第2讲 平面向量

合集下载

高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全

高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全

第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价. 即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y 2. 2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、习题改编1.(必修4P99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析:选D.由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3).设P (x ,y ),则P 1P →=(x-1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1).故选D.2.(必修4P119A 组T8改编)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=( )A .-12B.12 C .-2D .2解析:选A.由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( ) (5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B.平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A.法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).故选A.平面向量基本定理及其应用(师生共研)(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC→=b ,则DE →=( )A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b(2)(2020·某某市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=.【解析】 (1)DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC→=b ,则PQ →=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A.由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A.2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →, 所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →, 又因为OP →=mOA →+OB →, 所以OB →=OB →+(m +1)OA →,依题意OA →,OB →是非零向量且不共线, 所以m +1=0, 解得m =-1.平面向量的坐标运算(师生共研)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为→=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7). 答案:(4,7)2.如图所示,以e 1,e 2为基底,则a =.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2平面向量共线的坐标表示(多维探究) 角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =. 解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ).因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0,即2m -3=0,所以m =32.思想方法系列8 坐标法解决平面向量的线性运算(2020·某某某某调研)在直角三角形ABC 中,∠A =90°,AB =3,AC =4,P 在△ABC斜边BC 的中线AD 上,则AP →·(PB →+PC →)的最大值为( )A.2516B.258C.254D .252【解析】 以A 为坐标原点,AB →,AC →的方向分别为x 轴、y 轴正方向建立平面直角坐标系,则B (3,0),C (0,4),BC 中点D ⎝ ⎛⎭⎪⎫23,2,则直线AD 的方程为y =43x .设P ⎝ ⎛⎭⎪⎫x ,43x ,所以PB →=⎝ ⎛⎭⎪⎫3-x ,-43x ,PC →=⎝ ⎛⎭⎪⎫-x ,4-43x ,AP→=⎝ ⎛⎭⎪⎫x ,43x ,AP →·(PB →+PC →)=-509x 2+253x =-509⎝ ⎛⎭⎪⎫x -342+258,所以当x =34时,AP →·(PB →+PC →)的最大值为258.故选B. 【答案】 B系要建得巧,题就解得妙坐标是向量代数化的媒介,而坐标的获得又要借助于直角坐标系,对于某些平面向量问题,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系;(2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限.如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=.解析:法一:以AB ,AD 所在直线分别为x 轴,y 轴,建立平面直角坐标系,如图所示,设正方形的边长为1,则AM →=⎝ ⎛⎭⎪⎫1,12,BN →=⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).因为AC →=λAM →+μBN→=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25,所以λ+μ=85.法二:由AM →=AB →+12AD →,BN →=-12AB →+AD →,得AC →=λAM →+μBN →=⎝ ⎛⎭⎪⎫λ-μ2AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25.所以λ+μ=85.答案:85[基础题组练]1.已知e 1=(2,1),e 2=(1,3),a =(-1,2).若a =λ1e 1+λ2e 2,则实数对(λ1,λ2)为( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)解析:选B.因为e 1=(2,1),e 2=(1,3),所以a =λ1e 1+λ2e 2=λ1(2,1)+λ2(1,3)=(2λ1+λ2,λ1+3λ2).又因为a =(-1,2),所以⎩⎪⎨⎪⎧2λ1+λ2=-1,λ1+3λ2=2,解得⎩⎪⎨⎪⎧λ1=-1,λ2=1.故选B.2.(2020·某某某某三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A.13 B .-13C .-3D .3解析:选B.法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B.法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B.3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎫-23,-23B.⎝ ⎛⎭⎪⎫-13,-13C.⎝ ⎛⎭⎪⎫13,13D .⎝ ⎛⎭⎪⎫23,23 解析:选A.易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以E ⎝ ⎛⎭⎪⎫-23,-23.4.(2020·某某豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C .3D .2 3解析:选A.如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0). AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=.解析:因为a =(1,2),b =(2,3),所以λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3).因为向量λa +b 与向量c =(-4,-7)共线, 所以-7(λ+2)+4(2λλ=2. 答案:26.已知点A (2,3),B (4,5),C (7,10),若AP →=AB →+λAC →(λ∈R ),且点P 在直线x -2y =0上,则λ的值为.解析:设P (x ,y ),则由AP →=AB →+λAC →,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x =5λ+4,y =7λP 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.答案:-237.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=.解析:选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.答案:438.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,所以A ,B ,M 三点共线.[综合题组练]1.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2).2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1 B. 2 C. 3D .2解析:选B.因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.设OA →=(-2,4),OB →=(-a ,2),OC →=(b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为.解析:由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 因为A ,B ,C 三点共线,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫3+2a b +b a ≥12⎝ ⎛⎭⎪⎫3+22a b ·b a =32+2(当且仅当a =2-2,b =22-2时等号成立).答案:32+ 24.(2020·某某某某二模)已知W 为△ABC 的外心,AB =4,AC =2,∠BAC =120°,设AW →=λ1AB →+λ2AC →,则2λ1+λ2=.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.根据已知条件可知A (0,0),B (4,0),C (-1,3). 根据外心的性质可知点W 在直线x =2上(如图所示).易知线段AC 中点的坐标为⎝ ⎛⎭⎪⎫-12,32,直线AC 的斜率为-3,故线段AC 的中垂线l的斜率为33(如图所示),方程为y -32=33⎝ ⎛⎭⎪⎫x +12. 令x =2,解得y =433,故W ⎝ ⎛⎭⎪⎫2,433.由AW →=λ1AB →+λ2AC →得⎝ ⎛⎭⎪⎫2,433=λ1(4,0)+λ2(-1,3),即⎩⎪⎨⎪⎧4λ1-λ2=2,3λ2=433,解得⎩⎪⎨⎪⎧λ1=56,λ2=43.所以2λ1+λ2=53+43=3.答案:3。

高考数学一轮复习 第五章 平面向量 第2讲 平面向量的基本定理及向量坐标运算 理-人教版高三全册数学

高考数学一轮复习 第五章 平面向量 第2讲 平面向量的基本定理及向量坐标运算 理-人教版高三全册数学

第2讲 平面向量的基本定理及向量坐标运算一、选择题1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ).A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴.答案 C2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ).A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8).答案 C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( ).A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,解得x =-2,y =-6,所以d =(-2,-6).故选D.答案 D4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ).A.14B.12C .1D .2 解析 依题意得a +λb =(1+λ,2),由(a +λb )∥c ,得(1+λ)×4-3×2=0,∴λ=12. 答案 B5. 若向量AB =(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2)解析 因为AC =AB +BC =(4,6),所以选A.答案 A6.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ).A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析 ∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),∴⎩⎪⎨⎪⎧ -x +y =2,x +2y =4,即⎩⎪⎨⎪⎧ x =0,y =2.∴a 在基底m ,n 下的坐标为(0,2).答案 D二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________. 解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12. 答案 128.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析 设a =λb (λ<0),则|a |=|λ||b |,∴|λ|=|a ||b |, 又|b |=5,|a |=2 5.∴|λ|=2,∴λ=-2.∴a =λb =-2(2,1)=(-4,-2).答案 (-4,-2)9.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C三点共线,则1a +2b的最小值为________. 解析 AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(a -1)-(-b -1)=0,∴2a +b =1.∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b ) =4+b a +4a b ≥4+2 b a ·4a b=8. 当且仅当b a =4a b ,即a =14,b =12时取等号. ∴1a +2b的最小值是8. 答案 810.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知点A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.解析 由条件中的四边形ABCD 的对边分别平行,可以判断该四边形ABCD 是平行四边形.设D (x ,y ),则有AB →=DC →,即(6,8)-(-2,0)=(8,6)-(x ,y ),解得(x ,y )=(0,-2).答案 (0,-2)三、解答题11.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标. 解析 设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有 ⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧ -1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,和⎩⎪⎨⎪⎧ x 2=-2,y 2=0. 所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4).12.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?解 法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧ k -3=10λ,2k +2=-4λ.解得k =λ=-13,∴当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ).∵λ=-13<0,∴k a +b 与a -3b 反向.法二 由法一知k a +b =(k -3,2k +2),a -3b =(10,-4),∵k a +b 与a -3b 平行∴(k -3)×(-4)-10×(2k +2)=0,解得k =-13,此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ).∴当k =-13时,k a +b 与a -3b 平行,并且反向.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cosθ,t ), (1)若a ∥AB →,且|AB →|=5|OA →|,求向量OB →的坐标;(2)若a ∥AB →,求y =cos 2θ-cos θ+t 2的最小值.解 (1)∵AB →=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0.∴cos θ-1=2t .①又∵|AB →|=5|OA →|,∴(cos θ-1)2+t 2=5.②由①②得,5t 2=5,∴t 2=1.∴t =±1.当t =1时,cos θ=3(舍去),当t =-1时,cos θ=-1,∴B (-1,-1),∴OB →=(-1,-1).(2)由(1)可知t =cos θ-12,∴y =cos 2θ-cos θ+cos θ-124=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝⎛⎭⎪⎫cos θ-352-15, ∴当cos θ=35时,y min =-15. 14.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 (1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎪⎨⎪⎧ 1+3t <0,2+3t >0.∴-23<t <-13. (2)因为OA →=(1,2),PB →=(3-3t,3-3t ).若OABP 为平行四边形,则OA →=PB →,∵⎩⎪⎨⎪⎧ 3-3t =1,3-3t =2无解.所以四边形OABP 不能成为平行四边形.。

2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量

2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量

第二讲 复数、平面向量微专题1 复数常考常用结论1.已知复数z =a +b i(a ,b ∈R ),则(1)当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z ̅=a -b i. (3)z 的模|z |=√a 2+b 2. 2.已知i 是虚数单位,则 (1)(1±i)2=±2i ,1+i 1−i =i ,1−i1+i =-i.(2)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.保 分 题1.[2022·新高考Ⅱ卷](2+2i)(1-2i)=( ) A .-2+4i B .-2-4i C .6+2i D .6-2i 2.[2022·全国甲卷]若z =1+i ,则|i z +3z ̅|=( ) A .4√5 B .4√2 C .2√5D .2√23.[2022·全国乙卷]已知z =1-2i ,且z +a z ̅+b =0,其中a ,b 为实数,则( ) A .a =1,b =-2 B .a =-1,b =2 C .a =1,b =2 D .a =-1,b =-2提 分 题例1 (1)[2022·福建漳州一模]已知z =|√3i -1|+11+i,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)[2022·山东潍坊二模](多选)若复数z 1=2+3i ,z 2=-1+i ,其中i 是虚数单位,则下列说法正确的是( )A .z1z 2∈RB.z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅C .若z 1+m (m ∈R )是纯虚数,那么m =-2D .若z 1,z 2在复平面内对应的向量分别为OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ (O 为坐标原点),则|AB⃗⃗⃗⃗⃗ |=5 听课笔记:【技法领悟】复数的代数运算的基本方法是运用运算法则,可以通过对代数式结构特征的分析,灵活运用i 的幂的性质、运算法则来优化运算过程.巩固训练11.[2022·山东泰安二模]已知复数z =3−i 1−2i,i 是虚数单位,则复数z ̅-4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.[2022·河北保定二模](多选)已知复数z 满足方程(z 2-4)(z 2-4z +5)=0,则( )A .z 可能为纯虚数B .方程各根之和为4C .z 可能为2-iD .方程各根之积为-20微专题2 平面向量常考常用结论1.平面向量的两个定理 (1)向量共线定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的坐标运算设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,θ为a 与b 的夹角. (1)a ∥b ⇔x 1y 2-x 2y 1=0.(2)a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (3)a ⊥b ⇔x 1x 2+y 1y 2=0.(4)|a |=√a ·a =√x 12+y 12.(5)cos θ=a·b|a ||b |=1212√x 1+y 1 √x 2+y 2.保 分 题1.△ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE⃗⃗⃗⃗⃗ =( ) A .13AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ B .13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ C .23AB⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D .23AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ 2.[2022·全国乙卷]已知向量a ,b 满足|a |=1,|b |=√3,|a -2b |=3,则a ·b =( ) A .-2 B .-1 C .1 D .2 3.[2022·全国甲卷]已知向量a =(m ,3),b =(1,m +1),若a ⊥b ,则m =________.提 分 题例2 (1)[2022·河北石家庄二模]在平行四边形ABCD 中,M ,N 分别是AD ,CD 的中点,若BM⃗⃗⃗⃗⃗⃗ =a ,BN ⃗⃗⃗⃗⃗ =b ,则BD ⃗⃗⃗⃗⃗ =( ) A .34a +23b B .23a +23bC .34a +34bD .23a +34b(2)[2022·山东济宁一模]等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为( ) A .4 B .7 C .8 D .11 听课笔记:【技法领悟】求解向量数量积最值问题的两种思路1.直接利用数量积公式得出代数式,依据代数式求最值.2.建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.巩固训练21.[2022·山东济南二模]在等腰梯形ABCD 中,AB ⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,M 为BC 的中点,则AM ⃗⃗⃗⃗⃗⃗ =( )A .12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ B .34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ C .34AB ⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗ D .12AB ⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗ 2.[2022·福建漳州二模]已知△ABC 是边长为2的正三角形,P 为线段AB 上一点(包含端点),则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为( ) A .[-14,2] B .[-14,4] C .[0,2]D .[0,4]第二讲 复数、平面向量微专题1 复数保分题1.解析:(2+2i)(1-2i)=2-4i +2i -4i 2=2-2i +4=6-2i.故选D. 答案:D2.解析:因为z =1+i ,所以z ̅=1-i ,所以i z +3z ̅=i(1+i)+3(1-i)=2-2i ,所以|i z +3z ̅|=|2-2i|=√22+(−2)2=2√2.故选D. 答案:D3.解析:由z =1-2i 可知z ̅=1+2i.由z +a z ̅+b =0,得1-2i +a (1+2i)+b =1+a +b +(2a -2)i =0.根据复数相等,得{1+a +b =0,2a −2=0,解得{a =1,b =−2.故选A.答案:A提分题[例1] 解析:(1)∵z =|√3i -1|+11+i = √(√3)2+(−1)2+1−i1−i 2=2+1−i 2=52−12i ,∴复平面内z 对应的点(52,-12)位于第四象限. (2)对于A ,z1z 2=2+3i −1+i=(2+3i )(−1−i )(−1+i )(−1−i )=1−5i 2=12−52i ,A 错误;对于B ,∵z 1·z 2=(2+3i)(-1+i)=-5-i ,∴z 1·z 2̅̅̅̅̅̅̅̅=-5+i ;又z 1̅·z 2̅=(2-3i)(-1-i)=-5+i ,∴z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅,B 正确;对于C ,∵z 1+m =2+m +3i 为纯虚数,∴m +2=0,解得:m =-2,C 正确; 对于D ,由题意得:OA ⃗⃗⃗⃗⃗ =(2,3),OB ⃗⃗⃗⃗⃗ =(-1,-1),∴AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(-3,-4),∴|AB ⃗⃗⃗⃗⃗ |=√9+16=5,D 正确.答案:(1)D (2)BCD [巩固训练1]1.解析:z =3−i1−2i =(3−i )(1+2i )(1−2i )(1+2i )=5+5i 5=1+i ,则z ̅-4=1-i -4=-3-i ,对应的点位于第三象限.故选C.答案:C2.解析:由(z 2-4)(z 2-4z +5)=0,得z 2-4=0或z 2-4z +5=0, 即z 2=4或(z -2)2=-1,解得:z =±2或z =2±i ,显然A 错误,C 正确; 各根之和为-2+2+(2+i)+(2-i)=4,B 正确; 各根之积为-2×2×(2+i)(2-i)=-20,D 正确. 答案:BCD微专题2 平面向量保分题1.解析:因为点E 是BC 边上靠近B 的三等分点,所以BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ , 所以AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ .故选C. 答案:C2.解析:将|a -2b |=3两边平方,得a 2-4a ·b +4b 2=9.因为|a |=1,|b |=√3,所以1-4a ·b +12=9,解得a ·b =1.故选C.答案:C3.解析:由a ⊥b ,可得a ·b =(m ,3)·(1,m +1)=m +3m +3=0,所以m =-34. 答案:-34提分题[例2] 解析:(1)如图所示,设AB ⃗⃗⃗⃗⃗ =m ,AD⃗⃗⃗⃗⃗ =n ,且BD ⃗⃗⃗⃗⃗ =x a +y b ,则BD ⃗⃗⃗⃗⃗ =x a +y b =x (12n -m )+y (n -12m )=(12x +y )n -(x +12y )m , 又因为BD⃗⃗⃗⃗⃗ =n -m , 所以{12x +y =1x +12y =1,解得x =23,y =23,所以BD ⃗⃗⃗⃗⃗ =23a +23b . 故选B.(2)如图,等边三角形ABC ,O 为等边三角形ABC 的外接圆的圆心,以O 为原点,AO 所在直线为y 轴,建立直角坐标系.因为AO =2,所以A (0,2),设等边三角形ABC 的边长为a ,则asin A =asin 60°=2R =4,所以a =2√3,则B (-√3,-1),C (√3,-1).又因为P 是该圆上的动点,所以设P (2cos θ,2sin θ),θ∈[0,2π), PA ⃗⃗⃗⃗ =(-2cos θ,2-2sin θ),PB⃗⃗⃗⃗⃗ =(-√3-2cos θ,-1-2sin θ),PC ⃗⃗⃗⃗ =(√3-2cos θ,-1-2sin θ),PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =-2cos θ(-√3-2cos θ)+(2-2sin θ)(-1-2sin θ)+(-√3-2cos θ)(√3-2cos θ)+(-1-2sin θ)(-1-2sin θ)=3+1+2sin θ+2√3cos θ=4+4sin (θ+π3),因为θ∈[0,2π),θ+π3∈[π3,7π3),sin (θ+π3)∈[-1,1],所以当sin (θ+π3)=1时,PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为8.故选C.答案:(1)B (2)C [巩固训练2]1.解析:取AD 中点N ,连接MN ,∵AB⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,∴AB ∥CD ,|AB |=2|CD |, 又M 是BC 中点,∴MN ∥AB ,且|MN |=12(|AB |+|CD |)=34|AB |, ∴AM ⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗ +NM ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +34AB ⃗⃗⃗⃗⃗ ,故选B. 答案:B 2.解析:以AB 中点O 为坐标原点,OB ⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗⃗ 正方向为x ,y 轴可建立如图所示平面直角坐标系,则A (-1,0),B (1,0),C (0,√3),设P (m ,0)(-1≤m ≤1),∴PB⃗⃗⃗⃗⃗ =(1-m ,0),PC ⃗⃗⃗⃗ =(-m ,√3), ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =m 2-m =(m -12)2-14, 则当m =12时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )min =-14;当m =-1时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )max =2; ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为[-14,2].故选A. 答案:A。

高考数学平面向量与复数复习课件

高考数学平面向量与复数复习课件

5

13
+
12
5
i,所以=
ҧ
13
13
所以其在复平面内对应的点位于第四象限.
故选D.

12
i
13
3.[2021·湖南永州三模] 已知i为虚数单位,复数z=(2+i)(1+ai),
a∈R,若z∈R,则a=(
)
1
1
A.
B. -
2
2
C. 2
D. -2
答案:B
解析:z=(2+i)(1+ai)=2-a+ 1 + 2a i,
·
2.求解向量数量积最值问题的两种思路
(1)直接利用数量积公式得出代数式,依据代数式求最值.
(2)建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数
的最值.
第2讲 平面向量与复数
微专题 1 复数
微专题 2 平面向量
微专题 1 复数
『常考常用结论』
1.已知复数z=a+bi(a,b∈R),则
点到原点距离的最大值是(
)
A.1
B. 3
C. 5
D. 3
答案:D
解析:设z=x+yi(x,y∈R),
则|x+(y-2)i|=1,所以 x 2 + y − 2 2 =1,即x2+(y-2)2=1,
所以复数z对应的点的轨迹是以(0,2)为圆心,1为半径的圆,
所以|z|max=2+1=3.
所以复平面内z对应的点到原点距离的最大值是3.
解题时要注意把i的幂写成最简形式.复数的除法类似初中所学化简
分数常用的“分母有理化”,其实质就是“分母实数化”.
微专题 2 平面向量
『常考常用结论』
1.向量平行(共线):

1-1-2第二讲 复数、平面向量、程序框图与推理

1-1-2第二讲 复数、平面向量、程序框图与推理
点E为BC的中点,点F在边CD上,若 ________. · =,则 · 的值是
[解析] (1)利用平面向量的数量积概念、
模的概念求解. ∵a,b的夹角为45°,|a|=1, 山 东 金 太 阳 书 业 有 限 公 司
∴a· b=|a|· |b|cos 45° =
2
2 |b|, 2
2 |2a-b| =4-4× |b|+|b|2=10,∴|b|=3 2. 2
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
高考新课标专题复习 ·数学(理)
研热点 聚 焦 突 破
析典题 预 测 高 考 重演练 素 能 提 升
已知A(-3,0)、B(0,2),O为坐标原点,点C在∠AOB内,|OC|
=2,且∠AOC=
A.1 C.
,设=
λ
B. D.

(λ∈R),则λ的值为(
= · 4ML2· 2-(ML2+NL2-MN2)2 . NL ∵OM2+ON2=MN2, OM2+OL2=ML2, OL2+ON2=LN2, 1 ∴S4= OM2· 2+OL2· 2+OM2· 2 , ON ON OL 2 ∴ S2+S2+S2=S2 . 1 2 3 4 山 东 金 太 阳 书 业 有 限 公 司
(2012年南昌市一中月考)在平面上,我们如果用一条直线去截正
方形的一个角,那么截下的是一个直角三角形,若将该直角三角形按 图标出边长a,b,c,则由勾股定理有:a2+b2=c2.设想把正方形换成
正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两
垂直的三棱锥OLMN,如果用S1,S2,S3表示三个侧面面积,S4表示 截面面积,那么你类比得到的结论是________. 山 东 金 太 阳 书 业 有 限 公 司

《平面向量》第2讲 向量的基本定理和坐标运算

《平面向量》第2讲 向量的基本定理和坐标运算
课题:
向量的基本定理与坐标运算
一、坐标运算
【例题1】已知在□ABCD中,AC 为一条对角线,
=(2,4), AC =(1,3),则向量 BD 的 AB
坐标为________.
[训练1]向量a=(2,4),b=(1,3),则3a+b=_____.
一、坐标运算
[训练2]已知A(2,3),B(6,-3).二、平面 Nhomakorabea量基本定理
[例题3].已知向量 a=(3,2),b=(-1,2),c=(4,1), 求满足 c=ma +nb 的实数m,n.
[训练3].已知向量e1 ,e2不共线, 要使a= e1+2e2 , b= 2e1+λe2能成为平面内所有向量的一组基底, 则实数λ的取值范围是 .
二、平面向量基本定理
即:物理学上力的合成与分解.
3. 两个向量平行与垂直的向量表示.
若 AD AB AC ,则x =_____,y =_____.
例题与训练
【训练2】给定两个长度为1的平面向量 OA, OB ,它们 的夹角为120°,点C在以O为圆心的圆弧AB上变动. 若 OC xOA yOB , 则x+y的最大值是 ____.
小结
1. 坐标运算.
2. 平面向量的基本定理.
[例题2]如图,平面内有三个向量 OA, OB , OC ,其中
OA与 OB的夹角为 OA 与 OB 的夹角为120°,
30°,且
OA OB 1, OC 2 3

若 OC OA OB , 则λ+μ的值为____.
例题与训练
【训练1】如图,两块斜边长相等的直角三角板拼在一起,
① 线段AB的中点坐标为 . .

高考数学一轮复习第2讲 平面向量的基本定理及坐标表示

高考数学一轮复习第2讲 平面向量的基本定理及坐标表示

第2讲 平面向量的基本定理及坐标表示1.平面向量的基本定理如果e 1,e 201不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a 02λ1e 1+λ2e 2.2.平面向量的坐标表示03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得a =x i +y j 04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i 05(1,0),j 06(0,1),0=07(0,0).3.平面向量的坐标运算 (1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b 08(x 1+x 2,y 1+y 2), a -b 09(x 1-x 2,y 1-y 2), λa 10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →11(x 2-x 1,y 2-y 1), |AB→|12 错误!. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. 2.当且仅当x 2y 2≠0时,a ∥b 与x1x2=y1y2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.3.若a 与b 不共线,且λa +μb =0,则λ=μ=0.4.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎪⎫x1+x22,y1+y22. 5.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎪⎫x1+x2+x33,y1+y2+y33. 6.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)(y 3-y 1).1.已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)答案 D解析 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又因为a ,b 方向相反,所以x =-2.故选D.3.下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一个基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.4.设向量a =(-1,2),向量b 是与a 方向相同的单位向量,则b =( ) A .(1,-2) B .⎝ ⎛⎭⎪⎪⎫-55,255 C.⎝ ⎛⎭⎪⎪⎫-15,25 D .⎝ ⎛⎭⎪⎪⎫55,-255 答案 B解析 因为向量b 是与a 方向相同的单位向量,所以b =a|a|=错误!(-1,2)=错误!(-1,2)=⎝⎛⎭⎪⎪⎫-55,255.故选B. 5.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.考向一 平面向量基本定理的应用例1 (1)如图,点A ,B ,C ,P 均在正方形网格的格点上.若AP →=λAB →+μAC →(λ,μ∈R ),则λ+2μ=( )A .1B .32C .43D .2答案 B解析 设在正方形网格上方向为水平向右,长度为一格的向量为i ,方向为竖直向上,长度为一格的向量为j ,∴AB→=-2i +2j ,AC →=4i ,AP →=i +j ,∵AP →=λAB →+μAC →(λ,μ∈R ),即i +j =λ(-2i +2j )+μ×4i ,i +j =(4μ-2λ)i +2λj ,∴⎩⎪⎨⎪⎧4μ-2λ=1,2λ=1,解得⎩⎪⎨⎪⎧λ=12,μ=12,∴λ+2μ=32.故选B.(2) 如图,以向量OA →=a ,OB →=b 为邻边作平行四边形OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.解 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=b +⎝ ⎛⎭⎪⎪⎫16a -16b =16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b ,∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. (2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.1.(2020·北京市朝阳区一模)如图,在△ABC 中,点D ,E 满足BC→=2BD→,CA →=3CE →.若DE →=x AB →+y AC →(x ,y ∈R ),则x +y =( )A .-12B .-13C.12 D .13答案 B解析 △ABC 中,点D ,E 满足BC →=2BD →,CA →=3CE →.DE →=DC →+CE →=12BC →+13CA→=12(AC →-AB →)-13AC →=-12AB →+16AC →,又DE →=x AB →+y AC →(x ,y ∈R ),∴⎩⎪⎨⎪⎧x =-12,y =16,∴x +y =-12+16=-13.故选B.2.(2020·青岛市高三上学期期末)在△ABC 中,AB →+AC →=2AD →,AE →+2DE →=0,若EB→=x AB →+y AC →,则( ) A .y =2x B .y =-2x C .x =2y D .x =-2y答案 D解析 如图所示,∵AB→+AC →=2AD →,∴点D 为边BC 的中点.∵AE →+2DE →=0,∴AE →=-2DE →,∴DE →=-13AD →=-16(AB →+AC →).又DB →=12CB →=12(AB →-AC →),∴EB →=DB →-DE →=12(AB →-AC →)+16(AB →+AC →)=23AB →-13AC →.又EB →=x AB →+y AC →,∴x =23,y =-13,即x =-2y .故选D.考向二 平面向量的坐标运算例2 (1)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于( ) A .(3,1) B .(4,2) C .(5,3)D .(4,3)答案 B解析 AC→=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC→+BC →=(4,2).(2)(2020·辽宁省辽南协作校二模)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =( )A.⎝ ⎛⎭⎪⎪⎫133,83 B .⎝ ⎛⎭⎪⎪⎫-133,-83C.⎝ ⎛⎭⎪⎪⎫133,43 D .⎝ ⎛⎭⎪⎪⎫-133,-43答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b )=-13(5+4×2,-2+2×3)=⎝⎛⎭⎪⎪⎫-133,-43.故选D. (3)(2020·天津和平区模拟) 如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B .85C .2D .83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD=2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.3.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎪⎪⎫0,52,则c 可用向量a ,b 表示为( )A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b答案 A解析设c =x a +y b ,易知⎩⎪⎨⎪⎧ 0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.4.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC→=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-23,-23B .⎝ ⎛⎭⎪⎪⎫-13,-13C.⎝ ⎛⎭⎪⎪⎫13,13 D .⎝ ⎛⎭⎪⎪⎫23,23答案 A解析 解法一:易知OC→=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC→=3(-1-x ,-1-y )=(-3-3x ,-3-3y ), 由OC →=3EC →,知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以点E 的坐标为⎝ ⎛⎭⎪⎪⎫-23,-23.解法二:易知OC→=OB →-OA →=(-1,-1),由OC →=3EC →得OC →=3(OC →-OE →),所以OE→=23OC→=⎝⎛⎭⎪⎪⎫-23,-23,所以点E的坐标为⎝⎛⎭⎪⎪⎫-23,-23.考向三平面向量共线的坐标表示例3(1)(2020·山东省菏泽市一模)已知向量a,b满足a=(1,2),a+b=(1+m,1),若a∥b,则m=()A.2 B.-2C.12D.-12答案 D解析b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为a∥b,所以2m+1=0,解得m=-12.故选D.(2)(2021·海口市海南中学高三月考)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若AB→∥a,则点B的坐标为________.答案(-3,-6)解析由题意,设B(x,2x),则AB→=(x-3,2x),∵AB→∥a,∴x-3-2x=0,解得x =-3,∴B(-3,-6).利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.5.已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.答案(3,3)解析 解法一:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA→=(4λ-4,4λ). 又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).解法二:设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).6.(2020·长郡中学高三适应性考试)已知向量AC →=(1,sin α-1),BA →=(3,1),BD →=(2,cos α),若B ,C ,D 三点共线,则tan(2021π-α)=________.答案 -2解析 ∵B ,C ,D 三点共线, ∴BD→=x BC →=x (BA →+AC →), 即(2,cos α)=x (4,sin α),则⎩⎪⎨⎪⎧2=4x ,cosα=xsinα,得x =12,即cos α=12sin α,得tan α=2,则tan(2021π-α)=tan(-α)=-tan α=-2.一、单项选择题1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( ) A .(-3,4) B .(3,4) C .(3,-4) D .(-3,-4)答案 A解析 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).2.(2021·山东聊城月考)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO→的坐标为( ) A.⎝ ⎛⎭⎪⎪⎫-12,5 B .⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫12,-5 D .⎝ ⎛⎭⎪⎪⎫-12,-5答案 D解析 因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝ ⎛⎭⎪⎪⎫12,5,所以CO →=⎝ ⎛⎭⎪⎪⎫-12,-5.3. 如图,在梯形ABCD 中,DC →=14AB →,BE →=2EC→,且AE →=r AB →+s AD →,则2r +3s =( )A.1 B.2 C.3 D.4 答案 C解析根据题图,由题意可得AE→=AB→+BE→=AB→+23BC→=AB→+23(BA→+AD→+DC→)=13AB→+23(AD→+DC→)=13AB→+23⎝⎛⎭⎪⎪⎫AD→+14AB→=12AB→+23AD→.因为AE→=r AB→+s AD→,所以r=12,s=23,则2r+3s=1+2=3.4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.5.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于()A.5 B.6C.7 D.8答案 B解析由平面向量的坐标运算法则可得a+b=(5,5),λc=(λ,λm),据此有⎩⎪⎨⎪⎧λ=5,λm=5,解得λ=5,m =1,所以λ+m =6.6.(2020·青岛模拟)已知向量a =(1+cos x,2),b =(sin x,1),x ∈⎝ ⎛⎭⎪⎪⎫0,π2,若a ∥b ,则sin x =( )A.45B .35C .25D .255答案 A解析 根据题意,向量a =(1+cos x,2),b =(sin x,1),若a ∥b ,则2sin x =1+cos x ,变形可得cos x =2sin x -1,又sin 2x +cos 2x =1,则有sin 2x +(2sin x -1)2=1,变形可得,5sin 2x -4sin x =0,解得sin x =0或sin x =45,又x ∈⎝⎛⎭⎪⎪⎫0,π2,则sin x =45.故选A.7. (2020·黑龙江省大庆一中三模)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,△ABC 满足“勾3股4弦5”,且AB =3,E 为AD 上一点,BE ⊥AC .若BA→=λBE →+μAC →,则λ+μ的值为( )A .-925 B .725C .1625D .1答案 B解析 由题意建立如图所示平面直角坐标系,因为AB =3,BC =4,则B (0,0),A (0,3),C (4,0),BA→=(0,3),AC →=(4,-3),设BE →=(a,3),因为BE ⊥AC ,所以AC →·BE →=4a -9=0,解得a =94.由BA →=λBE →+μAC →,得(0,3)=λ⎝ ⎛⎭⎪⎪⎫94,3+μ(4,-3),所以⎩⎪⎨⎪⎧94λ+4μ=0,3λ-3μ=3,解得⎩⎪⎨⎪⎧λ=1625,μ=-925,所以λ+μ=725,故选B.8. 如图,扇形的半径为1,圆心角∠BAC =150°,点P 在弧BC 上运动,AP →=λAB →+μAC→,则3λ-μ的最小值是( )A .0B .3C .2D .-1答案 D解析 以A 为原点,AB 所在直线为x 轴,建立如图所示平面直角坐标系,则A (0,0),B (1,0),C (cos150°,sin150°)=⎝ ⎛⎭⎪⎪⎫-32,12,设P (cos θ,sin θ)(0°≤θ≤150°),因为AP →=λAB →+μAC →,所以(cos θ,sin θ)=λ(1,0)+μ⎝⎛⎭⎪⎪⎫-32,12,于是⎩⎪⎨⎪⎧λ-32μ=cosθ,12μ=sinθ,解得λ=cos θ+3sin θ,μ=2sin θ,那么3λ-μ=sin θ+3cos θ=2sin(θ+60°),因为0°≤θ≤150°,所以60°≤θ+60°≤210°,故sin(θ+60°)≥-12,因此3λ-μ的最小值为-1.故选D.二、多项选择题9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A.AD →与AB →B .DA →与BC → C.CA →与DC →D .OD→与OB → 答案 AC解析 平面内任意两个不共线的向量都可以作为基底,如图,对于A ,AD →与AB →不共线,可作为基底;对于B ,DA→与BC →为共线向量,不可作为基底;对于C ,CA →与DC→是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一直线上,是共线向量,不可作为基底.10.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA→=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点可构成三角形,故选ABD.11.(2021·广东湛江高三模拟)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC→=a ,CA →=b ,则下列结论正确的是( ) A.AD →=-12a -bB .BE →=a +12bC.CF →=-12a +12bD .EF →=12a答案 ABC解析如图,在△ABC中,AD→=AC→+CD→=-CA→+12CB→=-b-12a,故A正确;BE→=BC→+CE→=a+12b,故B正确;AB→=AC→+CB→=-b-a,CF→=CA→+12AB→=b+12×(-b-a)=-12a+12b,故C正确;EF→=12CB→=-12a,故D不正确.故选ABC.12. (2020·山东潍坊高三模拟)如图所示,点A,B,C是圆O上的三点,线段OC 与线段AB交于圆内一点P,若AP→=λAB→,OC→=μOA→+3μOB→,则()A.P为线段OC的中点时,μ=1 2B.P为线段OC的中点时,μ=1 3C.无论μ取何值,恒有λ=3 4D.存在μ∈R,λ=1 2答案AC解析OP→=OA→+AP→=OA→+λAB→=OA→+λ(OB→-OA→)=(1-λ)OA→+λOB→,因为OP→与OC →共线,所以1-λμ=λ3μ,解得λ=34,故C 正确,D 错误;当P 为OC 的中点时,则OP →=12OC →,则1-λ=12μ,λ=12×3μ,解得μ=12,故A 正确,B 错误.故选AC.三、填空题13.(2020·哈尔滨六中二模)已知向量a =(log 2x,1),b =(log 23,-1),若a ∥b ,则x =________.答案13解析 因为a ∥b ,所以-log 2x =log 23,所以log 2x +log 23=0,所以log 2(3x )=0,所以3x =1,所以x =13.14.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ), AB→=(2,1)-(1,2)=(1,-1), 所以(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2), 所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).15. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的平面直角坐标系,设每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO→=(-1,1),b =OB→=(6,2),c =BC →=(-1,-3). 由c =λa +μb 可得⎩⎪⎨⎪⎧ -1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧ λ=-2,μ=-12,所以λμ=4.16.(2020·济南市高三上学期期末)平行四边形ABCD 中,M 为CD 的中点,点N 满足BN→=2NC →,若AB →=λAM →+μAN →,则λ+μ的值为________. 答案 12解析 因为M 为CD 的中点,点N 满足BN→=2NC →, 所以DM →=12DC →,BN →=23BC →. 又因为AB→=λAM →+μAN →, 所以AB→=λ(AD →+DM →)+μ(AB →+BN →) =λ⎝ ⎛⎭⎪⎪⎫AD →+12DC →+μ⎝⎛⎭⎪⎪⎫AB →+23BC → =λAD →+λ2DC →+μAB →+2μ3BC →.① 又因为在平行四边形ABCD 中,AB→=DC →,AD →=BC →, 所以①整理得,AB →=λAD →+λ2AB →+μAB →+2μ3AD →, 即⎝ ⎛⎭⎪⎪⎫1-λ2-μAB →=⎝ ⎛⎭⎪⎪⎫λ+2μ3AD →. 又因为AB→,AD →不共线,由平面向量基本定理得 ⎩⎪⎨⎪⎧ 1-λ2-μ=0,λ+2μ3=0,解得⎩⎪⎨⎪⎧ λ=-1,μ=32,所以λ+μ=12.。

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。

2019-2020学年高考数学一轮复习-第2讲-平面向量、解三角形教学案

2019-2020学年高考数学一轮复习-第2讲-平面向量、解三角形教学案

2019-2020学年高考数学一轮复习 第2讲 平面向量、解三角形教学案【学习目标】(1)正弦定理、余弦定理及其应用(B 级)(2)处理与三角形有关的三角综合问题,除正确运用好正弦定理、余弦定理、面积公式及己知的三角函数关系式外,对隐含的很多条件,如三角函数的定义、三角形的内角和、诱导公式、勾股定理,向量有关知识等等,都要综合考虑,这样才能有效的解决问题【知识要点】1.已知两个非零向量a 与b ,它们的夹角是θ,则有a =⋅b __________,其中夹角θ的取值范围是________,规定=⋅a 0___ _;向量的数量积的结果是一个_____ _ 2.平面向量数量积的坐标表示: 已知),,(),,(2211y x b y x a ==则=⋅b a _____ ________;记a 与b 的夹角为θ,则=θcos _____________ __=||a ___ __ ____3.向量的平行的充要条件:设),(11y x a =,),(22y x b =,且0≠a ,则⇔b a // ⇔4.两非零向量垂直的充要条件:设),,(),,(2211y x b y x a ==则⇔⊥b a _____ __5.正弦定理: .6.余弦定理:第一形式:=2a ,第二形式: =A cos7.三角形的面积公式【自主学习】1. (必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x +1),若a ⊥b ,则实数x = .2. (必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k = 时,向量k a -b 与a +3b 平行.3. (必修5 P10习题4改编)在△ABC 中,已知b a a +=sin sin -sin B B A , 且2sin Asin B=2sin 2C ,则△ABC 的形状为4. (必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =7,b =43,c =13,则△ABC 最小的内角为 .【课堂探究】例1 (2015·江苏卷)在△ABC 中,已知AB=2,AC=3,角A=60°.(1) 求BC 的长;(2) 求sin 2C 的值.例2 在△ABC中,角A,B,C所对的边分别为a,b,c.已知sin2sin-sinCA C=222222----b a cc a b.(1) 求角B的大小;(2) 设T=sin2A+sin2B+sin2C,求T的取值范围.例3 (2015·陕西卷)在△ABC中,已知角A,B,C所对的边分别为a,b,c,向量m=(a,3b)与n=(cos A,sin B)平行.(1) 求角A的大小;(2) 若a7b=2,求△ABC的面积.【针对训练】1. (2015·安徽卷)在△ABC中,已知6A=75°,B=45°,则AC= .2. (2015·南京调研)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a+2c=2b,sin B=2sin C,则cos A= .3. (2014·常州期末)在△ABC中,角A,B,C的对边分别为a,b,c,若tanA=7tanB,22 -a bc=3,则c= . 【巩固提升】1. 已知向量a,b满足|a|=1,|b|=2,|a-b|=2,则|a+b|=2. (2015·苏锡常镇宿一调)如图,在平行四边形ABCD中,E为DC的中点,AE与BD交于点M,AB=2,AD=1,且MA·MB=-16,则AB·AD= .3. (2015·福建卷)在△ABC中,若AC=3,A=45°,C=75°,则BC= .4.(2015·镇江期末)已知△ABC的面积为S,且AB·AC=2S.(1) 求sin A的值;(2) 若|AB|=3,|AB-AC|=23,求sin B的值.5. (2015·苏北四市)已知向量a=(1,2sin θ),b=πsin13θ⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭,,θ∈R.(1) 若a⊥b,求tan θ的值;(2) 若a∥b,且θ∈π2⎛⎫⎪⎝⎭,,求θ的值.。

说课第二章 平面向量 2.1平面向量的实际背景及基本概念

说课第二章  平面向量  2.1平面向量的实际背景及基本概念
解: AB表示A地至B地的位移,且
200km .
AC 表示A地至C地的位移,且
280km .
25
平行向量:
向量间的关系
①方向相同或相反的非零向量叫平行向量;
②我们规定0与任一向
a
量平行.
b
c
26
讲授新课
6.平行向量定义: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行. a
b c
决数学问题。
(三)情感态度与价值观
经历平面向量的概念的探索过程,提高自主探究能力,进
一步提高学习数学的乐趣,由感性思维逐步提升到理性思
维。
7
(四)学科核心素养 a. 数学抽象:平面向量的概念 b. 逻辑推理:共线向量的判断 c. 数学运算:向量相等 d. 直观想象:向量的几何表示 e.数学建模:向量概念的建立
直线与直线的位置关 系里,严格区分直线和 直线位置关系,平行就 是共面前提下的无交 点,平行不共线.
29
相等向量:长度相等,方向相同的两个向量。
a
b
ab
对向量的大小和方向都明确规定
a

b

方向相同

a

b
30
思 (1)相等向量一定是平行向量?

a


b
(2)平行向量一定是相等向量?
以A为起点、B为终点的有向线段 记作: AB
起点写在终点的前面.
A(起点)
B (终点)
线段AB的长度也叫做有向线段 AB 的长度,记作: AB
有向线段的三要素:起点、,它的终 点就唯一确定.
22
3. 向量的表示方法:
(1)几何表示法:用有向线段表示

第2讲-平面向量基本定理及向量的坐标表示

第2讲-平面向量基本定理及向量的坐标表示

平面向量基本定理及其坐标表示学习目标1、掌握平面向量的基本定理2、掌握平面向量的坐标表示及相关运算3、掌握向量平行、垂直的坐标法定义及三点共线的基本性质4、掌握函数图像平移中的按向量平移1.向量的坐标表示我们知道:两个向量如果长度相等,方向相同,则可将他们视为同一个向量。

因此,对于平面上任意一个向量a ,我们过坐标原点O 作一个向量OA ,使得OA a =,此时,如果A 点的坐标为(,)x y ,我们就记(,)a x y =,这就是向量a 的坐标表示。

显然(1) 如(,)a x y =,则22||a x y =+(2) 如1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--2.基于坐标表示的向量之运算规则。

如1122(,),(,)a x y b x y ==,则(1)1212(,)a b x x y y ±=±± (2)11(,)a x y λλλ=3.向量的共线与垂直设1122(,),(,)a x y b x y ==为两个非零向量,则(1)//a b 12210x y x y ⇔-=; (2)a b ⊥12120x x y y ⇔+=;证明:(1)//a b ⇔存在实数λ,使得a b λ=,即1122(,)(,)x y x y λ=,也即1212,x x y y λλ==,故122122220x y x y x y x y λλ-=-=(2)不妨设,OA a OB b ==,即1122(,),(,)A x y B x y ,不妨设120x x ≠a b ⊥12121212110OA OB y y OA OB k k x x y y x x ⇔⊥⇔=-⇔⨯=-⇔+=; 120x x =时的特殊情况留给读者自己证明。

4.平面向量基本定理如果12,e e 是同一平面内的两个不共线向量,那么对于该平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+,向量12,e e 叫表示这一平面内所有向量的一组基底.5.基于坐标表示的向量的内积设1122(,),(,)a x y b x y ==,则:1212a b x x y y ⋅=+读者可利用向量余弦定理自行证明:这里定义的内积跟前面定义的内积||||cos a b a b α⋅=⋅(其中α为,a b 的夹角)是一致的。

第二章平面向量及其应用(讲义+典型例题)(原卷版)

第二章平面向量及其应用(讲义+典型例题)(原卷版)

第二章平面向量及其应用(讲义+典型例题)一.平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0例1:(1).如图,在矩形ABCD中,可以用同一条有向线段表示的向量是()A.DA和BC B.DC和ABC.DC和BC D.DC和DA(2).如图,O是正六边形ABCDEF的中心,且OA a=,OB b=,OC c=.在以A,B,C,D,E,F,O这七个点中任意两点为起点和终点的向量中,问:(1)与a相等的向量有哪些?(2)b的相反向量有哪些?(3)与c共线的向量有哪些?.举一反三1.下列说法正确的是()A .若a b =,则a b =±B .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量2.(多选)如图,在四边形ABCD 中,若AB DC =,则图中相等的向量是( )A .AD 与BCB .OB 与ODC .AC 与BDD .AO 与OC3.如图,在矩形ABCD 中,AD =2AB =2,M ,N 分别为AD 和BC 的中点,以A ,B ,C ,D ,M ,N 为起点和终点作向量,回答下列问题:(1)在模为1的向量中,相等的向量有多少对? (2)2二.平面向量的线性运算 向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb例2:①.如图,已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,则BC 可以表示为( )A .a b +B .a b -C .b a -D .a b --②.如图,已知下列各组向量a ,b ,求作a b +.③.在ABC 中,已知AB b =,AC c =,求作: (1)2b ; (2)()2b c -;(3)32b c -.④.化简: (1)AB BC DC +-;(2)AB BC DC DE EA +-++; (3)()OA O BC B --. 举一反三1.5()3(2)a b a b ---= ___________.2.如图,已知M ,N 分别是四边形ABCD 的边AB ,CD 的中点,求证:()12MN AD BC =+.3.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,设AB =a ,DA =b ,OC =c .证明:b c a +-=OA .4.(1)设O 是正五边形ABCDE 的中心,求OA OB OC OD OE ++++; (2)设O 是正n 边形12n A A A 的中心,求12n OA OA OA +++.5.如图,已知a ,b 为两个非零向量.(1)求作向量a b +及a b -;(2)向量a ,b 成什么位置关系时,a b a b +=-?(不要求证明)三.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .例3(1)如图,OA ,OB 不共线,且()AP t AB t =∈R ,用OA ,OB 表示OP .(2)已知任意两个非零向量a ,b ,若23OA a b =+,22OB a b =+,25OC a b =+,你能判断A ,B ,C 三点之间的位置关系吗?为什么? 举一反三1.在ABC 中,已知D 是AB 边上的一点,若13CD CA CB λ=+,则λ等于( )A .13B .23C .12D .342.设1e 与2e 是不共线的非零向量,若12ke e +与12e ke +共线且方向相反,则k 的值是( ) A .1- B .1C .±1D .任意不为零的实数3.已知1e 与2e 不共线,12AB e e =+,1228BC e e =+,()123CD e e =-.求证:A ,B ,D 三点共线.四.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.例4(1).等腰直角三角形ABC 中,90A ︒=,,AB AC D =是斜边BC 上一点,且3BD DC =,则AD =( )A .3544AC AB +B .3144AC AB +C .5144AC AB +D .3144AC AB -(2)(多选).在ABC 中,边BC 上的中线与边AC 上的中线的交点为E ,若CE AB AC λμ=+,则2λμ+=______.举一反三1.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的2倍.若存在正实数,x y 使得1141AC AB AD x y ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭成立,则2x y +的最小值为( )A .1B .2C .3D .42.(多选)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+ B .3255AF AB AD →→→=+ C .1255BF AB AD →→→=-+D .13105CF AB AD →→→=-五.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.例5(1)已知向量(1,4)a =-,(2,3)b =,则2a b -的坐标为( ) A .(-3,-10) B .(-3,-2) C .(-3,2)D .(3,-10)(2).已知向量1(1,)2a =-,(2,)b m =-,若a 与b 共线,则||b =( )A .3B .5C .6D .22(3).已知向量a ,b 满足()1,2a λ=+,()1,b λ=,//a b ,则实数λ的值为______. 举一反三1.已知向量()3,4a =-,2AB a =,点A 的坐标为()3,4-,则点B 的坐标为______. 2.若(1,1),(1,2)a b ==-,则与a b +同方向的单位向量是_______. 3.已知点A (1,2),B (4,5),O (0,0)及OP mOA AB =+. (1)当m 为何值时,P 在x 轴上?P 在y 轴上?P 在第四象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的m 的值;若不能,说明为什么.六.平面向量的数量积1,概念:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质(1)e·a =a·e =|a |cos θ; (2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b |a||b|; (5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b =b·a (交换律); (2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c . 5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.例6:(1).如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是( )A .18B .22C .18-D .22-(2).已知,a b 是非零向量,且,a b 不共线,3,4a b ==,若向量a kb +与a kb -互相垂直,则实数k 的值为( ) A .2± B .12±C .43±D .34±3.已知平面向量a ,b 满足()1,2a =,10b =,522a b ⋅=,则cos a b ⋅=______.举一反三1.设两向量12,e e 满足12122,1,,e e e e ==的夹角为60︒,12122,2=+=+a e e b e e ,则a 在b 上的投影为( ) A 53B 521C 57D 522.(多选)已知在△ABC 中,2AB =,2AB AM =,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM -C .AB AC ⊥D .45ACM ∠=︒3.已知向量()3,2a =-,()1,0b =,向量()()2a b a b λ+⊥-,则向量()()a b a kb λ-+时实数k的值为______.4.已知向量()2,3a =,()3,1b =,若()a ab λ⊥+,则λ的值为___________.七.向量在平面几何中的应用 用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2) 垂直问题 数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,a =(x 1,y 1),b =(x 2,y 2),其中a ,b 为非零向量夹角问题 数量积的定义 cos θ=a ·b|a |·|b |(θ为向量a ,b 的夹角)长度问题 数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y )例7:①.已知2a =,4b =,a 与b 的夹角为60︒.(1)计算()a ab ⋅+的值;(2)若()0a a kb ⋅-=,求实数k 的值.②.已知非零向量a ,b 满足2a b =,且()a b b -⊥. (1)求a 与b 的夹角;(2)若14a b +=,求b .③.已知2a =,3b =,在下列情况下,求()2()a b a b +-的值: (1)//a b ;(2)a b ⊥;(3)a 与b 的夹角为120°.举一反三1.已知向量(5,12)a =-,(3,4)b =-.(1)求a 与b 夹角θ的余弦值;(2)若向量a tb +与a b -垂直,求实数t 的值. 2.在平行四边形ABCD 中,AC 为一条对角线.若()2,4AB =,()1,3AC =.(1)求cos DAB ∠的值;(2)求BD AD ⋅的值.3.已知向量2,1(),1,),3,1(b m a b n b a a k -==+=-=-. (1)若mn ,求k 的值;(2)当=2k 时,求m 与n 夹角的余弦值.八、正弦定理和余弦定理解三角形正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A =;sin sin c b C B =;sin sin c aC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===二.三角形面积1.B ac A bcC ab S ABC sin 21sin 21sin 21===∆三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=2.变形:bc a c b A 2cos 222-+=ac b c a B 2cos 222-+=ab c b a C 2cos 222-+= 注意整体代入,如:21cos 222=⇒=-+B ac b c a利用余弦定理判断三角形形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若,,所以为锐角②若为直角A a b c ⇔=+222 ③若, 所以为钝角,则是钝角三角形三角形中常见的结论三角形三角关系:A+B+C=180°;C=180°—(A+B);三角形三边关系:两边之和大于第三边:,,; 两边之差小于第三边:,,; 在同一个三角形中大边对大角:B A b a B A sin sin >⇔>⇔>4) 三角形内的诱导公式:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-)2sin()2cos()22cos()22sin()22tan(2tan C C C C C B A =--=-=+πππ7) 三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点例9:1.在ABC 中,角,,A B C 分别对应边,,a b c ,已知2a =,3b =.角60B =,求角C .2.已知:如图,在梯形ABCD 中,//AD BC ,2AB AD ==,60A ∠=︒,5BC =,求CD 的长3.△ABC 中,a =7,c =3,且sin sin C B =35. (1)求b ;(2)求∠A .4.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.5.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.举一反三1.若ABC 的面积为22,1,6b c ==,且A ∠为锐角. (1) 求cos A 的值;(2) 求sin 2sin A C的值. 2.在ABC ∆中,32b =,6cos 3A =,2B A π=+. (Ⅰ)求a 的值;(Ⅱ)求cos 2C 的值.3.在ABC 中,a 、b 、c 分别是角A.B.C 的对边,且()2cos cos a c B b C -=. (1)求角B 的大小;(2)若7b =,8a c +=,求ABC 的面积.4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且22(2)(2)a b c b c b c =-+-. (Ⅰ)求角A 的大小;(Ⅱ)若2cos b c A =,试判断ABC 的形状5.在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足1cos 2a b c B +=⋅. (1)求角C ;(2)若2,3a b ==,求ABC 外接圆的半径.6.在ABC中,已知12 tan5A .(1)若ABC外接圆的直径长为132,求BC的值;(2)若ABC为锐角三角形,其面积为6,求BC的取值范围.。

2020高考数学专题复习《平面向量》(讲义和练习)

2020高考数学专题复习《平面向量》(讲义和练习)

一、知识纲要1、向量的相关概念:《必修 4》 第二章平面向量(1) 向量: 既有大小又有方向的量叫做向量,记为 AB 或a 。

向量又称矢量。

①向量和标量的区别:向量既有大小又有方向;标量只有大小,没有方向。

普通的数量都是标量,力是一种常见的向量。

②向量常用有向线段来表示,但也不能说向量就是有向线段,因为向量是自由的,可以平移;有向线段有固定的起点和终点,不能随意移动。

(2) 向量的模:向量的大小又叫向量的模,它指的是:表示向量的有向线段的长度。

记作:| AB |或| a |。

向量本身不能比较大小,但向量的模可以比较大小。

(3) 零 向 量: 长度为 0 的向量叫零向量,记为0 ,零向量的方向是任意的。

①| a |=0; ② 0 与 0 的区别:写法的区别,意义的区别。

(4) 单位向量:模长为 1 个单位长度的非零向量叫单位向量。

若向量a 是单位向量,则| a |= 1 。

2、 向量的表示:(1)几何表示法:用带箭头的有向线段表示,如 AB ,注意:方向是“起点指向终点”。

→(2) 符号表示法:用一个小写的英文字母来表示,如 a , b 等;(3)坐标表示法:在平面内建立直角坐标系,以与 x 轴、 y 轴正方向相同的两个单位向量i 、 j 为基底向量,则平面内的任一向量 a 可表示为 a = xi + y j = ( x , y ) ,称( x , y ) 为向量 a 的坐标, a =( x , y ) 叫做向量 a 的坐标表示。

此时| a |。

若已知 A ( x 1 , y 1 )和B ( x 2 , y 2 ) ,则 AB = ( x 2 -x 1,y 2 -y 1 ) , 即终点坐标减去起点坐标。

特别的,如果向量的起点在原点,那么向量的坐标数值与向量的终点坐标数值相同。

注意 注意 注意 注意a 3、 向量之间的关系:(1)平行(共线):对于两个非零向量,若它们的方向相同或相反的,那么就称这种关系 为平行,记作a ∥ b 。

高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版

高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版
3.平面向量(xiàngliàng)共线的坐 标表示
设 a=(x1,y1),b=(x2,y2),其中 a≠b 则 a∥b⇔ _x_1_y_2-__x_2_y_1=__0___.
第三页,共18页。
1.对平面向量基本(jīběn)定理的理 解
(1)平面内的任何两个向量都可以作为一组基底.( ) (2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1=μ2.( ) (3)(2013·广东卷改编)已知 a 是已知的平面向量且 a≠0.关于向量 a
1234 A.5 B.5 C.5 D.5
解析 因为A→B=A→N+N→B =A→N+C→N (x=jiīě)A→N+(C→A+A→N)=2A→N+C→M+M→A
=所2A以→NA→-B=14A→85BA→-NA-→M45A,→M, 所以 λ+μ=45. 答案 D
第十页,共18页。
平面(píngmiàn)向量的

坐标运算

【例 2】已知 A(-2,4),B(3,-1),C(-3,-4),设A→B=a,
B→C=b, C→A=c,且C→M=3c, C→N=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
(3)求 M,N 的坐标及向量M→N的坐标.
解析 由已知得 a=(5,-5), b=(-6,-3), c=(1,8)

【例 3】平面内给定三个向量 a=(3,2),
审题路线
b=(-1,2),c=(4,1).
(1)若(a+kc)∥(2b-a),求实数 k;
(1)分别求出(a+kc)
(2)若 d 满足(d-c)∥(a+b),且|d-c|= 5, 与(2b-a)的坐标
求 d 的坐标.

高中数学核心考点:平面向量 重难点2 向量的模长 - 解析

高中数学核心考点:平面向量 重难点2 向量的模长 - 解析

第2讲 平面向量的模长问题【方法点拨】利用代数方法处理向量的模长问题,主要采取模长平方和坐标两种方式模长平方:(已知模长,夹角的基向量)通过22cos0a a a a =⋅=可得:22a a =,将模长问题转化为数量积问题,要注意计算完向量数量积后别忘记开方。

坐标运算:(已知几何图形为特殊几何图形或有特殊角,可以构建直角坐标系)若(),a x y =,则2a x =+“模长平方”或“坐标化”得到模长与某个变量间的函数关系,从而将问题转化为求函数最值问题【典型题示例】【例1】已知平面向量,OA OB 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,且3OA OB ==, 若1233OP OA OB =+,则OP 的取值范围是__________ 思路:由3OA OB ==和夹角范围即可得到OA OB ⋅的范围,从而可想到将OP 模长平方,再利用1233OP OA OB =+转变为关于,OA OB 的问题,从而得到关于夹角θ的函数,求得范围。

解:22221214433999OP OA OB OA OA OB OB ⎛⎫=+=+⋅+ ⎪⎝⎭54cos θ=+2,33ππθ⎡⎤∈⎢⎥⎣⎦ 11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,[]23,7OP ∴∈ 3,OP ⎡∴∈⎣ 【变式1-1】平面上的向量,MA MB 满足24MA MB +=,且0MA MB ⋅=,若1233MC MA MB =+,则MC 的最小值为___________思路:发现所给条件均与,MA MB 相关,且MC 可以用,MA MB 表示,所以考虑MC 进行模长平方,然后转化为,MA MB 的运算。

从而求出最小值解:()222212144339MC MA MB MA MA MB MB ⎛⎫=+=+⋅+ ⎪⎝⎭0MA MB ⋅= 24MA MB =-,代入可得:()2221116316374449981691616MC MB MB MB ⎡⎤⎛⎫=+-=-+≥⋅=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,min MC ∴= 【变式1-2】在ABC 中,O 为BC 中点,若1,3,60AB AC A ==∠=,则OA = _____ 思路:题目条件有1,3,60AB AC A ==∠=,进而AB AC ⋅可求,且OA 可用,AB AC 表示,所以考虑模长平方转化为数量积问题 解:O 为BC 中点 ∴可得:()12AO AB AC =+ ()()2222211224AO AO AB AC AB AB AC AC ⎡⎤∴==+=+⋅+⎢⎥⎣⎦3cos 2AB AC AB AC A ⋅=⋅=,代入可求出:213=4AO 132AO ∴=【例2】若,,a b c 均为单位向量,且()()0,0a b a c b c ⋅=-⋅-≤,则a b c +-的最大值为() A.1 B. 1 C. D. 2思路:题目中所给条件与模和数量积相关,几何特征较少,所以考虑将a b c +-平方,转化为数量积问题,再求最值。

2013届高考数学(理)一轮复习课件:第五篇 平面向量第2讲 平面向量基本定理及其坐标表示)

2013届高考数学(理)一轮复习课件:第五篇 平面向量第2讲 平面向量基本定理及其坐标表示)
x=3, ∴ y=-1.
).
x-y=4, 设c=xa+yb,则 x+y=2,
∴c=3a-b. 答案 B
3.(2012· 郑州月考)设向量a=(m,1),b=(1,m),如果a与b共线 且方向相反,则m的值为( A.-1 ).
B.1 C.-2 D.2
解析 设a=λb(λ<0),即m=λ且1=λm.解得m=± 1,由于λ< 0,∴m=-1. 答案 A
不共线 向量,那么对于这一
平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+ λ2e2,其中不共线的向量e1,e2叫表示这一平面内所有向量的一组 基底.
2.平面向量坐标运算 (1)向量加法、减法、数乘向量及向量的模 设 a=(x1,y1),b=(x2,y2),则
(x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) = (λx1,λy1) ,|a|= x2+y2. 1 1
【ABCD中,AD∥BC,∠
→ → ADC=90° ,AD=2,BC=1,P是腰DC上的动点,则|PA +3PB | 的最小值为________. [尝试解析] 以D为原点,分别以DA、DC所在直线为x、y轴建
立如图所示的平面直角坐标系,设DC=a,DP=x.
4.设向量a=(1,-3),b=(-2,4),若表示向量4a、3b-2a、c 的有向线段首尾相接能构成三角形,则向量c=( A.(4,6) B.(-4,-6) C.(4,-6) ).
D.(-4,6)
解析 设c=(x,y), 则4a+(3b-2a)+c=0,
4-6-2+x=0, ∴ -12+12+6+y=0, x=4, ∴ y=-6.
→ → → ∵AD=xAB+yAC,∴(2+ 3, 3)=(2x,2y). x=1+ 3, 2+ 3=2x, 2 即有 解得 3=2y, y= 3. 2 3→ → → → 3 → 另解:AD=AF+FD=1+ AB+ AC, 2 2 3 3 所以x=1+ 2 ,y= 2 . 3 答案 1+ 2 3 2

新课程2021高考数学一轮复习第四章平面向量与复数第2讲平面向量基本定理及坐标表示课件

新课程2021高考数学一轮复习第四章平面向量与复数第2讲平面向量基本定理及坐标表示课件

平面向量坐标运算的技巧 (1)向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有 向线段两端点的坐标,则应先求向量的坐标. (2)解题过程中要注意方程思想的运用及正确使用运算法则.
1.(2019·厦门外国语学校模拟)已知点 A(-1,1),B(0,2),若向量A→C=(-
2,3),则向量B→C=( )
答案 B
解析 对于 A,e1∥e2,不能作为基底;对于 B,-1×7-2×5≠0,所 以 e1 与 e2 不共线,可以作为基底;对于 C,e2=2e1,所以 e1∥e2,不能作为 基底;对于 D,e1=4e2,所以 e1∥e2,不能作为基底.
(3)如图,正方形 ABCD 中,E 为 DC 的中点,若A→E=λA→B+μA→C,则 λ
121A→C,则实数
m
3 的值为____1_1___.
解析 设B→P=λB→N, ∵P 是 BN 上的一点,A→N=13N→C, 则A→P=A→B+B→P=A→B+λB→N =A→B+λ(A→N-A→B)=(1-λ)A→B+λA→N =(1-λ)A→B+4λA→C=mA→B+121A→C. ∴m=1-λ,4λ=121,解得 λ=181,m=131.
2.平面向量的坐标运算
□ 设 a=(x1,y1),b=(x2,y2),则 a+b= 01 (x1+x2,y1+y2) ,a-b=
□ □ 02 (x1-x2,y1-y2) ,λa= 03 (λx1,λy1)
,|a|= x21+y21,|a+b|=
x2+x12+y2+y12.
3.平面向量共线的坐标表示
a∥b,0<α<π2,
则 α=____6____.
解析 因为 a∥b,所以 sin2α=cosα,即 cosα(2sinα-1)=0,又 0<α<π2, 所以 cosα>0,所以 sinα=12,解得 α=π6.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2C讲 平面向量的数量积
基础梳理
1.两个向量的夹角
已知两个非零向量a和b(如图),作 =a, =b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角,当θ=0°时,a与b同向;当θ=180°时,a与b反向;如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.
2.两个向量的数量积的定义
已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,规定零向量与任一向量的数量积为0,即0·a=0.
4.设向量a=(1,-3),b=(-2,4),若表示向量4a、3b-2a、c的有向线段首尾相接能构成三角形,则向量c=().
A.(4,6) B.(-4,-6) C.(4,-6) D.(-4,6)
5.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.
4.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.
一条规律:
一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.
两个防范:
(1)向量共线的充要条件中要注意“a≠0”,否则λ可能不存在,也可能有无数个.
(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.
当平面向量 平行移动到 时,向量不变,即 = =(x,y),但 的起点O1和终点A1的坐标都发生了变化.
两个防范:
(1)要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.
(2)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件不能表示成 = ,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.
4.已知向量a=(1,2),向量b=(x,-2),且a⊥(a-b),则实数x等于().
A.9 B.4 C.0 D.-4
5.(2011·江西)已知|a|=|b|=2,(a+2b)·(a-b)=-2,则a与b的夹角为________.
第2D讲 平面向量的应用
知识梳理
1.向量在平面几何中的应用
平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.
3.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),其中b≠0,当且仅当x1y2-x2y1=0时,向量a,b共线.
一个区别:
向量坐标与点的坐标的区别:
在平面直角坐标系中,以原点为起点的向量 =a,点A的位置被向量a唯一确定,此时点A的坐标与a的坐标统一为(x,y),但应注意其表示形式的区别,如点A(x,y),向量a= =(x,y).
2.若a,b,c为任意向量,m∈R,则下列等式不一定成立的是().
A.(a+b)+c=a+(b+c)B.(a+b)·c=a·c+b·c
C.m(a+b)=ma+mbD.(a·b)·c=a·(b·c)
3.(2011·广东)若向量a,b,c满足a∥b,且a⊥c,则c·(a+2b)=().
A.4 B.3 C.2 D.0
(4)cosθ= ;
(5)|a·b|≤|a||b|.
5.向量数量积的运算律
(1)a·b=b·a;
(2)λa·b=λ(a·b)=a·(λb);
(3)(a+b)·c=a·c+b·c.
6.平面向量数量积的坐标运算
设向量a=(x1,y1),b=(x2,y2),向量a与b的夹角为θ,则
(1)a·b=x1x2+y1y2;
第2A讲 平面向量的概念及线性运算
知识梳理
1.向量的有关概念
(1)向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.
(2)零向量:长度等于0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.
(5)相等向量:长度相等且方向相同的向量.
(3)向量夹角的概念要领会,比如正三角形ABC中, 与 的夹角应为120°,而不是60°.
考点一 求两平面向量的数量积
【例1】(2011·合肥模拟)在△ABC中,M是BC的中点,| |=1, =2 ,则 ·( + )=________.
【训练1】如图,
在菱形ABCD中,若AC=4,则 · =________.
考点二 利用平面向量数量积求夹角与模
【例2】已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|和|a-b|.
【训练2】已知a与b是两个非零向量,且|a|=|b|=|a-b|,求a与a+b的夹角.
考点三 平面向量的数量积与垂直问题
【例3】►已知平面向量a=(1,x),b=(2x+3,-x)(x∈R).
A.- + B.- - C. - D. +
2.判断下列四个命题:
①若a∥b,则a=b;②若|a|=|b|,则a=b;③若|a|=|b|,则a∥b;④若a=b,则|a|=|b|.
正确的个数是().
A.1 B.2 C.3 D.4
3.若O,E,F是不共线的任意三点,则以下各式中成立的是().
A. = + B. = - C. =- + D. =- -
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
向量运算
定 义
法则(或几何意义)
运算律
加法
求两个向量和的运算
三角形法则
平行四边形法则
(1)交换律:
a+b=b+a.
(2)结合律:
(a+b)+c=a+(b+c)
减法
求a与b的相反向量-b的和的运算叫做a与b的差
三角形法则
a-b=a+(-b)
3.向量的数乘运算及其几何意义
A.(4,3)B.(-4,-3) C.(-3,-4)D.(-3,4)
2.若向量a=(1,1),b=(-1,1),c=(4,2),则c=().
A.3a+bB.3a-bC.-a+3bD.a+3b
3.(2012·郑州月考)设向量a=(m,1),b=(1,m),如果a与b共线且方向相反,则m的值为().
A.-1 B.1 C.-2 D.2
2.平面向量坐标运算
(1)向量加法、减法、数乘向量及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|= .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则 =(x2-x1,y2-y1),| |= .
(1)定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下:
①|λa|=|λ||a|;
②当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0.
(2)运算律:设λ,μ是两个实数,则
①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.
4.(2011·四川)如图,正六边形ABCDEF中, + + =().
A.0B. C. D.
5.设a与b是两个不共线向量,且向量a+λb与2a-b共线,则λ=________.
第2B讲 平面向量基本定理及其坐标表示
知识梳理
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中不共线的向量e1,e2叫表示这一平面内所有向量的一组基底.
C. + - =0 D. - - =0
【训练2】在△ABC中, =c, =b,若点D满足 =2 ,则 =().
A. b+ cB. c- bC. b- cD. b+ c
考点三 共线向量定理及其应用
【例3】设两个非零向量a与b不共线.
(1)若 =a+b, =2a+8b, =3(a-b).
求证:A,B,D三点共线;
(2)|a|= ;
(3)cos〈a,b〉= ;
(4)a⊥b⇔a·b=0⇔x1x2+y1y2=0.
7.若A(x1,y1),B(x2,y2), =a,则|a|= (平面内两点间的距离公式).
一个条件:
两个向量垂直的充要条件:a⊥b⇔x1x2+y1y2=0.
两个探究
(1)若a·b>0,能否说明a和b的夹角为锐角?
(2)若a·b<0,能否说明a和b的夹角为钝角?
三个防范:
(1)若a,b,c是实数,则ab=ac⇒b=c(a≠0);但对于向量就没有这样的性质,即若向量a,b,c若满足a·b=a·c(a≠0),则不一定有b=c,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.
(2)数量积运算不适合结合律,即(a·b)c≠a(b·c),这是由于(a·b)c表示一个与c共线的向量,a(b·c)表示一个与a共线的向量,而a与c不一定共线,因此(a·b)c与a(b·c)不一定相等.
(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b⇔a=λb(b≠0)⇔x1y2-x2y1=0.
(1)若a⊥Biblioteka ,求x的值;(2)若a∥b,求|a-b|.
【训练3】已知平面内A,B,C三点在同一条直线上, =(-2,m), =(n,1), =(5,-1),且 ⊥ ,求实数m,n的值.
双基自测
1.(人教教材习题改编)已知|a|=3,|b|=2,若a·b=-3,则a与b的夹角为().
相关文档
最新文档