2.1 随机变量及其分布函数
应用数理统计第二章
3、右连续性:F ( x 0) F ( x); 至多可列个间断点.
4、F () lim F ( x) lim P( X x) 0; F () lim F ( x) lim P( X x) 1.
n
称X 服从参数为n, p的二项分布,记X ~ B(n, p).
2、二项分布 B(n, p) 当n 1时即退化为两点分布.
参数n, p对分布的影响.
若P( X k0 ) max P( X k ), 则称k0为最可能出现次数.
k
b(k ; n, p) (n 1) p k 1 . 设0 p 1, b(k; n, p) P( X k ), 则有 b(k 1; n, p) k (1 p)
解 :由性质4得, F () A 1;
x 0 0
故B 1.
又由右连续性得, lim F ( x) A B F (0) 0;
1 e x , x 0; 从而r.v. X 的分布函数为F ( x) 0, x 0.
例2 : 在半径为2的圆内等可能地任意投点,以X 表示投 的点与圆心的距离试求 . X的分布函数.
解 : a 若x 0, 则{X x}是不可能事件, 于是F ( x) 0;
x2 b 若0 x 2, 则F ( x) P{ X x} P{0 X x} ; 4
c 若x 2, 则{X x}是必然事件, 于是F ( x) 1.
0, x 0; 1 2 从而X 的分布函数F ( x) x , 0 x 2; 4 1, x 2.
k 2
概率论 高等院校概率论课件JXHD2-1
第二章随机变量及其分布§2.1随机变量及其分布函数§2.2 离散型随机变量及概率分布§2.3 连续型随机变量及概率分布§2.4 多维随机变(向)量及其分布§2.5 随机变量的独立性§2.6随机变量函数的分布基本要求重点与难点JXHD2-7概率篇CH2LX基本要求1.理解随机变量、随机变量的分布函数概念及性质。
2.理解概率分布的概念及其性质。
3.会利用概率分布及分布函数计算有关事件的概率。
4.掌握六种常用分布,会查泊松分布、正态分布表。
5.了解多维随机变量的概念。
了解二维随机变量的联合分布函数及其性质,了解二维随机变量的联合概率分布及其性质,并会用它们计算有关事件的概率。
6.知道二维随机变量的边缘分布以及与联合分布的关系,了解条件分布。
7.理解随机变量独立性的概念及应用独立性进行有关计算。
8.会求简单随机变量函数的概率分布及两个独立随机变量的函数(和、最大值、最小值)的分布。
重点与难点1.随机变量的分布函数概念及性质。
2.概率分布(离散型随机变量的分布律,连续型随机变量的概率密度)的概念及性质。
3.概率分布与分布函数的关系及正态分布的有关计算。
4.二维随机变量的边缘分布以及与联合分布的关系。
5.随机变量独立性及应用。
6.简单随机变量函数的分布。
1.随机变量的分布函数、概率分布及其关系。
2.二维随机变量的边缘分布及计算。
3.随机变量函数的分布及两个独立随机变量的函数的分布。
§2.1 随机变量及其分布函数掷骰子试验}654321{,,,,,=Ω; 掷硬币试验}{T H ,=Ω 一.随机变量 [引例1] 掷骰子试验,}654321{,,,,,=Ω,令 ),,,,,(654321)(==i i i X 则X 是定义在Ω上的单值实函数,称X 为随机变量。
[引例2] 掷硬币试验,样本空间}{T H ,=Ω,令⎩⎨⎧===Te H e e Y ,,01)(则Y 是定义在Ω上的单值实函数,称 Y 为随机变量。
概率论与数理统计课件第2章
X0
1
pk 03.5
0.25
4
625
0.0625
X的分布函数为
2 0.125
0
x0
0.5
0 x1
F
(
x)
0.75 0.875
1 x 2 2 x3
0.9375 3 x 4
Байду номын сангаас
1
x4
0.0
分布函数 是累计概率
例3 有人对随机变量X的分布列表述如下:
X -1
0 12 3
P
a 0.16
a2 2a 0.3
第2章 随机变量及其分布
2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布 2.4 连续型随机变量及其密度函数 2.5 正态分布 2.6 随机变量函数及其分布
2.1 随机变量及其分布函数
一、随机变量 二、随机变量的分布函数
信息管理学院 徐晔
一、随机变量
例
包含出现1点
包含出现1,2点
包含出现1,2,3点
包含出现1,2,3,4 点 包含出现1,2,3,4,5 点包含出现1,2,3,4,5,6 点
分布函数的性质
F(x) P(X x), ( x )
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
样本点
1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5
黑球数 X
1 2 2 1 1
由上表可以看出,该随机试验的每一个结果都对应
着变量 X 的一个确定的取值,因此变量 X 是样本空
间Ω上的函数:
随机变量及其分布
记
p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率
概率论与数理统计-随机变量及其分布
解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
随机变量及其分布
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
概率论与数理统计课件第2章
2
2.2.1 随机变量 • 注意: 注意:
(1)随机变量定义于抽象的样本空间上,不是普 )随机变量定义于抽象的样本空间上, 通的实函数。 通的实函数。 (2)随机事件可以通过随机变量的各种取值状态 )随机事件可以通过随机变量的各种取值状态 取值范围来表示 来表示。 和取值范围来表示。
3
2.1.2 随机变量的分布函数 • 既然随机事件可以通过随机变量的各种取值状态和取值 范围来表示, 范围来表示,研究随机现象的统计规律性就转化为研究 随机变量取值的规律性,即取值的概率。 随机变量取值的规律性,即取值的概率。但概率是集合 函数,随机变量定义于抽象空间上,都不便于处理。 函数,随机变量定义于抽象空间上,都不便于处理。 • 能不能找到一种方法,使得我们研究随机变量取值的规 能不能找到一种方法, 律性可以转化为研究普通的实函数? 律性可以转化为研究普通的实函数?
2.1 随机变量及其分布函数 在前面的讨论中,只是孤立地考虑一些事件的概率, 在前面的讨论中,只是孤立地考虑一些事件的概率, 这种研究方法缺乏一般性, 这种研究方法缺乏一般性,而且不便于分析数学工具的引 为了这一目的,随机变量的引入具有非常重要的意义。 入,为了这一目的,随机变量的引入具有非常重要的意义。 随机变量的引入是概率论发展史上的重大事件。 随机变量的引入是概率论发展史上的重大事件。它使得研 究概率论的数学工具更丰富有力,从此, 究概率论的数学工具更丰富有力,从此,概率论的研究进 入一个崭新的天地。 . 入一个崭新的天地。
P{ X ≥ 1} = 5 / 9 ,求p =
x≤0 , 0 < x ≤1 x >1
,概率 P{0 ≤ X ≤ 0.25} =
,
;
X |< 0.5} ;2)分布函数 分布函数F(x) 分布函数
分布函数
F () lim F ( x) 1, F () lim F ( x) 0
x
x
(3) 右连续性:F(x)是右连续函数,即对任意的x0,有
lim
x
x
0F(x)F来自(x0)
➢这三个基本性质是判别分布函数的充要条件。
2
§ 2.1 随机变量及其分布函数
一、随机变量的分布函数
➢
例1
证明F ( x) 1 [arctan x ], x
2
➢是一个分布函数。
证 显然F(x)在整个数轴上是连续、单调严增函数,且
F () lim F ( x) 1, F () lim F ( x) 0
x
x
因此它满足分布函数的三条基本性质,故F(x)是一个分布 函数。
该函数称为柯西分布函数。
3
§2.1 随机变量及其分布函数
例2 设随机变量的分布函数为:
A Bex x 0 F(x)
0 x0
其中 0 是常数。 求 A, B。
解 因为分布函数右连续,故
又由F () 1得A 1, 从而B 1
§2.1 随机变量及其分布函数
二、用分布函数求事件的概率
随机变量X 的分布函数F(x)=P{Xx}本身就是事件的概率。
容易得到 P{X a} F (a) F (a 0) 前面已得到 P{a X b} F (b) F (a)
P{a X b}
F(b) F(a)
1
二、随机变量的分布函数
2、分布函数的性质
F(x) P{X x}
容易证明分布函数F(x)具有以下三条基本性质:
(1) 单调性:F(x)是定义在整个实数轴(–,+)上的单调 非减函数,即对任意的x1 < x2,有 F(x1) F(x2);
第2章 随机变量与分布函数 0
其中X的取值为0,1,2,„,n,X取各个值的概率为
将随机变量X服从二项分布记为X~B(n,p)。 ③泊松分布 设随机变量X 所有可能取的值为0 ,1,2,„,而取各个值的概率为:
其中λ>0是常数,则称X服从参数为λ的泊松分布,记为X~P(λ)。
☞定理2-1(泊松定理)设λ>0是一个常数,n是任意正整数,设npn=λ,则对于任一固定的非负整数k,有
第2章 随机变量与分布函数 2.1 随机变量及其分布 随机变量 离散型随机变量及其分布列 连续型随机变量 2.2 随机变量函数的分布 离散型随机变量函数的分布 连续型随机变量函数的分布 2.3 二维随机变量的相关分布 二维随机变量的联合分布及性质 二维离散型随机变量 二维连续型随机变量
条件分布
2.4 随机变量的独立性 随机变量的独立性 卷积公式 极大极小值的分布
p
n 1
i
1
则称{pi}为随机变量X的概率分布列(简称分布列)。 ②离散型随机变量X的分布列也可用下表表示:
X P x1 p1 x2 p2 „ „ xi pi „ „
说明:随机变量的分布列与随机变量的分布函数不是同一个概念,但它们可相互确定。
③离散型随机变量X的分布函数的计算公式: F ( x ) P( X
A.e-1 【答案】C
)。
B.e-2 C.e-3 D.e-4 E.e-5
1 1 1000 x e , x 0 【解析】由题意可知,元件寿命X服从指数分布: f ( x) 1000 0, x 0
元件使用1000小时后,没有损坏的概率为: P( X 1000) 1 P( X 1000) 1
1 1
3
2
联立①②,解得a=-0.5,b=1。从而
2.1随机变量及其分布
只有两种对立结果: 对于贝努利试验, “A发生” 与“A不发生” 设事件A发生的概率为 p ( 0 p 1 ) 则事件 A 发生的概率为 q 1 p 令X表示 一次贝努利试验中, A发生的次数, 即
1 X 0
A发生 A不发生
则
X P
0
1
1 p
p
称X服从0—1分布.
例 一批产品, 次品率为 15%, 从中随机抽取一个
(2) { x1 , x2 ,..., xk ,...} x1 x2 ... xk ...
1 P ( ) P x1 x2 ... xk ... p{ X x1 } p{ X x2 } ... p{ X xk } ...
“ X 在 A 中取值”,即“X A ” 的概率为
P{ X A } pk
xk A
投中后 例 某人投篮, 命中率为 0.7, 规则是: 或投了4次后 就停止投篮,设 X 表示 “此人投 篮 求 的次数”, X 的概率分布. 解
X pk
1
2
3
4
0.7 0.21
i 设 Ai 表示 “第i 次投中篮框” (, 1,2,3,4 ) A1 , A2 , A3 , A4 相互独立.
3 6 1 6
x 1
1 x 0 0 x 1
x1
1
0
1
随机变量的分布函数 F ( x ) 具有如下性质: (1) 0 F ( x ) 1, x
(2) F ( x ) 是 x 的 单调不减函数. 即
a b 时, F (a ) F (b)
p1 P{ X 1} P ( A1 ) 0.7 p2 P{ X 2} P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.3 0.7 0.21
§2.1随机变量与分布函数
第二章随机变量及其分布本章内容§2.1 随机变量与分布§2.2 重要概率分布本章提要(略,见大纲)§ 2.1随机变量与分布函数正确理解对概率论研究和发展起重大推动作用的两个最基本概念: “随机变量”和“分布函数”.2.1.1 随机变量和分布函数的定义和分类1.rv和df的定义定义2.1.1 设(Ω, ℱ,P)为概率空间, X为Ω上的实值函数,满足对任意的 x∈R, (X≤x):={ω : X(ω) ≤x}∈ℱ则称X为随机变量,简记rv. 而称实变量的实值函数F X( x):= P(X≤x), x∈R为X的分布函数,简记df.2. rv与df的关系rv给定则df是存在且唯一决定的.3. rv和df的分类定义2.1.2 至多取可列多个值的rv [或相应的F(x)],称为离散型的. 设{x i}是rv X可能取的值的全体,p i := P (X = x i ), i =1,2,…(,n )称实数列{p i }为离散型X 的分布. 称两行矩阵⎟⎟⎠⎞⎜⎜⎝⎛⋅⋅⋅⋅⋅⋅)()(2121n n p p p x x x为X 的分布列. 其中最后一列表示列数为有限的n 或为可列无穷多的情形.定义2.1.3 在一个有限或无限区间取值的rv X ,如存在非负可积函数f (x ) 使X 在(−∞ , x ] 的概率可写成R x dy y f x X P x X P x F xX ∈∀=≤<−∞=≤=∫∞−,)()()()(则称X [或F (x )]为连续型的,称f (x )为X [或F (x )]的概率密度函数,简记为 pdf . 也常记为 f X (x ).2.1.2 分布函数, 分布和密度函数 1. 离散型和连续型df例2.1.1 本节引例中,如该厂生产的电子元件的等级数Y 有分布列图2.1.2 离散型分布函数图象⎟⎟Y ~⎠⎞⎜⎜⎝⎛1.06.03.0321.求Y 的df【 】⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.31329.0213.010)(y y y y y F Y例2.1.2 设X 的pdf 为,)(x f X = ⎩⎨⎧∈−其它0],()/(1b a x a b ,求X 的df .【⎪⎩⎪⎨⎧≥<≤−−<=bx b x a a b ax a x x F X 1)(.】 2. df 的基本性质性质1 rv X 的df F(x ) 有下述基本性质: F 1) 非降性,即 F(x ) ≤ F(y ), ∀ x < y ; F 2) 边界极端性,即F(+∞) := lim x →∞ F ( x ) =1, F(−∞) := lim x → −∞ F ( x ) =0; F 3) 右连续性,即 F(x +0) : = )()(lim x F y F x y =↓.性质2 (存在定理) 满足性质F 1)至F 3)的任意一个实变量的实值函数, 都可作为一个df .性质3 df 的凸组合, 还是df , 即如F i (x )是df , i =1,2,…,n , 则对任意实数=1, 仍是df .∑==≥n i i i a n i a 1,,...,2,1,0∑==n i i i x F a x F 1)(:)(2.2.3. 分布与密度函数的性质性质1 (基本性质) 分布{p i }满足,,0i p i ∀≥且1=∑i i p而pdf 满足f (x ) ≥ 0, ∀ x , 且R ∈∫∞+∞−dy y f )(=1 .性质2 1) 对离散型rv ,如其分布为 {p i } 则F X (x ) =R x p i xx i i ∈∀∑≤,:2) 对有 pdf f (x ) 的连续型rvX , F X (x ) =R x dy y f x ∈∀∫∞−,)(性质3 1) 凡离散型rv 有最可能值,即存在x m ,rv X 取该值的概率不小于取其它值的概率:P(X =x m ) =p m ≥ p m , ∀ i .2) 连续型分布取任意一固定值的概率为零,即对每个固定的实数x , P(X =x ) =0.f (x )d x 为X 在x 点微分邻域的概率. 由此∫∫==∈],()()(]),((b a X ba X dx x f dx x fb a X P .对更一般的实数集合D 有 ∫=∈D X dx x f D X P )()([ 例题精选 ]z分布与df 的概念例2.1.3 将3个球逐个随机放入4个分别编号为1、2、3和4的盒子.令X 是“有球盒子的最小号码”,求X 的分布列.【⎟⎟⎠⎞⎜⎜⎝⎛64/1464/7364/19264/371】 例2.1.4 设rvX 的pdf 为 ,k 使得⎪⎩⎪⎨⎧∈∈=,0]6,3[9/2]1,0[3/1)(其它若若x x x f 若3/2)(=≥k X P , 则k 的取值范围是_________.【[1, 3] 】z分布与df 的性质例2.1.5 试确定值, 使下一函数为pdf , .a )()(),1()1(3x I e a x f x ∞−−=例2.1.6 设F i (x )是X i 的df , i =1,2, 为使F (x )= aF 1(x )−bF 2(x )是df ,下列给定各组数值中应取A) a = 3/5, b = −2/5. B)a = 2/3,b = 2/3. C) a = −1/2, b =3/2. D) a =1/2, b = −3/2.z综合题例2.1.7 设某电子元件寿命的pdf 为 )100()(2>=x I xa x f1) 试确定a 值;2) 某台设备装有三个这种电子元件. 问在开始使用的150小时中它们中恰有一个要替换和至少有一个要替换的概率各是多少?【 1) .100,100)(11002====∫∫∞∞∞−a adx x a dx x f 故2) 每个元件的寿命有两个可能结果:大于或不大于150小时,即可看为Ber-E ,从而三个元件中寿命小于150小时(因此要替换)的个数,服从二项分布B(3, p ), 其中31]1[100100)(1001501501002150=⋅===∫∫∞−x dx x dx x f p .因此, 使用到150小时它们中恰有一个要替换的概率44.09432313)1(2213≈=⎟⎠⎞⎜⎝⎛××=−p p C .“至少有一个要替换”概率是 701.027193213≈=⎟⎠⎞⎜⎝⎛−.】§2.2 重要概率分布本节从两类随机试验, Poisson 流和误差问题,介绍几类最重要的rv 及其分布. 掌握这些重要分布的定义、性质、产生的背景以及它们间关系.2.2.1 重要分布的产生与定义 1. Bernoulli 试验及有关分布 1) Bernoulli 分布2) n 重Ber-试验及其产生的B(n , p ) 3) 可列重Ber-试验及其产生的Ge(p ) 2. Poisson 流及有关分布 1) Poisson 流与Poisson 定理定理2.3.1(Poisson ) 设,],0(t ξ t ≥ 0 是Poisson 流,则存在某正数λ,使)()(],0(k P t p t k ==ξ = ,)(tk e k t λλ−!k = 0, 1,...Poisson 定理中的λ称为强度. 2). Poission 流产生离散型的P(λ)分布 3) Poisson 流产生的连续型分布:Ex(λ)误差问题产生的分布:U(a ,b )与N(μ, σ 2)2.2.2 重要分布间的关系和性质 1. 重要分布间的关系2.重要分布的性质性质1 重要离散型分布的最可能值设X ~ B(n , p ), 则X 的最可能值是 [(n +1)p ] . 如 (n +1)p 是整数,则[(n +1)p ]−1=np -q 也是最可能值. 这里 [⋅]为取整函数.设X ~ Ge( p ), 则X 的最可能值是1.设X ~ P(λ), 则X 的最可能值在[λ];如λ=[λ],即λ是正整数时,则λ−1也是最可能值.性质2 B(n , p )的Poisson 逼近.定理2.3.1 (Poisson 逼近) 设∼B (n ,),即对固定的n 次试验中,每次试验成功的概率是. 又设存在极限n X n p n p n n np ∞→lim =λ > 0,则对任意非负整数k , 有P(=k )=n X k n n kn k n p p C −−)1(→∞→!−n e k k,λλ.性质3 几何分布和指数分布的无记忆性:几何分布和指数分布的都有无记忆性: 当 X ~ Ge(p ) 时P(X >n +k | X >n ) = P(X >k ). 反之,有无记忆性的离散型分布,必为几何分布.当X ~ Ex(λ)时P(X >s +t |X >s ) = P(X >t ),0 ≤ s ,0 < t .反之,有无记忆性的连续型分布,必为指数分布.均匀分布和正态分布的性质性质4 1) 遵从[a , b ]上均匀分布的rv 的均匀性, 使其值落在[a , b ]内任一子区间的概率与此子区间长度成正比. 精确地说)/()()(a b D L D X P −=∈, 其中L(D)表D 的长度, 而D 是[a , b ]的任意一个(开、闭或半开半闭)子区间, 也可以是一些子区间的并集.2) 正态分布的对称性, 使pdf 是关于直线x = μ 对称的,),;(σμμφx −= ),;(σμμφx +.由此, ),;(σμμx −Φ= 1 − ),;(σμμx +Φ.性质5 正态分布的其它性质1) ),;(σμφx >0,任意阶导函数 , ∀ n ,存在且连续. ),;()(σμφx n 2) ),;(σμφx 在 (−∞, μ )中单调升,在 x = μ 处达极大值 1/ (σπ2),而在 (μ, ∞) 时下降. 参数μ 决定它的对称位置;σ越大pdf越平缓(参看图2.2.7), 概率分布越分散.3) 如X ~ N(μ, σ 2)则其标准化σμ/)(*−≡X X ~ N(0, 1). 4) 3σ法则. 正态变量离中心位置μ的距离超过 3σ 的概率不到千分之三,依此在正态性统计判别和产品质量管理中形成很有用的3σ法则.性质 6 独立和的分布与分布的可加性可加性的证明方法:(1). 由分布产生的背景, 立即可得上述结论: 例如 B(n ,p )、F(r ,p )和Γ(r ,p )的可加性(当r 为正整数时), 以及关于Ge(p )、Ex(λ)的结论.(2). 利用全概率公式, 例如 B(n ,p )、F(r ,p )、P(λ)和Γ(r ,p )的可加性;(3). 利用求独立和的df 或者密度的卷积公式[ 典型例题 ]例 2.2.1 设某车间需要安排维修工人负责对一批相同型号设备进行保全维修,有两种建议方案.方案A :1人维修固定的20台. 方案B :3人维修固定的80台. 设每台设备的故障率为0.01,哪种方案较好,即出现设备需要维修而得不到维修(维修人员正忙于其它设备的维修)的概率较小?解 Y n : n 台中的故障数, 则 Y n ~B(n , p ),0169.01)1()0(1)1(1912020202020≈−−==−=−=>=pq C qY P Y P Y P p a用Poisson 近似,λ = 0.2, 则 0175.02.012.02.0≈×−−=−−e e p a0091.0e !)01.080(1)3(30.01)(8080≈×−≈>=∑=×i -i b i Y P p . p b > p a , 方案B 较好.例2.2.2 一大批产品,其次品率为p ,采取下列方法抽样检查:抽样直至抽到一个次品时为止,或一直抽到10个产品时就停止检查. 设X 为停止检查时抽样的个数. 求X 分布列.【,】9....,,2,1,)(1===−k p q k X P k 9)10(q X P ==例2.2.3 (非中心的指数分布) 设某流水线上一类电子元件寿命(小时)X 的pdf 为 )()()10(a x I e x f x X >=−−λλ, 其中λ>0是常数. 试求常数a ; 如令y=x −a , 将作平移, 得到新的函数是否仍然为)(x f Xpdf ? 能判断它是什么类型分布吗?例2.2.4 已知X ~ . ),(2σμN 1) 求P(a ≤X ≤ b );2) 设 μ=20,σ2=402,求P(|X | ≤ 20)的值,并找点x 0, 使P(X > x 0 )= 0.05.【()(σμσμ−Φ−−Φa b ;1587.05.0)1()0(−=−Φ−Φ=0.3413, x 0=85.6】例2.2.5 对某射手打靶考核,有两次命中6环以下(不含6环)时,立即淘汰出局. 如果此射手每次命中6环及其以上的概率是0.8, 则他在第4次射击后即被淘汰的概率是 .【p 2 := P(X = 2) =, p = 0.2】 2421214−−−qp C。
概率论§2.1 随机变量-§2.2离散型随机变量
0, w = (b1 , b2 ), (b1 , b3 ), (b2 , b3 ) 1, w = (a1 , b1 ), (a1 , b2 ), (a1 , b3 ) X = X (w ) = (a2 , b1 ), (a2 , b2 ), (a2 , b3 ) 2, w = (a1 , a2 )
18
分布函数的性质
(1) F(x)是x的不减函数 ,即
x1 x2 , F ( x1 ) F ( x2 )
(2)
F ( ) = lim F ( x ) = 0
x
F ( ) = lim F ( x ) = 1
x
理解:当x→+时,{X≤x}愈来愈趋于必然事件. (3)右连续性: 对任意实数 x0 ,
P ( X x ) = 1 P ( X x ) = 1 F ( x );
21
例1 设F1 ( x )与F2 ( x )分别为随机变量X 1与X 2
的分布函数,为了使 ( x ) = aF1 ( x ) bF2 ( x ) F
是某一随机变量的分布函数,则下列各组值 中应取(A)
3 2 ( A) a = , b = 5 5
连续型随机变量
如:“电视机的使用寿命”,实际中常遇到 的 24 “测量误差”等。
§2.2 离散型随机变量及其分布
定义 如果随机变量X 只取有限个或可列无限 多个不同可能值,则称X 为离散型随机变量. 例如, 抛一枚硬币,X 可取0,1有限个值。 可知X为一个离散型随机变量。 例如,电话交换台一天内接到的电话个数
F ( x0 0) = lim F ( x ) = F ( x0 )
x x0
19
如果一个函数满足上述三条性质,则一 定是某个随机变量 X 的分布函数。也就是说, 性质(1)-(3)是判别一个函数是否是某个随机 变量的分布函数的充分必要条件。
第2章 随机变量与分布函数 0.
第2章 随机变量与分布函数
【要点详解】
§2.1 随机变量与分布函数
1.随机变量
(1)定义
①设E为随机试验, {} 为其样本空间,若对任意 ,有唯一实数X(ω)与之对应,则称X(ω)为随
机变量。
②设X为一个随机变量,对任意实数x,事件“X≤x”的概率是x的函数,记为F(x)=P(X≤x),这个函数称为X
X
x1
x2
…
xi
…
P
p1
p2
…
pi
…
说明:随机变量的分布列与随机变量的分布函数不是同一个概念,但它们可相互确定。
③离散型随机变量X的分布函数的计算公式:F (x ) P (X x )p i, x x i x
【例题2.3】设离散型随机变量X的概率分布列如下所示。
X
பைடு நூலகம்
0
1
2
3
P
0.3
0.1
a
正态密度函数式的性质:
☞f(x)关于x=μ对称;
☞
。
☞对任何a<b,当X~N(μ,σ2),有
④伽马(Gamma)分布 设α,β是正常数,由积分
定义,它有如下性质:
☞ (1)1,(12); ☞ (1)()(用分布积分法可得),当α取整数n时, (n 1 )n (n )n ! ;
☞ x 1exdx ()/ (用变量替换法可得)。 0
x 1
x 1
P ( 0 . 3 X 0 . 7 ) F ( 0 . 7 ) F ( 0 . 3 ) 0 . 7 2 0 . 3 2 0 . 4 0
(
【 例 题 2.7】 已 知 连 续 型 随 机 变 量 X 的 密 度 函 数 为 )。
随机变量总结
2.1随机变量及其分布函数
随机变量:
研究背景:
为了对随机试验进行全面和深入的研究,揭示出其中客观存在的规律性,我们需要把随机试验的结果数量化,即把随机试验的结果与实数对应起来。
概念:
设Ω是随机试验的样本空间,对Ω中的每一个样本点w ,有且仅有一个实数X (w )与之对应,则称X 为定义在Ω上的随机变量。
数学符号表示:
X=X(w),w ∈Ω(随机变量是定义在Ω上的单值实函数)
案例:
1. 随机投掷一枚硬币,可能的结果有正面朝上 ,反面朝上两种 ,若定义X 为投掷一枚硬币时朝上的面 , 则X 为一随机变量,当正面朝上时,X 取值0;当反面朝上时,X 取值1。
2. 投掷一枚骰子,它所有可能出现的结果为:1点、2点、3点、4点、5点和6点 ,若定义X 为掷一枚骰子时出现的点数,则X 为一随机变量,出现1,2,3,4,5,6点时X 分别取值1,2,3,4,5,6。
以上两个例子均为离散型(随机变量的取值是一些孤立的点)
3. 公共汽车每10分钟一班,某人在站台等车时间x 是个随机变量,X 的取值范围是[0,10)。
因此例为连续型随机变量(随机变量的取值是在一个区间) 分类:
随机变量按其取值情况分为两大类:
⎩⎨⎧连续型随机变量)非离散型(我们只讨论
限或可列无穷多个量的所有可能取值为有离散型(离散型随机变注意:
1. 随机变量与普通函数的区别:普通函数是定义在实数轴上的,而随机变量是定义在样本空间上的,样本空间中的元素不一定是实数。
2. 随机变量取值依实验结果而定,由于实验的各个结果的发生有一定的概率,所以随机变量取各个值也有一定的概率。
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
概率论与数理统计第二章--随机变量及其分布
第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )
连续型随机变量及其概率分布
t 0, t 0.
7
二、连续型随机变量的密度函数 随机变量X 在区间( x, x x)上的平均概率分布密度:
P( x X x x) x
随机变量X 在点 x 处的概率分布密度(或概率密度)为:
P( x X x x)
f ( x) lim
x0
x
连续型随机变量的分布函数F x 与概率密度f x 有如下关系:
复习
§2.1 随机变量及其分布函数
一、随机变量的概念
基本事件
二、随机变量的分布函数
F(x) PX x
X ()
(1) 0 F(x) 1 (2) F(x) 是单调不减的函数;
(3) F() 1 F() 0
(4) F(x) 是右连续的函数.
(5) Px1 X x2 F(x2 ) F(x1 )
P(10 X 30) P(40 X 60) 30 1 dx 60 1 dx 2 .
10 60
40 60 3
19
均匀分布在实际中经常用到,比如一个半径为r的汽 车轮胎,当司机刹车时,轮胎接触地面的点与地面摩 擦会有一定的磨损. 轮胎的圆周长为2r,则刹车时与 地面接触的点的位置X应服从[0, 2r]上的均匀分布, 即 X~U[0, 2r] ,即在 [0, 2r] 上任一等长的小区间 上发生磨损的可能性是相同的,这只要看一看报废轮 胎的整个圆周上磨损的程度几乎是相同的就可以明白 均匀分布的含义了.
对任意实数 x ,有
x
F(x) f (t)dt
则 X 称为连续型随机变量,称 f (x)为 X 的概率密度函数
或分布密度函数,简称为概率密度或密度函数.
利用上述定义,我们可以很容易地推出概率密度的性质
11
随机变量及其分布函数
( 2)分布函数 F ( x ) 是 x 的一个普通实函数 .
五、分布函数的性质
(1) 0 ≤ F( x) ≤ 1, x ∈ (−∞, ∞);
(2) F( x1 ) ≤ F( x2 ), ( x1 < x2 );
证明
由 x1 < x 2 ⇒ { X ≤ x1 }⊂ { X ≤ x2 },
x < −1, 0, P { X = −1}, − 1 ≤ x < 2, 得 F ( x) = P { X = −1} + P{ X = 2}, 2 ≤ x < 3, 1, x ≥ 3.
0, 1 , 4 即 F ( x) = 3 , 4 1, x < 1, − 1 ≤ x < 2, 2 ≤ x < 3, x ≥ 3.
二、引入随机变量的意义 有了随机变量,随机试验中的各种事件, 有了随机变量 随机试验中的各种事件, 随机试验中的各种事件 就可以通过随机变量的关系式表达出来. 就可以通过随机变量的关系式表达出来 如:单位时间内某电话交换台收到的呼 叫次数用X表示 它是一个随机变量. 表示, 叫次数用 表示,它是一个随机变量 事件{收到不少于 次呼叫 事件 收到不少于1次呼叫 ⇔{ X 收到不少于 次呼叫} {没有收到呼叫 没有收到呼叫} 没有收到呼叫
≥ 1}
{X= ⇔ 0}
可见, 可见,随机事件这个概念实际上是包 容在随机变量这个更广的概念内. 容在随机变量这个更广的概念内 也可以 说,随机事件是从静态的观点来研究随机 现象,而随机变量则是一种动态的观点, 现象,而随机变量则是一种动态的观点, 就象数学分析中常量与变量的区别那样. 就象数学分析中常量与变量的区别那样
概率论与随机过程:2-1 随机变量及其分布函数
例3 设有函数 F(x)
F(x)
sin
x 0
0 x
其它
试说明F(x)能否是某个r.v 的分布函数.
解: 注意到函数 F(x)在[ 2, ]上下降,
不满足性质(1),故F(x)不能是分布函数.
或者
F() lim F(x) 0 x
不满足性质(2), 可见F(x)也不能是r.v 的 分布函数.
练:设连续型随机变量X的分布函数为
第二章教学计划(第1次课)
教学内容:
1.随机变量及其分布函数; 2.离散型随机变量及其分布。 教学目的及目标:
1.理解随机变量、分布函数、分布律的概念; 2.能对实际问题建立适当的随机变量,会求其分布函数; 3.能熟练求离散型随机变量的分布律,熟练掌握三种重要的
离散型分布; 4. 熟练掌握分布函数、分布律的性质及二者间的关系,并能熟
随机变量概念的产生是概率论发展史上的重大 事件. 引入随机变量后,对随机现象统计规律的研 究,就由对事件及事件概率的研究转变为对随机变 量及其取值规律的研究.
事件及 事件概率
随机变量及其 取值规律
对于随机试验,要求能够定义适当的随机变量表示 试验结果。
(*)例3: 考虑“测试灯泡寿命”这一试验。试验结 果本身是用数字描述的,令X表示灯泡的寿命 (以小时计),则X是随机变量,定义域为样本 空间 ={t|t≥0},值域为RX=[0,+∞)。 {X<500}:“任取出的灯泡的寿命小于500小时”;
随机变量的分布:对一个随机变量的统计规律性
的完整描述。
2、引入随机变量的意义
随机变量实际上就是定义域为事件域,值 域为实数集或其子集的一种实值函数.
ω.
X(ω)
Ω
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由定理1可推得:对于任意-≦<a<b< +≦,可通过分布 函数F(x)来表示事件的概率,有
1) P{a<X ≤b} =P{X≤b}-P{X≤a} =F(b)-F(a) 2) P{X=a} =P{X≤a}-P{X<a} =F(a)-F(a-0)
3) P{a ≤X ≤b} =F(b)-F(a-0)
P{a<X <b} =F(b-0)-F(a) P{a ≤X<b} =F(b-0)-F(a-0)
首页 上页 返回 下页 结束 铃
∴X的分布函数为
0, F(x)= x2/4, 1, x<0 0≤x < 2 x≥2
y
1
O
2
x
首页
上页
返回
下页
结束
铃
Ⅹ= X(e)=
1,e=H
0,e=T 由于结果的出现是随机的,因而函数X=X(e)的取值也是随 机的。我们称之为随机变量,其定义域为Ω,值域为Rx={0,1}
首页 上页 返回 下页 结束 铃
例2 观察某地区从一次三级以上地震到下一次三级以上地 震的时间间隔(以小时计算)试验结果本身是用数量表示的, 其样本空间Ω={e}={t≥0}。我们以X记间隔的时间(以小时计) 这样引入了一个变量X,这个变量由Ω中的结果所确定。随着 试验的不同结果取不同的值,其定义域为Ω,对应关系为: X=X(e)=t, e=t∈ Ω
区别之一是:函数f(x)的自变量是数x,而随机变量X(e) 的自变量是样本点e(样本空间的元素不一定是实数)
区别之二是:在试验之前只知道X(e)可能的取值范围,而 不能预知它取什么值,但对于任一实数a,我们可以研究{X=a} 发生的概率
首页
上页
返回
下页
结束
铃
例3 随机试验E:接连不断地进行射击,直到首次命中目标为 止,样本空间Ω={1,01,001, 0001,… },其中1表示命 中, 0表示未命中,001表示第1,2次未命中,第三次命中 (余类推),以X表示射击的次数,则X=X(e),e∈Ω是随机变 量.其对应关系为 e X(e) 1 1 01 2 001 0001 … 3 4 …
当0 x 2时,P{0 X x} kx2 , k为某一常数 1 2 k 由题意,P{0 x 2} 2 k 1 4
F(x)=P {X ≤x} =P{X<0}+P{0≤X≤x}
=x2/4
当x 2时, x}是必然事件,F ( x) P{X x} 1 {X
1)单调不减性:若x2>x1,F(x1)≤F(x2)
2)0≤F(x)≤1,且F(-∞)= lim F ( x) =0
x
F(+∞) = lim F ( x) =1 3)右连续性:若a∈(-≦,+≦), F(a+0)= lim F ( x) =F(a)
xa
首页 上页 返回 下页 结束 铃
x
F ( x) P{ x} 0
0 x 1时 F ( x) P{ x} P{ 0} 0.36 1 x 2时 F ( x) P{ x} P{ 0} P{ 1} 0.84 x 2时 F ( x) P{ x} P{ 0} P{ 1} P{ 2} 1
§2.1 随机变量
一、随机变量的概念
二、分布函数的概念及性质
首页
上页
返回
下页
结束
铃
一、随机变量的概念
例1 抛一枚硬币,可能有两种结果,“出现H”或 “出现 T”样本空间为Ω={H,T}={e},现在以数“1”表示“出现H”, 以数“0”表示“出现T”.这样试验结果就是或者出现数1或出 现数0。在建立这种数量化关系时,实际上就相当于引入一 个变量Ⅹ。对于试验的两个结果,将Ⅹ的值分别规定为1或0。 随着试验结果的不同,Ⅹ对立着不同的值。这种关系体现在 样本空间Ω上,即为定义在样本空间Ω上的函数
设各次命中的概率为p,则
P{X=1} =p
P{X=2} =p(1-p)
……
P{X=3} =p(1-p)2
=p(1-p)k-1 P{X=k}
首页 上页 返回 下页 结束 铃
二、分布函数的概念及性质
定义1 设X是一随机变量,称函数 F(x)=P{X≤x}, (-≦<x<≦) 为X的分布函数。
(1)
定理1 任一随机变量X的分布函数F(x),都具有下列性质:
首页 上页 返回 下页 结束 铃
0, F(x)= 0.36,
x<0 0≤x<1
0.84 ,
1,
1≤x<2
x≥2
首页
上页
返回
下页
结束
铃
例2 一个靶子是半径为2米的圆盘,设击中靶上任一同心 圆盘上的点的概率与该圆盘的面积成正比,并且射击都能中 靶,以X表示弹着点与圆心的距离。试求随机变量X的分布函 数。 解: 当x<0时,{X ≤x}为不可能事件 F(x)=P {X ≤x}=0
也是一个随机变量,其值域Rx=[0,+∞) 总结上述两例,有一个共同的特点:X均为定义在随机试验 的样本空间Ω上的函数,对于试验的不同结果X对应了不同的 值。由此我们引出
首页
上页
返回
下页
结束
铃பைடு நூலகம்
定义1 设E是随机试验,它的样本空间是Ω={e},如果对 于每一个e∈Ω,有一个实数X(e)与之对应,这样就得到一个 定义在Ω上的单值实值函数X=X(e),称为随机变量。我们常用 大写英文字母X,Y,Z,…,或小写希腊字母ξ,η,ζ,…来 表示随机变量。
4) P{X<a} =F(a-0) P{X>a} =1-F(a) P{X≥a} =1-F(a-0) 定义1 F(x)=P{X≤x}, (-≦<x<≦)
首页 上页 返回 下页 结束 铃
例1 接连进行两次射击,以ξ表示命中目标的次数。假设 已知每次射击命中目标的概率为0.4,写出ξ的分布函数 解:由假设易求得 P{ξ=0}=0.36 当x<0时 P{ξ=1}=0.48 P{ξ=2}=0.16