4a2
=
a6b3 c3d 9
d3 2a
c2 4a2
=
a3b3 8cd 6
.
分式的乘除、乘方混合运算
1.在分式的乘除、乘方的混合运算中,运算的顺序是先算 乘方,再算乘除;
2.乘除作为同级运算,运算的顺序是从左到右; 3.当分子、分母是多项式时,应先因式分解,再计算.
例2 计算:
(1)
2x3 y z 1
=
a b
a b
a =a a
b bb
a b
=
a10 b10
.
10个
10个
思考
当
n
是正整数时,
a b
n
=
?
归纳
一般地,当 n 是正整数时,
n个
a b
n=ba
a b
a= aa
b bb
a=
b
an bn
,
n个
n个
即
a b
n
=
an bn
.
分式乘方的法则: 分式乘方要把分子、分母分别乘方.
a)2(a 4) a4a a2 22(2 a).
a2
2.根据乘方的意义填空:
1 2
2
=
____12__12____
=
12
____2_2 ___
;
1 2
3
=
__12___12___12__
=
13
____2_3 ___
;
1 2
4
=
_12___12__12___12_
=
14
____2_4 ___
3
;
(2)
x 2xy xy 2x2
人教版八年级数学上册第15章 分式 小结与复习
因为 ( 3)2 ( 3)2 3,所以小玲的计算结果也正确.
例4
解析:本题若先求出 a 的值,再代入求值,显
然比较复杂;但是如果将分式
的分子、
分母颠倒过来,即求
的值,
再利用完全平方公式变形求解就简单多了.
归纳总结 利用 A 和 1 互为倒数的关系,构造已知
A
条件与所求式子的关系,并运用整体代换,可使一 些分式求值问题的思路豁然开朗,简化解题过程.
第十五章 分 式
小结与复习
一、分式 1. 分式的概念:
一般地,如果 A、B 都表示整式,且 B 中含有
字母,那么称 为分式. 其中 A 叫做分式的分子,
B 叫做分式的分母. 2. 分式有意义的条件:
对于分式 :当__B_≠__0__时分式有意义; 当__B__=_0__时分式无意义.
3. 分式值为零的条件: 当 A = 0 且 B≠0 时,分式
的值为零.
4. 分式的基本性质:
A A C , A A C(C 0). B BC B BC
5. 分式的约分: 约分的定义
根据分式的基本性质,把一个分式的分子与分母
的公因式约去,叫做分式的约分.
最简分式的定义 分子与分母没有公因式的分式,叫做最简分式.
注意:分式的约分,一般要约去分子和分母所有 的公因式,使所得的结果成为最简分式或整式.
此方法是在众多未知元之中选取某一元为主元, 其余视为辅元,并将辅元用含有主元的式子表示,从 而达到减元的目的,最终实现化繁为简,化难为易.
针对训练
9.
已知
x y
2 3
,求
x2
x2 y2 2xy
y2
xy 2x2
y2 2xy
八年级数学上册《分式》知识点归纳
八年级数学上册《分式》知识点归纳一、概念:定义1:整式A 除以整式B,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒dc =bdac ) 2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. (用符号语言表示:b a ÷dc =b a ﹒cd =bcad ) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面.最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
八年级上册第十五章-分式知识梳理
八年级数学第十五章--分式知识梳理知识点一、分式1、一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子 叫做分式。
分式 中,A 叫做分子,B 叫做分母。
2、分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式 才有意义。
3、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
即: 其中A,B,C 是整式。
4、根据分式的基本性质,把一个分式的分子与分母的公因式约分,叫做分式的约分。
经过约分后的分式,分子与分母没有公因式的分式,叫做最简分式。
5、根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
6、通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母知识点二、分式的运算7、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母即 8、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即 9、分式乘方要把分子、分母分别乘方。
即 10、同分母分式相加减,分母不变,把分子相加减。
即 cb ac b c a ±=± 11、异分母分式相加减,先通分,变为同分母的分式,再加减。
即 12、一般地,当n 是正整数时,B A B A B A CB C A B A ⋅⋅=)0(≠÷÷=C C B C A B A db c a d c b a ⋅⋅=⋅cb d acd b a d c b a ⋅⋅=⨯=÷n n n b a b a =⎪⎭⎫ ⎝⎛bdbc ad bd bc bd ad d c b a +=±=±)0(1≠=-a a a n n nn b a a b )(=-)(知识点三、分式方程13、分母中含有未知数的方程叫做分式方程14、解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母。
《分式的乘除-分式的乘除及乘方的混合运算》教案(公开课)2022年人教版精品
出示相关例题,进行分析与讲解 〔先由学生思考并解例题中的方程,然后教师讲解。〕
六、课堂小结,学生练习
教师小结本节课知识点然后出示练习题
课
后
反
思
2.分式方程的解法
教学
重点
1、分式方程与整式方程的区别
2、解分式方程的根本思路
教学
难点
1、产生增根的原因
教学
过程
教 学 内 容
一、新课导入
利用应用题列方程的方式引入新课。教师提问:这个应用题该如何列方程?
二、分式方程的定义:
像这样分母中含有未知数的方程叫做分式方程.〔以前学过的分母里不含有未知数的方程叫做整式方程.〕
提问:所列出的方程与前面学过的整式方程如一元一次方程有什么区别?教师归纳并得出分式方程的定义。
三、如何区别分式方程与整式方程:
利用跟踪练习题让学生区别分式方程与整式方程
三、如何解分式方程,解分式方程的步骤
解分式方程为什么要检验,出现增根的原因。
出例如题:通过对解一元一次方程步骤的回忆来引导学生如何解分式方程,。并得出解分式方程的步骤。
分式的乘除-分式的乘除及乘方的混合运算
总课题
分式
总课时数
第43课时
课 题
分式的乘除----分式的乘除及乘方的混合运算
主 备 人
课型
新授
时 间
教
学
目
标
知识与技能:1、熟练地进行分式乘除法的混合运算.2、掌握分式的乘方。
过程与方法:在探索过程中,体会知识间的关系,感受数学与生活的联系
情感价值观:培养学生转化思想和解决问题的能力及逆向思维能力。培养学生认真思考的习惯
一、温故知新
二、分式乘除混合运算
八年级上册数学-分式的计算
第23讲 分式的计算【板块一】分式的运算【例1】分式的乘除(1)2221795451x y ab a b xy--;(2)232367x x y y xy-÷-; (3)222212a b a ba b a ab b a b++÷÷--+-.【练1】计算:(1)211a b c b c÷÷;(2)22214(2)441x x x x x x --÷+-+-;(3)2324316943m mm m m ÷--+;(4)222222()()a b b a a b a b a b a--+÷-.题型二 分式的乘方 【例2】计算:(1)22x y ⎛⎫⎪⎝⎭;(2)223a b ⎛⎫- ⎪⎝⎭.【练2】化简:(1)32332m n ⎛⎫⎪⎝⎭=____;(2)234m m n ⎛⎫ ⎪-⎝⎭=_____.题型三 分式的乘方及乘除混合运算 【例3】计算:(1)234()()m n mn n m ⎛⎫--÷- ⎪⎝⎭;(2)22223()()a b a a b ab a b ⎛⎫-÷+ ⎪-⎝⎭;【练3】计算:2222()()x y x x y xy x y ⎛⎫-÷+ ⎪-⎝⎭.题型四 分式的加减 【例4】计算:(1)4133m m m -+++; (2)22111x x x ---;【练4】计算:(1)2312555m n n n mm m m---+-;(2)222231(1)a a a a +-+--.【例2】计算:(1)22x y ⎛⎫ ⎪⎝⎭;(2)223a b ⎛⎫- ⎪⎝⎭.【练2】化简:(1)22332m n ⎛⎫ ⎪⎝⎭=_________;(2)224m m n ⎛⎫⎪-⎝⎭=_________.【例3】计算:(1)()234m n mn n m ⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭;(2)()23222a b a a b ab a b ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭.【练3】计算:()23222x y x x y xy x y ⎛⎫⎛⎫-÷+ ⎪ ⎪-⎝⎭⎝⎭.【例4】计算:(1)4133m m m -+++;(2)22111x x x ---. 【练4】计算:(1)2312555m n n n mm m m ---+-;(2)()2222311a a a a +-+--.【例5】计算:()211x x x -+-.【练5】计算:2422m m m ++--.【例6】计算:222299369x x x x x x x +-++++. 【练6】化简:(1)()22242x x y yx y x y x y -+--+-;(2)221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭.【例7】计算:(1)2212239a aa a a a-+÷---; (2)先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中m =9. 【练7】计算:(1)2233x y x y x y x x y xx ⎡⎤+-⎛⎫---÷⎪⎢⎥+⎝⎭⎣⎦;(2)()22221031525965a a a a a a a -+÷--+-.【例8】已知x 2+3x -8=0,求21441212x x x x x x -+---++的值.【练8】(1)已知x 2-2=0,求()222111x x x x -+-+的值;(2)已知12x y =,求2222222x x y y x xy y x y x y -+-++-的值.针对练习11.计算:(1)21x x --x -1;(2)22226211962x x x x x x x x -++++÷-+-- (3)22m n n mn m m n n m++----;(4)32322222b b ab b a b a a b ab b a ++÷--+-2.已知:y =22269393x x x x x x+++÷---x +3.试说明不论x 为任何有意义的值,y 的值均不变.3.先化简,再求值:(1)22222a ab b b a b a b -++-+,其中a =-2,b =1;(2)412222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x 4; (3)(1-21x +)2÷11x x -+,其中x =2;(4) 2211xy x y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x =-100-1,y .4.先化简,再求值:3221691322x x x xx x x x-+-----,其中x =-6.【板块二】分式的拆分基本模型有:(1)11a b ab a b +=+;(2)()()c b a b a c ---,若对分子稍加变形则里面出现基本模型.A -b -(a -c )=c -b ,所以原式变为()()()()a b a c a b a c -----=11a c ab ---. 【例10】化简:2132x x +++2156x x +++21712x x ++.【练10】化简:21x x ++2132x x +++2156x x +++21712x x +++21920x x ++.【例11】化简:22a b c a ab ac bc ----++22b c a b ab bc ac ----++22c a bc ac bc ab----+.【练11】化简:2b c a ab ac bc ---++2c a b ab bc ac ---++2a b c ac bc ab ---+-2a b --2b c--2c a -.【例12】仿照例子解题 例子:若1M x ++1N x -=2151xx --恒成立,求M ,N 的值. 解题过程如下:∵1M x ++1N x -=2151xx --,∴M (x -1)+N (x +)=1-5x , 则Mx -M +Nx +N =1-5x , 即Mx +Nx +N -M =-5x +1, 故(M +N )x +(N -M )=-5x +1, ∴51M N N M +=-⎧⎨-=⎩解得:32M N =-⎧⎨=-⎩请你按照上面的方法解题:若2M x ++2N x -=284x x --恒成立,求M ,N 的值.【练12】已知()()237211x x x x -+-+=3+1A x -+1Bx +,其中A 、B 为常数,求4A -2B 的值.【例13】阅读下面材料,并解答问题.材料:把分式42231x x x --+-+拆分成一个整式与一个分式(分子为整式)的和的形式.【解答】由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b =-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b ). ∴113a ab -=⎧⎨+=⎩,∴a =2,b =1. ∴42231x x x --+-+=()()222212111x x x x -+++-+-+=x 2+2+211x -+.这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和.【练13】将分式422681x x x --+-+拆分成一个整式与一个分式(分子为整式)的和的形式.针对练习21.(1)2111122a a a a ⎛⎫-÷ ⎪-+-⎝⎭,然后从11中选取一个你认为合适的数作为a 的值代入求值;(2) 2214244x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x +7>1的负整数解;(3)化简分式2221221xx x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从-1≤x ≤3中选取一个你认为适合的整数x 代入求值;(4)计算:2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭,请你给a 选取一个合适的值,再求此时原式的值;2.已知4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++.3.已知3x 2+xy -2y 2=0(x ≠0,y ≠0),求22x y x y y x xy+--的值. 4.化简()13x x ++()()136x x +++()()169x x +++……+()()19699x x ++.5.化简11x --11x +-211x +-411x +-811x +.。
人教版八年级数学上册--分式的乘方
相反数相除,注意符号变化。
c3 d
d3
2a
分式的乘方要把分子、分母分别乘方。
a6b3 分式乘除混合运算的运算顺序
结果通常要化成最简分式或整式.
2a c2
• 为了便于记忆,通俗地将除法法则记为“除以一个数等于乘以这个数的倒数”.
结果通常要化成最简分式或整式.
c3d9 d3 分式乘以分式,把分子的积作为积的分子,分母的积作为积的分母;
c2
作业本:习题 3 题
相反数相除,注意符号变化。
••
c d 2a 4a 3 9 结果通常要化成最简分式或整式.
2
分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.
分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.
结果通常要化成最简分式或整式.
a 3 b 3 作业本:习题 3 题
为了便于记忆,通俗地将除法法则记为“除以一个数等于乘以这个数的倒数”.
8 cd 6
课堂练习 计算
分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.
分式乘除混合运算的运算顺序
12 6 分分式式的 的乘乘方方要要把把分分子子、、分分母母4 分分别别乘乘2 方方。。3
作业本:习题 3 题
2 x y 8 x y 分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.
1 分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.
相反数相除,注意符号变化。
3 z 3 分式的乘方要把分子、分母分别乘方.
为了便于记忆,通俗地将除法法则记为“除以一个数等于乘以这个数的倒数”.
27 z 分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.
分式的乘方要把分子、分母分别乘方。
人教版八年级数学上册15.2.1分式的乘方学案
精品基础教育教学资料,请参考使用,祝你取得好成绩!第2课时 分式的乘方学教目标:1.能应用分式的乘除法,乘方进行混合运算。
2.能灵活应用分式的乘除法法则进行分式的乘除乘方混合运算。
3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣。
学教重点:掌握分式乘除法法则及其应用学教难点:掌握分子分母是多项式的分式的乘除法混合运算学教过程:一、温故知新:阅读课本P 14-151.分式的乘除法法则:___________________________________________2.观察下列运算: 则分式的乘方法则:公式: 文字叙述: 请同学们叙述分数乘方乘除混合运算顺序:分式乘方乘除混合运算法则顺序:二、学教互动 :例1.计算 (1) 3223a b c ⎛⎫- ⎪⎝⎭ (2) 23422x y y y x x ⎛⎫⎛⎫⎛⎫⋅÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例2.计算(1) 23324b b b a a a -⎛⎫⎛⎫⎛⎫÷⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2) 2332x y xz yz z y x ⎛⎫⎛⎫⎛⎫⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三、拓展延伸1.下列分式运算,结果正确的是( ) A.n m m n n m =•3454 B bcad d c b a =• C . 222242b a a b a a -=⎪⎭⎫ ⎝⎛- D 3334343y x y x =⎪⎪⎭⎫ ⎝⎛2.已知:xx 1=,求96339622+++÷-+-x x x x x x 的值. 3.已知a 2+3a +1=0,求(1)a +a 1; (2)a 2+21a ;4.已知a,b,x,y 是有理数,且()02=++-b y a x , 求式子ba b by ax a y x b bx ay a +-++÷++-+2222的值.四.课堂检测: 1.化简x x x x x ÷+++1222的结果为 2.若分式4321++÷++x x x x 有意义,则x 的取值范围是 3.有这样一道题:“计算2222111x x x x x x x-+-÷--+的值,其中2004x =”甲同学把“2004x =” 错抄成“2040x =”,但他的计算结果也正确,你说这是怎么回事?4.计算 -()4425mn m n n m -÷⎪⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛五.小结与反思:。
八年级数学上册第2课时 分式的乘除混合运算与分式的乘方
作品编号:GLK520321119875425963854145698357学校:黄莺读市仙鹤镇喜鹊小学*教师:悟性中*班级:凤翔2班*15.2.1分式的乘除第2课时分式的乘除混合运算与分式的乘方一、新课导入1.导入课题:我们学习了分式的乘除法,那么分式的乘除混合运算是怎样进行的?分式的乘方又是怎样进行运算的呢?这就是本节课我们所要学的内容.2.学习目标:(1)掌握分式的乘除混合运算顺序及方法.(2)能说出分式乘方的运算法则,并能运用法则进行分式乘方的运算.3.学习重、难点:重点:分式的乘除混合运算的方法及分式的乘方法则.难点:乘方法则的应用.二、分层学习1.自学指导:(1)自学内容:教材第138页例4.(2)自学时间:5分钟.(3)自学方法:通过类比分数的混合运算得出分式乘除混合运算的方法.(4)自学参考提纲:①分式乘除混合运算,先依据分式的乘除法法则,把分式乘除法统一成乘法.②当分式的分子分母为多项式的应先进行因式分解,然后约去分子分母的公因式,计算结果应为最简分式或整式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:部分学困生对例4的计算过程中略去了25x2-9=(5x+3)(5x-3)一步会存在理解障碍.②差异指导:对学生学习中存在的问题予以启发指导.(2)生助生:生生间相互交流帮助.4.强化:(1)分式乘除混合运算的顺序及注意的问题.(2)练习:计算:1.自学指导:(1)自学内容:探究分式的乘方法则.(2)自学时间:5分钟.(3)自学方法:回顾分式乘法法则和乘方的意义;注意采用从简单到复杂,从具体到一般的探究方法. (4)自学参考提纲:①思考并填空:(ab )2=22ab,(ab)3=33ab,(ab)8=88ab.②一般地,当n是正整数时,(ab )n=nnab,并证明上述情况.③对②中的等式用文字表述是分式的乘方要把分子、分母分别乘方.④计算:2.自学:同学们结合自学指导进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否知道(ab)n的意义及乘方运算法则.②差异指导:对推导乘方运算法则存在困难的学生予以启发指导.(2)生助生:小组内相互交流、纠错、互助解疑难.4.强化:分式乘方的法则:分式的乘方,把分子和分母分别乘方,用字母表述是:(ab )n=nnab.1.自学指导:(1)自学内容:教材第139页例5. (2)自学时间:3分钟.(3)自学方法:认真观察例题的解答过程,重点关注分式乘方及乘除混合运算顺序.(4)自学参考提纲:①分式的乘方及乘除混合运算的顺序是怎样的?②练习:2.自学:同学们结合自学指导自学.3.助学:(1)师助生:①明了学情:了解学生是否掌握了例题中的运算方法和运算顺序.②差异指导:了解学生学习中存在的困惑,进行分类指导.(2)生肋生:小组间相互交流和解疑.4.强化:分式的混合运算的顺序:先乘方,再乘除.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.一、基础巩固(第4题20分,其余每题10分,共50分)1.下列计算中,正确的是(D)4.计算下列各题.二、综合应用(每题15分,共30分)三、拓展延伸(20分)7.当x=1949,求代数式的值时,小聪认为x只要取任一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.解:有道理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章 分 式
第2节 分式的运算 第2课时 分式的乘方运算
习题链接
提示:点击 进入习题
1A 2D 3A 4C
5B 6D 7 见习题 8 见习题
答案显示
夯实基础·逐点练
1.计算-xy22的结果是( A ) A.xy24 C.xy4
B.-xy24 D.-xy4
夯实基础·逐点练
2.【 2018·山西】下列运算正确的是( D )
整合方法·提升练
8.有这样一道题:
“计算x2-x22-x+1 1÷xx2-+1x÷1x3的值,其中 x=2”,小明同
学把 x=2错抄为 x=-2,但是他计算的结果也是正确的,
你说这是怎么回事呢?
解
:
因
为
x2-2x+1 x2-1
x-1 ÷ x2+x
1 ÷ x
3
=
(x+(1x)-(1)x-2 1)·x(xx-+11)·x3=x4.所以当 x=2 或 x
A.-m2n
B.m2n
C.-m2
D.m2
夯实基础·逐点练
5.计算-2ba2 3·2ab2÷-2ab2的结果是( B )
A.-8ba6
B.-8ba63
C.1b66a2
D.-16ba6 2
夯实基础·逐点练
6.彤彤做错了下列计算题中的一道题,你认为她做错的题 是( D ) A.xy2÷(-xy)2=x1y B.-3x2y2·-2y3x3=-32xy C.x2-2xxyy+y2÷xxy22-+yx22y=x-1 y D.x2+x2+2xx+1·xx2--11=x(x+1)
整合方法·提升练
7.计算:
(1)4a2b÷-2ab2·-8ba; 解:原式=4a2b÷4ab22·-8ba =4a2b·4ab22·-8ba =-2ab4.
整合方法·提升练
(2)x2- xyy22÷(x+y)·x-x y3. 解:原式=(x+y)x22(y2 x-y)2·x+1 y·(x-x3y)3 =yx2((xx+-yy)) =xxy2+ 2-xyy3.
A.(-a3)2=-a6
B.2a2+3a2=6a2
C.2a2·a3=2a6
D.-2ba2 3=-8ba63
夯实基础·逐点练
3.下列计算正确的是( A ) A.abm=abmm C.-xy323=yx96
B.a+a b2=a2+a2 b2 D.23xy 4=182xy44
夯实基础·逐点练
4.计算-2nm2 ·mn 2的结果是( C )
=-2 时,原式的值都等于 16.