第一章:状态空间描述4

合集下载

线性系统的状态空间描述

线性系统的状态空间描述

第一章 线性系统的状态空间描述 1. 内容系统的状态空间描述化输入-输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换组合系统的状态空间方程与传递函数矩阵2. 基本概念系统的状态和状态变量状态:完全描述系统时域行为的一个最小变量组。

状态变量:构成系统状态的变量。

状态向量设系统状态变量为)(,),(),(21t x t x t x n 写成向量形式称为状态向量,记为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()(21t x t x t x t x n状态空间状态空间:以状态变量为坐标轴构成的n 维空间。

状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条轨迹。

3. 状态空间表达式设系统r 个输入变量:)(,),(),(21t u t u t u r m 个输出:)(,),(),(21t y t y t y m n 个状态变量:)(,),(),(21t x t x t x n例:图示RLC 电路,建立状态空间描述。

电容C 和电感L 两个独立储能元件,有两个状态变量,如图中所注,方程为)()()()()()(t i dtt du C t u t u t Ri dtt di LL c c L L ==++ )()(),()(21t u t x t i t x c L ==状态方程)(01)()(0/1/1/)()()()()()()()(212112211t u t x t x C L L R t xt x t x t xC t u t x t Rx t x L ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇔⎩⎨⎧==++⇔输出方程[]⎥⎦⎤⎢⎣⎡==)()(01)()(21t x t x t u t y c 一般定义状态方程:状态变量与输入变量之间的关系[][][]t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx r n n n n r n r n );(,),(),();(,),(),()()();(,),(),();(,),(),()()();(,),(),();(,),(),()()(212121212222121111======用向量表示,得到一阶的向量微分方程[]t t u t x f t x),(),()(= 其中n n r r n n f f f f t u t u t u t u t x t x t x t x R R R ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙=∙∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()(:)(,)()()(:)(,)()()(:)(212121输出方程:系统输出变量与状态变量、输入变量之间的关系,即[][][]t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y r n m m r n r n );(,),(),();(,),(),()();(,),(),();(,),(),()();(,),(),();(,),(),()(2121212122212111=== 用向量表示为[]t t u t x g t y ),(),()(=4系统分类:1) 非线性时变系统[][]⎩⎨⎧==t t u t x g t y t t u t x f t x ),(),()(),(),()(2) 非线性定常系统[][]⎩⎨⎧==)(),()()(),()(t u t x g t y t u t x f t x3) 线性时变系统⎪⎩⎪⎨⎧+++++=+++++=rnr n n nn n n r r n n u t b u t b x t a x t a xu t b u t b x t a x t a x)()()()()()()()(1111111111111写成向量形式即为⎩⎨⎧+=+=)()()()()()()()()()(t u t D t x t C t y t u t B t x t A t x其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t b t b t b t b t b t b t b t b t b t B t a t a t a t a t a t a t a t a t a t A nr n n r r nn n n n n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t d t d t d t d t d t d t d t d t d t D t c t c t c t c t c t c t c t c t c t C mr m m r r mn m m n n4) 线性定常系统⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x5 状态空间表达式的系统结构图状态和输出方程可以用结构图表示,形象地表明系统中信号传递关系。

线性系统的状态空间描述

线性系统的状态空间描述

解:根据各元件的电流与电压关系、回路电压和等于
零,得到系统的方程:
RiLdi 来自t1 C
id t

ui
uo

1 C
id t
系统的输入、输出分别为
uui,yuo 24
第1章 线性系统的状态空间描述
状态变量选取方法不同,则状态空间描述不同。
a)选取状态变量 x1i,x2C 1 idtu0,则状态空
第1章 线性系统的状态空间描述
第一章 线性系统的状态空间描述
1.1 线性系统状态空间描述 1.2 线性定常连续系统状态空间表达式的建立 1.3 系统的传递函数矩阵 1.4 线性系统等价的状态空间描述 1.5 组合系统的状态空间描述
1
第1章 线性系统的状态空间描述
1.1 线性系统状态空间描述
一.系统数学描述的基本类型
输出量可以选作状态变量。 输入量不允许选作状态变量。
状态变量有时是不可测量的。
状态变量是时间域的。
系统的任意选取的两个状态变量组之间为线性非奇
异变换的关系。
11
第1章 线性系统的状态空间描述
状态向量:是由状态变量所构成的向量,即向量
x(t)x1(t),x2(t), ,xn(t)T称为n维状态向量。
22
第1章 线性系统的状态空间描述
一.根据系统机理建立状态空间表达式 根据系统机理建立状态空间描述的基本步骤: 1)根据系统所遵循的物理规律,建立系统的微
分方程或差分方程; 2)选取有关物理量 (变量) 作为状态变量,推导
出系统的状态方程和输出方程。
23
第1章 线性系统的状态空间描述
例1-1(P403例9-1):建立RCL网络的状态方程

现代控制复习重点

现代控制复习重点

复习重点
第一章控制系统的状态空间描述
1 控制系统状态空间表达式
2 由系统的物理模型建立状态空间表达式
3 由系统的微分方程建立状态空间表达式
4 离散时间系统的状态空间表达式
第二章线性控制系统的分析
1 线性定常系统的运动分析
2 状态转移矩阵
3 线性定常非齐次状态方程的解
4 线性离散时间系统的运动分析
5 线性连续时间系统的离散化
第三章线性控制系统能控性和能观测性
1 线性连续系统的能控性及判据
2 线性连续系统的能观测性及判据
3 对偶原理概念
4 线性系统的能控标准型和能观测标准型
5 线性定常离散系统能控性与能观测性判据
6 线性系统的能控性结构分解和能观测性结构分解
7 传递函数矩阵的(能控、能观测、最小)实现
第四章控制系统的稳定性分析
1 李亚普诺夫稳定性定义
2 李亚普诺夫稳定性基本定理
3 线性系统李亚普诺夫稳定性分析
4 非线性系统李亚普诺夫稳定性分析
第五章线性定常系统综合
1 状态反馈和输出反馈
2 闭环系统的极点配置
3 状态观测器的实现
i。

现代控制理论状态空间法

现代控制理论状态空间法

根据系统微分方程建立状态空间表达式.
1.输入项中不含输入导数项的线性系统空间状态 表达式
• 系统描述为:
y (n ) a1 y (n1) an1 y an y u
(1)
讨论:状态如何选择
y(t) C (t)x(t) D(t)u(t)
2)线性时不变系统: x Ax Bu y Cx Du
在通常情况下,大多数还是研究线性时不变 系 统,即线性定常系统,因此本课程的主要研究对 象是线性定常系统。
4.状态空间描述的结构图(或称状态变量图)
• 例:根据上例画出结构图. • 解:先将例子写成下述形式
现代控制理论
第一章 状态空间法
控制系统的状态空间描述
一.问题的引出 1 --古典控制理论的局限性 1、仅适用于SISO的线性定常系统(外部描述,
时不变系统) 2、古典控制理论本质上是复频域的方法.(理论) 3、设计是建立在试探的基础上的.(应用) 4、系统在初始条件为零,或初始松驰条件下,才
能采用传递函数.
定义2.状态变量
状态变量是确定系统状态的最小一组变量,如果以最
少的n个变量 x1 (t ), x2 (t ), , xn (t ) 可以完全描述系
统的行为 (即当t≥ 时输入和
t0
在t= t0初始状态给定后,系统的状态完全可以确定),那 么
x1 (t ), x2 (t ), 是一, xn组(t )状态变量.
(2)状态变量选取不唯一,有时选取状态变量仅为数 学描述所需,而非明确的物理意义。
(3)状态变量是系统的内部变量,一般情况下输出是 状态的函数,但输出总是希望可量测的。
(4)仅讨论有限个状态变量的系统。 (5)有限个数的状态变量的集合,称为状态向量。 (6)状态向量的取值空间称为状态空间。

现代控制理论知识点汇总

现代控制理论知识点汇总

现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

现代控制理论习题解答(第一章)

现代控制理论习题解答(第一章)

Ra
La
i f = 常数
ua
f ia D J
ω
ML
【解】: 设状态变量为:
题 1-2 图
⎡ x1
⎢ ⎣
x
2
⎤ ⎥ ⎦
=
⎡ia ⎢⎣ω
⎤ ⎥ ⎦
其中 ia 为流过电感上的电流, ω 电动机轴上的角速度。 电动机电枢回路的电压方程为:
eb 为电动机反电势。 电动机力矩平衡方程为

ua = La ia + Ra ⋅ ia + eb
(4) y (4) + 3y + 2y = −3u + u
【解】:
5
在零初始条件下,方程两边拉氏变换,得到传递函数,再根据传递函数求状态空间 表达式。 此题多解,一般写成能控标准型、能观标准型或对角标准型,以下解法供参考。 (1)传递函数为:
状态空间表达式为:
G(s) =
2
s3 + 2s2 + 4s + 6
1⎤
R 2 C1 −1
R2C2
⎥ ⎥ ⎥
⎡ ⎢ ⎣
x1 x2
⎥⎦
⎤ ⎥ ⎦
+
⎡ ⎢ ⎢ ⎣
1
R1C1 0
⎤ ⎥⎥u i ⎦
y = u0 = [0
1]⎢⎡

x1 x2
⎤ ⎥ ⎦
(2)
设状态变量: x1 = iL 、 x2 = uc 而
1
根据基尔霍夫定律得: 整理得

iL = C uc

ui = R ⋅ iL + LiL + uc

M D = J ω + fω + M L

第1章线性系统的状态空间描述

第1章线性系统的状态空间描述

x&(t) Ax(t) Bu(t) y(t) Cx(t) Du(t)
• 情况1:输入u不含导数
y(n) an1y(n1) L a1y& a0 y bu
自主技术与智能控制研究中心
二、状态空间模型的建立
输入u不含导数 y(n) an1y(n1) L a1y& a0 y bu
选取状态变量 x1 y x2 y x3 y
I ml2 ml
自主技术与智能控制研究中心
ml M m
二、状态空间模型的建立
用一阶微分方程组表示系统模型!
&x& 1m2l2 g 1(I ml2 )u && 1(M m)mgl 1mlu
引入新的变量
x1 x x2 x&
x3 x4 &
x&1 x2
x&2 x&3
{1m2l x4
x&% Ax% Bu%
y%
Cx%
Du%
f1
A
f x
|x0
,u0
x1
M
fn x1
L O L
f1 xn
M
fn xn
B
f u
|x0 ,u0
,C
g x
|x0
,u0
,
D
g u
|x0 ,u0
自主技术与智能控制研究中心
二、状态空间模型的建立 例3:质量-弹簧-阻力器系统
自主技术与智能控制研究中心
u
线性化 0 V mg
m
d2 dt 2
(x
l
sin )
H
I&& Vl Hl
m d 2 (l cos) V mg

第一章 线性定常系统的状态空间描述及运动分析

第一章 线性定常系统的状态空间描述及运动分析

称 G ( s ) 为系统的传递函数矩阵。G ( s ) 为的一个有理分式 矩阵。当 g ij ( s ) 除严格真还包含真有理分式时,即 G ( s ) 的一个或一些元传递函数中分母和分子多项式具有相等 的最高幂次时,称为真有理分式矩阵。
7
§1.1-2 传递函数矩阵 当且仅当 G ( s )为真的或严格真的时,它才是物理上可实 现的。当且仅当 lim G ( s ) = 零阵 s →∞ G ( s ) 为严格真的, lim G ( s ) =非零常阵 s →∞ 传递函数矩阵为真的。
8
§1.2 线性定常系统的状态空间描述
§1.2-1 状态和状态空间 系统的状态空间描述是建立在状态和状态空间概念的基 础上的。 定义1.1 动力学系统的状态定义为完全的表征系统时间 域行为的一个最小内部变量组。组成这个变量组的变 xn (t ) 称为系统的状态变量,其中t ≥ t0, ", 量 x1 (t ), x2 (t ), t0 为初始时刻。由状态变量 ⎡ x1 (t ) ⎤ ⎥, t ≥ t 构成的列向量 x(t ) = ⎢ # 0 ⎢ ⎥ 称为系统的状态向量,简称为状态。状态空间则定义为 状态向量取值的一个向量空间。
15
§1.2-2 动态系统的状态空间描述 离散动态过程的状态空间的描述。离散动态过程的一个 重要特点是,系统的各个变量都被处理成为只在离散时 刻取值,其状态空间描述只反映离散时刻的变量组间的 因果关系和转换关系。用k=0,1,2来表示离散的时刻,则 离散时间系统(简称离散系统)的状态方程和输出方程 的最一般形式为:
2
§1.1-1 单变量情形回顾 已知由下列常系数微分方程描述的定常系统
y n + a n −1 y ( n −1) + " + a1 y (1) + a 0 y

现代控制理论知识点汇总

现代控制理论知识点汇总

1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

2由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。

实现是非唯一的。

方法:微分方程→系统函数→模拟结构图→状态空间表达式。

第一章线性控制系统的状态空间描述lyq

第一章线性控制系统的状态空间描述lyq

X3
X0 X(t)
状态变量 完全表征系统运动状态的
X2
最小一组变量 X1
状态向量 以状态变量为分量所构成的向量
状态空间 以状态变量x1(t), x2(t)… xn(t)为坐标轴构成的 n维空间称为状态空间。系统在任何时刻的状 态都可用状态空间中的一个点来表示。随着时 间的推移,x(t)将在状态空间中描绘出一条轨迹, 称为状态轨迹。
和古典控制理论不同,状态空间描述考虑了“输入 -状态-输出”这一过程,它注意到了被输入-输 出描述所忽略了的状态。输入引起了状态的变化, 而状态才决定了输出的变化。因此状态空间描述是 对系统的结构特性的反映,而输入-输出描述只是 对系统的端部特性的反映。然而具有相同端部特性 的系统,都可以具有不同的结构特性经。这表明状 态空间描述是对系统的一种完全的描述。
P
m
x,v
f
1.1 线性控制系统的状态空间表达
例2 系统如图所示,输入为u,输出uc,列写 其动态方程
L
R2
u
iL
R1
uc
1.选择状态变量:
x1 iL , x2 u C ,
1.1 线性控制系统的状态空间表达
2 列写一阶微分方程组
iL
(uLdiL) 1CduC dt R1 dt
L
u
iL
R2 R1
t t0
yq gq(x1, ,xn;u1, ,up;t)
D(t)
u(t)
B(t)

X (t)
++
dt
X(t)
C(t)
+
+ Y(t)
A(t)
1.1 线性控制系统的状态空间表达
1.1.3 系统的状态空间描述列写举例

现代控制理论 第1章 状态空间描述

现代控制理论 第1章 状态空间描述

得动态方程组 1 x2 x k b 1 x 2 y y u y m m m k b 1 x1 x2 u m m m y x 1
问题:到底有 何区别?
13
状态空间表达式为
1 0 x k x 2 m

如果将储能元件的物理变量选为系统的状态变量,则状态变量的个数 等于系统中独立储能元件的个数
5
基本概念

状态方程:系统状态方程描述的结构图如下图所示
假设:causal system ——现在的输出只取决 于现在和过去的输入, 而与将来的输入无关。
输入引起状态的变化是一个动态过程,每个状态变量的一阶导数与所有 状态变量和输入变量的数学表达(常微分方程ODE)称为状态方程,一般形式 为:
1896192019872006状态变量和状态空间表达式状态变量和状态空间表达式化输入化输入输出方程为状态空间表达式输出方程为状态空间表达式系统的线性变换对角线标准型和约当标准型系统的线性变换对角线标准型和约当标准型由状态空间表达式导出传递函数阵由状态空间表达式导出传递函数阵离散时间系统的状态空间表达式离散时间系统的状态空间表达式时变系统的状态空间表达式时变系统的状态空间表达式从系统黑箱的输入输出因果关系中获悉系统特性传递函数描述属系统的外部描述系统的内部描述白箱系统完整地表征了系统的动力学特征状态空间表达式属系统的内部描述状态变量
x1 f1 ( x1 , x2 f 2 ( x1 , xn f n ( x1 , , xn , u1 , , xn , u1 , , xn , u1 , , um , t ) , um , t ) , um , t )
标量形式,繁琐!
6
矢量形式

第一章 状态空间表达式(2013)

第一章 状态空间表达式(2013)

Y (s) bm s m bm1 s m1 b1 s b0 W ( s) n U ( s) s a n 1 s n 1 a1 s a 0
cm sm cm1sm1 c1s c0 W (s) ( s p1 )( s p2 ) ( s pn )
K1 T 1s 1
K2 T 2s 1
K3 T 3s 1
y
K4
3 状态空间表达式的建立 3.1 从系统方块图出发 变换成模拟结构图; 每个积分器的输出选作一个状态变量; 写出系统的状态方程和输出方程。
u +
K1 T 1s 1
+
K2 T 2s 1
K3 T 3s
y
K4
K1 T1 +
开环和闭环、反馈
控制的性能指标:稳定性、快速、精度。最优控制
控制理论概述
学控制理论做什么? 系统分析—分析系统的性能
系统设计—设计控制器
所谓系统分析就是在规定的条件下,对数学模型已 知系统的性能进行分析; 所谓系统设计,就是构造一个能够完成给定任务的系统, 这个系统具有希望的瞬态、稳态性能以及抗干扰性能。
f (s) f (t )e dt
0
f (s) sf (s) f (0)

传递函数:线性动态系统零初值条件下输出量的Laplace变 换像函数与输入量的Laplace变换像函数之比。 *线性系统:满足叠加和一致性, 如用线性方程或线性微分方程描述的系统 可以用于分解复杂系统 *定常系统:参数不随时间变化
J u i
x1 i
B

x2
R x1 L x K 2 a J
Kb 1 L x1 L u B x2 0 J

现代控制理论习题解答(前五章)

现代控制理论习题解答(前五章)

第一章 控制系统的状态空间描述3-1-1 求图示网络的状态空间表达式,选取c u 和L i 为状态变量。

(1)1R 2Ro题3-1-1图1(2)o题3-1-1图2【解】: (1)设状态变量:11c u x =、22c u x =而•=111c u C i 、•=222c u C i根据基尔霍夫定律得:1122111)]([c c c c i u R R u u u C u +-+=•22221c c c u R u C u +=•整理得[]⎥⎦⎤⎢⎣⎡==⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡210112122221212121211001111x x u y u C R x x C R C R C R C R R R R x x i(2)设状态变量:L i x =1、c u x =2 而•=c L u C i根据基尔霍夫定律得:c L L i u i L i R u ++⋅=•整理得[]⎥⎦⎤⎢⎣⎡==⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21021211001011x x u y u L x x CL L R x x i【解】:此题多解,一般可以写成能控标准型、能观标准型或对角标准型,以下解法供参考。

(1)[]xy u x x 1111006116100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=结构图如图题3-1-5图1所示题3-1-5图1(2)655216552656513)(22222+++-=++--++=++++=s s s s s s s s s s s s s G uy u x x +--=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=]25[105610 结构图如图题3-1-5图2(a )所示题3-1-5图2(a)或有312116513)(22+-+-=++++=s s s s s s s G []ux y u x x +--=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=11113002 结构图如图题3-1-5图2(b )所示y题3-1-5图2(b)(3))3()1(4)(2++=s s s s G)1(1)1(2)3(3134)(2+-++-++-+=s s s s s G xy u x x⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=12313410111000110000300000 结构图如图题3-1-5图3所示题3-1-5图3(4)13332)(232+++++=s s s s s s G []xy u x x 123100331100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=结构图如图题3-1-5图4所示y题3-1-5图43-1-6 将下列状态方程化成对角标准型。

第一章控制系统的状态空间表达式

第一章控制系统的状态空间表达式

K1
(S
1)3
1 S(S 1)3
S1
1
K2
d
ds
(S
1)3
1 S(S 1)3
S 1
1
K3
1 d2
2!
ds
2
( S
1)3
1 S( S 1)3
S 1
1
K4
S
S(
1 S 1)3
S 0
1
因此,
F(s)
(S
1 1)3
(S
1 1)2
1 S 1
1 S
查拉普拉斯关系对照表,得:
比例环节的传递函数为: G(s) C(s) K
R(s)
作比例环节的阶跃响应曲线图
R(t)
X0
0
C(t)
t
KX0
0
t
图2-10 比例环节的阶跃响应曲线
2、积分(Integral)环节
积分环节的微分方程为: c(t) 1
t
r(t)dt
Ti 0
式中,Ti—积分时间。
积分环节的传递函数为
G(s) C(s) 1 R(s) TiS
fr
式中fr—阀门局部阻力系数。
动态数学模型
▪ 动态
----运动中的自动调节系统(或环节),当输入 信号和输出信号随时间变化时,称系统(或 环节)处于不平衡状态或动态。
▪ 动态数学模型(动态特性)---在不平衡状态时,输出信 号和引起它变化的输入信号之间的关 系,称为系统(或环节)的动态特性。
1.数学模型的建立
例2 求的反变换
※解:
F(s)
S2
S
3 2S
2
F(s)
S 3

现代控制理论-线性系统的状态空间描述

现代控制理论-线性系统的状态空间描述

c11(t) c12 (t) c1n (t)
C
(t)
c21
(
t
)
c22 (t)
c2n (
t
)
,
m n维输出矩阵 表 征 输 出 和 每 个 状 态 量 变 的 关 系
cm1(t) cm2 (t) cmn (t)
d11(t)
D(t)
d 21 ( t )
d12 (t)
d22 (t)
最小个数:意味着这组变量是互相独立的。一个用n阶微分方
程描述的含有n个独立变量的系统,当求得n个独立变量随时
间变化的规律时,系统状态可完全确定。若变量数目多于n,
必有变量不独立;若少于n,又不足以描述系统状态。
2021/8/24
电气信息学院《现代控制理论课程》
12
状态变量的选取具有非唯一性,即可 用某一组、也可用另一组数目最少的变量 (状态变量不唯一)。状态变量不一定要 象系统输出量那样,在物理上是可测量或 可观察的量,但在实用上毕竟还是选择容 易测量的一些量,以便满足实现状态反馈、 改善系统性能的需要。
常用符号: 积分器
比例器
ki
注:有几个状态变量,就建几个积分器
加法器
注:负反馈时为-
系统框图:
U
B
D

X
A
X C Y
X•
AX
BU
Y CX D U
2021/8/24
电气信息学院《现代控制理论课程》
22
线性时变系统状态空间描述:x A(t)x B(t)u y C(t)x D(t)u
t)
b11(t) b12 (t) b1r (t)
B(t)
b21 ( t )

第一章-状态空间表达式

第一章-状态空间表达式

现代控制理论Model Control Theory前言1.胚胎萌芽期(1945年以前)•十八世纪以后,蒸汽机的使用提出了调速稳定等问题1765年俄国人波尔祖诺夫发明了锅炉水位调节器1784年英国人瓦特发明了调速器,蒸汽机离心式调速器1877年产生了劳斯稳定判据•十九世纪前半叶,动力使用了发电机、电动机促进了水利、水电站的遥控和程控的发展以及电压、电流的自动调节技术的发展•十九世纪末,二十世纪初,使用内燃机促进了飞机、汽车、船舶、机器制造业和石油工业的发展,产生了伺服控制和过程控制•二十世纪初第二次世界大战,军事工业发展很快飞机、雷达、火炮上的伺服机构,总结了自动调节技术及反馈放大器技术,搭起了经典控制理论的架子,但还没有形成学科。

2.经典控制理论时期(1940-1960)1945年美国贝尔实验室的Bode和Nyqusit提出频率响应法,奠定了控制理论的基础。

美国MIT的N. Wiener在研究随机过程的预测问题中,提出Wiener滤波理论.50年代趋于成熟.主要内容对单输入单输出系统进行分析,采用时域、频率法(频域)、根轨迹法(复数域)、相平面法、描述函数法;讨论系统稳定性的代数和几何判据以及校正网络等。

面临的挑战:被控对象日益复杂化、控制性能要求不断提高。

wiener3.现代控制理论时期(50年代末-60年代初)空间技术的发展提出了许多复杂控制问题,用于导弹、人造卫星和宇宙飞船上。

取得的成就1:1957年发射人造地球卫星;2:工业机器人产品;3:1961年载人航天;4:1969年登月;4.大系统和智能控制时期(70年代)各学科相互渗透,要分析的系统越来越大,越来越复杂。

例如:人工智能、模拟人的人脑功能、机器人等。

应用举例本课程内容•状态空间模型;•基于状态空间模型的系统分析(Analysis):运动分析、能控性、能观性、稳定性•基于状态空间模型的系统综合(Synthesis):极点配置、控制器设计、观测器设计、最优控制器设计。

线性系统的状态空间描述

线性系统的状态空间描述
系统的任意选取的两个状态变量组之间为线性非奇 异变换的关系。
状态向量:是由状态变量所构成的向量,即向量
x(t)x1(t),x2(t),L,xn(t)T称为n维状态向量。
状态空间:以n个线性无关的状态变量作为基底所组 成的 n 维空间称为状态空间Rn。
状态轨线:随着时间推移,系统状态x(t)在状态空间 所留下的轨迹称为状态轨线或状态轨迹。
连续系统:
x&(t)f [x(t),u(t),t] y(t)g[x(t),u(t),t]
离散系统:
xy(t(ktk1))gf[[xx(t(ktk),),uu(t(ktk),)t,ktk]] 或 x(yk(k)1)g[fx[(xk()k,)u,(uk()k,)k,]k]
4.线性系统状态空间表达式:状态方程与输出方 程都是线性方程的系统是线性系统。线性系统的状态方 程是一阶向量线性微分方程或一阶向量线性差分方程。
关于状态的几点说明
系统的状态空间描述
状态变量组选取上的不唯一性: 由于系统中变量的个数必大于n,而其中仅有n个
是线性无关的,因此决定了状态变量组在选取上的不 唯一性。
➢状态变量不是所有变量的总和。 ➢输出量可以选作状态变量。 ➢输入量不允许选作状态变量。 ➢状态变量有时是不可测量的。 ➢状态变量是时间域的。
对于控制工程而言,它可能是被控对象、控 制装置,也可能是某些部件的串联、并联和反馈 组合。
图1-1 系统的方块图表示
✓ 图中方块以外的部分为系统环境; ✓ 环境对系统施加的作用或激励称为系统输入,
用向量 u[u1,u2,Lup]T表示; ✓ 系统对环境的作用(即从外部量测到的系统信
息)称为系统输出,用向量 y[y1,y2,Lyq]T表示; ✓ 系统输入和输出统称为系统的外部变量。 ✓ 描述系统内部状况的变量称为系统的状态变量,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则有
znQz a0x1z a1x2z an1xnz uz yz 0x1 z 1x2 z L n1xn z
利用变换关系 Z 1 zxn z xn k 1
Z 1 xi z xi k
Z 1 zxi z xi k 1
则:
x1k 1 x2k
x2k 1 x3k
xn1 k 1 xn k
bn 0 在
Dz 的串联分解中,引
入中间变量 Qz ,则有
uz 1 Qz
yz
Dz
Nz
znQz an1zn1Qz a1zQz a0Qz uz yz n1zn1Q z 1zQz 0Qz
选取一组状态变量
x1z Qz x2z zQz zx1z
xn z zn 1Q z zxn1z
(G, h) 可控标准形
d bn
xn k T
Zyk yz Zyk i zi yz
初始条件为零时的 z 变换关系为:
G
z
yz uz
bn zn bn1zn1 L b1z b0 zn an1zn1 L a1z a0
bn
n1zn1 1z 0
zn an1zn1 a1z a0
bn
N D
z z
Gz 脉冲响应函数
Nz
离散时间系统的状态空间表示: X(k+1)=G(k)x(k)+H(k)u(k) y(k)=C(k)x(k)+D(k)u(k)
其中,G(k)为状态阵;H(k)为输入阵;C(k) 为输出阵;D(k)为输入出阵。 结构图如图:
H(k)
z 1
C(k)
G(k)
D(k)
X(k)与X(k+1)之间存在单位延迟作用 z1, 相当于连续时间系统中积分作用 (x(s)与sx(s)),称为存储器或右移因子。
xnk 1 a0x1k a1x2k an1xnk uk
yk 0x1 k L n1xn k
xk 1 Axk buk yk Cxk duk
bn 0
0 1 0 0
0
0
1
0
G
0
0
0
1
a0 a1 a2 an1
0 h 0
1
c 0 1 n1
xk Байду номын сангаасx1k x2 k
§ 1-5 离散系统的状态空间表示
由于计算机作为控制系统的部分参与控制作 用的形成使被控系统的控制大为改观,数字 计算机所需要的信号和输出信号均为离散量。 因此,控制系统在时间上的特性属于离散控 制系统。连续时间控制系统是离散时间系统 的无限近似。随着计算机运算速度的提高和 采样器采样周期的缩短,所研究的离散系统 可用连续时间特性加以概括。连续系统的状 态空间法适用于离散时间系统。
当G、H、C、D为常数阵时为线性定常系统。
古典控制理论中:离散系统用差分方程 (脉冲传递函数)表示。
单输入\出线性定常离散系统:
yk n an1yk n 1 L a1yk 1 a0yk
bnu k n bn1u k n 1 L
b1uk 1 bk 0u k
k kT
T
采样周期 ai , bi 常数
相关文档
最新文档