轮换对称性在积分计算中的应用

合集下载

对称性在积分中应用

对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系,小到分子原子.根据对称性,我们就可以把复杂的东西简单化,把整体的东西部分化.本文介绍运用数学中的对称性来解决积分中的计算问题,主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性,从而简化定积分、重积分、曲线积分、曲面积分的计算方法.另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算.积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,反而把计算复杂化,而善于运用积分中的对称性,往往能使计算简捷,达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献谢词一、 引言积分的对称性包括重积分、曲线积分、曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨.本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义.二、相关的定义定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称).定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a -- D ∈,则D 关于直线z y ±=对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义. 空间对称区域.定义3:(1)若对Ω∈∀),,(z y x ,∃点Ω∈-),,(z y x ,则称空间区域Ω关于xoy 面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.(2)若对Ω∈∀),,(z y x ,∃点Ω∈-),,(z y x ,则称空间区域Ω关于z 轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对Ω∈∀),,(z y x ,∃点Ω∈---),,(z y x , 则称空间区域Ω关于坐标原点对称. (4)若对Ω∈∀),,(z y x ,∃点Ω∈),,(),,,(y x z x z y ,则称空间区域Ω关于z y x ,,具有轮换对称性.定义4:若函数)(x f 在区间()a a ,-上连续且有)()(a x f a x f +=-,则)(x f 关于a x =对称当且仅当0=a 时)()(x f x f =-,则)(x f 为偶函数.若)()(x a f x a f +-=-,则)(x f 为关于()0,a 中心对称.当且仅当0=a 时有)()(x f x f -=-则)(x f 为奇函数.若)()(a x f a x f +=-且)()(x a f x a f +-=-则)(x f 既关于a x =对称,又关于()0,a 中心对称.定义5若n 元函数),,,,,,(),,,(11121-+≡i x x x x x f x x x f n i i n , (n i ,,2,1 =),则称n 元函数),,,(21n x x x f 关于n x x x ,,,21 具有轮换对称性.定义6:若)(),,,(21N n R D x x x p nnn ∈⊂∈∀ 有),,,,,,(1111-+i x x x x x p n i i nD ∈),,2,1(n i =成立,则称n D 关于),,,(21n x x x p 具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算.在特殊情况下,甚至可以求出原函数不是初等函数的定积分.因此掌握对称性在积分中的方法是必要的.下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用. 引理 设函数)(x f 在[]h a h a +-,上连续,则有[]⎰⎰+--++=ha ha hdx x a f x a f dx x f 0)()()( (1)证令t a x +=,有 ⎰⎰⎰+--+++=h a ha h hhdt t a f dt t a f dx x f 0)()()( (2)令u t -=,则⎰⎰⎰--=--=+000)()()(hhhdu u a f du u a f dt t a f (3)将(3)式带入(2)式,并将积分变量统一成x ,则[]⎰⎰-++=+-hh a ha dx dx x a f x a f dx x f 0)()()(特别地,令0=a ,就得公式[]dx x f x f dx x f hhh⎰⎰--+=0)()()(由函数奇偶性的定义及上式,易知定理1 设函数)(x f 在[]h h ,-上连续,那么2) 若)(x f 为偶函数,则⎰⎰-=hh hodx x f dx x f )(2)(3) 若)(x f 为奇函数,则⎰-=hhdx x f 0)(次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,例1 求xdx x x I cos 1122223⎰-+++=ππ解:虽然被奇函数非奇非偶,但可以把它分成两部分x x x cos 123+和x cos ,前一部分是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.⎰⎰--++=222223cos cos 1ππππxdx dx x x x I =⎰2cos 2πxdx=2注:而对于任意区间上的定积分问题,可以平移到对称区间[]h h ,-上求解。

利用变量轮换对称性计算积分

利用变量轮换对称性计算积分
一÷, ( I 盯 Y+z+z+x +x n 0 n
()fXyd= ̄L(,) (,)o 2I(,)o -f y+f xd I sX y
例 1 求 二重 积分 ‘ Z 十 z d d D X )xy

+ Y d ) v

:x + y
, n X , 2 … … , 卜1 , i 1 2, … , ) X,lX, X ) (= , … n ,
II( , z d If X Y,) v一3II d Ix v 一3 o d I卜 yo 一Y z I x xo d l d 一 3o x x o一 1 x y d I d I ( 一 — ) y

) xy d d
: : =
维普资讯
18 2




第2 3卷
以上两 例 中的积 分 域 并 不关 于坐标 面对 称 , 一
般 解法是 直接用 直 角 坐标 , 坐 标将 三 重 积 分化 为 柱 三 次积分 , 计算 比较 麻烦 , 利用 积分域 关于 变量 轮 而 换 对称性 , 可将被 积 函数 的结构改 变 , 大大简 化 积分 的计算 。 3 3 曲线 积分的轮 换对称 性 . 定理 3 设 L是 x y面上 的 一条 光 滑 的 曲 线 o
Z≤ a , ≥ O y O z O 。x , ≥ ,≥
定理 1设 函数 fX y 在有 界 闭区域 D上 连续 , ( ,)
D关 于变量轮 换对 称 , 则
( ) ,( , ) a ' ( x d 1 ,f x y d =jfy, ) o j '

积分域 Q关 于变 量轮 换对 称 , 由定 理 2
批注本地保存成功开通会员云端永久保存去开通

对称性在高等数学积分计算中的应用

对称性在高等数学积分计算中的应用

对称性在高等数学积分计算中的应用作者:刘记川来源:《课程教育研究·学法教法研究》2017年第09期【摘要】积分计算是高等数学教学中的重点和难点之一,如何进行积分计算,教学过程中对每一类积分都给出了相应的计算方法。

然而有些积分的被积函数和积分区域比较复杂,计算起来比较困难,甚至有些积分采用常规的方法无法计算。

对称性是积分计算中经常采用的积分技巧,可以把问题简单化,减少计算量。

对具有一定特性的被积函数和积分区域,对称性可以展现出高效快捷的计算优势。

【关键词】对称性积分【中图分类号】O172.2 【文献标识码】A 【文章编号】2095-3089(2017)09-0031-02积分学是高等数学教学中的重点和难点,内容包括二重积分、三重积分、曲线积分和曲面积分[1,2]。

在高等数学教学的过程中,对每一类积分都罗列出很多种计算方法。

每一类积分计算都有很多的难点,想要真正的掌握并非易事,并且各种积分之间的相互转化就更为复杂。

然而在积分计算的过程中,有些积分的积分区域比较特殊(例如:积分区域具有对称性)或者被积函数具有奇偶性,这类积分的计算运用一定的技巧,可以省掉繁琐的计算过程,从而达到简单、快捷、高效和准确的目的。

一、定义对称性主要是指积分区域的对称性。

二维平面上的区域关于坐标轴的对称以及关于直线y=x对称。

三维中是空间区域关于三个坐标面的对称以及关于面y=x,z=x和y=z的对称。

轮换对称性是对称性的一种特殊情况,二维上是关于直线y=x对称,三维上是关于面y=x,z=x 和y=z的对称。

定义1.1:坐标轴对称:区域,对任意的(x,y)∈D,如果(x,-y)∈D,则区域D关于x轴对称;如果(-x,y)∈D,则区域D关于y轴对称。

定义1.2:坐标面对称:区域,对任意的(x,y,z)∈Ω,如果(x,y,-z)∈Ω,则区域Ω关于xoy面对称;如果(x,-y,z)∈Ω,则区域Ω关于xoz面对称;如果(-x,y,z)∈Ω,则区域Ω关于yoz 面对称。

对称性在积分计算中的应用

对称性在积分计算中的应用

㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。

对称性在积分计算中应用修订版

对称性在积分计算中应用修订版

对称性在积分计算中应用Document number:PBGCG-0857-BTDO-0089-PTT1998毕业设计(论文)题目:对称性在积分计算中应用学院:数理学院专业名称:信息与计算科学学号: 02学生姓名:鲍品指导教师:张晓燕2011年 5 月 20 日对称性在积分计算中的应用摘要对称性的应用很广泛,尤其在数学,物理学,化学等方面都有体现[1]。

本论文主要是探讨一下对称性在积分计算中的应用。

积分在微积分学中既是重点又是难点,特别是在解决积分计算问题上,方法比较灵活。

常见的积分方法有换元法和分部积分法,这些方法在解决一般的问题上还是奏效的,但是对于复杂的微积分计算和证明问题就显得有些心有余而力不足。

假如我们稍仔细地观察题目,很多时候我们会发现积分区域或被积函数具有某种对称性。

如果我们将对称性巧妙地应用到解决这类问题中去,不仅简化了计算过程而且还节省计算时间。

利用对称性解题方法比较灵活也十分重要。

接下来本论文将从定积分,重积分,曲线积分以及曲面积分四大方面入手,深入探讨对称性在积分计算中的应用。

最后分析利用对称性解题的条件与优势,总结出应用相关性质解题时要注意哪些方面。

关键词定积分,重积分,曲线积分,曲面积分,对称性,奇偶性AbstractThe application of symmetry is very widespread, particularly in mathematics, physics, chemistry and other aspects of embodied. This paper is to explore the symmetry in the integral calculation.Integral calculus is difficult in both the focus, especially in solving the problem of integral calculation, the method more flexible. The common integral method are the substitution of variables and the integration by parts. These methods are effective in the solution general question, but appear regarding the complex calculus computation and the proof question somewhat has more desire than energy. If we carefully observe the subject a little, usually we will find regional integration or product function has a symmetry. If we applied the symmetry skillfully to solve such problems, this not only simplifies the calculation process but also save computing time.More flexible use of problem-solving approach symmetry is also important, Then the paper will be integral, double integral, curve and surface integrals four points in a bid to further investigate the symmetry in the integral calculation. Finally, we solve problems by analyzing the symmetry of the conditions of use and advantages, summed up the nature of problem solving application related to the attention of what.Key wordsdefinite integral, heavy integral, curvilinear integral, surface integral, symmetry, parity目录1、绪论 (1)研究背景 (1)研究意义 (1)研究的思路及结构的安排 (2)2、对称性在定积分计算中的应用 (2)3、对称性在重积分计算中的应用 (3)二重积分计算 (3)三重积分计算 (6)4、对称性在曲线积分计算中的应用 (9)第一型曲线积分计算 (9)第二型曲线积分计算 (10)5、对称性在曲面积分计算中的应用 (11)第一型曲面积分计算 (11)第二型曲面积分计算 (13)6、对称性解题方法总结 (15)7、致谢 (16)8、参考文献 (17)1、绪论研究背景众所周知,对称性能给人以美的享受,客观世界中的许多事物都具有对称性。

对称性在积分中的应用

对称性在积分中的应用

华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。

对称性在积分计算中的应用【文献综述】

对称性在积分计算中的应用【文献综述】

文献综述信息与计算科学对称性在积分计算中的应用在数学计算中, 积分计算是一个非常重要的部分. 早在古希腊时期数学家阿基米德在《抛物线图形求积法》和《论螺线》中, 利用穷竭法, 借助于几何直观, 求出了抛物线弓形的面积及阿基米德螺线第一周围成的区域的面积, 其思想方法是分割求和,逐次逼近. 虽然当时还没有极限的概念, 不承认无限, 但他的求积方法已具有了定积分思想的萌芽.[1] 17 世纪中叶, 法国数学家费尔玛、帕斯卡均利用了“分割求和”及无穷小的性质的观点求积, 更加接近现代的求定积分的方法. 可见, 利用“分割求和”及无穷小的方法, 已被当时的数学家普遍采用.[2]17世纪下半叶牛顿和莱布尼兹创造了微积分的基本方法. 但是, 他们留下了大量的事情要后人去解决, 首先是微积分的主要内容的扩展,其次是微积分还缺少逻辑基础. 创立于17 世纪的微积分, 主要应用于天文学、力学、几何学中的计算.[3] 而到19 世纪下半叶微积分已经发展成为一门系统、严密、完整的学科. 积分概念也趋于逻辑化、严密化,形成我们现在使用的概念. 定积分的概念中体现了分割、近似、求和的极限思想. 其中分割既是将[,]a b 任意地分成n 个小间,12,,,,,i n x x x x ∆∆∆∆L L ,其中i x ∆ 表示第I 个小区间的长度, 在每个小区间上任取一点i ξ做()i i f x ξ∆并求和()i if x ξ∆∑,这体现了求和的思想, 当区间的最大长度趋于零时, 和式的极限若存在即为()f x 在[,]a b 上的定积分. 利用定积分可以解决很多实际问题,例如求由曲线围成的平面图形的面积;求由曲线绕坐标轴旋转所得旋转体的体积;平行截面面积为已知的立体的体积;求曲线的弧长以及物理中的功、水压力等等时,()ba f x dx ⎰的积分形式也可以推广: (1) 可以把积分区间[,]ab 推广到无限区间上,如[,)a +∞ 等,或者把函数推广到无界函数,也就是广义积分. (2) 可以把积分区间[,]a b 推广到一个平面区域,被积函数为二元函数, 那么积分就是二重积分; 同样当被积函数成为三元函数、积分区域变成空间区域时就是三重积分. (3) 还可以将积分范围推广为一段曲线弧或一片曲面, 即曲线积分和曲面积分. 无论积分推广到何种形式, 它始终体现了这种分割的极限思想, 比如二重积分的概念:设(,)f x y 在有界闭区域D 上有界,(1) 分割: 将D 任意分成n 个小区域i σ∆并表示面积;(2) 近似: 在每个i σ∆上任取一点(,)i i ξη作乘积;(3) 求和取极限:若各区域直径的最大值趋于零时, 和式(,)i i if ξησ∆∑的极限存在, 即为 (,)f x y 在D 上的二重积分. 由此我们发现定积分与重积分在概念的本质上是一致的, 同样三重积分亦是如此.[4]此外,不定积分与定积分之间关系为:如果函数()F x 是连续函数()f x 在区间[,]a b 上的一个原函数,则()()()ba f x dx Fb F a =-⎰, 这是牛顿—莱布尼兹公式. 这个公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系. 它表明: 一个连续函数在区间[,]a b 上的定积分等于它的任一原函数在区间[,]a b 上的增量. 这就给求解定积分提供了一个简便而有效的计算方法. [5]积分在数学分析中有很重要的地位; 积分的计算方法有许多种, 相关文献都对其有探讨,但是对对称性的研究却很少涉及. 对称性在积分运算中有着很重要的意义, 通常可以简化计算. 本文研究了对称性在积分运算中的应用. 积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.[6] 那么, 如果我们在解题中发掘或注意到问题的对称性, 并巧妙地把它们应用到积分的计算过程中去, 往往可以简化计算过程, 收到意想不到的效果, 引起感情激荡, 造成感情上的共鸣, 更好地感知、理解数学美. 特别是对于有些题目, 我们甚至可以不用计算就可以直接判断出其结果. 在积分计算中利用对称性来解题这种方法, 是一种探索性的发现方法, 它与其他方法的不同之处主要体现在其创造性功能.[7] 下面我们举出几个对称性在积分计算中的例子, 张振强他的一篇对称性在二重积分中的应用论文中介绍如何利用对称性来计算二重积分, 并提出了通过适当改造被积函数和积分区城以利用对称性来简化计算的方法. 在一般情况下, 不仅要求积分区域D 具有对称性, 而且被积分函数对于区域D 也要具有对称性. 但在特殊情况下, 即使积分区域D 不对称, 或者关于对称区域D 被积函数不具备对称性, 也可以经过一些技巧性的处理, 使之化为能用对称性来简化计算的积分.[8]常见对称形式的二重积分的简化运算有三种, 一: 积分区域D关于坐标轴对称; 二: 分区域D关于=±对称. 在进行二重积分计算时, 善于观察被积原点对称; 三: 积分区域D关于直线y x函数和积分区域的特点, 注意兼顾被积函数的奇偶性和积分区域的对称性, 恰当地利用对称性方法解题, 可以避免繁琐计算, 使二重积分问题的解答大大简化. 刘渭川, 在他的利用对称性计算曲线积分和曲面积分, 论文中提到, 借助于(平面)空间曲线及空间曲面的直观几何意义, 利用曲线, 曲面关于坐标轴及坐标面的对称性, 探讨了对于定义在具有对称性的曲线、曲面上的奇(偶)函数, 如何利用对称性计算曲线积分及曲面积分这种积分方法使得曲线(面)积分更为简便、快捷, 同时, 也有利于避免因符号处理不当而导致的积分错误. [9]因此, 在积分计算中, 可以利用对称性来帮助求解, 不过我们在应用对称性求积分时还必须注意: 必须兼顾被积函数与积分区域两个方面, 只有当两个方面的对称性相匹配时才能利用; 对于第二型曲线积分与曲面积分, 在利用对称性时, 还需考虑路线的方向和曲面的侧, 应慎重; 合理利用轮换对称性以求简便计算. [10]参考文献[1] 王仲春等编著. 数学思维与数学方法论[M]. 北京: 高等教育出版社, 1991.[2] 王寿生等编. 130 所高校研究生高等数学入学试题选解及分析[M]. 沈阳: 辽宁科技出版社, 1988.[3] 陈仲、洪祖德编. 高等数学·研究生入学试题与典型例题选解[M]. 南京: 南京大学出版社, 1986.[4] 同济大学数学教研室主编. 高等数学[M]. 北京: 高等教育出版社, 1996.[5] 林源渠. 高等数学复习指导与典型例题分析[M]. 北京: 机械工业出版社, 2002.[6] 张云艳. 轮换对称性在积分计算中的应用[J]. 毕节师范高等专科学校学报(综合版),2002, 20(3): 90~92.[7] 龚冬保. 数学考研典型题[M]. 西安: 西安交通大学出版社, 2000.[8] 陈增政, 徐进明. 利用对称性简化被积函数是线性函数解的计算[J]. 工科数学, 1994,(10): 181.[9] D. Bennis, N. Mahdou . Strongly gornstein p rojective [J], injective, and flat modules1J PureApp l Algebra, 2007; 210: 437~445.[10] I.M , Gelfand, G.E.Shilov. Generalized functions vol. I [M]. New York: Academic Press1964.。

对称性求解积分

对称性求解积分

(x y z)2dV
x2dV y2dV z2dV xydV yzdV xzdV
3
z2dV 3
2
d
sin d
R r4 cos2 dr 6
sin cos2 d
R r4dr
0
0
0
0
0
4 R5.
5
D
解:如图所示,积分区域D关于x轴对称,且f(x,-y)=-(xy+y3 )=-f(xy)
即f (x, y)是关于y的奇函数,由定理知, (xy y3)dxdy=0. D
计算 (x+y+z)2dV ,其中是x2 y2 z2 R2的球体.
解由对称性知
xydV yzdV xzdV, x2dV y2dV z2dV,
D
答案:1. ln 2 2.- 2 3. a b
2Hale Waihona Puke 52利用对称性简化二重积分计算
1、I=
z ln(x2 1 x2
y2 y2
zz22)dxdydz,
其中为x2
y2
z2
1.
解:由被积函数可以看出,此函数是关于z的奇函数,因为关于坐标轴 、坐标原点都对称,则:I=0
2、计算I = (xy y3)dxdy,其中D为由y2 2x与x 2围成的区域
f (x, y)dxdy f (y, x)dxdy
D1
D2
f (x, y)dxdy f (y, x)dxdy
D
D
对称性的应用
例1:设区域D={(x,y)|x2 y2 1, x 0},计算二重积分I = 1 xy dxdy
D 1 x2 y2
例2:计算 x[1 yf (x2 y2 )]dxdy,其中D是由y=x3, y 1, x 1围成的区域,f

对称性在积分计算中的应用研究【开题报告】

对称性在积分计算中的应用研究【开题报告】

开题报告信息与计算科学对称性在积分计算中的应用研究一、综述本课题国内外研究动态, 说明选题的依据和意义对称性(symmetry )是现代物理学中的一个核心概念, 它泛指规范对称性(gaugesymmetry) , 或局域对称性local symmetry )和整体对称性(global symmetry ). 它是指一[1]个理论的拉格朗日量或运动方程在某些变数的变化下的不变性. 如果这些变数随时空变化, 这个不变性被称为规范对称性, 反之则被称为整体对称性. 物理学中最简单的对称性例子是牛顿运动方程的伽利略变换不变性和麦克斯韦方程的洛伦兹变换不变性和相位不变性. 数学上, 这些对称性由群论来表述. 上述例子中的群分别对应著伽利略群, 洛伦兹群和U(1)群. 对称群为连续群和分立群的情形分别被称为连续对称性(continuous symmetry)和分立对称性(discrete symmetry). 德国数学家外尔(Hermann Weyl)是把这套数学方法运用於物[2]理学中并意识到规范对称重要性的第一人. 1950年代杨振宁和米尔斯意识到规范对称性可以完全决定一个理论的拉格朗日量的形式, 并构造了核作用的SU(2)规范理论.[3]我这次论文方向主要涉及对称性在积分计算中的应用. 在积分的计算中充分利用积分区域的对称性及被积函数的奇、偶性, 往往可以简化计算, 达到事半功倍的效果. 近年来, 在全国研究生入学考试数学试题中不乏涉及对称性的积分试题. 本文将系统地介绍有关[4]内容并举出相关例子.以二重积分为例若积分区间关于变元具有轮换对称性, 则必有D ,x y 积分区域关于直线对称. 因此在某些复杂的积分过程中, 若能注意并充分利用积分D y x =区域的轮换对称性往往可以简化积分计算过程, 提高解题效率. 例如[6](1) , 1(,)(,)((,)(,))2D D f x y d f y x d f x y f y x d σσσ==+⎰⎰⎰⎰⎰⎰(2) 若关于直线对称,记为中位与直线上半部分区域, 则有D y x =1D D y x =. 12(,),(,)(,)(,)0,(,)(,)D D f x y d f x y f y x f x y d f x y f y x σσ⎧=⎪=⎨⎪=-⎩⎰⎰⎰⎰积分在数学分析中是相当重要的一项内容, 而在计算积分的过程中, 我们经常会碰到积分区域或者被积函数具有某种对称性的题型. 那么, 如果我们在解题中发掘或注意到问题的对称性, 并巧妙地把它们应用到积分的计算过程中去, 往往可以简化计算过程, 收到意想不到的效果, 引起感情激荡, 造成感情上的共鸣, 更好地感知、理解数学美. 特别是对[7]于有些题目, 我们甚至可以不用计算就可以直接判断出其结果. 在积分计算中利用对称性来解题这种方法, 是一种探索性的发现方法, 它与其他方法的不同之处主要体现在其创造性功能. 因此, 在积分计算中, 可以利用对称性来帮助求解, 不过我们在应用对称性求积分时还必须注意: 必须兼顾被积函数与积分区域两个方面, 只有当两个方面的对称性相匹配时才能利用; 对于第二型曲线积分与曲面积分, 在利用对称性时, 还需考虑路线的方向和曲面的侧, 应慎重; 合理利用对称性以求简便计算.[8]二、研究的基本内容, 拟解决的主要问题研究的基本内容: 对称性在积分计算中的应用研究解决的主要问题:1. 总结各种积分的计算方法2. 将应用对称性求解的方法, 与原来的方法比较看优化之处.三、研究步骤、方法及措施:一.研究步骤:1. 查阅相关资料, 做好笔记;2. 仔细阅读研究文献资料;3. 在老师指导下确定整个论文的思路, 列出论文提纲, 撰写开题报告;4. 翻译英文资料;5. 开题报告通过后撰写毕业论文;6. 上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.二.方法、措施: 通过到图书馆、上网等查阅收集资料, 参考相关内容在老师指导下, 归纳整理各类问题四、参考文献[1] 王仲春等编著. 数学思维与数学方法论[M]. 北京: 高等教育出版社, 1991,.[2] 王寿生等编. 130 所高校研究生高等数学入学试题选解及分析[M] 沈阳: 辽宁科技出版社,1988.[3] 陈仲、洪祖德编. 高等数学·研究生入学试题与典型例题选解[M]. 南京: 南京大学出版社, 1986.[4] 同济大学数学教研室主编. 高等数学[M]. 北京: 高等教育出版社, 1996.[5] 龚冬保. 数学考研典型题[M]. 西安: 西安交通大学出版社, 2000.[6] 陈增政, 徐进明. 利用对称性简化被积函数是线性函数解的计算[J]. 工科数学, 1994,4(10): 181~183.[7] D. Bennis, N. Mahdou . Strongly gornstein p rojective, injective [J], and flat modules1J PureApp l Algebra, 2007; 210: 437~445.[8] I.M , Gelfand, G.E.Shilov. Generalized functions, vol. I [M]. New York: Academic Press1964.。

对称性在二重积分计算中的应用

对称性在二重积分计算中的应用

㊀㊀㊀125㊀㊀对称性在二重积分计算中的应用对称性在二重积分计算中的应用Һ陈楚申1㊀廖小莲2㊀(1.湖南工业大学数学与应用数学专业1802班,湖南㊀株洲㊀412000;2.湖南人文科技学院数学与金融学院,湖南㊀娄底㊀417000)㊀㊀ʌ摘要ɔ‘数学分析“是所有高校数学与应用数学专业的一门重要的基础课,二重积分是‘数学分析“的内容之一,解二重积分的常见方法是在直角坐标系或极坐标系下根据积分区域的类型将其转化为定积分后进行计算,但遇到比较复杂的积分计算或证明时,常规方法解题有局限性.我们如果能灵活运用积分区域和被积函数的对称性,那么许多积分的解题过程可以得到简化.本文着重讨论了对称性在二重积分计算中的应用,并借助实例分五种情况进行了讨论,指出了对称性解题的优点及应该注意的条件.ʌ关键词ɔ二重积分;对称性;应用ʌ基金项目ɔ湖南省普通高校教学改革研究项目(编号:湘教通 2019 291号No920)1㊀引㊀言二重积分是二元函数在平面区域上的积分,在‘数学分析“中占据着重要的地位,对我们学习诸如‘概率论与数理统计“等后续课程至关重要,其在几何㊁力学等多方面都有着广泛的应用.因此,灵活掌握二重积分的计算是十分必要的.我们知道,二重积分的计算是通过将该二重积分转化为定积分而实现的,但这个转化过程既要受积分区域的类型又要受被积函数的特点的约束.在直角坐标系下,我们将积分区域分为X-型区域和Y-型区域,或者将区域的划分转化为X-型区域与Y-型区域的和,然后再将二重积分化为先对y后对x和先对x后对y的累次积分.有时我们利用二重积分的变量变换公式,可使得被积函数简单化或积分区域简单化.除此之外,用极坐标来计算二重积分也是常见的办法.但是,有些二重积分,单纯用这些方法来计算,计算量会很大且容易出错.我们如果能够充分利用积分区域的对称性和被积函数的奇偶性,有时就可达到事半功倍的效果.因此,本文对对称性在二重积分计算中的应用进行较详细的探讨,并辅以实例来分析二重积分的具体计算过程.2㊀文献综述积分学是‘数学分析“课程中的重要内容,而二重积分是积分学的重要组成部分,是学习曲线积分㊁三重积分问题的基础.许多学者对二重积分的计算的问题进行了研究,并给出了一些好的计算方法和计算技巧.张云艳在文献[1]中举例说明了积分区城的轮换对称性在积分计算中的应用,指出我们在某些复杂的积分计算过程中,若能注意并充分利用积分区域轮换对称性或被积函数的奇偶对称性,往往可以简化计算过程,提高解题的效率.马志辉在文献[2]中对对称性在积分中的应用进行了研究,文章首先阐述了对称性在多元函数积分下的性质,并借助实例对对称性在积分中的应用进行了研究,主要考虑了两种情况:一是当且仅当积分区域和被积函数都具有对称性时,我们可以利用对称性简化积分的计算,二是当积分区域和被积函数具有轮换对称性时,我们也可以利用对称性简化二重积分的计算.葛淑梅在文献[3]中通过由类比一元连续函数在对称区间上定积分的计算方法,导出二元连续函数在对称区域上二重积分的计算方法,使得对称区域上难于计算的二重积分得以简化.在原被积函数不具备奇偶性计算困难的情况下,利用积分对积分区域的可加性,将其转换为几个容易计算的二重积分来计算.景慧丽㊁屈娜在文献[4]中介绍了二重积分的计算具有较大的开放性,针对一道二重积分的题目存在许多计算方法,并且对每种方法的使用技巧及使用范围进行了说明,这可以培养学生的思维发散性.刘红梅在文献[5]中对二重积分的求解进行了研究,通过证明和推导指出二重积分在区域对称以及函数奇偶下有简便算法,并通过具体的实例进行求解进一步证明,巧妙利用二重积分的对称性质能极大地简化二重积分问题,提高求解的效率.3㊀对称性在二重积分计算中的应用利用对称性计算二重积分∬Df(x,y)dσ,既要考虑积分区域的对称性,又要考虑被积函数f(x,y)关于某一自变量x或y的奇偶性,而且还要将被积函数的奇偶性与积分区域的对称性相结合进行考虑.我们如果能充分利用对称性来考虑二重积分问题,那么很多时候可以简化计算.3.1㊀平面区域D是关于y轴对称的情形引理1㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于y轴对称,则有如下结论:(1)当被积函数f(x,y)关于自变量x为奇函数时,即f(-x,y)=-f(x,y),则二重积分∬Df(x,y)dσ=0;(2)当被积函数f(x,y)关于自变量x为偶函数时,即f(-x,y)=f(x,y),则二重积分∬Df(x,y)dσ=2∬D1f(x,y)dσ,其中D1是平面区域D的右半部分,即D1=(x,y)ɪD|xȡ0{}.例1㊀计算二重积分∬Dxsin(x2+y2)dxdy,其中D=(x,y)x2+y2ɤ2y{}.解㊀因为积分域D关于y轴对称,被积函数f(x,y)=xsin(x2+y2)是关于x的奇函数,所以由对称性得∬Dxsin(x2+y2)dxdy=0.3.2㊀平面区域D是关于x轴对称的情形引理2㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于x轴对称,则有如下结论:(1)当被积函数f(x,y)关于自变量y为奇函数时,即f(x,-y)=-f(x,y),则二重积分∬Df(x,y)dσ=0;(2)当被积函数f(x,y)关于自变量y为偶函数时,即f(x,-y)=f(x,y),则二重积分∬Df(x,y)dσ=2∬D2f(x,y)dσ,其中D2是平面区域D的上半部分,即D2={(x,y)ɪD|yȡ0}.㊀㊀㊀㊀㊀126㊀例2㊀计算二重积分∬D(xy2+xyex2+y22)dxdy,其中D是由直线x=1,y=x与y=-x所围区域.解㊀由积分对区域的可加性,有∬Dxy2+xyex2+y22()dxdy=∬Dxy2dxdy+∬Dxyex2+y22dxdy.设区域D:0ɤxɤ1,-xɤyɤx,{区域D1:0ɤxɤ1,0ɤyɤx,{则区域D是关于x轴对称的区域,且函数f(x,y)=xy2是关于y的偶函数,函数g(x,y)=xyex2+y22是关于y的奇函数,因此,由上面的引理知,∬Dxy2dxdy=2∬D1xy2dxdy,∬Dxyex2+y22dxdy=0,所以原二重积分∬D(xy2+xyex2+y22)dxdy=∬D12xy2dxdy=ʏ10dxʏx02xy2dy=215.3.3㊀平面区域D是关于y轴以及x轴均对称的情形引理3㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于y轴以及x轴均对称,则如果f(x,y)关于变量x,y都是偶函数,即f(-x,y)=f(x,y),且f(x,-y)=f(x,y),则∬Df(x,y)dσ=4∬D3f(x,y)dσ,其中D3是平面区域D在第一象限的部分,即D3=(x,y)ɪD|xȡ0,yȡ0{}.例3㊀计算二重积分:∬D(x+y)dxdy,其中区域D的范围是x+yɤ1.解㊀区域D是关于两坐标轴都对称的区域,同时被积函数f(x,y)=x+y关于变量x,y都是偶函数,由引理3知∬D(x+y)dxdy=4∬D1(x+y)dxdy,其中D1为区域D中的第一象限所在的部分且D1是关于直线y=x对称的,所以∬D(x+y)dxdy=4∬D1(x+y)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=43.其中D1是平面区域D在第一象限的部分,即D1={(x,y)ɪD|xȡ0,yȡ0}.3.4㊀平面区域D是关于原点对称的情形引理4㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于原点对称,则:(1)如果f(x,y)关于变量x为奇函数而关于y是偶函数(或者f(x,y)关于变量x为偶函数而关于y是奇函数),则∬Df(x,y)dσ=∬D1f(x,y)dσ+∬D1f(-x,-y)dσ=0;(2)如果f(x,y)关于变量x,y都是偶函数(或者f(x,y)关于变量x,y都是奇函数),则∬Df(x,y)dσ=2∬D1f(x,y)dσ,其中D1为原点一侧的部分.例4㊀计算二重积分:I=∬Dxydσ,其中平面区域D是由方程(x2+y2)2=2xy所确定的区域.解㊀因为区域D是关于原点对称的,且被积函数f(x,y)=xy关于变量x为奇函数,关于变量y也为奇函数,所以由引理4,有:I=2∬D1xydσ,其中D1为平面区域D的第一象限部分.下面利用极坐标计算此二重积分,得I=2∬D1xydσ=2ʏπ20cosθsinθdθʏsin2θ0γ2dγ.(计算略)3.5㊀平面区域D具有轮换对称性的情形引理5㊀若二元函数f(x,y)在平面区域D上连续,则:(1)如果积分区域D关于x,y具有轮换对称性,则∬Df(x,y)dxdy=∬Df(y,x)dxdy=12∬D(f(x,y)+f(y,x))dxdy.(2)如果区域D关于直线y=x对称,则:①如果被积函数满足f(x,y)=f(y,x),则∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.②如果被积函数满足f(x,y)=-f(y,x),则∬Df(x,y)dxdy=0.其中D1为D位于直线y=x上半部分的区域.例5㊀计算二重积分I=∬Dx2-y2x+y+3dxdy,其中区域D=(x,y)丨x+yɤ1{}.解㊀因为在积分区域中x与y互换不影响积分结果,所以该积分具有轮换对称性,由引理5,我们可得:∬Dx2x+y+3dxdy=∬Dy2x+y+3dxdy所以I=∬Dx2x+y+3dxdy-∬Dy2x+y+3dxdy=∬Dx2x+y+3dxdy-∬Dx2x+y+3dxdy=0.小结:该题巧用了积分区域的轮换性简化了计算,解题十分容易,但如果用常规方法求解,计算量很大.二重积分是‘数学分析“中积分学的重要内容之一,是学习后续课程的基础.二重积分计算的方法灵活,常常是借助直角坐标系或极坐标系,将二重积分化为定积分进行计算,但遇到比较复杂的积分计算或证明时,常规方法解题有局限性.对于被积函数或者积分区域具有某种对称性的积分计算问题,我们如果能灵活运用对称性,那么许多积分的解题过程可以化繁为简㊁化难为易,提高解题效率.ʌ参考文献ɔ[1]张云艳.轮换对称性在积分计算中的应用[J].毕节师范高等专科学校学报,2002(03):90-92.[2]马志辉.对称性在积分计算中的应用[J].高等数学研究,2017(01):102-105.[3]葛淑梅.对称区域上二重积分的简化计算方法[J].焦作大学学报,2018(01):101-103.[4]景慧丽,屈娜.一个二重积分的计算方法探讨[J].商丘职业技术学院学报,2018(01):74-76.[5]刘红梅.二重积分计算巧用对称性简化求解[J].普洱学院学报,2018(06):45-47.。

积分中的对称性-最新范文

积分中的对称性-最新范文

积分中的对称性【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。

【关键词】积分;轮换对称性;奇对称;偶对称在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。

这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。

设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi,xi+1,…,xn,x1,x2,…,xi-1)∈Dn,i=1,2,…,n。

在一元函数积分学中,我们有下面所熟悉结论:若f(x)在闭区间[-a,a]上连续,则有∫a-af(x)dx=0,f(-x)=-f(x)2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)利用这一性质,可以简化较复杂的定积分的计算。

对重积分、曲线积分及曲面积分也有类似的结论。

下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。

1对称性在重积分计算中的应用对称性在计算二重积分?Df(x,y)dσ方面的应用。

结论1若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有①?Df(x,y)dσ=0,f(x)为关于x(或y)的奇函数②?Df(x,y)dσ=2?D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。

其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。

结论2若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:①?Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;②?Df(x,y)dσ=2?D1f(x,y)dσ=2?D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。

结论3若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:①?Df(x,y)dσ=0,f(x,y)关于直线L奇对称;②?Df(x,y)dσ=2?D1f(x,y)dσ,f(x,y)关于偶对称。

对称性在积分计算中的应用

对称性在积分计算中的应用

对称性在积分计算中的应用【摘要】本文总结、归纳了积分区域的对称性(包括轮换对称性)和被积函数的奇偶性在积分计算中的一些重要结论,并通过例题演示了这些对称性的结论在计算积分时可以大大简化积分计算,提高解题效率.【关键词】积分;对称;应用一、引言在定积分的计算中,利用积分区间关于原点对称的特点和被积函数的奇偶性可以大大简化积分的计算量,起到事半功倍的效果.此性质经过推广,在二重积分、三重积分、第一型曲线积分、第一型曲面积分的计算中,利用积分区域关于坐标轴、坐标面对称的特点和被积函数的奇偶性,同样可以大大简化积分的计算.此外,在积分的计算过程中,利用积分区域和被积函数的轮换对称性也可有效地起到简化计算的作用,本文拟系统介绍这方面的结论,并举出相关应用实例给予说明.二、有关对称性的结论(一)在定积分的计算中若积分区间关于原点对称,则∫a-af(x)dx= 2∫a0f(x)dx,f(x)在[-a,a]上是偶函数,0,f(x)在[-a,a]上是奇函数.(二)在二重积分的计算中1.若积分区域D关于x轴对称,则D f(x,y)dσ=2 D 1 f(x,y)dσ,f(x,y)在区域D上关于变量y是偶函数,0,f(x,y)在区域D上关于变量y是奇函数,其中D1是区域D在x轴上方(或下方)的部分.2.若积分区域D关于y轴对称,则D f(x,y)dσ=2 D 2 f(x,y)dσ,f(x,y)在区域D上关于变量x是偶函数,0,f(x,y)在区域D上关于变量x是奇函数,其中D2是区域D在y轴右侧(或左侧)的部分.3.若积分区域D关于原点对称,则D f(x,y)dσ=4 D 3 f(x,y)dσ,f(x,y)在区域D上关于变量x和y都是偶函数,0,f(x,y)在区域D上关于变量x或y是奇函数,其中D3是区域D在第一象限的部分.4.若积分区域D关于直线y=x对称(轮换对称性),则D f(x,y)dσ= D f(y,x)dσ= 1 2 D [f(x,y)+f(y,x)]d σ.(三)在三重积分的计算中1.若积分区域Ω关于坐标面x=0对称,则Ωf(x,y,z)dv=2 Ω1 f(x,y,z)dv,f(x,y,z)关于变量x是偶函数,0,f(x,y,z)关于变量x是奇函数,其中Ω1是Ω中x≥0的部分.若把x换成y或z也有相同的结论.2.若积分区域Ω关于x,y,z具有轮换对称性,则Ωf(x,y,z)dv= Ωf(y,z,x)dv= Ωf(z,x,y)dv = 1 3 Ω[f(x,y,z)+f(y,z,x)+f(z,x,y)]dv.(四)在第一型曲線积分的计算中1.设平面分段光滑曲线L关于x轴对称,则∫Lf(x,y)ds= 2∫L1f(x,y)ds,f(x,y)关于变量y是偶函数,0,f(x,y)关于变量y是奇函数,其中L1是L上y≥0的部分(前半段).若把x换成y也有相同的结论.2.设空间分段光滑曲线L关于坐标面x=0对称,则∫Lf(x,y,z)ds=2∫L2f(x,y,z)ds,f(x,y,z)关于变量x是偶函数,0,f(x,y,z)关于变量x是奇函数,其中L2是L上x≥0的部分.若把x换成y或z也有相同的结论.3.若积分曲线L关于x,y具有轮换对称性(当x=y时曲线方程不变),则∫Lf(x,y)ds=∫Lf(y,x)ds= 1 2 ∫L[f(x,y)+f(y,x)]ds.4.若积分曲线L关于x,y,z具有轮换对称性(当x=y,y=z,z=x时曲线方程不变),则∫Lf(x,y,z)ds=∫Lf(y,z,x)ds=∫Lf(z,x,y)ds= 1 3 ∫L[f(x,y,z)+f(y,z,x)+f(z,x,y)]ds.(五)在第一型曲面积分的计算中1.设分片光滑曲面Σ关于坐标面x=0对称,则Σf(x,y,z)dS=2Σ1f(x,y,z)dS,f(x,y,z)关于变量x为偶函数,0,f (x,y,z)关于变量x为奇函数,其中Σ1是Σ上x≥0的部分(前半部分).若把x换成y或z也有相同的结论.2.(轮换对称性)若积分曲面Σ关于x,y,z具有轮换对称性,则Σf(x,y,z)dS=Σf(y,z,x)dS=Σf(z,x,y)dS= 1 3 Σ[f(x,y,z)+f(y,z,x)+f(z,x,y)]dS.三、应用举例例1 计算∫1 2 - 1 2 1-x 1-x2 dx.分析∫1 2 - 1 2 1-x 1-x2 dx=∫1 2 - 1 2 1 1-x2 dx-∫1 2 - 1 2 x 1-x2 dx,注意到积分区间关于原点对称,其中∫1 2 - 1 2 x 1-x2 dx的被积函数关于x是奇函数,所以此积分为0.而∫1 2 - 1 2 1 1-x2 dx的被积函数关于x是偶函数,由前面总结的性质可得:原式=∫1 2 - 1 2 1 1-x2 dx-∫1 2 - 1 2 x 1-x2 dx=2∫1 2 0 1 1-x2 dx=2arcsinx 1 2 0=2×π6 = π3 .例2 计算D (x2-2x+3y+2)dxdy,其中D:x2+y2≤a2.分析区域D既关于x轴对称又关于y轴对称,而x2关于x是偶函数,2x和3y分别关于x和y是奇函数,故:原式= D x2dxdy- D 2xdxdy+ D 3ydxdy+ D 2dxdy= D x2dxdy-0+0+2 D dxdy=∫2π0dθ∫a0(rcosθ)2rdr+2πa2= 9 4 πa2.例3 计算Ω(xy+1)zdv,其中Ω为曲面z= 1-x2-y2 和z= x2+y2 所围区域.分析Ω(xy+1)zdv= Ωxyzdv+ Ωzdv,Ω关于坐标面x=0对称,而xyz关于x是奇函数,故Ωxyzdv=0,所以Ω(xy+1)zdv= Ωzdv=∫2π0dθ∫π4 0dφ∫10rcosφ.r2sinφdr= π8 .例4 计算I=∮L[(x-1)2+(y-1)2+(z-1)2]ds,其中L:x2+y2+z2=R2,z= R 2 .分析原式=∮L[(x2+y2+z2)+3]ds-∮L2xds-∮L2yds-∮L2zds,考虑到曲线L关于yOz面对称,2x是关于x的奇函数,所以∮L2xds=0,同理,曲線L关于zOx面对称,2y是关于y的奇函数,所以∮L2yds=0,所以原式=∮L[(x2+y2+z2)+3]ds-∮L2zds=∮L(R2+3)ds-∮LRds=(R2-R+3)∮Lds=(R2-R+3)·2π· 3 2 R= 3 πR(R2-R+3).例5 计算曲面积分S(x+y+z)ds,其中S为上半球面z= a2-x2-y2 .分析曲面关于坐标面x=0,y=0对称,而x和y分别关于变量x和y为奇函数,故S(x+y)ds=0,又S在坐标面z=0上的投影为x2+y2≤a2.且ds= 1+z2x+z2y = 1+ x2 a2-x2-y2 + y2a2-x2-y2 = a2 a2-x2-y2 = a z ,原式=Szds=x2+y2≤a2z·a z dxdy=ax2+y2≤a2dxdy=πa3.例6 计算Ω(x2+z2)dv,其中Ω:x2+y2+z2≤1.分析积分区域是个单位球,关于x,y,z具有轮换对称性,所以Ω(x2+z2)dv= Ω(y2+x2)dv= Ω(z2+y2)dv,1 3 Ω(x2+z2+y2+x2+z2+y2)dv= 2 3 Ω(x2+y2+z2)dv= 2 3 ∫2π0dθ∫π0dφ∫10r4sinφdr= 8 15 π.例7 计算∮L(z+y2)ds,其中L:x2+y2+z2=R2,x+y+z=0.分析由空间曲线L的方程知道,当x=y,y=z,z=x时,曲线L的方程不变,具有轮换对称性,所以∮Lxds=∮Lyds=∮Lzds,∮Lx2ds=∮Ly2ds=∮Lz2ds,于是∮Lzds= 1 3 ∮L(x+y+z)ds= 1 3 ∮L0ds=0,∮Ly2ds= 1 3 ∮L[x2+y2+z2]ds= R2 3 ∮Lds= 2πR3 3 ,所以∮L(z+y2)ds= 2 3 πR3.例8 计算Σ(x+z+1)2dS,其中Σ:x2+y2+z2=R2.分析Σ(x+z+1)2dS= Σ(x2+z2+1+2xz+2x+2z)dS.由积分曲面Σ的对称性及被积函数为奇函数的特点,知ΣxdS=0,ΣzdS=0,ΣxzdS=0.又由积分曲面Σ的轮换对称性知,Σx2dS= Σy2dS= Σz2dS= 1 3 Σ(x2+y2+z2)dS,所以Σ(x+z+1)2dS= 2 3 Σ(x2+y2+z2)dS+ Σ1·dS = 2 3 R2 ΣdS+4πR2= 8 3 πR4+4πR2.通过上面这些例子的计算演示可以看出,在计算积分的过程中,如果能及时利用积分区域(区间)的对称性和被积函数的奇偶性以及积分区域的轮换对称性,在很多时候可以有效减少烦琐的计算量,提高解题效率.。

对称性在第二类曲面积分计算中的应用

对称性在第二类曲面积分计算中的应用

对称性在第二类曲面积分计算中的应用作者:邓艳来源:《速读·下旬》2018年第01期摘要:第二类曲面积分既是高等数学教学中的一个重点,也是一个难点。

其计算方法灵活多样,本文主要介绍对称性在第二类曲面积分计算中的应用,这是一种十分有效而又灵活简便的方法。

关键词:第二类曲面积分;奇偶对称;轮换对称第二类曲面积分的计算既是高等数学教学中的一个重点,也是一个难点。

从学员反馈情况来看,总体掌握不是很好,对称性是积分运算中经常遇到的一种技巧,有效的运用对称性,可以达到简化计算的目的。

为此,本文不仅给出了当空间区域关于坐标面或原点对称,且定义在该区域上的函数具有相应的奇偶性时的简化计算公式,还介绍了轮换对称性在第二类曲面积分计算中的应用。

一、奇偶对称性在第二类曲面积分计算中的应用1.设分块光滑的定向曲面∑关于xoy平面对称,∑在xoy平面上方部分记为∑1(方程为z=z (x,y),(x,y∈Dxy)),下方部分记为∑2,又设R(x,y,z)在∑上连续,则:[∑Rx,y,zdxdy=0,若R关于z为偶数2∑1Rx,y,zdxdy,若R关于z为奇函数]证明:[∑Rx,y,zdxdy=∑1Rx,y,zdxdy+∑2Rx,y,zdxdy]由[∑1]的方程可得[∑2]的方程:[z=-zx,y,(x,y)∈Dxy],设[∑1]的法向量与z轴正向成锐角,于是[∑2]的法向量与z轴正向成钝角,将面积分化为二重积分得:[∑1Rx,y,zdxdy=DxyRx,y,z(x,y)dxdy][∑2Rx,y,zdxdy=-DxyRx,y,-z(x,y)dxdy][=-DxyRx,y,z(x,y)dxdy,若R关于z为偶函数,DxyRx,y,z(x,y)dxdy,若R 关于z为奇函数。

]两式相加即得结论。

同理可证对于[∑Qx,y,zdzdx]与[∑Px,y,zdxdy]有类似结论。

2.设分块光滑定向曲面∑关于原点对称,记同向对称的有向曲面为[∑1]和[∑2],又设[R (x,y)]在∑上连续,则:[∑Rx,y,zdxdy=0,若R-x,-y,-z=Rx,y,z 2∑1Rx,y,zdxdy,若R-x,-y,-z=-Rx,y,z]同理对于[∑Qx,y,zdzdx]与[∑Px,y,zdxdy]有类似结论。

对称性在积分计算中的应用

对称性在积分计算中的应用

对称性在积分计算中的应用对称性在积分计算中的应用对称性是数学中重要的概念之一,它的应用涉及到各个数学领域中。

在积分计算中,对称性也是一个非常重要的工具和思想,能够帮助我们简化、优化和解决复杂的积分问题。

本文将介绍对称性在积分计算中的应用,以及如何利用对称性求解各类复杂积分。

一、对称性概述对称性是指物体或者数学对象的部分或整体运动具有某种规则性的现象。

常见的对称性包括轴对称、中心对称、对角线、对边对称、等等。

对称性是自然界现象和数学理论中广泛存在的一种现象,也是数学中强有力的工具和思想。

二、对称性在积分计算中的基本应用对称性在积分计算中的使用具有以下优点:1.减少计算量:使用对称性可以将积分的计算范围缩小为对称区间内的一半,从而大大减少了计算量,简化了计算过程。

2.避免重复计算:利用对称性可以避免重复计算某些部分,减少了计算量和出错的概率。

3.提高准确度和精度:对称性具有非常清晰的数学定义和可操作性,使用对称性可以提高准确度和精度,更好地描述数学对象的性质和特征。

下面分别对轴对称、中心对称、对角线对称、对边对称等对称性进行介绍,并说明其在积分计算中的具体应用。

1.轴对称轴对称是指数学对象在某个轴线旋转180度以后不改变其形状和大小。

在数学中,轴对称包括平面上的x轴、y轴和45度斜线轴等。

轴对称在积分计算中的应用非常广泛,常见的应用包括:(1)基本函数关于坐标轴对称的性质:例如正弦函数和余弦函数关于y轴对称,正切函数和余切函数关于x轴对称。

利用这些对称性质可以简化复杂函数的积分。

(2)轮换对称性:对于一类具有一定规则性的函数,可以通过对其进行轮换得到新的函数,这样可以将原函数分成几个对称的部分,从而提高计算效率。

例如,对于函数f(x,y) = x + y的积分计算,因为其具有xy的轮换对称性,可以将其分解成两部分f1(x,y) = x和f2(x,y) = y,从而使积分计算简化。

(3)利用轴对称性质求偶函数和奇函数的积分:如果f(x)是关于y轴对称的偶函数,则∫f(x)dx从-x到x之间的积分等于2∫f(x)dx从0到x之间的积分,即∫-xf(x)dx = 2∫0f(x)dx如果f(x)是关于y轴对称的奇函数,则∫f(x)dx从-x到x之间的积分等于0。

轮换对称性在积分中的应用

轮换对称性在积分中的应用
却是十分有力的指挥棒. 因此十分重要的是改革目前硕士研究生入学考试的高等数学科目中有关 概率统计的内容, 把考察考生应用数理统计方法解决实际问题的能力作为主要目的.
以上仅是个人的一得之见. 因深感这一问题相当重要, 在此提出来, 期望引起概率统计界同仁 的重视和进一步的探讨.
28 S TU
DIES
IN
高等数学研究 COLLEGE M ATHE MAT
ICS
VMoalr.
4, .,
No. 1 20 01
轮换对称性在积分中的应用
陈云新 ( 南华大学数理部 湖南衡阳 421001)
在某些积分的计算过程中, 若积分区域具备轮换对称性, 则可以简化积分的计算过程。本文讨 论了利用轮换对称性简化二重积分, 三重积分, 第一, 二类曲线积分, 第一, 二类曲面积分的计算方 法。( 以下都在积分存在下予以讨论)


! ! ! ! 3[ x z dx dy + x z dx dy + x z dx dy + x z dx dy ] =
∃1
∃2
∃3
∃4
! 0 + 0 + 0 + 3 x ( 1 - x - y ) dx dy =
Dx y
∫ ∫ 1
1- x
3 xdx ( 1- x - y) dy =
0
0
1 8
( 上接第 6 页)
五、第二类曲线积分的轮换对称性
∫ ∫ ∫ 若积分曲线 # 关于 x , y , z 具有轮换对称性, 则: P ( x , y , z ) d x = P ( y , z , x ) d y = P( z , x ,
#
#
#
∫ y ) dz =

对称性在积分计算中的应用规律

对称性在积分计算中的应用规律

对称性在积分计算中的应用规律王庆东;刘磊【摘要】利用积分域的对称性简化积分计算是优先考虑的计算策略之一。

如果积分域由对称的两部分组成,首先考察积分域是否具有方向性,然后考察被积函数在对称点处的函数值是否相等或者相反。

当积分域无方向性时,若被积函数在对称点处的函数值相等,则积分简化成半个积分域上积分的2倍;若被积函数在对称点处的函数值相反,则积分为零。

当积分域有方向性时,结论正好与积分域无方向性时的结论相反。

如果积分域具有轮换对称性,当对被积函数做相应的坐标轮换时,积分值不变。

%Using the symmetry of integral domain to simplify integral calculation is one of the priority calculation strategies. If the integral domain is composed of two symmetrical parts,must examine whether the integral domain has directionality first,and then examine whether the value of integrand on the symmetrical points are equal or opposite.The integral twice times reduced to half an integral domain when the integral domain has no directionality and the value of integrand on the symmetrical points are equal.The integral is zero when the integral domain has no directionality and the value of integrand on the symmetrical points are opposite.When the integral domain has directionality,conclusion of integral is just the opposite of the integral domain with no directionality.If the integral domain has translatable symmetry,then the integral value unchanged when the integrand also be done the corresp-onding coordinate translation.【期刊名称】《高师理科学刊》【年(卷),期】2015(000)003【总页数】4页(P17-20)【关键词】积分域;对称性;方向性;对称点;轮换对称性【作者】王庆东;刘磊【作者单位】商丘师范学院数学与信息科学学院,河南商丘 476000;商丘师范学院数学与信息科学学院,河南商丘 476000【正文语种】中文【中图分类】O172.2不论是定积分,还是重积分、线积分和面积分,利用积分域的对称性简化运算是需要优先考虑的计算策略之一.其中,多元函数积分的计算比定积分的计算更加繁琐,更需要利用积分域的对称性简化计算.针对这一问题,文献[1-6]等进行了研究,提出了一些方法,但不便于学生掌握.基于此,本文讨论对称性在积分计算中的应用规律,力求使结论更简明.设曲面方程为,只改变 1个变量的符号,可以确定曲面关于坐标面的对称性;改变 2个变量的符号,可以确定曲面关于坐标轴的对称性;改变3个变量的符号,可以确定曲面关于原点的对称性;若改变1个变量、2个变量、3个变量的符号,方程都不变,则曲面关于8个卦限对称.如若把z改为,则曲面关于xoy坐标面对称;若把,有,则曲面关于z轴对称;若把,有,则曲面关于原点对称.至于平面区域对称性的判断,这里不再赘述.如果积分域由对称的两部分组成,无论积分域无方向性(包括定积分、重积分、第一型曲线积分和第一型曲面积分),还是积分域有方向性(包括第二型曲线积分和第二型曲面积分),都可以应用对称性化简积分计算的统一规律进行相关计算,即定理1.定理1 设函数f在有界可度量几何体D上可积,D由关于某直线、某平面或原点对称的两部分D1和组成,p,p′为分别属于的任意一对对称点,分别表示上积分变量的微元(包括微元的符号),则(1)若在对称点处有(2)若在对称点处有简言之,当积分域由对称的两部分组成时,若在对称点处被积函数的函数值与积分变量微元(包括微元的符号)的乘积相等,则积分可简化成半个积分域上积分的2倍;若在对称点处被积函数的函数值与积分变量微元(包括微元的符号)的乘积互为相反数,则积分为零.证明用任一分割T把分成若干小积分域的度量为为细度,则′的度量为对称.任取对称的介点和(2)若证毕.为便于应用,分别讨论积分域有方向性或无方向性时定理1的具体形式.2.1 积分域无方向性的情形如果积分域无方向性,且由对称的两部分组成,则定理1表现为定理2.定理2 设函数f在有界可度量几何体D上可积,D无方向性,且由对称的两部分D1和 D2组成.当D分别是闭区间,平面区域、三维区域、光滑弧段或光滑曲面时,用dσ,σ′相应表示 D1,2D上积分变量的微元(定积分)、平面面积微元(二重积分)、体积微元(三重积分)、弧长微元(第一型曲线积分)或曲面面积微元(第一型曲面积分),则(1)若f在对称点处的函数值相等,则(2)若f在对称点处的函数值互为相反数,则简言之,当积分域由对称的两部分组成且积分域无方向性时,若对称点处被积函数的函数值相等,则积分简化成半个积分域上积分的2倍;若对称点处被积函数的函数值相反,则积分为零.证明若D无方向性,则在定理1的证明中,的度量相等,即从而1 i = .故结论成立. 证毕.特殊情形下,有推论1~4.推论1 设D是关于, xy轴都对称的平面区域,它由对称的两部分是D位于第一象限的部分,dσ表示平面区域的面积微元,则当f关于, xy都是偶函数时,当f 关于x或y是奇函数时,则事实上,按照推论1,多次“折叠”积分区域,就把问题归结到了第一象限.推论2 设D是关于直线对称的平面区域,它由对称的两部分是对称点, 1D是D位于y x= 上方的部分区域,dσ表示平面区域的面积微元,则当时,推论3 设D是关于xoy坐标面对称的三维区域,由对称的两部分1D和2D组成,1D是D位于xoy坐标面上方的部分,dσ表示三维区域的体积微元,则当 f关于z是偶函数时,;f关于z是奇函数时,推论4 设D是关于坐标面都对称的三维区域, 1D是D位于第一卦限的部分,dσ表示三维区域的体积微元,则当f关于x,y,z都是偶函数时,;当f关于x或y或z是奇函数时,则2.2 积分域有方向性的情形如果积分域有方向性,且由对称的两部分组成,则积分计算不仅要考虑f的对称性,还要考虑D的有向投影的对称性,这与D无方向性时不同.此时定理1表现为定理3.定理3 设D有方向性,当D分别是平面有方向曲线、空间有方向曲线或双侧曲面时,用dσ相应表示平面曲线弧长元素向量的某一分量(平面曲线上的第二型曲线积分)、空间曲线弧长元素向量的某一分量(空间曲线上的第二型曲线积分)或曲面面积元素向量的某一分量(第二型曲面积分).D由关于dσ所在的坐标轴或坐标面对称的两部分 1D和 2D组成,则当f在对称点处的函数值相等时,;当f在对称点处的函数值互为相反数时,简言之,当积分域由对称的两部分组成,且积分域具有方向性时,应用对称性简化积分的规律恰好与积分域无方向性时相反.证明若积分域D有方向性,且D关于dσ所在的坐标轴或坐标面对称,则D1D2,在dσ所在的坐标轴或坐标面上的有向投影反方向,故,故结论成立. 证毕.特别地,当D是平面有向曲线,且由关于σ轴对称的 D1和 D2组成时,记σ⊥轴为另一坐标轴,若存在,则有定理4.定理4 设D是平面有向曲线,D由关于σ轴对称的 D1和 D2组成,σ⊥轴为另一坐标轴,存在,则当f在对称点处的函数值相等时,;当f在对称点处的函数值互为相反数时,简言之,当积分域是平面有方向曲线且关于某坐标轴对称时,关于另一个坐标轴的第二型线积分的对称性应用规律恰好与积分域无方向性时相同.证明因D是平面有向曲线,且D关于σ轴对称,故D1D2,在σ⊥轴上的有向投影同方向,因此,在,结论成立. 证毕.定义对于区域D,若对于任意点,则称D具有轮换对称性.在积分中,若积分域具有轮换对称性,利用坐标轮换本质是将坐标轴重新轮换命名,被积函数的变量也作相应的轮换,积分范围并没变化,差别仅仅在于所使用的积分变量的形式不同,由于积分只与被积函数及积分域有关,而与积分变量的形式无关,因此积分值不变.定理5 若积分域D具有轮换对称性,则(1)重积分:(2)第一型线积分:(3)第一型面积分:(4)第二型线积分:(5)第二型面积分:【相关文献】[1]马德炎.对称性在重积分及曲面积分中的应用[J].高等数学研究,2011,14(4):93-94 [2]李治飞.多元函数积分的简化计算[J].高等数学研究,2011,14(2):34-36[3]常浩.对称性在积分学中的应用[J].高等数学研究,2011,14(2):59-63[4]吴克坚,李文潮,王连昌.积分计算中的对称性定理及应用[J].高等数学研究,2008,11(2):24-26,35[5]秦勇.再谈轮换对称性[J].高等数学研究,2007,10(2):20-22[6]王建刚.轮换对称性在解题中的应用[J].高等数学研究,2005,8(2):12-13。

对称性在积分计算中的应用精编

对称性在积分计算中的应用精编

对称性在积分计算中的应用引言积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.那么,如果我们在解题中发掘或注意到问题的对称性,并巧妙地把它们应用到积分的计算过程中去,往往可以简化计算过程,达到事倍功半的效果,我们甚至可以不用计算就可以直接判断出其结果.在积分计算中利用对称性来解题这种方法,是一种探索性的发现方法,它与其他方法的不同之处主要体现在其创造性功能. 因此,掌握和充分利用对称性求积分这一方法,对于活跃和开拓我们学生的创造性思维,提高判断解题能力,探讨解题方法是十分有益的.下面从定积分、积分、线面积分三方面来介绍一下对称性在积分计算中的应用.一、相关的定义设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)。

二、对称性在定积分中的应用(一) 定积分的概念 1. 概念设函数)(x f 在],[b a 上有界,(1) 在],[b a 内插入若干个分点,......210b x x x x a n =<<<<=把区间[,]a b 分成n 个小区间01121[,],[,],......[,],n n x x x x x x -各个小区间长度依次为110221,,x x x x x x ∆=-∆=-1.......n n n x x x -∆=-(2) 在每个小区间上任取一点1(),()i i i i i x x f ξξξ-≤≤作函数与小区间长度i x ∆的乘积()(1,2,......,),i i f x i n ξ∆=,并作出和 1().ni i i S f x ξ==∆∑(3) 记12max{,,......,},n x x x λ=∆∆∆如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么这个极限称为函数的()f x 在区间],[b a 上的定积分,记为⎰ba dx x f )(即记为1()()nbi i ai f x dx I f x ξ===∆∑⎰其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],[b a 叫做积分区间. 2. 几何意义几何上,⎰<ba b a dx x f )()(表示曲线()y f x x =与轴,,x a x b ==所围曲边梯形面积的代数和.(二) 对称性在定积分中的性质性质 1 若()x f [,]a b k 在上可积,为常数,则()x kf 在],[b a 上也可积,则⎰b adx x kf )(⎰=badx x f k )(性质 2 ()()上也可积,且在则上可积都在若],[)()(,],[,b a x g x f b a x g x f ±.)()()]()([dx x g dx x f dx x g x f bab aba⎰⎰⎰±=±性质 3 ()()()()上也可积在上可积,则在都在若],[],[,b a x g x f b a x g x f ⋅ 性质 4 ()()上与在任给上可积的充要条件是:在],[],[),,(],[b c c a x f b a c b a x f ∈.都可积.)()()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f 此时又有等式规定 1 0)(⎰==badx x f b a 时,令当.规定 2 .)()(⎰⎰-=>abb adx x f dx x f b a 时,令当 .性质 5 ()⎰≥∈≥badx x f b a x x f b a x f .0)(],,[,0)(.],[则若上的可积函数为设推论(积分不等式性)()()],,[),()(],[b a x x g x f b a x g x f ∈≤上的两个可积函数,且为与若性质 6()().)()(],[],[dx x f dx x f b a x f b a x f baba⎰⎰≤上也可积,且在上可积,则在若(三) 对称性在定积分中的定理定理1 若)(x f 在a][-a,(a>0)上连续且为偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(.证明 因为 ⎰⎰⎰+=--aaaadx x f dx x f dx x f 0)()()(对积分作代换-t x =,则得⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f dx x f 0)()()()(所以 ⎰⎰⎰⎰-+=+=--aa aaadx x f x f dx x f dx x f dx x f 00)]()([)()()((1) 若)(x f 为偶函数,则)(2)()(),()(x f x f x f x f x f =+-=-即 所以⎰⎰=-aaadx x f dx x f 0)(2)((2) 若)(x f 为奇函数,则0)()(),()(=+--=-x f x f x f x f 即 所以0)(=⎰-aa dx x f .注 定理1可简化计算偶函数,奇函数在对称于原点的区间上的定积分为0.(四) 对称性在定积分中的应用举例 例 1 dx x x 23111)1(-+⎰-解 =⎰⎰---+-112311211dxx x dx x因为积分区间关于原点对称,而2-1x 是偶函数,231x x -是奇函数,故,011123=-⎰-dx x x设 x =y sin 2cos 1222112πππ⎰⎰--==-dy y dx x原式=2π 例 2 计算()2x 2ln 1e x dx -+⎰因为积分区间关于原点对称,但()x e 1ln +既不是奇函数也不是偶函数,我们可()().b ba af x dxg x dx ≤⎰⎰则有利用()()()()()22x f x f x f x f x f --+-+=.其中()()2x f x f -+为偶函数,()()2x f x f --为奇函数,把它分解为一个偶函数和一个奇函数之和.解 令()()x x f e 1ln +=,则()()()x x x f x f -++=-+e e 2ln 212,()()x x f x f 212=--,()()2222x x -x 222220118ln 1+e ln 2e e d 223x dx x x dx x x x dx ---⎡⎤=+++===⎣⎦⎰⎰⎰⎰所以有例3 计算 ⎰-+22223sin )cos (ππxdx x x分析 由于x x 23sin 是一个奇函数, x x 22sin cos 是一个偶函数,并且积分区域]2,2[ππ-关于原点对称,因此可用定理1来计算. 解 由定理1得 原式⎰⎰--+=22222223sin cos sin ππππxdx x xdx x⎰-+=2222sin cos 0ππxdx x=)sin sin (2204202⎰⎰-ππxdx xdx 其中220sin xdx π⎰=22222220sin cos (sin cos cos )sin xd x x xx dx dx x dx πππππ-=--=-⎰⎰⎰⎰2220sin xdx π⎰=2π ,220sin xdx π⎰=221π⋅ 同理得:22143)sin 204ππ⋅⋅=⎰xdx原式 )22143221(2ππ⋅⋅-⋅=8π=.利用函数关于直线对称以及区间关于直线对称,应用定理得出积分为0,使上述复杂积分简单化,易得出结论.三、对称性在二重积分中的应用(一)二重积分的概念 1 概念设(,)f x y 是有界闭区域D 上的有界函数,(1) 将闭区域D 任意分成n 个小闭域12,,......,,n σσσ∆∆∆其中i σ∆表示第i 个小闭区域,也表示它的面积.(2) 在每个i σ∆上任取一点(,),i i εη 作乘积(,)i i i f εησ∆ (1,2,......,),i n =并作和1(,),niiii f εησ=∆∑(3) 如果当个小闭区域的直S 径的最大值0λ→时,这和的极限总存在,则称此极限为函数(,)f x y 在闭区域D 上的二重积分,记作 01(,)lim (,)ni i i i Df x y d f λσεησ→==∆∑⎰⎰其中(,)f x y 叫做被积函数,(,)f x y d σ叫做被积表达式,d σ叫做面积元素,x y 与叫做积分变量,D 叫做积分区域,1(,)ni i i i f εησ=∆∑叫做积分和.2 几何意义当(,)f x y 为闭区域D 上的连续函数,且(,)0,f x y ≥则二重积分(,)Df x y d σ⎰⎰表示以曲面(,)z f x y =为顶,侧面以D 的边界曲面为准线,母线平行于z 轴的曲顶柱体的体积.一般地,(,)Df x y d σ⎰⎰表示曲顶柱体体积的代数和.(三) 二重积分的性质性质 7 上也可积,且在为常数,则上可积,在区域若D y x kf k y x f ),(D ),(⎰⎰⎰⎰=DDd y x f k d y x kf .),(),(σσ性质 8 上也可积,且在上都可积,则在若D y)g(x,y)f(x,D ),(),,(±y x g y x f⎰⎰⎰⎰⎰⎰±=±DDDd y x g d y x f d y x g y x f .),(),(]),(),([σσσ性质 9 若 ),(y x f 在1D 和2D 上都可积,且1D 与2D 无公共内点,则),(y x f 在1D ⋃2D 上可积,且.),(),(),(2121σσσd y x f d y x f d y x f D D D D ⎰⎰⎰⎰⎰⎰+=⋃性质 10 则上可积,且在与若,),(),,(),(),(),(D y x y x g y x f D y x g y x f ∈≤⎰⎰⎰⎰≤DDd y x g d y x f .),(),(σσ性质 11 ⎰⎰Dd y x f D y x f D y x f σ),(),(),(上也可积,且在上可积,则在若σd y x f D⎰⎰≤),(性质 12 σd y x f mS D y x M y x f m D y x f DD ),(,),(,),(),(⎰⎰≤∈≤≤则上可积,在若.,的面积是积分区域这里D S MS D D ≤(三) 对称性在二重积分中的定理定理2 设有界闭区域12D D D = ,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则⎰⎰Dd y x f σ),(0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)iD f x y d σ⎰⎰(1,2)i =注 设函数),(y x f 在有界闭区域D 上连续(i)若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y y x f d y x f 2),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中2D 是D 的上半部分 2D =}0|),{(≥∈y D y xy)(x y ϕ=1Da 0b x2D)(-x y ϕ= 图1 证明12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰ (1)若区域D 对称于x 轴(图1),对任意(,)P x y ∈1D ,其对称点(,)P x y '-∈2D1D ={}0(),y x a x b ϕ≤≤≤≤,2D ={}()0,x y a x b ϕ-≤≤≤≤,令x xy t=⎧⎨=-⎩, 则2D 变换为xot 坐标面上的{}10()D t x a x b ϕ=≤≤≤≤,,且雅可比行列式(,)(,)x y x t ∂∂10101==--. 故2(,)D f x y dxdy ⎰⎰=1(,)1D f x t dxdt -∙-⎰⎰=1(,)D f x y dxdy -⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪⎪⎨--=-⎪⎪⎩⎰⎰⎰⎰,于是,代入(1)式得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y =--⎧⎪=⎨=-⎪⎩⎰⎰⎰⎰ 0 , ,(ii) 若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f x y x f d y x f 1),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y xy)(y x ϕ-= d )(y x ϕ=2D 1D 0 xc图2证明 若区域D 对称于y 轴(图2),对任意(,)P x y ∈1D ,对称点(,)P x y '-∈2D ,类似 (i) 的证明可得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y -=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰ 0 , ,定理 3 设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续 (1)若),(y x f 关x 和y 均为偶函数,则1(,)4(,),DD f x y d f x y d σσ=⎰⎰⎰⎰其中1D 是D的第一象限的部分1{(,)|0,0}D x y D x y =∈≥≥(,)f x y (2)若关x 和y 均为奇函数,则(,)0Df x y d σ=⎰⎰定理 4 设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y xy2D 1D )(x y ϕ= 0 x a b)(x y ψ=图3证明 若区域D 对称于原点(图3),对任意(,)P x y ∈1D ,对称点P '(,)x y --∈2D ,{}1()()D x y x a x b ψϕ=≤≤≤≤,, {}2()()D x y x b x a ϕψ=--≤≤---≤≤-,,令x uy v =-⎧⎨=-⎩, 则区域2D 变换为uov 坐标平面内区域{}1()()D x y x a x b ψϕ=≤≤≤≤,,雅可比行列式(,)(,)x y u v ∂∂10101-==-,所以2(,)D f x y dxdy ⎰⎰=1(,)D f u v dudv --⎰⎰=1(,)D f x y dxdy --⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdyf x y f x y f x y dxdy f x y f x y ⎧---=-⎪⎪⎨--=⎪⎪⎩⎰⎰⎰⎰,代入12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰,得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰ 0 ,若 ,若定理 5 设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰(四) 对称性在二重积分中的应用举例例 4 计算二重积分25sin Sx ydxdy ⎰⎰,其中S 是由1x y +=,0x =,1x y -=所围成的区域.解 积分区域S 关于x 轴对称(见图),且ydxdy x S52sin ⎰⎰为关于y 的奇函数,故由定理225sin 0Sx ydxdy =⎰⎰例 5 设 :sin ,,12D y x x y π==±= 围成求 (1)Dxy dxdy-⎰⎰x 2π-= y x 2π=y=1x图5x11-10 图4y解 12DDD D DI xydxdy dxdy xydxdy xydxdy dxdy =-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰因为12D D 和关于y 轴对称,所以由定理2知120D D xydxdy xydxdy +=⎰⎰⎰⎰所以 原式 =Ddxdy π=⎰⎰例 6 计算二重积分 222(373),: 1.DI x x y d D x y σ=++++≤⎰⎰其中解 见下图 D 关于x y 轴轴都对称,而37x y 和分别关于变量x 和变量y 为奇数 所以由定理330,Dxd σ=⎰⎰70Dyd σ=⎰⎰设 θσθr d r d d r x ==,c o s ,=⎰⎰σd x D2rdr r d ⎰⎰πθθ2012)cos ( 所以 原式πθθπ3)cos (2012+=⎰⎰rdr r d π411=yDx图6例 7 计算 (),DI x y d x d y =+⎰⎰ 其中: 1.D x y +≤解 D x y 关于轴,轴对称,且被积函数关于x 和y 是偶函数,即有(,)f x y -=(,)(,)f x y f x y -=由定理3,有1()()DD I x y dxdy x y dxdy =+=+⎰⎰⎰⎰,其中1D D 是的第一象限部分,由对称性知11D D x dxdy y dxdy =⎰⎰⎰⎰22(3)3DDDI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰故 11144()4()8.3D D D I x y d x d y xx d x d y x d x d y =+=+==⎰⎰⎰⎰⎰⎰例 8 计算2()Dxy x y dxdy +⎰⎰其中D 是由,1,1y x y y ===-0x =以及所围城的闭区域图7解 如图, 12D D D =+,1D 、2D 关于原点对称,但被积函数不满足(,)(.)f x y f x y =--,也不满足(,)(.)f x y f x y =---,故不能直接用定理来计算, 所以令1(,)f x y xy = , 22(,)f x y x y =对1(,)f x y 和2(,)f x y 分别应用定理4,则11(,)2DD f x y dxdy xydxdy =⎰⎰⎰⎰,2(,)0Df x y dxdy =⎰⎰,故 2()DI xy x y dxdy =+⎰⎰41221001==⎰⎰⎰⎰xD xydydx xydxdy 例 9 设()f x 为恒正的连续函数,计算积分222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 解 由于积分区域222x y r +≤关于y x =对称,所以由定理5 ,可得222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=222()()()()x y r af y bf x dxdy f y f x +≤++⎰⎰, 于是222()()2()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 222222()()()()()()()()x y r x y r af x bf y af y bf x dxdy dxdy f x f y f y f x +≤+≤++=+++⎰⎰⎰⎰ 222()x y r a b dxdy +≤=+⎰⎰=2()a b r π+.故222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=2()2a b r π+.四、对称性在三重积分中的应用根据被积函数的奇偶性及积分区域的对称性可以简化三重积分的计算,三重积分的计算中也有相应的对称性定理. (一) 对称性在三重积分中的定理定理6 设Ω由0),,(≤z y x ϕ表示,若将x 和y 的位置交换后,0),,(≤z x y ϕ仍然表示Ω,则⎰⎰⎰Ωdv z y x f ),,(=⎰⎰⎰Ωdv z x y f ),,(,这种位置的对称,也称变量可轮换性.定理7 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于xoy 面对称,函数),,(z y x f 在Ω上可积,则⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上是关于在当的偶函数上是关于在当z f z f dxdydvz y x f dv z y x f ,0,),,,(2),,,(1定理8 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于z 轴对称,函数),,(z y x f 在Ω上可积,则:⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上为关于在当的偶函数上为关于在当y x f y x f dxdydzz y x f dxdydz z y x f ,,0,,),,,(2),,,(1(二) 对称性在三重积分中的应用举例例10 计算⎰⎰⎰++ωdu z y x )(,其中Ω:≤++222z y x R 2,(0,00,≥≥≥z y x ).解 本题具有变量位置的对称,因此有⎰⎰⎰ωxdu =⎰⎰⎰ωydu =⎰⎰⎰ωzdu 设D z :)0,0(2222≥≥=++y x R z y x ,则原式为 3⎰⎰⎰ωzdu =3⎰⎰⎰RD zdxdy zdz 0=43⎰Rdz z R z 022)-(π=1634R π 可见,类似的题目都只需计算其中任意一元数值,及对应系数,即可求得结果.例11 计算⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222,其中ω:≤++222z y x 1. 分析 很显然,ω关于xoy 面对称,可以直接运用定理7.解 因为ω关于xoy 面对称,且被积函数1)1ln(),,(222222++++++=z y x z y x z z y x f 在ω上连续并为关于z 的奇函数,故 ⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222 =0. 例12 计算⎰⎰⎰Ω+dV yx xyz 22,其中Ω为xy a 22222)z y (x =++与0=z 两曲面所围区域.解 显然,积分区域Ω关于z 轴对称,且22),,(y x xyzz y x f +=为关于x 、y 的偶函数,又因为≥++2222)(z y x 0,所以xy 同号.因而Ω分布在一、四象限内,从而由定理8得到⎰⎰⎰Ω+dV y x xyz 22=⎰⎰⎰Ω+1222y x xyzdxdydz =⎰⎰⎰θθϕππθθϕϕϕθcos sin sin 03202cos sin cos sin 2a dr r d d= ⎰⎰=202045334144cos sin cos sin 2ππϕϕϕθθθad d a .小结 用对称性定理来简化二重积分和三重积分的计算,有时候可以起到事半功倍的效果.对于一般的对称性定理,若加以适当拓广,还可以用来巧妙地求解一些重积分的计算和证明问题.五、对称性在曲线积分中的应用(一) 对称性在曲线积分中的定理 设函数),(y x f 定义在二维光滑曲线上1.若),(y x f 满足关系式),(y x f -=),(y x f 或),(y x f -=),(y x f ,则称),(y x f 为偶函数.2.若),(y x f 满足关系式),(y x f -=),(y x f -或),(y x f -=),(y x f -,则称),(y x f 为奇函数.定理9 设分段光滑的平面曲线L 关于x 轴对称,记L 在上半平面的部分为1L ,下半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L Ly y x f ds y x f y y x f ds y x f 的偶函数为关于的奇函数为关于 定理10 设分段光滑的平面曲线L 关于y 轴对称,记L 在右半平面的部分为1L ,左半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L L x y x f ds y x f x y x f ds y x f 的偶函数为关于的奇函数为关于 推论1 设分段光滑的平面曲线L 关于原点对称,则⎪⎩⎪⎨⎧I =⎰⎰11),(,),(4),(, 0),(L L L L x y y x f ds y x f x y y x f ds y x f 象限中的部分)位于第是的偶函数(其中或为关于的奇函数或为关于定理11 设分段光滑的平面曲线L 关于x 轴对称,则(1)⎰L dx y x P ),(=⎰--L dx y x P ),(=21⎰--Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰-L dy y x P ),(=21⎰-+L dy y x P y x P )],(),([定理12 设分段光滑的平面曲线L 关于y 轴对称,则 (1)⎰Ldx y x P ),(=⎰-Ldx y x P ),(=21⎰-+Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰--L dy y x P ),(=21⎰--L dy y x P y x P )],(),([ 推论2 设分段光滑的有向平面曲线L 关于x 轴对称,(L 在上半平面部分记为1L ,在下半平面部分记为2L ),1L 与2L 方向相反,则(1) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于y y x P dy y x P y y x P dy y x P(2) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于y y x Q dy y x Q y y x Q dy y x Q推论3 设分段光滑的有向平面曲线L 关于y 轴对称,(L 在右半平面部分记为1L ,在左半平面部分记为2L ),1L 与2L 方向相反,则(1)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于x y x P dy y x P x y x P dy y x P(2)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于x y x Q dy y x Q x y x Q dy y x Q(二) 对称性在曲线积分中的应用举例 例13 计算⎰=++1||||||||y x ds y x x解 因为积分曲线关于原点对称,被积函数||||),(y x xy x f +=为关于x 的奇函数,由推论1,得⎰=++1||||||||y x ds y x x=0 例14 计算⎰+Lxydy e x1,其中L 关于x 轴对称,取逆时针方向, L 所围成的闭区域D 的面积为σ.分析 显然,题目已知L 关于x 轴对称,又是分段曲线积分,可直接运用定理求得结果解 由定理11,有⎰+Lxydy e x 1=21dy e xe x Lxy xy ⎰-+++)11(=21⎰++Lxy xy dy e xe x 1=21⎰Lxdy =21⎰⎰Dd σ=21σ. 例15 计算⎰++L xy dydx 1||,其中1:=+y x L ,取逆时针方向.解 因为⎰++L xy dy dx 1||=⎰+L xy dx 1||+⎰+L xy dy 1||而L 关于x 轴、y 轴对称且对称两部分方向相反,函数),(y x f =1||1+xy 既为关于x 的偶函数,又为关于y 的偶函数,由推论2、推论3,原式=0.六、对称性在曲面积分的对称性(一) 对称性在曲面积分中的定理 设函数),,(z y x f 定义在三维光滑曲面上1.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f )或=-),,(z y x f ),,(z y x f ,则称),,(z y x f 为偶函数.2.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f -或=-),,(z y x f ),,(z y x f -,则称),,(z y x f 为奇函数.定理13 设分段光滑的空间曲线Γ关于xoy (或yoz 或zox )坐标面对称,记1Γ为位于对称坐标面一侧的部分, 则⎪⎩⎪⎨⎧=⎰⎰1)(y)f(x,,),,(2)(),(,0),,(τ的偶函数或或为关于的奇函数或或为关于y x z ds z y x f y x z y x f ds z y x f z定理14 设曲面S 是由关于P (或平面α)对称的1S 和2S 组成,设1M ∈1S 的对称点为22S M ∈,则:⎰⎰⎰⎰⎪⎩⎪⎨⎧-===S12S 12)(M )(M ,0)(M )(M ,(M)2(M)1f f f f ds f ds f 若若 证明 以曲面S 关于平面α对称为例,不妨设曲面S 是关于xoy 对称的曲面1S 和2S 组成,设1M ∈1S 的坐标为),,(z y x ,则其对称点22S M ∈的坐标为),,(z y x -,设1S 、2S 在xoy 平面上的射影区域为xy σ,则⎰⎰⎰⎰⎰⎰+=21),,(),,(),,(S S Sds z y x f ds z y x f ds z y x f =⎰⎰++-+dxdy z zy x z y x f y x z y x f y x 221)]},(,,[)],(,,[{(1)当=-),(z y x f ),,(z y x f 时,⎰⎰Sds z y x f ),,(=⎰⎰1),,(2S ds z y x f(2)当=-),(z y x f -),,(z y x f 时,⎰⎰Sds z y x f ),,(=0.(二) 对称性在曲面积分中的应用举例例16 计算⎰⎰++εds zx yz xy )(,其中∑为锥面z =22y x +被曲面ax y x 222=+所截下的部分.分析 由于曲面∑关于zox 面对称,而被积函数中xy 与yz 都是y 的奇函数 解 根据定理,知⎰⎰++εds zx yz xy )(=⎰⎰εzxds =⎰⎰+++xyD y x dxdy z z y x x22221=⎰⎰+xyD dxdy y x x 222=2⎰⎰-22cos 203cos ππθθθa dr r d =42⎰-225cos ππθθd =156424a .例17 计算曲面积分⎰⎰=Sds xyz I ||,其中S 为曲面22y x z +=介于平面0=z 和1=z 之间的部分.解 因曲面S 关于平面xoz 和yoz 对称,而||),,(xyz z y x f =,由定理知⎰⎰=14S xyzds I ,其中1S 是S 在第一象限的部分22y x z +=,'x z x 2=,y z y 2'=,dxdy y x ds 22441++=.故I=dxdy y x y x xy xyD 2222441)(4+++⎰⎰=⎰⎰122cos sin 4θθθπr d ·2r ·241r +·rdr=4201-5125.由此可见,上述关于积分(定积分,重积分,线面积分)对称性的定理性质对于在特殊情况下简化积分的计算是非常有效的,它可以避免很多干扰,所以在解题中注意积分区间是否具有某种对称性是简化题目的关键,若对称性不明显则可以通过一定的方法,根据题目的特点构造对称性,可以减少一些繁琐的计算,提高解题效率.参考文献1 华东师范大学数学系, 数学分析(上册,下册),高等教育出版社2 同济大学,高等数学(上册,下册),高等教育出版社3 王莉,海天2013年考研数学基础班高数辅导讲义4 薛春荣,王芳,对称性在定积分及二重积分计算中的应用[J],科学技术与工程,2010,(1)5 赵达夫.高等数学的辅导讲义[M].新华出版社.6 孙钦福.二重积分的对称性定理及其应用.曲阜师范大学学报,2008.7 张仁华.二重积分计算中的若干技巧.湖南冶金职业技术学院学报,2008.8 温田丁.考研数学中二重积分的计算技巧.高等数学研究, 2008.后记本论文在选题及研究过程中得到指导老师的悉心指导。

对称性在积分计算中的应用

对称性在积分计算中的应用

对称摘 要 对称性是解决数学问题的重要方法之一.在积分学中充分利用积分区域的对称性和被积函数的奇偶性,使得数学积分的计算过程得到简化.本文通过总结定理和性质并借助实例说明对称性在定积分、重积分、曲线积分、曲面积分计算中的应用.关键词 对称性 定积分 重积分 曲线积分 曲面积分1. 前言在许多人眼里,数学是抽象和复杂的,但在此背后,也有着它和谐的旋律.如果我们能够更多的理解和掌握数学中的很多规律,就会对数学有更深的认识和感受.目前人们普遍认识到的数学美的基本内容有:统一美、对称美、简洁美、奇异美.它们各有内涵,各有吸引人之处,而对称美是指数学内容中的部分与部分、部分与整体之间和谐一致,以及各种数学概念和理论之间所存在的“对等美”.关于对称性在积分计算中的应用,首先明确以下问题:(1)关于对称性的了解,以简单点为例:点),(y x 关于x 轴的对称点为),(y x -;点),(y x 关于y 轴的对称点为),(y x -;点),(y x 关于原点对称的对称点为),(y x --;点),(y x 关于x y =对称的对称点为),(x y .(2)函数的奇偶性判断,以及两个函数和差积运算后的奇偶性.(3)本文所涉及内容都是R —可积函数.(],[b a 上的连续函数在],[b a 上必可积;只有有限个第一类不连续点的函数是可积的,即分段函数是可积的;单调有界函数必定可积.)(4)清楚的区分各种积分的表达式.(5)用极坐标将二、三重积分化为累次积分时应该注意的地方.(6)数学分析就是用极限的思想来研究函数的一门学科,需对研究内容的产生和如何解决的方式有一定的了解.(7)基本积分公式、倍角公式的熟悉应用.2. 对称性在定积分计算中的应用定理1[4] 设函数)(x f 在],[a a -上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰-aaax f x f x x f x f x f x x f 0)()(,d )(2)()(,0d )( 2.1 计算.d 11lnI 442⎰-+-=ππx xxx分析:定积分在研究区间]4,4[ππ-是关于原点对称的, 又因为2x 为偶函数,xx+-11ln是奇函数,故由定理1可知,0=I . 2.2 计算.d cos21)arctan 1(I 22⎰-++=ππx x x分析:定积分在研究区间是关于原点对称的,又因为⎰-++=22d cos21)arctan 1(I ππx x x⎰-+++=22d )2cos 1arctan 2cos 1(ππx x x x因为x 2cos 1+为偶函数,x x2cos 1arctan +为奇函数,故由定理1知 ,0d 2cos 1220++=⎰πx x⎰=202d cos 22πx x⎰=20d cos 22πx x22 =2.3[8] 计算.d 4cos I 224⎰-=ππx x 分析:定积分研究区间]4,4[ππ-是关于原点对称的, 因为x 4cos 4为偶函数,故由定理1知,23d cos 8d cos 42I 204204πππ===⎰⎰x x x x (进行积分计算时,有x x x x n nn d cos d sin 2020⎰⎰==I ππ,且有递推公式21-I -=I n n nn 成立.) 2.4 计算.d 1)(arcsin I 232322x xx ⎰--=分析:先用凑分法,再做代换,最后利用对称性,则有 x xx d 1)(arcsin I 232322⎰--=x x darcsin )(arcsin 23232⎰-=⎰=33-2d ππt t27d 330-2ππ==⎰t t2.5 计算.d )1ln(I 22⎰-+=x e x x分析:显然积分区间关于原点对称,但)1ln(x e +既不是奇函数也不是偶函数,我们可以利用2)()(2)()()(x f x f x f x f x f --+-+=,其中2)()(x f x f -+为偶函数, 2)()(x f x f --为奇函数,把它分解成为一个奇函数和一个偶函数的和. 令)1ln()(xe xf +=,则)2ln(212)()(x x e e x f x f -++=-+,22)()(x x f x f =--所以有, ⎰-+=22d )1ln(I xe x x⎰--+++=22d )]2ln([21xe e x x x x 然而)2ln(xxe e x -++是关于x 的奇函数,2x 是关于x 的偶函数,由定理1知,⎰⎰-==202222d d 21x x x x 38= 2.6 计算.d 1I 112⎰-=x x分析:定积分在研究区间]1,1[-是关于原点对称的,又因为21x 是偶函数,由定理1知, ⎰-=112d 1I x x⎰=102d 12x x2-=然而这个答案是不正确的,事实上,由于被积函数012>x ,所以当积分存在时,其值必大于零,原因在于在区间]1,1[-上有第二类间断点0=x ,因而不能用对称性或者莱布尼茨公式计算. 小结 在定积分对称性的应用中,我们看到,这里所指的对称性是区间是否关于原点对称,而与被积函数的图像是否关于对称轴或者原点对称无关,但是与被积函数的奇偶性密切相关;另外经过奇偶函数的和差积得到的新函数的奇偶性,倍角公式,特殊公式的熟练掌握和应用也是非常重要的;最重要的是无论用公式还是用对称性来解题都要首先确定被积函数是R —可积函数.3. 对称性在二重积分计算中的应用定理2 [5][7][9] 设函数),(y x f 在D 上连续,且⎰⎰=I Dy x y x f d d ),(存在,记}0,),(|),{(1≥∈=x D y x y x D }0,),(|),{(2≥∈=y D y x y x D}0,0,),(|),{(3≥≥∈=y x D y x y x D }0,),(|),{(4≥∈=y D y x y x D(1)设D 关于轴x 对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰2),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(2)设D 关于y 轴对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰1),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(3)设D 关于原点对称,D y x ∈∀),(,()⎪⎩⎪⎨⎧=---=--=⎰⎰⎰⎰3),(),(,d d ,2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(4)设D 关于直线x y =对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=-==⎰⎰⎰⎰4),(),(,d d ),(2),(),(,0d d ),(D Dy x f x y f y x y x f y x f x y f y x y x f(5)设D 关于x 轴和y 轴均对称,D y x ∈∀),(⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰⎰⎰3),(),(),(),(,d d ),(4),(),(),(),(,0d d ),(D Dy x f y x f y x f y x f y x y x f y x f y x f y x f y x f y x y x f 或者或者(6)(变量可轮换性)若积分区域关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++===DDDDy x x z f z y f y x f yx x z f y x z y f y x y x f d d ),(),(),(31d d ),(d d ),(d d ),(3.1 计算⎰⎰=I Dy x y x d d sin 其中D 由双纽线)()(222222y x a y x -=+围成. 分析:已知D 关于y 轴对称,且是关于x 的奇函数,所以0=I . 3.2[8] 计算⎰⎰++-=I Dy x zy x x y d d 22222,其中}1|),{(≤+=y x y x D分析:由于D 关于直线y x =对称,且被积函数具有性质),(),(y x f z y f -=,所以0=I . 3.3[5] 计算()⎰⎰+=I Dy x y x d d 22,其中D :122≤+y x 分析:()⎰⎰+=I Dy x y x d d 22⎰⎰++=Dy x xy y x d d 4422积分区域D 关于x 轴对称,且被积函数xy 4为y 的奇函数,所以,0d d 4=⎰⎰Dy x xy又因为在积分区域D 中y x ,的地位相同,则有⎰⎰⎰⎰=DDy x y y x x d d d d 22,所以, ⎰⎰=I Dy x y d d 52⎰⎰+=Dy x y x d )d (2522 ⎰⎰=10320d d 25r r πθ45π=3.4 计算⎰⎰+=I Dy x y x d )d (,其中D :1y x22≤+.分析:积分区域D :1y x 22≤+关于x 轴,y 轴均对称,而且被积函数关于y 和x 是偶函数, 固有 ⎰⎰+=I 3d )d (4D y x y x⎰⎰+=120d )d sin cos (4r r r r πθθθ⎰⎰+=12220)d sin cos (d 4r r r θθθπ38=3.5[5] 设D 是()()()1-1-1,1-1,1,、、为顶点的三角形区域,1D 为D 在第一象限的部分,则) (d d )sin (22=+⎰⎰--Dy x y x ye xy分析:如图4321D D D D D =,由对称性可知0d d 21=⎰⎰D D y x xy ,0d d 43=⎰⎰D D y x xy 所以0d d =⎰⎰Dy x xy .在43D D 上,22--sinye y x 是关于y 的奇函数,故有,0d d esin 4322-=⎰⎰D D -y xy x y在21D D 上 是关于x 的偶函数,所以,⎰⎰⎰⎰=+12222d d sinye 2d )d sinye (--D -y xD-y xy x y x xy3.6 计算⎰⎰++=I Dy x y x yf x d d ])(1[22,其中D 由1,1,3-===x y x y 围成. 分析:如图所示,做辅助线3x y -=的左半部分,则积分区域被分为21D D 和,其中21D 表示1D 位于x 轴上方的部分,1D 关于x 对称,2D 关于y 轴对称,由于被积函数是关于x 的奇函数,故有,0d d ])(1[222=++=I ⎰⎰D y x y x yf x 又由于)(22y x xyf +是关于y 的奇函数,故有,⎰⎰++=I 1d d ])(1[22D y x y xyf x0d d 21+=⎰⎰D y x x⎰⎰-=2001d d 2x y x x⎰--=014d 2x x52-= 小结 )(x,y f 关于x,y 的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑,即若区域关于x 轴对称,就要考虑)(x,y f 关于y 的奇偶性,若区域关于y 轴对称,就要考虑)(x,y f 关于x 的奇偶性,且容易看出对称性应用过程中被积函数一般比较复杂和抽象.4.对称性在三重积计算分中的应用定理3 设函数)(x,y,z f 在空间区域Ω上连续,且⎰⎰⎰Ω=I z y x x,y,z f d d d )(存在,记}0,)(|){(1≥Ω∈=Ωz x,y,z x,y,z }0,)(|){(2≥Ω∈=Ωx x,y,z x,y,z{}0)(|)(3≥Ω∈=Ωy x,y,z x,y,z ,(1)设Ω关于xoy 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ1)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f(2)设Ω关于yoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ2)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (3)设Ω关于xoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ3)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (4)(变量可轮换性)若积分区域Ω关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ++===z y x z,x,y f y,z,x f x,y,z f zy x z,x,y f z y x y,z,x f z y x x,y,z f d d d )()()(31d d d )(d d d )(d d d )(4.1 计算z y x z y x z y x z d d d 1)1ln(222222⎰⎰⎰Ω++++++=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是z 的奇函数,而积分区域Ω关于平面xoy 对称,故有,0d d d 1)1ln(222222=++++++=I ⎰⎰⎰Ωz y x z y x z y x z 4.2 计算z y x e xd d d ⎰⎰⎰Ω=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是x 的偶函数,而积分区域Ω关于平面yoz 对称, 故z y x e z y x e xxd d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I ,其中1Ω是半球体:0,1222≥≤++x z y x . 从而 , z y x e z y x e xx d d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I⎰⎰⎰=xD 1d de d 2z y x x⎰=102d )z -1(e2x xππ2=4.3 计算z y x z y x d d d )(⎰⎰⎰Ω++=I ,其中Ω是球体)0,0,0(2222≥≥≥≤++z y x R z y x . 分析:由变量的轮换性可知,z y x z z y x y z y x x d d d d d d d d d ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z d d d 3⎰⎰⎰Ω=I⎰⎰⎰=RD Zy x z z 0d d d 3 ( 4.3.1 )z z R Rd )(3022⎰-=π443R π= 此题容易在(4.3.1)式中将z 判断为奇函数,则积分为零,但是在条件0,0,0≥≥≥z y x 下,区域不是关于平面0=z 对称的,故有以上做法,这也充分说明了,区域的对称性和被积函数的奇偶性必须同时满足才能进行积分计算.4.4 计算z y x z y x d d d )532(222⎰⎰⎰Ω++=I ,其中Ω是球体)0(2222≥≤++R R z y x . 分析:由变量的轮换性可得,z y x z z y x y z y x x d d d d d d d d d 222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z z y x y z y x x d d d 5d d d 3d d d 2222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ++=Iz y x z d d d 102⎰⎰⎰Ω= ⎰⎰⎰=RD Zy x z z 02d d d 20⎰-=Rz z z 0222d )R (20π385R π=4.5 计算z y x z x d d d )(2⎰⎰⎰Ω+=I ,其中Ω是球体)0(,1222≥≤++z z y x . 分析:z y x xz z x d d d )2(22⎰⎰⎰Ω++=I (xz 2关于yoz 平面对称,又是关于x 的奇函数) z y x z x d d d )(22⎰⎰⎰Ω+=(根据Ω具有轮换性,z y x z z y x x d d d d d d 22⎰⎰⎰⎰⎰⎰ΩΩ=) z y x z d d d 22⎰⎰⎰Ω=(由于条件0≥z ,2z 关于xoy 面不对称,所以不能用其偶函数的性质) =⎰⎰⎰102d d d 2ZD y x zz⎰-=1022)d (12z z zπ154π=小结 4.3和4.5充分说明当且仅当积分区域的对称性与被积函数),,(z y x f 奇偶性同时具备才能使用定理3.5.对称性在第一类曲线积分计算中的应用第一型曲线积分的奇偶性与二重积分类似. 定理4 函数),(y x f 在曲线L 上连续,s y x f Ld ),(⎰=I 存在,记}{0,),(|),(1≥∈=y L y x y x L }{0,),(|),(2≥∈=x L y x y x L}{0,0,),(|),(3≥≥∈=y x L y x y x L }{y x L y x y x L ≥∈=,),(|),(4(1)设积分曲线L 关于x 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f s y x f y x f y x f s y x f L L(2)设积分曲线L 关于y 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(2y x f y x f s y x f y x f y x f s y x f L L(3)设积分曲线L 关于原点对称,则⎪⎩⎪⎨⎧=---=--=⎰⎰),(),(,d ),(2),(),(,0d ),(3y x f y x f s y x f y x f y x f s y x f L L(4)设积分曲线L 关于x y =对称,则⎪⎩⎪⎨⎧=-==⎰⎰),(),(,d ),(2),(),(,0d ),(4y x f x y f s y x f y x f x y f s y x f L L(5)设积分曲线L 关于x 轴, y 轴均对称,则⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰),(),(),().(,d ),(4),(),(),(),(,0d ),(3y x f y x f y x f y x f s y x f y x f y x f y x f y x f s y x f L L或者或者5.1[4] 计算s x Ld ⎰=I ,其中L 是双纽线:)()(22222y x y x -=+.分析: 被积函数x 为偶函数,双纽线关于x 轴、y 轴均对称, 故s x s x L Ld 4d 1⎰⎰==I ,其中1L 是L 在第一象限的部分,将双纽线化为极坐标表示:θ2cos 2=r ,则1L :40,2cos πθθ≤≤=r ,θθθd 2cos 1d 'd 22=+=r r s则 22d 2cos 1cos 2cos 4d 4401===I ⎰⎰πθθθθs x L5.2 计算⎰++=I s y x xy )d 23(22,设L 为椭圆13222=+y x ,其周长为a . 分析:由于L 关于x 轴(或y 轴)对称, 且xy 是关于y (或x )的奇函数, 故有, 0xyd =⎰s ,那么 , ⎰+=I s y x )d 23(22a s 66d ==⎰5.3 计算s z y x Ld )573(⎰++=I ,已知积分曲线L :⎩⎨⎧=+=++1122y x z y x ,其周长为a . 分析:已知积分曲线L 中y x ,的位置对称,可得⎰⎰=LLs s x yd d ,所以, s z y x Ld )573(⎰++=Is z y x Ld )(5⎰++=a s L5d 5==⎰5.4 计算s x Ld 2⎰=I ,其中L 为圆周2222a z y x =++,0=++z y x .分析:由对称性知,s z s y s x LLLd d d 222⎰⎰⎰==.于是,s z y x s x LLd )(31d 2222⎰⎰++= ⎰=Ls a d 32 332a π= 5.5 计算s xy Ld ⎰=I ,其中L :2y x =上从)1,1(A -到)1,1(B 的一段弧.分析:由于L 关于x 轴对称,被积函数xy 是关于y 的奇函数,所以, 0d ==I ⎰s xy L6.[10]对称性在第二类曲线积分计算中的应用定理15[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设为)(),(b x a x y y ≤≤±=.记21,L L 分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在x 轴上的投影方向相反,函数()y x f ,在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的左半部分和右半部分,21,L L 分别在y 轴上的投影方向相反,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“反对偶零,反对奇倍”,其中“反”指21,L L 在x (或y )轴上的投影方向相反;“对”指L 关于x (或y )轴对称;“偶”指被积函数在L 上关于y (或x )为偶函数;“零”指曲线积分的结果等于零.反对奇倍的含义类似解释.定理25[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在y 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的右半部分和左半部分,21,L L 分别在x 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“同对奇零 ,同对偶倍”,其中“同”指21,L L 在x 轴上的投影方向相同;“对”指L 关于y 轴对称;“奇”指被积函数在L 上关于x 为奇函数;“零”指曲线积分的结果等于零.同对偶倍的含义类似解释.6.1 计算x xy Ld ⎰=I ,其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对奇倍”,故有 , x xy Ld ⎰=Idx 21⎰=L xy⎰=1d 2x x x54=其中,x 从点0变化到点1.小结 6.1和 5.5很相似,它们唯一的区别在于积分式子x xy Ld ⎰=I ,s xy Ld ⎰=I 的不同,其根本原因是第二类曲线积分具有方向性.6.2 计算x y x Ld ⎰=I 其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对偶零”.故有0d ==I ⎰x xy L6.3 计算y y y x x y x Ld )sin (d )(222+-+=I ⎰,其中L :)0(222>=+a a y x 按逆时针方向从)0,A(a ,)0,(B a -的上半圆周.分析:y y y x x xy x y x LL Ld )sin (d 2d )(222⎰⎰⎰+-++=I(三个积分分别适合“同对偶倍”、“同对奇零”、“反对偶零”) ⎰+=I 1d )(22L x y x⎰+=02d )(2a x y x32a -= 其中, x 从点a 变化到点0.6.4[4] 计算⎰++=I ABCDAy x yx d d ,其中ABCDA 是以A(1,0)、B(0,1)、C(-1,0)、D(0,-1)为顶点的正方形正向边界线.分析:⎰++=I ABCDA y x y x d d ⎰⎰+++=ABCDAABCDA y x yy x x d d 对于第一个积分,因为曲线关于x 轴对称,且在x 轴上的投影方向相反,被积函数yx +1是y 的偶函数,所以积分为零.对于第二个积分,因为曲线关于y 轴对称,且方y 轴上的投影方向相反,被积函数yx +1是x 的偶函数,所以积分为零.7.对称性在第一类曲面积分计算中的应用第一类曲面积分的奇偶性与三重积分相似. 定理6 设函数),,(z y x f 在曲面S 中连续,⎰⎰=I Ss z y x f d ),,(存在,记{}0,),,(|),,(1≥∈=z S z y x z y x S{}0,),,(|),,(2≥∈=x S z y x z y x S{}0,),,(|),,(3≥∈=y S z y x z y x S(1)设积分曲面关于xoy 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(1z y x f z y x f s z y x f z y x f z y x f s z y x f S S(2)设积分曲面关于yoz 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(2z y x f z y x f s z y x f z y x f z y x f s z y x f S S(3)设积分曲面关于xoz 面对称, S z y x ∈∀),,( ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(3z y x f z y x f s z y x f z y x f z y x f s z y x f S S(4)(变量可轮换性)若积分曲面关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++-===-SSSSs y x z f x z y f z y fx sy x fz s x z y f s z y fx d ),,(),,(,,31d ,,d ),,(d ,,7.1 计算⎰⎰=I Ss z d 2,其中S :2222R z y x=++.分析:由S 的轮换对称性知,⎰⎰⎰⎰⎰⎰==SSSs z s y s x d d d 222,故有,⎰⎰=I Ss z d 2⎰⎰++=Ss z y x )d (31222 ⎰⎰=Ss R d 312 434R π=7.2 计算⎰⎰++=I Ss z y x )d (,其中S 为球面2222a z y x =++上满足)0(a h h z <<≥的部分.分析:由S 的对称性知,0d d ==⎰⎰⎰⎰SSs y s x ,那么,⎰⎰++=I Ss z y x )d (⎰⎰=Ss z d⎰⎰++--=xyD y x s z z y x a d ''1222⎰⎰=xyD s a d)(22h a a -=π7.3 计算⎰⎰+=I Ss z y x )d 2(224,其中S 是闭曲面:2222=++z y x . 分析:由S 的轮换对称性知, ⎰⎰+=I Ss z y x )d 2(224 ⎰⎰+++++=Ss y x z z x y z y x]d )2()2()2([224224224⎰⎰++=Ss z y x d )(312222 ⎰⎰=Ss 4d 31ο332=7.4 计算⎰⎰=I Ss x d 2,其中S 为圆柱面:222a y x =+,介于平面0=z 和h z =之间的部分.分析:由于在S 中,x 与y 的地位是等价的,所以, ⎰⎰⎰⎰==I SSs y s x d d 22,于是, ⎰⎰⎰⎰+==I SSs y x s x )d (21d 222 ⎰⎰=Ss a d 212h a a ⋅⋅=π2212h a 3π=8. 对称性在第二类曲面积分计算中的应用定理7[10] 设∑为关于xoy 面对称的有向光滑曲面,其方程是一双值函数,设为xy D y x y x z z ∈±=),(),,((其中xy D 为∑在xoy 平面上的投影),记21,∑∑分别为位于xoy 平面的上半部分和下半部分,21,∑∑的侧关于xoy 平面相反,函数),,(z y x f 在∑上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f y x z y x f z y x f z y x f ds z y x f同理有:(1)设积分曲面关于xoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z x z y x f z y x f z y x f ds z y x f(2)设积分曲面关于yoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z y z y x f z y x f z y x f ds z y x f8.1 计算()⎰⎰∑++++=I 23222d d d d d d z y xyx z z x y z y x ,其中∑是球面:2222a z y x =++的外侧.分析:由∑的轮换对称性知,⎰⎰∑++=I y x z z x y z y x a d d d d d d 13⎰⎰∑=z y x a d d 33]d )d y -x -a (d d y -x -a [32222223⎰⎰⎰⎰--=xy xyD D y x y x a ⎰⎰=xyD y x a d d y -x -a 6222333326a a π⋅=π4=8.2 计算⎰⎰∑=I y x xyz d d ,其中∑是球面:1222=++z y x的外侧,位于0,0≥≥y x 的部分.分析:∑关于xoy 面对称,而xyz 是关于z 的奇函数,满足“反对奇倍”, 故有, ⎰⎰∑=I 1d d 2y x xyz⎰⎰=xyD y x xy d d y -x -1222 ⎰⎰=13320d r -1d sin r r πθθ152=其中1∑: 22y -x -1=z , }0,0,1|),{(),(22≥≥=+=∈y x y x y x D y x xy8.3[10] 计算y x z z x z y yz x d d 2d d )xz -y (d )d (22++-=I ⎰⎰∑,其中∑是锥面:221y x z +-=被平面0=z 所截得的部分,取上侧.分析:y x z z x z y yz xd d 2d d )xz -y (d )d (22++-=I ⎰⎰∑⎰⎰⎰⎰⎰⎰∑∑∑++-=y x z z x z y yz x d d 2d xz)d -(y d )d (22 ⎰⎰∑++=y x z d d 200⎰⎰+-=xyD y x y x d d )1(222 ⎰⎰-=120d )1(d 2r r r πθπ32=其中}1|),{(22≤+=y x y x D xy8.4[10] 计算⎰⎰∑++=I y x r z z x r y z y r x d d d d d d 333,其中222z y x r ++=, ∑是球面:)0(2222>=++a a z y x 的外侧.分析:根据∑的轮换对称性,可知, ⎰⎰∑=I z y zd d r33⎰⎰∑=1d d r63z y z(反对奇倍) ⎰⎰--=xyD y x a y x a d d 63222π4=8.5 设∑是球面:2222R z y x =++,在下面四组积分中,同一组的两个积分均为0的是:(C )A . ⎰⎰∑=I s x d 2, ⎰⎰∑=I z y x d d 2B . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d dC . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d d 2D . ⎰⎰∑=I s xy d , ⎰⎰∑=I z y y d d分析:由于曲面∑关于yoz 平面对称,被积函数 xy x ,关于x 为奇函数,被积函数2x 关于x 为偶函数.故有, 第一型曲面积分 0d ==I ⎰⎰∑s x , 0d ==I ⎰⎰∑s xy ,⎰⎰⎰⎰∑∑++==I s z y x s x )d (31d 22224234d 31R s R π==⎰⎰∑第二型曲面积分 0d d 2==I ⎰⎰∑z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R x y z x z x R z y y8.6 [6] 设∑是球面:1222=++z y x 的上半部分,则下列错误的是:(B )A . 0d d 2==I ⎰⎰∑z y x B . 0d d ==I ⎰⎰∑z y xC . 0d d 2==I ⎰⎰∑z y y D . 0d d ==I ⎰⎰∑z y y分析:由于曲面∑关于yoz 面对称,被积函数x 关于x 为奇函数,被积函数22,,y y x 关于x 为偶函数.0d d 2==I ⎰⎰∑z y x ,0d d ==I ⎰⎰∑z y y ,0d d 2==I ⎰⎰∑z y y0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x9.总结(1)对称的对象:积分区间对称,积分区域对称.(2)关于对称性,除关于原点和x y =对称外,都遵循关于谁对称谁不变的原则. (3)变量的轮换性是指对称的对象∑由0),,(≤z y x f 表示,若将z y x ,,的位置变换后,0),,(≤z y x f 仍然表示∑.在其他书籍和相关资料中提及的y x ,具有相同的地位,y x ,具有循环性都是这里所指的轮换性.(4)当且仅当积分区域对称性与被积函数),(y x f 奇偶性同时具备才能使用本文中提及的定理.(5)),(y x f 关于y x ,的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑.若关于x 轴对称,就要考虑关于y 的奇偶性,若关于y 轴对称,就要考虑关于x 的奇偶性. 若关于xoy 面对称,就要考虑被积函数关于z 的奇偶性依次类推.(6)第二类曲线积分和第二类曲面积分如果关于对称对象方向相反,那么它们的积分结论刚好与第一类曲线积分和第一类曲面积分结论相反.根据以上总结,对称性的问题便能很好的被应用,使数学积分的计算过程得到简化.参考文献:[1] 明清河著.数学分析的思想与方法[M].济南:山东大学出版社,2004.7(2006.9重印) [2] 殷锡鸣等编著.高等数学(下册)[M].上海:华东理工大学出版社,2005.2(2007.6重印)[3] 吴良森等编著.数学分析学习指导书(下册)[M].北京:高等教育出版社,2004.8[4] 费定辉,周学圣编演.吉米多维奇数学分析习题集题解(第三版)[M].济南:山东科学技术出版社,2005.1(2005.3重印)[5] 顾庆凤.关于重积分、曲线积分、曲面积分的对称性定理的应用[J].中国教育研究论丛,2006[6] 苏海军.对称性在定积分中的应用[J].四川文理学院学报(自然科学),2007.9,17(5)[7] 赵云梅,李薇. 对称性在积分中的妙用[J].红河学院学报,2005.6,3(3)[8] 常浩.对称性在积分学中的应用[J].高等数学研究,2011.3,14(2)[9] 于宁丽,王静.利用对称性计算两类区面积分时的差异问题[J].专题研究,2009.7[10] 刘福贵,鲁凯生.利用对称性计算第二类曲线积分与曲面积分的方法[J].武汉理工大学学报,2006,30(6):1069-1072[11] 西北工业大学高等数学教研室编.高等数学学习辅导:问题、解法、常见错误剖析[M].北京:科学出版社,2007[12] 魏平等编著.高等数学复习指导[M].西安:西安交通大学出版社,1999.11[13] 华罗庚著.高等数学引论[M].沈阳:科学出版社.2003[14] 朱学炎等编著.数学分析[M].北京:高等教育出版社,2007.4[15] 裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,2006.4[16]邹本腾等编著.高等数学辅导[M].北京:科学技术文献出版社,1999.6数学系数学与应用数学2009级本科毕业论文Application of symmetry in the integral calculation Abstract The s ymmetry is one of the important methods to solve mathematical problems. In integral calculus, it can make the integral calculation process simplified to make full use of symmetry of integral region and the parity of integrand. This paper illustrates the application of symmetry in definite integral, multiple integrals, curve integrals, and surface integrals in the calculation through summary theorem and its nature and with the aid of examples.Key words definite integral multiple integrals curve integrals surface integrals第21页共22页。

重积分的对称性与轮换对称性

重积分的对称性与轮换对称性

Dxy
1
3 xdx
1-( x 1-x-y) dy=1
0
0
8
•xd其 y中 d z是 由 抛 物
面 zx2y2和 球 面 x2y2z22所 围 成 的 空 间 闭 区 域 .
(xyz)2
x 2 y 2 z 2 2 (x y z)x
其 中 x y 是 y 关 于 z y 的 奇 函 数 ,
且 关 于 z面 o 对 称 x , (x yy)d z v0 ,
积分区域D关于坐标区域内任意直线对称
的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
解:因为积分曲面D关于x,y,z具有轮换对称性,所以
被积函数
x' (uvtan)cos
uav 1a2
y' (uvtan)sinvsec
auv
1a2
解:由于积分区域D关于直线x=1对称,
当f(x)在区间上为连续的奇函数时,
积分区域D关于坐标区域内任意直线对称
这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分.
积分区域D关于坐标区域内任意直线对称
其次,将坐标系x'o'y'沿逆时针方向旋转,旋转角为 (tan =a)使x'轴与直线y=ax+b重合.得新坐标系uo'v 解:由于积分区域D关于直线x=1对称, 解:由于积分区域D关于直线x=1对称, 其中D是平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧 当f(x)在区间上为连续的奇函数时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万方数据
万方数据
万方数据
轮换对称性在积分计算中的应用
作者:徐年方, XU Nian-fang
作者单位:淮安市广播电视大学,江苏,淮安,223001
刊名:
河北能源职业技术学院学报
英文刊名:JOURNAL OF HEBEI ENERGY INSTITUTE OF VOCATION AND TECHNOLOGY
年,卷(期):2009,9(1)
引用次数:0次
1.梁应仙.辛兰芬对称性在三重积分计算中的应用[期刊论文]-沈阳大学学报 2003(4)
2.数学分析 1991
3.数学分析内客、方法与技巧下 2003
4.数学分析解题精粹 2003
1.期刊论文张云艳.Zhang yun yan轮换对称性在积分计算中的应用-毕节师范高等专科学校学报2002,20(3)
举例说明了积分区域的轮换对称性在积分计算中的应用.
2.期刊论文王建刚轮换对称性在解题中的应用-高等数学研究2005,8(2)
利用轮换对称性,得到解题当中的一个简便方法
3.期刊论文石秀文定积分一个性质的推广——多元函数积分对坐标轮换的对称性-邢台学院学报2007,22(4)
通过教材中一些简单实例结合自己的教学体会给出具有轮换对称性的积分区域上多元积分的巧妙运算,目的是使学生在掌握多元积分基本运算方法之后,熟悉多元积分一些特性及巧妙运算方法,增强解题能力.
4.期刊论文刘洁.戴长城.LIU Jie.DAI Chang-cheng对称性在积分计算中的应用-邵阳学院学报(自然科学版) 2008,5(4)
本文给出了被积函数的奇偶性、积分区域的对称性及轮换对称性计算积分的几个定理和性质.并介绍了这些定理和性质在各种积分中的应用.
5.期刊论文姜鹏三类积分的对称性算法-沈阳化工学院学报2001,15(4)
通过积分区域、被积函数的几何对称性及积分区域的轮换对称性,定量给出了重积分、曲线积分和曲面积分的两种计算方法
6.期刊论文陈云新轮换对称性在积分中的应用-高等数学研究2001,4(1)
在某些积分的计算过程中,若积分区域具备轮换对称性,则可以简化积分的计算过程.本文讨论了利用轮换对称性简化二重积分,三重积分,第一,二类曲线积分,第一,二类曲面积分的计算方法.(以下都在积分存在下予以讨论)
7.期刊论文马军英用积分域变量轮换对称性计算几类积分-山东师范大学学报(自然科学版)2004,19(1)
给出了积分域关于变量轮换对称的定义,讨论了有关几类积分的计算公式及其应用实例.
8.期刊论文李曼生.霍锦霞利用变量轮换对称性计算积分-甘肃科技2007,23(12)
给出了变量轮换对称的定义,讨论了二重积分、三重积分、曲线积分、曲面积分的计算公式及应用实例.
9.期刊论文刘建康.Liu Jiankang积分中的对称性-数理医药学杂志2008,21(1)
介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论.
10.期刊论文于信.李秀珍对称性在多元函数积分中的应用-山东商业职业技术学院学报2004,4(4)
本文较为深入地探讨了对称性在多元函数积分中的应用,当被积函数和积分区域都具有对称性时,给出了多元函数的积分公式.
本文链接:/Periodical_hbnyzyjsxyxb200901039.aspx
下载时间:2010年5月24日。

相关文档
最新文档