2014年秋季新版新人教版八年级数学上学期13.2.2用坐标表示轴对称教案2
13.2.2 用坐标表示轴对称 教案
课 题
13.2.2用月日
教学目标 (学习目标)
知识与技能
1.在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形
2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
过程与方法
经历探索点轴对称特点的过程,培养观察、操作、分析能力.
结合教材完成解答过程。
四、随堂练习
课本70页第1、2、3题
五、课堂小结
1、学习了在平面直角坐标系中,关于x轴和y轴对称的点的坐标的特点。
关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
2、学习了在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形
六、作业布置:P71第2,3,4,5,7题(书上)
三、(一):例1:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴和x轴对称的图形。
(二):例2、四边形ABCD的四个顶点的坐标分别是A(-5,1),B(-2,1),C(-2,5),D(-5,4)分别画出与四边形ABCD关于y轴和x轴对称的图形.
备注 (补充)
板书设计
13.2 用坐标表示轴对称
1、特点:
点(x, y)关于x轴对称的点的坐标为______.
点(x, y)关于y轴对称的点的坐标为______.
教学反思
在平面直角坐标系中作一个图形关于坐标轴对称的图形,关键是求出已知图形中的一些特殊点的对称点的坐标。
二.归纳总结
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
点(x, y)关于x轴对称的点的坐标为______.
13.2.2用坐标表示轴对称教学设计
人教版数学八年级上册13.2.2用坐标表示轴对称 -----教学设计用坐标表示轴对称教材选择:人教版八(上)13.2画轴对称图形(2)一、内容和内容解析1.内容用坐标表示轴对称2.内容解析本节分为两课时,这是第二课时的新授课.是在学生学习了轴对称及轴对称变换的基础进行的,体现了轴对称在平面直角坐标系中的应用,体现了数形结合的数学思想.教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y 轴对称所引起的点的坐标的变化规律,并探讨了如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.为满足不同层次学生的学习需求,又进一步探究了关于直线x=m和直线y=n对称的点坐标之间的关系.本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来,为后面函数的知识的学习打下基础.通过这节课学生进一步掌握轴对称图形的知识技能,领悟数学在实际生活中的对称美.基于以上分析,确定本节课的教学重点是:探索点关于x轴或y轴对称点的坐标的变化规律,并会利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.二、目标和目标解析1.目标(1)探究点或图形的轴对称变换引起的点的坐标的变化规律,能利用这些变化规律作出一个图形关于对称轴的轴对称图形.(2)通过对用坐标表示轴对称的学习,体会对应的思想、数形结合的思想.(3)通过探究关于轴对称的点坐标之间的对应关系,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的合作交流意识和科学研究习惯.2.目标解析(1)首先通过复习画轴对称图形,引导学生在平面直角坐标系中画出一些点关于坐标轴的对称点,然后通过观察、分析、归纳得出关于坐标轴对称的坐标规律.并探讨总结出如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形的方法.为了满足不同层次学生的学习需求,再通过一系列的变式训练,进一步引导学生探究出关于直线x=m和直线y=n对称的点坐标之间的关系.因此在平面直角坐标系中正确画出一些点的对称点是前提条件,学生上节课已经学过画一些图形的轴对称图形,有一定的经验,因此,学生能比较容易的达到本节课学习的重点目标.(2)通过在平面直角坐标系中画轴对称点和轴对称图形总结出对称点的坐标规律,体会对应思想和数形结合的思想.通过一系列的变式练习探究出关于直线x=m和直线y=n对称的点坐标之间的关系,同样体现从特殊到一般的数学思想.(3)在平面直角坐标系中探究对称点之间的坐标规律的过程中,教师利用一系列直观图象,通过动手操作、观察、分析、小组交流,利用数形结合的数学思想,归纳概括出规律,所以整个探究过程培养了学生的合作交流意识和科学研究习惯.三、教学问题诊断分析在平面直角坐标系中关于x轴对称、关于y轴对称的两点的坐标特征,这个知识内容在初一年级的时候就已学过,本课的学习看起来好像是重复,其实,深入研究,学生还是很可能遇到的问题有:1.学生在利用关于x轴、y轴对称点的坐标规律解决问题时,由于不擅长数形结合理解记忆,而只是死记硬背,因此两个坐标规律很容易记混淆.2.由于学生的学习主动性究意识不够,观察能力和空间想象能力比较薄弱。
八年级数学上册13.2画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版
八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版一. 教材分析八年级数学上册13.2节“画轴对称图形”是新人教版数学课程的一部分,主要内容是让学生理解并掌握用坐标表示轴对称图形的方法。
这一节内容是在学生已经掌握了轴对称图形的概念和性质的基础上进行教学的,旨在培养学生的空间想象能力和坐标表示能力。
教材中通过丰富的例题和练习题,引导学生运用坐标方法,找出对称轴,并确定对称图形在坐标系中的位置。
通过这一节的学习,学生能够进一步理解坐标与图形之间的关系,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称图形的概念和性质有了初步的了解。
但是,对于如何用坐标表示轴对称图形,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
三. 说教学目标1.知识与技能目标:让学生掌握用坐标表示轴对称图形的方法,能找出对称轴,并确定对称图形在坐标系中的位置。
2.过程与方法目标:通过实际操作,培养学生的空间想象能力和坐标表示能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:用坐标表示轴对称图形的方法。
2.教学难点:如何找出对称轴,并确定对称图形在坐标系中的位置。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
2.教学手段:利用多媒体课件,展示轴对称图形的对称性质,引导学生进行实际操作。
六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,引导学生回顾轴对称图形的概念和性质。
2.新课导入:介绍用坐标表示轴对称图形的方法,引导学生理解坐标与图形之间的关系。
3.实例讲解:通过具体的例题,引导学生找出对称轴,并确定对称图形在坐标系中的位置。
4.学生练习:让学生自主完成教材中的练习题,巩固所学知识。
人教版八年级数学(上册)教案:13.2.2用坐标表示轴对称
二、核心素养目标
1.培养学生的逻辑推理能力:通过学习用坐标表示轴对称,使学生能够理解和运用坐标变换的规律,从而培养其逻辑推理和抽象思维能力。
2.提升空间想象力:借助坐标系和对称性质,增强学生对平面图形及其对称关系的空间想象力和直观感知能力。
2.教学难点
-难点内容:本节课的难点在于理解坐标与图形对称之间的关系,以及如何将这一关系应用于具体的坐标变换。
-详细内容:
-理解对称轴方程的推导过程,特别是如何从对称性质中抽象出数学表达式。
-在求解对称点坐标时,正确应用坐标变换公式,避免混淆和计算错误。
-对于一些复杂的轴对称问题,如非垂直或水平对称轴,学生可能难以理解其坐标变换的规律。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“轴对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
最后,在总结回顾环节,我对本节课的教学内容进行了简要梳理,希望学生们能够巩固所学知识。但同时,我也意识到在课堂上对于学生的疑问解答还不够充分,今后需要更加关注学生的需求,及时为他们提供帮助。
在实践活动环节,分组讨论和实验操作使学生能够将理论知识与实际应用相结合。通过动手操作,他们更加直观地感受到了轴对称的魅力。然而,我也发现部分小组在讨论过程中存在依赖心理,个别成员不够积极参与。为了提高讨论效果,我考虑在下次活动中增加一些互动环节,鼓励每个学生都发表自己的观点。
人教版八年级上册13.2.2用坐标表示轴对称课程设计
人教版八年级上册13.2.2用坐标表示轴对称课程设计一、教学目标通过本节课的学习,学生应该能够掌握以下知识和能力: 1. 掌握点关于x轴、y轴和原点对称的坐标变化规律; 2. 了解轴对称图形的特征; 3. 能够通过坐标表示图形的轴对称轴。
二、教学重难点1.轴对称图形的特征;2.坐标表示轴对称轴的方法。
三、教学方法1.通过具体图形进行演示;2.借助数字图例分析轴对称图形的关系;3.小组合作解决课堂问题。
四、教学过程1.导入新知通过介绍图形的轴对称特征,引出本节课的主题。
2.演示轴对称图形选择一个具有轴对称特征的图形,如三角形或四边形,在黑板上或投影屏幕上进行演示。
强调图形的轴对称轴,并通过形象化演示,向学生阐述轴对称变换的规律。
3.对称图形探究让学生通过数学考察问答的形式,确定具有轴对称特征的各种图形的对称中心,并分析具有轴对称特征的图形的结构特征。
4.轴对称轴的表示方法介绍通过坐标表示轴对称轴的方法,让学生掌握这种方法,并通过具体例子进行演示和练习。
5.课堂小组讨论划分学生小组,让他们分析轴对称图形的图形特征,设计一个简单的轴对称图形,然后设计轴对称轴的表示方法并给出详细的解决方案。
五、教学效果的检测1.课堂练习;2.复习个别学生;3.作业检查。
六、课堂作业1.完成课后练习;2.制作一个具有轴对称特征的图形,并标出其对称轴;3.设计一个更为复杂的轴对称图形,然后通过坐标表示该图形的轴对称轴。
七、板书设计定义轴对称图形的特征和结构轴对称轴的坐标表示方法八、教学反思通过本节课的学习和活动实践,学生能够更好地理解轴对称图形的特征和结构特点,并且掌握了通过坐标表示轴对称轴的方法。
但是,一些学生在操作过程中出现了困难,需要进一步练习和指导。
在后续的活动和课堂中,需要更加关注这些问题并加以解决。
人教版数学八年级上册13.2.2 用坐标表示轴对称教案
第2课时用坐标表示轴对称●情景导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人问小红西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确地告诉了他.你知道为什么吗?如图是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,各个地点的地理位置就可以用坐标表示出来.提问:根据如图所示的东直门的坐标,你能说出西直门的坐标吗?对称点的坐标与已知点的坐标有怎样的关系?这节课将学习用坐标表示轴对称.【教学与建议】教学:以老北京地图为例引入新课,让学生感受到用坐标描述对称的重要性.建议:在教学时,先出示老北京地图,让学生进行观察,感受各个位置之间的关系,然后建立平面直角坐标系.●归纳导入 1.如图①:(1)图中两个圆脸有什么关系?(2)已知右边圆脸上右眼的坐标为B(4,3),左眼的坐标为A(2,3),嘴角两个端点的坐标分别为C(4,1),D(2,1).你能根据轴对称的性质写出左边圆脸上左眼、右眼及嘴角两端点的坐标吗?图①图②2.在平面直角坐标系中,将坐标分别为(2,2),(4,2),(4,4),(2,4)的点用线段依次连接起来形成一个图案(如图②).(1)将各个点的纵坐标不变,横坐标分别乘-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有何变化?(2)将各个点的横坐标不变,纵坐标分别乘-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有何变化?如图②,师生共同归纳:(1)将各个点的纵坐标不变,横坐标乘-1,得到相应的四个点分别为A1(-2,2),B1(-4,2),C1(-4,4),D1(-2,4).顺次连接各点所得到的图案和原图案比较.归纳:它们是关于__y轴__对称的,且横坐标__互为相反数__,纵坐标__不变__.(2)将各个点的横坐标不变,纵坐标乘-1,得到相应的四个点分别为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连接各点所得到的图案和原图案比较,归纳:它们是关于__x轴__对称的,且纵坐标__互为相反数__,横坐标不变.【教学与建议】教学:通过轴对称图形的研究,激发学生探究坐标特点,归纳在坐标的变化中掌握坐标规律.建议:教学中注意渗透数形结合思想.命题角度1 求已知点关于x 轴、y 轴对称的点的坐标两点关于x 轴对称,横坐标相等,纵坐标互为相反数;两点关于y 轴对称,纵坐标相等,横坐标互为相反数.【例1】在平面直角坐标系中,点A (3,4)与点B 关于y 轴对称,则点B 的坐标为(A) A .(-3,4) B .(-3,-4) C .(3,-4) D .(3,4)【例2】在平面直角坐标系中,点A 的坐标是(-3,1),作点A 关于y 轴的对称点,得到点A ′,再将点A ′向下平移2个单位长度,得到点A ″,则点A ″的坐标是(__3__,__-1__).【例3】如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 的坐标是(a ,b ),则经过2 023次变换后所得的图形中点A 的对应点的坐标是__(-a ,b )__.――→第1次关于x 轴对称――→第2次关于y 轴对称 ――→第3次关于x 轴对称 ――→第4次关于y 轴对称命题角度2 根据轴对称的点的坐标特征确定字母的取值在平面直角坐标系中,若成轴对称的两个点的坐标中包含字母,则先根据轴对称的坐标特征确定字母的值,再求含有字母的式子的值.【例4】点P (1,2)关于y 轴对称的点的坐标是P ′(a ,b ),则a -b =__-3__. 【例5】若点M (a ,-3)与点N (-4,b )关于x 轴对称,则a =__-4__,b =__3__;若这两点关于y 轴对称,则a =__4__,b =__-3__.命题角度3 作规则图形关于坐标轴的对称图形(1)计算已知图形中的一些特殊点的对称点的坐标;(2)根据对称点的坐标描点;(3)依次连接所描各点得到对称图形.【例6】如图,已知△ABC 的三个顶点的坐标分别是A (-1,5),B (-5,3),C (-3,-1).作出△ABC 关于x 轴、y 轴的对称图形.解:如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求作的图形.命题角度4 作规则图形关于直线x =m (或y =n )(m ,n 为常数)对称的图形推广轴对称的点的坐标特征,可得:对于点A (x 1,y 1)与点B (x 2,y 2),如果它们关于直线x =m 对称,那么x 1+x 2=2m ,y 1=y 2;如果它们关于直线y =n 对称,那么x 1=x 2,y 1+y 2=2n .【例7】在平面直角坐标系中,直线l 是经过点(1,0)且平行于y 轴的直线,点A (m -1,3)与点B (2,n -1)关于直线l 对称,则(m +n )2 023的值为(D)A .0B .1C .32 023D .52 023【例8】若点P (-2,1)与点Q (a ,b )关于直线l :y =-1对称,则a +b =__-5__.高效课堂 教学设计1.在平面直角坐标系中,探索并掌握关于x 轴、y 轴对称的点的坐标规律. 2.利用关于x 轴、y 轴对称的点的坐标规律,作出关于x 轴、y 轴对称的图形.▲重点利用坐标的变化规律在平面直角坐标系中画出一些简单的关于x 轴和y 轴对称的图形. ▲难点能根据平面直角坐标系中轴对称点的坐标特点解决实际问题.◆活动1 新课导入用多媒体展示北京城风光图片及北京城形象地图.老北京的地图(教材P 69图13.2-3)中,西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x 轴和y 轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,能够很方便确定一个地方的位置. ◆活动2 探究新知1.教材P 69 思考下面的内容. 提出问题:(1)你能完成下表吗?已知点 A (2,-3) B (-1,2) C (-6,-5) D ()12,1 E (4,0) 关于x 轴的对称点 A ′(__2__,__3__) B ′(__-1__,__-2__) C ′(__-6__,__5__) D ′(__12 __,__-1__)E ′(_4_,_0_) 关于y 轴的对称点A ″(__-2__,__-3__)B ″(__1__,__2__)C ″(__6__,__-5__)D ″(__-12__,__1__)E ″(_-4_,_0_)(2)根据上面的表格,你发现关于x 轴的对称点的坐标有什么规律? (3)关于y 轴的对称点的坐标有什么规律? 学生完成并交流展示. ◆活动3 知识归纳1.点(x ,y )关于x 轴对称的点的坐标为__(x ,-y )__. 2.点(x ,y )关于y 轴对称的点的坐标为__(-x ,y )__. ◆活动4 例题与练习 例1 教材P 70 例2.例2 已知点A (a ,4-b )与点B (1-b ,2a ). (1)若点A ,B 关于x 轴对称,求a ,b 的值; (2)若点A ,B 关于y 轴对称,求a ,b 的值.解:(1)由题意,得{a =1-b ,4-b =-2a ,解得{a =-1,b =2; (2)由题意,得{-a =1-b ,4-b =2a ,解得{a =1,b =2. 例3 △ABC 在平面直角坐标系中的位置如图所示. (1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 向右平移6个单位长度,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.解:(1)△A 1B 1C 1如图所示;(2)∵△ABC 向右平移6个单位长度,∴A ,B ,C 三点的横坐标加6,纵坐标不变,作出△A 2B 2C 2如图所示,A 2(6,4),B 2(4,2),C 2(5,1);(3)△A 1B 1C 1和△A 2B 2C 2关于图中直线l :x =3对称. 练习1.教材P 70~71 练习第1,2,3题. 2.下列判断正确的是(C )A .点(-3,4)与(3,4)关于x 轴对称B .点(3,-4)与点(-3,4)关于y 轴对称C .点(3,4)与点(3,-4)关于x 轴对称D .点(4,-3)与点(4,3)关于y 轴对称3.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是(B )A .(-2,1)B .(-1,1)C .(1,-2)D .(-1,-2)(第3题图)(第4题图)4.如图,以长方形ABCD的中心为原点建立平面直角坐标系,点A的坐标是(3,2),则点B的坐标是__(3,-2)__,点C的坐标是__(-3,-2)__,点D的坐标是__(-3,2)__.◆活动5课堂小结1.关于x轴、y轴对称的点的坐标之间的关系.2.在坐标系中,作关于x轴(或y轴)的轴对称图形.1.作业布置(1)教材P71~72习题13.2第2,3,4,5,7题;(2)对应课时练习.2.教学反思。
八年级数学上册 13.2 画轴对称图形 第2课时 用坐标表示轴对称教案 (新版)新人教版
八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称教案(新版)新人教版一. 教材分析《八年级数学上册》第13.2节“画轴对称图形”,主要让学生了解轴对称图形的概念,学会用坐标表示轴对称图形。
通过本节内容的学习,让学生能够运用坐标知识,更好地理解轴对称图形的性质和特点。
二. 学情分析八年级的学生已经掌握了坐标系的基本知识,对平面直角坐标系有一定的了解。
但是,对于轴对称图形的概念和性质,以及如何用坐标表示轴对称图形,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过实际操作,逐步理解并掌握这些知识点。
三. 教学目标1.让学生理解轴对称图形的概念,掌握轴对称图形的性质。
2.学会用坐标表示轴对称图形,并能运用坐标知识解决实际问题。
3.培养学生的动手操作能力和逻辑思维能力。
四. 教学重难点1.轴对称图形的概念和性质。
2.如何用坐标表示轴对称图形。
3.运用坐标知识解决实际问题。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过观察、操作、思考、讨论等方式,自主探索轴对称图形的性质和特点,提高学生的动手操作能力和逻辑思维能力。
六. 教学准备1.准备一些轴对称图形的图片,如剪纸、对称轴等。
2.准备坐标纸,让学生在坐标纸上进行实际操作。
3.准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些轴对称图形的图片,让学生观察并思考:这些图形有什么共同的特点?它们是如何对称的?从而引出轴对称图形的概念。
2.呈现(10分钟)讲解轴对称图形的性质和特点,引导学生通过实际操作,理解并掌握这些知识点。
例如,让学生在坐标纸上画出一个轴对称图形,并指出它的对称轴。
3.操练(10分钟)让学生在坐标纸上进行实际操作,画出一些轴对称图形,并找出它们的对称轴。
同时,让学生思考如何用坐标表示这些轴对称图形。
4.巩固(10分钟)讲解如何用坐标表示轴对称图形,引导学生通过实际操作,掌握这一知识点。
人教版八年级数学上册13.2.2《用坐标表示轴对称》教案
人教版八年级数学上册13.2.2《用坐标表示轴对称》教案一. 教材分析人教版八年级数学上册13.2.2《用坐标表示轴对称》是初中数学中的重要内容,主要让学生了解和掌握用坐标表示轴对称的性质和运用。
通过本节课的学习,学生能够理解轴对称的概念,掌握对称轴的求法,以及会用坐标表示轴对称。
二. 学情分析学生在学习本节课之前,已经学习了坐标系的初步知识,对于坐标系中的点、线、面的位置关系有一定的了解。
但是,对于用坐标表示轴对称,可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.让学生理解轴对称的概念,知道对称轴的求法。
2.让学生掌握用坐标表示轴对称的方法和技巧。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:轴对称的概念,对称轴的求法,用坐标表示轴对称。
2.教学难点:对称轴的求法,用坐标表示轴对称的技巧。
五. 教学方法采用讲授法、实例分析法、练习法、小组合作法等,通过生动的实例和丰富的练习,让学生理解和掌握轴对称的性质和运用。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备黑板和粉笔。
七. 教学过程导入(5分钟)通过一个简单的实例,让学生初步感受轴对称的概念,并提出问题:“什么是轴对称?如何求对称轴?”呈现(15分钟)1.讲解轴对称的定义和性质,通过PPT和实物展示,让学生直观地理解轴对称的概念。
2.讲解对称轴的求法,通过实例分析,让学生掌握求对称轴的方法。
操练(10分钟)1.让学生独立完成PPT上的练习题,检测学生对轴对称的理解和掌握程度。
2.让学生分组讨论,互相解答疑问,巩固所学知识。
巩固(10分钟)1.让学生用坐标表示一些简单的轴对称图形,加深对用坐标表示轴对称的理解。
2.让学生讲解自己的解题思路和方法,互相学习和交流。
拓展(10分钟)1.讲解一些关于轴对称的拓展知识,如:轴对称与旋转的关系。
2.让学生尝试解决一些关于轴对称的综合题,提高学生的解题能力。
13.2.2 用坐标表示轴对称 教学设计
13.2.2 用坐标表示轴对称教学设计学习目标:1.直角坐标系中关于x轴,y轴对称的点的特征(重点).2.直角坐标系中关于某条直线对称的点的特征(难点).一、情景引入故宫在老北京城中起到重要作用,如果要利用轴对称的性质绘制完整的老北京城的示意图,你会借用什么工具去绘制呢?二、新知探究如图,是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为 x 轴和 y 轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?动手画一画:活动一:请同学们在坐标系中,画出点A(2,-3),B(-1,2),C(-6,-5),D(1/2,1),E(4,0).活动二:请左边小组,画出点A ,B ,C ,D ,E 关于x 轴对称的点,并写出坐标;右边组画出关于y 轴对称的点,并写出坐标.活动三:请同学们观察,每对对称点的坐标有怎样的规律,和小组讨论一下.关于 x 轴对称的点的坐标的变化规律:横坐标_不变__,纵坐标变为互为相反数.关于y 轴对称的点的坐标的变化规律:横坐标互为相反数,纵坐标变为不变.1.你追我赶,知识抢答.(1)点M(-3, 2)与点N关于x轴对称,则点N的坐标为_(-3,-2). (2)点M(-3, 2)与点N关于y轴对称,则点N的坐标为(3,2).(3)点P(m, -7)与点N(-4, n)关于x轴对称,则m=__-4___,n =__7___. (4)点P(m, -7)与点N(-4, n)关于y轴对称,则m=_4____,n =_-7____. 三、典例精讲例1 如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.例2 已知点A(3a+b,4−a),B(2b−5,−a+2b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(9a+b)^2022的值.解:(1)∵点A、B关于x轴对称∴3a+b=2b−5,4−a−a+2b=0,解得a=-7/2,b=-11/2;(2)∵点A、B关于y轴对称∴4−a=−a+2b,3a+b+2b−5=0,解得a=-1/3,b=2.∴原式=[9×(−1/3)+2]^2022=1例3 已知点P(3m+2,−4m−1)关于y轴的对称点在第二象限,求m的取值范围.解:由题得,点P在第一象限.则:{3m+2>0−4m−1>0解得−2/3<m<−1/4还有其他解题思路吗?教师引导,同学们解答.四、课堂小结本节课,你学到了什么数学知识?学会了哪些学习方法?五、布置作业见精准作业单六、板书设计。
人教版八年级上册数学13.2.2《用坐标表示轴对称》优秀教学案例
四、教学内容与过程
(一)导入新课
1.利用数学软件展示轴对称图形,引导学生关注轴对称现象。
2.呈现生活中的轴对称实例,如剪纸、建筑等,激发学生的学习兴趣。
3.提出问题:“什么是轴对称?轴对称在生活中的应用有哪些?”引导学生思考。
在导入环节,我会利用数学软件展示轴对称图形的动态变化,引导学生关注轴对称现象。同时,我会呈现生活中的轴对称实例,如剪纸、建筑等,激发学生的学习兴趣。通过提出问题:“什么是轴对称?轴对称在生活中的应用有哪些?”引导学生思考,为后续新知的讲授做好铺垫。
在教学过程中,我引导学生对自己的学习过程进行反思,培养学生的自我评价能力。例如,在课堂的最后环节,我让学生总结本节课所学的内容,并分享自己的学习体会。这样的反思与评价环节有助于培养学生的自我评价能力,提高学生的自信心。
5.专业素养的展现:通过运用现代教育技术和几何画板等软件,直观地展示轴对称图形的动态变化,提高学生的学习效果。
在教学过程中,我充分利用现代教育技术和几何画板等软件,直观地展示轴对称图形的动态变化。例如,我在讲授坐标表示轴对称图形时,利用几何画板展示了坐标的变化规律。这样的展示不仅提高了学生的学习效果,还展现了我的专业素养。
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的特征。
2014年秋八年级数学上册 13.2.2 用坐标表示轴对称教案 (新版)新人教版
用坐标表示轴对称数学策略及教法设计本节课通过城内天安门、地安门、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本堂课共分创设情境;探索新知;巩固新知;拓展延伸;巩固练习;总结归纳六个环节.采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.并通过一定的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标本节教学设计的特点是以探索活动贯穿整个课堂教学。
包括的有:(1)探索关于坐标轴对称的点的坐标的规律;(2)探索关于平行于坐标轴的直线对称的点的坐标的规律;(3)探究在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形。
另外坚持做到教师的讲解恰当、到位、有效。
紧紧抓住教材的重点在教学设计上始终突出点的位置与点的坐标之间的一一对应的关系。
教学流程安排教学过程设计(2,-3);(-1,2);(-6,-5);(0,-1.6);(4,0)。
2、如下图,△ABC 关于x 轴对称,点A 的坐标为(1,-2),说出点B 的坐标。
3、四边形ABCD 的四个顶点的坐标分别为A (-5,1)、B (-2,1)、 C (-2,5) 、D (-5,4),分别作出四边形关于x 轴与y 轴对称的图形。
4、归纳画法(1)求出对称点的坐标; (2)描点; (3)连接点。
展示学生的成果。
学生参与画图,分组讨论、交流问题,发表见解。
教师引导学生,先求出已知图形中的一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。
学生动手实践,分组讨论、交流,发表见解。
教师应关注学生的动手实践能力和归纳能力、表达能力。
都能达到基本的学习目标。
通过探究活动,进一步调动学生学习数学的积极性,并在活动中获得成功感,在小组合作中学会尊重和理解他人的见解。
人教版八年级上册13.2.2用坐标表示轴对称课程设计 (2)
人教版八年级上册13.2.2用坐标表示轴对称课程设计一. 教学目标本课程旨在帮助学生了解轴对称的概念,并能够用坐标表示轴对称的图形。
通过学习,学生应该能够:1.理解轴对称的概念并能够给出轴的定义。
2.理解坐标系的概念并能够在平面直角坐标系中作出各种图形。
3.学会如何用坐标表示轴对称的图形,能够在坐标系中求出轴对称图形的对称轴。
4.在日常生活中运用轴对称的知识来解决实际问题。
5.培养学生对图像的观察能力和综合运用各种已知条件进行分析解决问题的能力。
二. 教学内容1. 轴对称的概念轴对称是指图形中有一条直线(称为对称轴),使得该图形上的任何一点关于对称轴对称的点都在图形上。
2. 平面直角坐标系平面直角坐标系是由两条互相垂直的数轴组成的。
其中一条轴表示x轴,一条轴表示y轴。
在平面直角坐标系中,一个点可以用一个有序数对表示,如(x,y)。
3. 用坐标表示轴对称的图形对于一个轴对称的图形,它的对称轴一定垂直于图形上某一点,因此可以通过求出这个点的坐标,来确定对称轴的方程式。
同时,可以根据原图形上的某一点(x,y),求出它关于对称轴的对称点。
具体步骤如下:1.确定对称轴,并求出对称轴的方程式。
2.在原图形上取任意一点(x,y)。
3.计算该点与对称轴的距离,将该距离乘以2,得到该点关于对称轴的对称点的纵坐标。
4.根据对称点的纵坐标和对称轴的方程式,求出对称点的横坐标。
5.得到对称点的坐标(x’,y’)。
三. 教学过程1. 导入新知识首先,介绍轴对称的概念,通过举一些实例,让学生了解什么是轴对称,并引导学生提出对称轴的概念。
2. 讲解坐标系然后,讲解平面直角坐标系的概念和用法。
引导学生练习在坐标系上作出各种图形,并通过练习,让学生熟练掌握在平面直角坐标系中表示图形的方法。
3. 讲解用坐标表示轴对称的图形接着,讲解用坐标表示轴对称的图形。
通过画图和实例演示,让学生掌握求对称轴和对称点的方法,并进行练习。
4. 综合应用最后,让学生进行综合应用,解决实际问题。
八年级数学上册-人教版八年级上册数学 13.2 第2课时 用坐标表示轴对称教案2(2)
第2课时 用坐标表示轴对称【教学目标】1.知识与能力:(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题. 2.过程与方法:在探索问题的过程中体会知识间的关系,感受函数与生活的联系. 3.情感、态度与价值观: 培养学生的应用意识和探究精神.【教学重点】(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题. 【教学难点】用轴对称知识解决相应的数学问题.【教学过程】一、 创设情境,激发学生兴趣,引出本节课要研究的内容 活动1 观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流. 教师活动设计:教师组织活动,引导学生作以下归纳:(1) 由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形的形状、大小完全一样;(2) 新图形上一个点,都是原图形上的某一点关于直线l 的对称点; (3) 连接任意一对对应点的线段被对称轴垂直平分. 活动2 问题 如图(1),已知△ABC 和直线l ,你能作出△ABC 关于直线l 对称的图形吗?ll图(1)图(2)学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A、B、C关于直线l的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l的对称点的方法是:(1)过A作l的垂线垂足为O;(2)连接A O并延长到A′,使A′O=A O,则点A′就是点A关于直线l的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.活动3二、观察操作,主动探索,研究坐标系内的轴对称活动4问题在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律.点(x,y)关于x轴对称的点的作标是(x,-y);点(x,y)关于y轴对称的点的作标是(-x,y).教师活动设计:组织学生进行探索,观察猜测,然后进行归纳总结.活动5问题如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形.学生活动设计:学生根据活动4中发现的规律,首先求出点A 、B 、C 、D 关于x 轴、y 轴的对称点,然后再连接对称点即可.教师活动设计:本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程.三、应用提高、拓展创新 问题如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.教师和学生活动设计:分组讨论,让学生探索:在街道上找一点C ,使得AC +BC 为最小.通过学生活动,使他们懂得:只有A 、C 、B 在一直线上时,才能使AC +BC 最小,这时作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.学生自主探索其中的原因(原因:在直线l 上取异于点C 的点D ,由于l 垂直平分AA ′,所以得到DA=DA ′,所以DA+DB =DA ′+DB ,根据两点之间线段最短得到DA′+DB>A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.)四、归纳小结、布置作业小结:1.作轴对称图形;2.用坐标表示轴对称.。
八年级数学上册 13.2.2 坐标平面中的轴对称教案 (新版)新人教版
坐标平面中的轴对称教学目标(一)教学知识点1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y•轴对称的图形.(二)能力训练要求1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识. 2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)情感与价值观要求在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点用坐标表示轴对称.教学方法探索发现法.教具准备课件,坐标纸.教学过程Ⅰ.提出问题,创设情境[活动1]1.如图:(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?设计意图:通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,•使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.师生行为:[生]1.(1)观察可发现图中的两个圆脸关于y轴对称.(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),•嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y 轴的距离和A•到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1).2.师生共同完成[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y 轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.[师]A(2,2)与A1(-2,2)关于y轴对称,B(4,2)与B1(-4,2)关于y轴对称,C(4,4)与C1(-4,4)关于y轴对称,D(2,4)与D1(-2,4)关于y轴对称.那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,B(4,2)与B2(4,-2)关于x轴对称,C(4,4)与C2(4,-4)关于x轴对称,D(2,4)与D2(2,-4)关于x轴对称.那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.Ⅱ.导入新课[活动2]在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A (2,-3),B (-1,2),C (-6,-5),D (12,1),E (4,0). 关于x 轴的对称点A ′(____,____)B ′(_____,______)C•′(•_____,•_____)••D ′(____,_____)E ′(_____,_____).关于y 轴的对称点A ″(_____,____)B ″(_____,______)C ″(•_____,•_____)••D ″(____,_____)E ″(_____,_____).设计意图:通过学生动手操作,分别作A ,B ,C ,D ,E 关于x 轴、y 轴的对称点A ′,B ′,C ′,D ′,E ′;A ″,B ″,C ″,D ″,E ″,并且求出它们的坐标,观察,归纳它们坐标之间的关系. 师生行为:教师引导,学生自主探索发现关于x 轴、y 轴对称的每组对称点坐标的规律.[生]如图,我们先在直角坐标系中描出A (2,-3),B (-1,2),C (-6,-5),D (12,1),E (4,0)点.我们先在坐标系中作出A 点关于x 轴的对称点,即过A 作x 轴的垂线交x 轴于M 点,•M 点的坐标为(2,0).在AM 的延长线上截A ′M=AM ,则A ′就是A 点关于x 轴的对称点,所以A ′在第一象限,因为A ′M=AM ,所以A ′的纵坐标为3,因为AA ′⊥x 轴,即AA ′∥y 轴,•所以A ′的横坐标为2,即A ′的坐标为(2,3). 同理可求得B ,C ,D ,E 关于x 轴的对称点B ′,C ′,D ′,E ′的坐标分别为B ′(-1,•-2),C ′(-6,5),D ′(1,-1),E ′(4,0).列表如下:续表C / .[师]观察上表每对对称点坐标之间的关系,你发现什么规律?[生]每对对称点的横坐标相同,纵坐标互为相反数.[师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.[生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,•且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(-1,1),E″(-4,0).列表如下:续表[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.Ⅲ.随堂练习[活动3]练习:(教科书P41练习)1.分别写出下列各点关于x轴和y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x•轴和y轴对称的图形.设计意图:巩固关于x轴、y轴对称的每对对称点的坐标规律.根据已知点,能求出关于x•轴、y 轴对称的点的坐标,并能利用关于坐标轴对称的点的坐标特点,•作出与已知图形关于坐标轴对称的图形.师生行为:学生练习,教师巡视,师生共评.[生]1.解:根据关于x轴对称的点的坐标的特点求得(-2,6),(1,-2),(-1,3),(•-4,-2),(1,0)关于x轴对称的点的坐标分别为(-2,-6),(1,2),(-1,-3),(-4,2),(•1,0).根据关于y轴对称的点的坐标的特点可得(-2,6),(1,-2),(-1,3),(-4,-2),(•1,0)关于y轴对称的点的坐标分别为(2,6),(-1,-2),(1,3),(4,-2),(-1,0).2.△ABC关于x轴对称,则A、B为关于x轴的一对对称点,已知A的坐标为(1,-2),•则B的坐标为(1,2).3.分析:要作出与△ABC关于x轴、y轴的对称图形,只需把A、B、C关于x轴、y轴的对称点找到即可.解:△ABC各顶点的坐标:A(-4,1),B(-1,-1),C(-3,2)它们关于x轴对称的点的坐标为A1(-4,-1),B1(-1,1),C1(-3,-2).在同一直角坐标系中描出A1(-4,-1),B1(-1,1),C1(-3,-2)连结A1B1,B1C1,C1A1,则△A1B1C1就是△ABC关于x轴对称的图形(如图).A(-4,1),B(-1,-1),C(-3,2)它们关于y轴对称的点的坐标为A2(4,1),B2(1,-1),C2(3,2).在同一坐标系中描出A2(4,1),B2(1,-1),C2(3,2),连结A2B2,B2C2,C2A2,则△A2B2C2就是△A BC关于y轴对称的图形(如图).[活动4]补充练习:1.将下图中的点(2,1),(5,1),(2,5)做如下变化:(1)纵坐标不变,横坐标分别加2.(2)横坐标不变,纵坐标分别加1.(3)纵坐标不变,横坐标分别变为原来的2倍.(4)横坐标不变,纵坐标分别变为原来的2倍.(5)纵坐标不变,横坐标分别乘以-1.(6)横坐标不变,纵坐标分别乘以-1.(7)纵坐标、横都分别乘以-1,观察变化后的三角形与原三角形有什么变化?设计意图:进一步让同学们亲身经历点的坐标的变化与图形变换之间的关系.师生行为:学生练习,教师指导.精析:行根据变化,把每次变化后的三个顶点坐标求出,•在平面直角坐标系中描出它们,连结成新三角形,然后与原有的三角形进行比较.精解:(1)纵坐标不变,横坐标分别加2得三个点依次为(4,1),(7,1),(4,5).将各点用线段依次连结起来,所得图形如图(1)所示,与原图形相比三角形的形状、•大小不变,整个三角形向右平移了2个单位长度.(2)横坐标不变,纵坐标分别加1,得三个点依次为(2,2),(5,2),(2,6).将各点用线段依次连结起来,所得图形如图(2)所示,与原图形相比,三角形的形状、大小不变,整个三角形向上平移了1个单位长度.(3)纵坐标不变,横坐标分别变为原来的2倍,得三个点依次为(4,1),(10,1),(4,5).将各点用线段依次连结起来,所得图形如图(3)所示,与原图形相比,•整个三角形被横向拉长为原来的2倍.(4)横坐标不变,纵坐标分别变为原来的2倍,得三个点依次为(2,2),(5,2),•(2,10).将各点依次用线段连结起来,所得图形如图(4)所示,与原图形相比,整个三角形被纵向拉长2倍.(5)纵坐标不变,横坐标分别乘以-1,得三个点坐标为(-2,1),(-5,1),(-2,5)•.将各点依次用线段连结起来,如图(5)所示,与原图形相比,三角形的形状、•大小不变,整个三角形与原三角形关于y轴对称.(6)横坐标不变,纵坐标分别乘以-1,得三个点坐标为(2,-1),(5,-1),(2,-5).将各点用线段连结起来,如图(6)所示,与原图形相比,三角形的形状、大小不变,整个三角形与原三角形关于x轴对称.(7)横纵坐标都分别乘以-1,得三个点坐标为(-2,-1),(-5,-1),(-2,-5).将各点用线段依次连结起来,如图(7)所示,与原图形相比,整个三角形的形状、•大小不变,整个三角形与原三角形关于O点对称.Ⅳ.课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.Ⅴ.课后作业教科书习题12.2─2、3、4题,第6题、第7题(学有余力的同学做).Ⅵ.活动与探究如下图,以树干为对称轴,画出树的另一半.分析:要画出树的另一半,根据轴对称图形的性质,•关于对称轴对称的对应点的横坐标是互为相反数,纵坐标不变,因此需要在图中先建立直角坐标系,•写出对称轴左侧某些点的坐标,然后对称地写出右侧的对应点的坐标,再进行连结.解:如上图所示建立直角坐标系,对称轴为y 轴,y 轴左侧的点A 、C 两点的坐标为(-4,0)、(-3,4),对称点A ′、C ′的坐标为(4,0)、(3,4),O 、B 、D•三点都在对称轴上,然后用线段连结起来.2.A 、B 、C 、D 、E 各点的坐标如下图所示,确定△ABE 、△EBD 、△ABC 的面积,你是怎样做的?你发现了什么规律?解:A 、B 、C 、D 、E 各点的坐标分别为A (0,6),B (0,3),C (6,1),D (-2,-2),E (-8,0).△ABE 的面积为12(8×6-8×3)=12. △EBD 的面积为8×5- 12×8×3- 12×2×5- 12×6×2=17. △ABC 的面积为12(6×5-2×6)=9. 规律为可以将每个三角形的面积看成边与坐标轴平行的矩形的一半.板书设计§12.2.2 用坐标表示轴对称一、探索关于x 轴、y 轴对称的每对对称点的规律.(1)关于x 轴对称的点的坐标横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的点的坐标纵坐标相同,横坐标互为相反数.二、利用关于x 轴、y 轴对称的点的坐标的规律,能作出关于x 轴、y 轴对称的图形. 备课资料(一)参考练习1.已知A 点坐标为(-1,3).(1)与点A 关于y 轴对称的点坐标.(2)与点A关于x轴对称的点坐标.2.已知△ABC的顶点坐标分别为(3,3),(2,1),(4,1).请你在同一坐标系中作出:(1)关于x轴对称的图形.(2)关于y轴对称的图形.3.描出图中的枫叶图案关于x轴的轴对称图形的简图.。
人教版八年级上册教案:13.2.2用坐标表示轴对称
《用坐标表示轴对称》教学设计学科:数学课题:用坐标表示轴对称作者姓名:工作单位:电话:《13.2.2用坐标表示轴对称》教学设计教材分析:本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
而第一节主要介绍轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容。
通过本节的教学,学生通过丰富的实例认识轴对称,体会轴对称在现实生活中的广泛应用。
学情分析:学生在七年级下册已经系统学过平面直角坐标系的相关知识,并在研究了用坐标表示平移。
学生已经拥有了一定的在平面直角坐标系中研究图形的能力和方法。
加上学生已经在本章第1节的学习中非常熟练地掌握了轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容,因此,本节课的教学中,给学生留足空间和时间,以指导学生自主学习为主,附之于教师的适当帮助、指导和适时的点拨、点评,先通过学生在平面直角坐标中画出一些关于x轴或y轴对称的点,写出这些点的坐标,归纳出规律。
教学目标:1.能用坐标表示轴对称,探究点或图形的轴对称变换引起的点的坐标的变化规律,学会如何利用这种坐标变化规律在平面直角坐标系中作出一个图形的轴对称图形。
2.经历探究用坐标表示轴对称的过程,感受其应用规律。
培养学生的语言表达能力,观察能力、归纳能力。
3.通过主动探究,合作交流,培养学生的合作意识,体验成功的喜悦,获得数形结合的审美享受。
教学重难点重点:用坐标表示点关于坐标轴对称的点的坐标。
难点:找对称点的坐标之间的关系、规律。
教学准备:多媒体课件、三角尺等。
教学方法:自主探究及讲练相结合。
教学过程:一.复习回顾,引入新课提问:已知点A 和一条直线MN ,如何作出点A 关于直线MN 的对称点?设计意图:通过学生动手操作,让学生回忆轴对称的相关知识点,同时为后面在平面直角坐标系中研究点的坐标变化做好铺垫。
人教版八年级上册13.2.2用坐标表示轴对称教学设计
人教版八年级上册13.2.2用坐标表示轴对称教学设计1.教学目标•了解坐标系中的轴对称概念•能用坐标表示轴对称•能通过图形变换方法解决数学问题2.教学重点难点•鉴别轴对称图形•能够用坐标表示轴对称•能够解决用坐标表示轴对称的问题3.教学准备•教师:教案、笔记本电脑、投影仪、智能板、音响等。
•学生:笔记本、教材、练习本等。
4.教学过程4.1.导入使用智能板展示一个图像,提问学生该图像是否对称。
4.2.课堂讲解•由教师介绍轴对称概念,如什么是轴对称、轴对称的特点等。
•由教师通过引导学生思考,讲解如何用坐标表示轴对称。
4.3.讲解引导学生思考以下问题:若点P的坐标是(x,y),如何求点P关于x轴的轴对称点的坐标?答案:点P关于x轴的轴对称点的坐标为(x,−y)。
若点P的坐标是(x,y),如何求点P关于y轴的轴对称点的坐标?答案:点P关于y轴的轴对称点的坐标为(−x,y)。
4.4.练习•让学生根据所学知识自行练习。
•在练习的过程中,教师可以设置答题环节,引导学生分别求轴对称图形的坐标,并检查答案。
4.5.归纳总结教师可请学生回忆轴对称的概念,及用坐标表示轴对称,同时也要引导学生总结该知识点的解决方法。
4.6.作业布置课后作业,要求学生解决一些有关轴对称的题目。
5.教学资源教材、练习本、录制好的视频教学等。
6.板书设计板书设计可根据所涉及的知识点进行设计,如:坐标系x轴对称y轴对称7.教学反思•本节课教学重点难点是用坐标表示轴对称,本教学设计是按照该知识点进行设计的,但是否满足学生的学习需要是需要反思的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2.2用坐标表示轴对称
教学课题12.2.2用坐标表示轴对称年级学科八年级(上)数学
教学课时1课时课型新授课主备教师使用教师
教学目标
在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用
轴对称的性质作出成轴对称的图形
教学重点与难点
重点:用坐标表示轴对称
难点:利用转化的思想,确定能代表轴对称图形的关键点
教学准备及手段纸多媒体教学探究式教学
教学过程动态修改部分
一、复习轴对称图形的有关性质
二、新授:
1.学生探索:
点(x,y)关于x轴对称的点的坐标(x,-y);点(x,y)关于y轴对称的点的
坐标(-x,y);点(x,y)关于原点对称的点的坐标(-x,-y)
2.例3 四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-
2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形.
(1)归纳:与已知点关于y 轴或x轴对称的点的坐标的规律;
(2)学生画图
(3)对于这类问题,只要先求出已知图形中的一些特殊点的对应点的坐标,
描出并顺次连接这些特殊点,就可以得到这个图形的轴对称图形.
3、探究问题
分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你
能发现它们的对应点的坐标之间分别有什么关系吗?
(1)学生画图,由具体的数据,发现它们的对应点的坐标之间的关系
(2)若△P
1Q
1
R
1
中P
1
(x
1
,y
1
)关于x=1(记为m)轴对称的点的坐标P
2
(x 2,y 2) ,
则
m x x =+22
1,y 1= y 2. 若△P 1Q 1R 1中P 1(x 1,y 1)关于y=-1(记为n)轴对称的点的坐标P 2
(x 2,y 2) ,则x 1= x 2,2
2
1y y +=n .
三、小结本节内容
四、作业 必做题: 作业本(1)12.2.2用坐标表示轴对称 全品作业本 12.2.2用坐标表示轴对称A 、B 选做题: 全品作业本12.2.2用坐标表示轴对称C
板书设计:
§12.2.2用坐标表示轴对称
点(x,y)关于x 轴对称的点的坐标(x,-y); 点(x,y)关于y 轴对称的点的坐标(-x,y); 点(x,y)关于原点对称的点的坐标(-x,-y)
教后反思:。