3.3一元一次方程(2)--去括号与去分母4、5

合集下载

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是( )A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=52.把方程去分母,下列变形正确的是( )A.2x﹣x+1=1B.2x﹣(x+1)=1C.2x﹣x+1=6D.2x﹣(x+1)=63.下列方程变形中,正确的是( )A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为( )A.x=1B.x=﹣1C.x=﹣12D.x=125.解方程时,把分母化为整数,得( )A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误( )A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有( )个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为( )A.x=﹣2B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为( )A.8B.﹣8C.6D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是( )x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0B.﹣1C.﹣3D.﹣4二、填空题11.当x= 时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为 .13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为 .14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x= .三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。

二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。

(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。

2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。

(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。

三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。

2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。

3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。

4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。

5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。

四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。

2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。

3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。

4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。

五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。

2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。

3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。

3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤

3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤

根据等式的性质2,在这个方程的两边乘各分母的 最小公倍数42,得
28 x 21x 6 x 42 x 1386
合并同类项,得 97 x 1386 .
1386 系数化为1,得 x . 97
你能解这个方程吗?
这个 方程 中各 分母 的最 小公 倍数 是多 少?
3x 1 3x 2 2x 3 2 2 10 5
A.15x-5(x+1)=1-3(x+3)
B. 15x-(x-1)=15-3(x+3) C.x-5(x-1)=1-3(x+3) D. 15x-5(x-1)=15-3(x+3) x 1 x +7 2 4.如果方程 的解也是方程 3 6 7. 那么a的值是
2 ax 0 3
的解,
5.小张和小王从甲地去乙地,小张早出发1小时,却晚到 1小时,他的速度为4千米/时,小王的速度为6千米/时, 则甲、乙两地的距离是 24 千米.
2
3
互为相反数.
6.解下列方程:
19 21 () 1 x ( x 2); 100 100 (2) x 1 x 2 ; 2 4
5 x 1 3x 1 2 x 3x 2 2x 1 2x 1 (3) ; (4) 1 . 4 2 1 3 2 5 9 4
x=21
B.4x+2-x+1=12 D.x=3
B.7 C.8 D.-1 x 1 3 2x 5 4.方程 的解是( C ) 4 6 2 A.x=-1 B.x=-2 C.x=-3 D.x=-4
1 1 ( x 1) 3.若式子 与 ( x 2)的值相等,则x的值是( B ) 2 3
13 3 2x 2 x 5.当x=____ 时,式子 与 8

人教版七年级数学上册第三章之《3.3解一元一次方程(二)——去括号与去分母》练习题

人教版七年级数学上册第三章之《3.3解一元一次方程(二)——去括号与去分母》练习题

x= 6
课本第98页 练习
解下列方程:
(3)
5x 4
1
=
3x + 1 2
-
2-x 3

解:(3)去分母(方程两边乘12) ,得
3(5x - 1)= 6(3x + 1)- 4(2 - x)
去括号,得
15x - 3 = 18x + 6 - 8 + 4x
移项,得 15x - 18x - 4x = 6 - 8 + 3
合并同类项,得 化系数为1,得
- 7x = 1
x=-
1 7
课本第98页 练习
解下列方程:
(4)
3x + 2
2
-
1
=
2x 4
1
-
2x + 5
1

解:(4)去分母(方程两边乘20) ,得
10(3x + 2)- 20 = 5(2x - 1)- 4(2x + 1)
去括号,得 30x + 20 - 20 = 10x - 5 - 8x - 4
3x - 24 + 2x = 7 -
1 3
x+1
移项,得
3x + 2x +
1 3
x = 7 + 1 + 24
合并同类项,得
16 3
x
=
32
化系数为1,得
x= 6
课本第95页 练习 解下列方程: (4)2 - 3(x + 1)= 1 - 2(1 + 0.5x)。
解:(4)去括号,得 2 - 3x - 3 = 1 - 2 - x
第三章 一元一次方程

3.3解一元一次方程(二)-去括号与去分母(教案)

3.3解一元一次方程(二)-去括号与去分母(教案)
-难点三:在应用法则解决实际问题时,学生可能无法将问题抽象为方程,或者在列方程时出现错误。
举例:如果问题是“甲车比乙车快10km/h,甲车行驶100km的时间比乙车少2小时,求乙车的速度”,学生需要能够根据问题列出方程,如x + 10 = 100/(t + 2),其中x是乙车的速度,t是乙车行驶100km的时间。
2.设计更多具有实际情境的问题,让学生在实际问题中运用所学知识,提高他们解决问题的能力。
3.鼓励学生独立思考,培养他们的自主学习能力,减少对同题,提高教学效果。
其次,去分母部分,学生在寻找最小公倍数时感到困惑。这一方面是因为他们的数学基础不够扎实,另一方面也反映出他们在实际问题中运用知识的能力有待提高。针对这个问题,我在课堂上通过举例和引导,让学生们学会如何找到最小公倍数并应用到方程中。在以后的教学中,我计划增加一些关于最小公倍数的专项训练,以提高学生们的运算速度和准确性。
3.3解一元一次方程(二)-去括号与去分母(教案)
一、教学内容
本节课选自教材第三章第三节“3.3解一元一次方程(二)-去括号与去分母”。教学内容主要包括以下两部分:
1.去括号法则:掌握一元一次方程中括号外的数字因数乘括号内各项,以及括号外是“-”时,去括号后括号内各项改变符号的法则。
2.去分母法则:掌握一元一次方程中各分母的最小公倍数,并利用最小公倍数将方程两边乘以相应的数,使方程两边同时去掉分母的方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和方程的简化过程。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去括号与去分母在实际问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

《 3.3 解一元一次方程(二)——去括号与去分母》学历案-初中数学人教版12七年级上册

《 3.3 解一元一次方程(二)——去括号与去分母》学历案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)一、学习主题本节课的学习主题是“解一元一次方程的进一步学习”,具体聚焦于“去括号与去分母”这一关键知识点。

通过本课的学习,学生将掌握去括号和去分母的方法,为后续学习一元一次方程的解法打下坚实的基础。

二、学习目标1. 掌握去括号的法则和技巧,能够在解一元一次方程的过程中正确运用。

2. 理解去分母的意义和作用,掌握去分母的方法,并能在实际问题中应用。

3. 通过练习,提高学生的计算能力和问题解决能力,培养学生的数学思维和逻辑推理能力。

三、评价任务1. 能否正确理解和掌握去括号的法则和技巧,能否在解一元一次方程的过程中正确运用。

2. 能否理解去分母的意义和作用,能否掌握去分母的方法,并能在实际问题中应用。

3. 通过课堂练习和课后作业,评价学生的计算能力和问题解决能力是否有所提高。

四、学习过程1. 导入新课:通过回顾一元一次方程的基本形式和解法,引出本节课的学习内容——去括号与去分母。

2. 学习新知:首先,讲解去括号的法则和技巧,通过例题演示让学生理解并掌握。

其次,讲解去分母的方法和意义,同样通过例题演示让学生理解并掌握。

3. 课堂练习:提供一系列练习题,让学生运用所学知识进行练习,加深对知识的理解和掌握。

4. 课堂讨论:组织学生进行课堂讨论,分享解题经验和技巧,提高学生的交流和合作能力。

5. 归纳总结:对本节课的学习内容进行归纳总结,强调重点和难点,加深学生的印象。

五、检测与作业1. 课堂检测:通过小测验或课堂练习,检测学生对本节课所学知识的掌握情况。

2. 课后作业:布置相关练习题,让学生在家中进行巩固练习,提高计算能力和问题解决能力。

六、学后反思1. 学生应反思自己在课堂上的表现,包括听讲、练习、讨论等方面,找出自己的不足之处。

2. 学生应思考如何更好地掌握去括号与去分母的方法和技巧,提高自己的计算能力和问题解决能力。

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

合并同类项,得 25x=23
系数化为1,得
x= 23 . 25
练习
B
12
3(3y-1)-12=2(5y-7)
3.汛期来临前,滨海新区决定实施海堤加固工程.某 工程队承包了该项目,计划每天加固60米,在施工 前,得到气象部门的预报,近期有台风袭击滨海新区, 于是工程队改变计划,每天加固的海堤长度是原计划 的1.5倍,结果提前10天完成加固任务.若设滨海新区 要加固的海堤长x米,则下面的方程正确的是( )
2
10
5
3x 1-2=3x 2- 2x 3
2
10
5
去分母
5(3x+1)-10 2=(3x-2)-2(2x+3)
去括号
15x+5-20=3x-2-4x-6
移项
15x-3x+4x=-2-6-5+20
合并同类项
16x 7
系数化为1
x= 7 16
归纳与总结
解有分数系数的一元一次方程的步骤:
1.去分母;
2.去括号; 3.移项; 4.合并同类项; 5.系数化为1.
以上步骤是不 是一定要顺序 进行,缺一不 可?
主要依据:等式的性质和运算律等.
3.巩固新知 例题规范
解下列方程:
(1) x+1-1=2+ 2-x
2
4
解:(1)去分母(方程两边乘4),得
2( x+1)-4=8+(2-x)
去括号,得 2x+. 2-4=8+2-x
移项,得 2x+x=8+2-2+4
合并同类项,得 3x=12
系数化为1,得 x=4.
3.巩固新知 例题规范
(2)3x+ x-1=3- 2x-1
2
3
解:(1)去分母(方程两边乘6),得

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的

(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 4x
去括号 15x 5 20 3x 2 4x
移项
15x 3x 4x 2 5 20 合并同类项
16x 13
系数化为1
x 13 16
下列方程的解法对不对?如果不对,你能找出错在
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
1. 方程 3 5x 7 x 17 去分母正确的是
(C)
2
4
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
七年级数学上(RJ)
第三章 一元一次方程
3.3 解一元一次方程(二) ——去括号与去分母
第1课时 利用去括号解一元一次方程
化简下列各式: (1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.

人教版七年级上数学:3.3 解一元一次方程(二) ——去括号与去分母

人教版七年级上数学:3.3 解一元一次方程(二)  ——去括号与去分母

锦囊妙计
航行或飞行问题的解题方法 (1)抓住水流速度(风速)、静水航行速度(无 风飞行速度)、顺水 航行速度(顺风飞行速度)、 逆水航行速度(逆风飞行速度)的关系, 确 定船航 行速度(飞机飞行速度), 即: 顺水(顺风)速度=静水(无风)速度+水流速 度(风速); 逆水(逆风)速度=静水(无风)速度-水流速 度(风速). (2)结合题意, 灵活应用路程、时间、速度 之间的关系, 建立方 程求解.
求a的值, 并正确地求 出方程的解.
分析 根据“由此求得的解为x=4”, 可知x=4 是方程2(2x-1)+1=5(x+a)的 解.
解 因为去分母时, 左边的1没有乘10, 所以小明去分母后的方程是2(2x-1)+1= 5(x+a). 把x=4代入, 可求得a=1. 所以原方程为 去分母, 得2(2x-1)+10=5(x-1). 去括号, 得4x-2+10=5x-5. 移项、合并同类项, 得-x=-13. 系数化为1, 得x=13.
例题2 解方程:
解 去分母, 得2(x-2)-(2x-3)=6+3(x-1). 去括号, 得2x-4-2x+3=6+3x-3. 移项, 得2x-3x-2x=6+4-3-3. 合并同类项, 得-3x=4. 系数化为1, 得x=
锦囊妙计
去分母解一元一次方程的方法 (1)在方程的两边都乘各分母的最小公倍数, 不要漏乘不 含分母的项; (2)若分子是多项式, 去分母后要把分子用括 号括起来.
锦囊妙计
行程问题中常用的相等关系 (1)相遇问题: 甲的行程+乙的行程=A, B两地间的路程.
(2)追及问题: 同地不同时出发, 前者行程=追及者的行 程; 同时不同地出发, 前者行程+初始相距的路 程=追及者的行程.

人教版七年级数学上册 3.3解一元一次方程(二)去括号

人教版七年级数学上册 3.3解一元一次方程(二)去括号

1,1 x 9;2 y 8 ;3 x 11;4 x 7. 2, y 5 ;3, a 1; 4,11.2
17
2
第(2)题请同学们自己完成.
三、巩固提高
【例2】 一艘船从甲码头到乙码头顺流而行,用了2h; 从乙码头返回甲码头逆流而行,用了2.5h.已知水流的 速度是3km/h,求船在静水中的平均速度?
分析:一般情况下可以认为这艘船往返的路程相等,由此填空:
顺流速度 顺流时间 = 逆流速度 逆流时间
解:设船在静水中的平均速度为xkm/h,根据题意得
1、解下列方程
1 25x 10 32x 5 1
2 3 y 1 54 y 1
3 5 x 8 5 62x 7 41 38 x 215 2x
2、若代数式12-3(9-y)与代数式5(y-4)的值相等,求y的值.
3、已知关于x的方程3x+2a=2的解是a-1,求a的值.
4、某城市按以下规定收取每月的水费:用水量不超过6吨,按 每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收 取,而超过部分则按每吨2元收费.如果某用户5月份水费平均 每吨1.4元,那么该用户5月份应交水费多少吨?
分析:找出本题中的等量关系 (1)下半年月平均用电量= 上半年月平均用电量-2000 ;
(2)上半年用电量+下半年用电量= 150000 .
若设上半年每月平均用电x度,
则下半年每月平均用电(x-2000)度
上半年共用电
6x 度,
下半年共用电 6(x-2000)度
因所为以全,可年列共方用程了615x万+ 度6(电,x-2000)=150000 .
四、概括整合
1、去括号实际上就是利用乘法分配律和乘法法 则来计算,注意:(1)括号外的因数应该和括号内 的每项都相乘;(2)前面是负因数,括号内相应各 项都要变号.

3.3 第2课时 用去分母解一元一次方程

3.3 第2课时 用去分母解一元一次方程

本;每个同学8本,又差了3本,问共有多少本笔记本?
x- 9 解:设共有笔记本 x 本,则同学人数既可表示为 人,也 6 x+ 3 可表示为 人, 8 x- 9 x+ 3 于是可列方程 = . 6 8 解得 x=45.
答:共有45本笔记本.
3.3 解一元一次方程(二)——去括号与去分母
[归纳总结] 当同一个量能用两个不同的式子表示时,则
2
3.3 解一元一次方程(二)——去括号与去分母
(5)解此方程,得 x=______ 52 .
2 52 (6)答:每个房间需要粉刷______m 的墙面.
变式 1
122 2 根据以上解答可知, 每名一级技工一天粉刷______m
112 2 的墙面. 的墙面,每名二级技工一天粉刷______m
3.3 解一元一次方程(二)——去括号与去分母
3.3 解一元一次方程(二)——去括号与去分母
解:设做上衣需要 x 米,则做裤子需要(750-x)米,做上衣的 x 750-x 件数为 ×2 件,做裤子的条数为 ×3 条,根据题意,得 3 3 2x 3(750-x) = , 3 3 解这个方程,得 x=450, 所以 750-x=750-450=300. 450 ×2=300(套). 3 答:用450米布料生产上衣和300米布料生产裤子才能恰好
2 (10x+40) 技工一天粉刷____________m 墙面,于是一名二级技工一天 10x+40 2 粉刷____________m 墙面. 5
(4)根据“每名一级技工比二级技工一天多粉刷 10 m 墙面”, 8x-50 10x+40 - 3 5 可列如下方程:________________ .
数 学
新课标(RJ) 七年级上册

人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件

人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件
(2)进一步熟悉如何设未知数列方程解应用题,体 会方程思想在解决实际问题的作用.
推进新课 知识点1 去括号
某工厂加强节能措施,去年下半年与 上半年相比,月平均用电量减少2 000 kW·h (千瓦·时),全年用电15 万 kW·h.这个工厂去 年上半年每月平均用电是多少? 温馨提示: 1 kW·h的电量是指1 kW的电器1 h的用电量. 月平均用电量×n(月数)=n个月用电量
4
解:去分母(方程两边乘4),得
2(x + 1) – 4 = 8 +(2 – x).
去括号,得 2x + 2 – 4 = 8 + 2 – x.
移项,得 2x + x = 8 + 2 – 2 + 4 .
合并同类项,得 3x = 12.
系数化为1,得 x = 4.
(2)3x x- 1=3- 2x-1
2
4
5
解:去分母(方程两边乘20),得
【课本P98 练习】
10(3x + 2)– 20 = 5(2x – 1)– 4(2x + 1)
去括号,得 30x +20 – 20 = 10x –5 – 8x – 4
移项,得 30x – 10x + 8x = – 5 – 4 – 20+20
合并同类项,得 28x = – 9
4
2
3
解:去分母(方程两边乘12),得
【课本P98 练习】
3(5x – 1) = 6(3x + 1)– 4(2 – x)
去括号,得 15x – 3 = 18x + 6– 8 + 4x
移项,得 15x – 18x – 4x = 6 – 8 + 3

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

移项,得4x-3x=6+2+1,
合并同类项,得x=9.
错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不
含分母的项.
2021/12/11
第二十二页,共九十五页。
知识点一 解一元一次方程——去括号(kuòhào)
1.将方程-3(2x-1)+2(1-x)=2去括号,得 ( ) A.-3x+3-1-x=2 B.-6x-3+2-x=2 C.-6x+3+1-2x=2 D.-6x+3+2-2x=2
≠0,a,b为常数)
等式的 性质2
(1)系数相加; (2)字母及其指数不变
(1)除数不为0;(2)不要把分子、分 母颠倒
化分母中的小数为整数不同于去分母,不是将方程两边同时乘同一个数,而是将分子、分母同时乘同一个 数
第六页,共九十五页。
例3 解方程:(1)4-3(10-y)=5y;
(2) 2 x =1 2-1x . 1
点拨 这是一道典型的追及问题,做题时要注意挖掘题中的隐含条件: 小明用的时间比小亮用的时间多0.5 h.
2021/12/11
第二十页,共九十五页。
易错点一 去括号时漏乘项或出现符号(fúhào)错误
例1 解方程:4x-3(2-x)=5x-2(9+x).
错解 错解一:去括号,得4x-6+x=5x-18-x, 移项、合并同类项,得x=-12. 错解二:去括号,得4x-6-3x=5x-18+2x, 移项、合并同类项,得-6x=-12, 系数化为1,得x=2. 正解 去括号,得4x-6+3x=5x-18-2x, 移项、合并同类项,得4x=-12,系数化为1,得x=-3. 错因分析 错解一中运用分配律时,括号前的系数只乘了第一项,漏乘 了第二项;错解二中出现了符号错误.本题括号前面是“-”,去括号时, 2只021改/12/变11 了第一项的符号,而忽视了第二改十一页变,共九括十五号页。 内其他项的符号.

3-3 解一元一次方程(二)-去括号与去分母(基础训练)(原卷版)

3-3 解一元一次方程(二)-去括号与去分母(基础训练)(原卷版)

3.3 解一元一次方程(二)-去括号与去分母【基础训练】一、单选题1.解方程2131135x x ++-=时,去分母后的结果正确的是( ) A .5(21)3(31)15x x +-+= B .105931x x ---=C .5(21)3(31)1x x +-+=D .1053115x x +-+= 2.下列解方程过程正确的是( )A .2x =1系数化为1,得x =2B .x ﹣2=0解得x =2C .3x ﹣2=2x ﹣3移项得3x ﹣2x =﹣3﹣2D .x ﹣(3﹣2x )=2(x +1)去括号得x ﹣3﹣2x =2x +13.下列方程变形中,正确的是( )A .由23x =-得23x =-B .由22x =得1x = C .由235x x =-得325x x -= D .由430x -=得34x -=4.若1x =是方程36m x x -+=的解,则关于y 的方程()()3225m y m y --=-的解是( ) A .10y =- B .3y = C .43y = D .4y =5.某书中一道方程题:()231x x --∆=+,∆处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是9x =,那么∆处应该是数字( )A .1B .2C .3D .4 6.解方程321126x x -+-=,下列去分母正确的是( ) A .3(x -3)-(2x+1)=1 B .(x -3)-(2x+1)=6C .3(x -3)-2x+1=6D .3(x -3)-(2x+1)=6 7.在解方程3157246x x -+-=时,第一步去分母,去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+ 8.把方程1126x x --=去分母,正确的是( )A .3(1)1x x --=B .311x x --=C .316x x --=D .316x x -+=9.解一元一次方程11(1)225x x -=-时,去分母正确的是( )A .2(1)205x x -=-B .2(1)25x x -=-C .5(1)22x x -=-D .5(1)202x x -=-10.已知方程7x +2=3x ﹣6与x ﹣1=k 的解相同,则3k 2﹣1的值为( )A .18B .20C .26D .﹣2611.解方程21101124x x ++-=时,去分母、再去括号后,正确的结果是() A .421014x x +--= B .421011x x +--=C .411014x x +--=D .421014x x +-+=12.解一元一次方程3(2)3212x x --=-去分母后,正确的是( )A .3(2﹣x )﹣3=2(2x ﹣1)B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1)13.下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .32x = 变形得:23x =C .2(32)3(1)x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+14.关于x 的方程350x +=与331x k +=的解相同,则 k =( )A .-2B .2C .43 D .43-15.如果关于x 的方程230x a +-=的解集是1x =-,那么a 的值是( )A .−2B .−1C .1D .216.下列方程变形中,正确的是( )A .由223123x x ---=,去分母得()()322231x x ---=B .由()2135x x --=,去括号得2135x x --=C .由14x +=,移项得41x =-D .由23x =-,系数化为1得23x =- 17.若方程2x+1=﹣3的解是关于x 的方程7﹣2(x ﹣a)=3的解,则a 的值为( )A .﹣2B .﹣4C .﹣5D .﹣618.已知x 3=是关于x 的方程ax 2x 30+-=的解,则a 的值为( )A .1-B .2-C .3-D .1 19.把方程10.2110.40.7x x +--= 中分母化整数,其结果应为( ) A .10121147x x +--= B .101211047x x +--= C .1010210147x x +--= D .10102101047x x +--= 20.若代数式4x-5与212x -的值相等,则x 的值是( ) A .1 B .32C .23D .2 21.将方程211132x x -+-=去分母得到()221316x x --+=,错在( ) A .分母的最小公倍数找错B .去分母时漏乘项C .去分母时分子部分没有加括号D .去分母时各项所乘的数不同 22.把方程1136x x +-=去分母,下列变形正确的是( ) A .()211x x -+= B .()216x x -+=C .211x x -+=D .216x x -+= 23.解方程2113236x x -+-=-时,去分母后得到的方程正确的是( ) A .()()221132x x --+=- B .()2211312x x --+=-C .()()2211312x x --+=-D .()()221131x x --+=- 24.下列解方程过程正确的是( )A .由523x x =--,移项得523x x -=B .由213132x x --=+,去分母得2(21)13(3)x x -=+- C .由2(21)3(3)1x x ---=,去括号得4 2 3 91x x --+=D .若0.170.210.70.03x x --=,则1017201073x x --= 25.在解方程123123x x -+-=时,去分母正确的是 ( ) A .()()312231x x --+=B .()()312236x x --+=C .31431x x --+=D .31436x x --+= 26.已知关于x 的方程1922ax x -=+的解为偶数,则整数a 的所有可能的取值的和为( ) A .8 B .4C .7D .-2 27.下列解方程过程中,正确的是( )A .将102(31)85x x --=+去括号,得106185x x -+=+B .由233x -=,得92x =- C .将512323x x -+-=去分母,得33(51)2(2)x x --=+ D .由0.170.410.70.03x x -+=,得10174010073x x -+= 28.如果关于x 的一元一次方程0ax b +=的解是2x =-,则关于y 的一元一次方程()10a y b ++=的解是( )A .1y =-B .3y =-C .2y =-D .12y 29.在有理数范围内定义运算“☆”:12b b a a -=+☆,如:()1313112---=+=-☆.如果()21x x =-☆☆成立,则x 的值是( )A .1-B .5C .0D .2 30.关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,则符合条件的整数m 的值可能是( ) A .-1 B .3 C .1 D .231.下列解方程的变形过程错误的是( )A .由7x =4x ﹣3移项得7x ﹣4x =-3B .由213132x x --=+去分母得()()221133x x -=+-C .由()()221331x x ---=去括号得4x ﹣2﹣3x+9=1D .由78y =-得87y =- 32.下列方程中,解为2x =-的是( ) A .360x -= B .63x =- C .102x -= D .42(1)x =-33.已知−2是关于x 的一元一次方程ax+b=1的解,则代数式3(41)b a b -+-的值是( ) A .0 B .1 C .2 D .334.下列方程变形中,正确的是( )A .方程5x ﹣2=2x +1,移项,得5x ﹣2x =﹣1+2B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x +1C .方程4334x =,系数化为1,得x =1D .方程131155x x +-=+,去分母得x +1=3x ﹣1+535.若方程(k ﹣2)x |k|﹣1+4k =0是关于x 的一元一次方程,则k 的值为( ) A .1 B .﹣2 C .2或﹣2 D .236.解方程251136x x +--=去分母正确的是 ( )A .2(25)16x x +--=B .2(25)(1)1x x +--=C .41016x x +-+=D .2516x x +-+=37.规定一种新运算:22a b a b ⊗=-,若()216x ⊗⊗-=⎡⎤⎣⎦,则x 的值为( ) A .-1 B .1 C .2 D .-238.已知3x =是关于x 的方程()()51312x a ---=-的解,则a 的值是( )A .2B .3C .4D .539.若关于x 的方程2()3x m x -=-的解是-7,则m 的值为( )A .-4B .4C .2D .-240.一元一次方程2152236x x -+-=,去分母后变形正确的是( )A .42522x x --+=B .42522x x ---=C .425212x x --+=D .425212x x ---=二、填空题41.已知关于x 的一元一次方程12020x +3=2x +b 的解为x =3,那么关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 的解y =_____.42.若2x =-是关于x 的方程3210m x 的解,则m 的值为_____.43.已知关于x 的一元一次方程12021x ﹣3=2x +b 的解为x =999,那么关于y 的一元一次方程12021(y ﹣1)﹣3=2(y ﹣1)+b 的解为y =_____.44.在公式212s vt at =+中,已知64s =,5a =,2t =,则v =_______. 45.已知关于x 的方程20x m +-=(m 是常数)的解是1x =-,则m =______.三、解答题46.解方程(1)()534x x =-(2)121123x x +--= 47.已知12x -的值与534x +-的值相等,求x 的值. 48.解方程:11324x x +--= 49.解方程:(1)32510x x -=+(2)131136x x -+=- 50.解方程:(1)3(x ﹣4)=12;(2)513+263y y --=-. 51.解下列方程:(1)5362(64)x x x x +=--;(2)231147x x +--=. 52.下面是小彬同学解一元一次方程的过程,请认真阅读并完成相应任务.填空:(1)以上求解步骤中,第一步进行的是______,这一步的依据是______; (2)以上求解步骤中,第______步开始出现错误,具体的错误是______; (3)该方程正确的解为______.53.解方程:(1)3(1)2(1)x x -=+ (2)21136x x +-= 54.解方程:(1)5x +2=3(x +2);(2)1123x x +-=. 55.解方程:(1)2(x +1)=1﹣(x +3).(2)576x -+1=314x -. 56.解方程:(1)4(x ﹣2)=2﹣x ;(2)1+32x -=213x +. 57.解下列关于x 的方程:(1)()22127x x -=-(2)1422123x x x ---=+ 58.解方程:(1)()6335x x -+=--; (2)5121136x x +--=.59.解方程:(1)2(1)4x -= (2)14223x x +-+=60.解方程:142123x x ---=.61.解方程:325123x x +--=.62.解方程(1)()()225531x x --+= (2)12232x x x -+-=-63.解下列方程:(1)()23226x x --=+ (2)22x --248x +6x =- 64.解方程:(1)2(x +3)=5x ; (2)3221124x x +--=65.解方程:(1)3961x x -=-, (2)x -213x -=1+32x-.66.解方程:(1)7445x x -=+; (2)3157146x x ---=67.解方程:()11213x x +-=-.68.(1)计算:()()322916245-⨯-+÷---⨯.(2)解方程2151163x x +--=69.解方程:(1)72122x x +=-. (2)121=46x x -++. 70.解一元一次方程:(1)7104(0.5)x x -=-+; (2)1123x x --=. 71.解方程: (1)384x x +=-;(2)211136x x +--=. 72.解方程:(1)()215x --=-(2)2151136x x +--= 73.解方程:5121163x x -+-=. 74.计算或解方程(1)()()40281924----+- (2)()1850.254⎛⎫+---- ⎪⎝⎭ (3)4131163x x --=-。

第8课时3.3_解一元一次方程(二)——去括号与去分母_第2课时

第8课时3.3_解一元一次方程(二)——去括号与去分母_第2课时

1、 某轮船从A码头到B码头顺水航行3小时,返航时用4.5 小时,已知轮船在静水中的速度为4千米/小时,求水流速
度为多少?
等量关系: 顺流航行的路程=逆流航行的路程 解:设水流速度为x千米/时,则顺流速度为______千米/时, (x+4) 逆流速度为_______千米/时, (4-x) 由题意得: 3(x+4)=4.5(4-x) 解之,x=0.8 答:水流速度为0.8千米/小时
2、 一架飞机在两城市之间飞行,风速为24千米/小时.顺 风飞行2小时30分,逆风飞行需要3小时,求无风时飞机的 航速和两城之间的航程. 等量关系: 顺风飞行的路程=逆风飞行的路程 解:设无风时飞机的航速为x千米/时,则顺风速度为
(x+24)千米/时,逆风速度为(x-24) 千米/时,
由题意得: 2.5(x+24)=3(x-24) 解之,x=264 3×(264-24)=720千米 答:航速为264千米/小时,两城之间的距离为720千米
1. 已知关于x的方程3x + a = 0的解比方程 2x–3 =x + 5的解大2,则a = -30 .
2. 关于x的方程2-(1-x)=-2与方程mx-3(5-x)=-3的解相
同,则m=______ -7
3.(2010·河北中考)小悦买书需用48元钱,付款时恰 好用了1元和5元的纸币共12张.设所用的1元纸币为x张, 根据题意,下面所列方程正确的是
3.3
解一元一次方程(二) ---去括号与去分母
第2课时
复习回顾
含有括号的一元一次方程解法的一般步骤:
去括号
移项
合并同类项
系数化为1
例题:解下列方程
6x+6(x-2 000)=150 000 解:去括号得 6x+6x-12 000=150 000 移项 6x+6x=150 000+12 000 合并同类项 12x=162 000 系数化为1 x=13 500

解一元一次方程(二)--去括号与去分母教学设计

解一元一次方程(二)--去括号与去分母教学设计
通过课堂小结,回顾整节课的主要内容,形成知识体系。
2分钟
6、




全体:《同步训练》A基础巩固;小组1-3号:《同步训练》B能力提升;
拓展探究:例1,例2的其他解法。
分层次全面巩固学生对一元一次方程解法的理解与运用。
因材施教,引导不同层次同学对本节课内容有不同程度的理解。
2分钟
教学反思
知、能、情达成情况
学生完成以上问题,并根据结果尝试去列方程,在这一过程中,引导学生顺利找出各量之间的关系,根据情况规范解答。
通过对例题的解决,培养学生分析解决问题的能力,帮助学生进一步运用方程思想解决实际问题,提高学生应用意识。并在此环节,渗透方程建模思想和化归思想,突破本节课的重、难点。
6分钟
4、




教师利用“雨课堂”生成试卷进行随堂练习检测和批改,展示问题的正确率。采用小组合作学习,根据检测结果,组内解决,教师实时监测,及时帮助学生解决困惑。
学生学习目标已经基本达成,但运用方程思想解决实际问题方面仍需进一步培养。
优点与不足
去括号是解方程、不等式时常用的基本步骤之一,是一种同解变形。同时这节课既是本章的基础也是解一元一次方程的关键步骤,一元一次方程在实际问题中应用十分广泛,我对本节课的教学反思如下:
一、整堂课学生利用移动终端学习,提高了学习效率;
2、过程与方法:
通过微课自主学习,并能够将实际问题抽象为数学问题,进而通过列方程解决问题,逐步渗透方ห้องสมุดไป่ตู้思想和化归思想;
3、情感态度与价值观:
增强数学的应用意识,激发学生学习数学的热情。
教学重点难点
重点:去括号解一元一次方程,将实际问题抽象为方程,列方程解应用题;

3.3解一元一次方程-去括号与去分母去括号解一元一次方程(教案)

3.3解一元一次方程-去括号与去分母去括号解一元一次方程(教案)
在小组讨论中,我发现学生们对于去括号与去分母在实际生活中的应用有着自己的见解,这让我感到很高兴。但同时,我也发现有些学生在分享成果时表达不够清晰,这可能是因为他们在整理思路和语言表达方面还需要加强。因此,我打算在接下来的课程中,加入一些口语表达和逻辑思维训练的环节。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与去括号和去分母相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何将实际问题的方程转化为求解形式。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
2.培养学生的数学运算能力:使学生掌握去括号与去分母的基本方法,熟练进行一元一次方程的求解,提高数学运算的准确性。
3.培养学生的数学建模能力:通过实际问题的引入,让学生学会将现实问题抽象为一元一次方程,并运用所学知识解决实际问题,提高数学建模能力。
这些核心素养目标旨在帮助学生深入理解一元一次方程的解法,培养他们运用数学知识解决实际问题的能力,符合新教材对学生能力培养的要求。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一些含有括号和分数的问题?”(如购物时计算折扣)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解一元一次方程的奥秘。
3.3解一元一次方程-去括号与去分母去括号解一元一次方程(教案)
一、教学内容
本节课选自教材第三章第三节,主题为“解一元一次方程-去括号与去分母”,主要内容包括以下两点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、范例学习
出示课本97页例3.
采用学生尝试练习,师生互评矫正的方式处理,
解后再次归纳解方程的步骤和去分母的注意事项(避免漏乘).
五、巩固练习
1、完成课本98页练习。
2、解方程:
(1)
(2)
3、(童话数学100雁问题)碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?
经历深入探讨与思考,提升学生解决问题的能力。理解去分母法解方程的依据,体会学习此种方法的必要性。
师详细分析去分母发解一元一次方程的主要步骤及其注意点。
此实际运用问题较为抽象,根据学生的认知耐心辅助其分析并理解题意,并列式解答。
设丢番图去世时的年龄为x岁,由题意可列方程
解得:x=84。
六、课堂小结
1、去分母解一元一次方程时要注意什么?
2、去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?
七、作业布置
1、习题3.3第3、8题;
2、同步完成《基础训练》。
通过古代数学情境问题,让学生了解数学的历史文化背景,体会数学的发展与人类历史的直接联系,提高学生研究数学的兴趣。
二、新知探究
如果设这个数为x,那么上述这段文字就可用如下方程表示: x+ x+ x+x=33
和以往不同的是,我们看到,上面这个方程中有些系数是分数,如果能化去分母,把系数化成整数,那么可以使解方程中的计算更方便一些。
去分母的关键在于:方程两边同时乘以各分母的最小公倍}.于是,所列方程变为整系数方程。
如何解这个方程?在学生回答的基础上可以归纳两种方法:
方法一:直接进行合并同类项,进而化为“x=a”的形式.
方法二:先把含x的各项系数化为整数.
三、探讨归纳
解方程:
1、为使方程变为整系数方程,方程两边应该同乘以什么数?
2、在去分母的过程中,应该注意哪些易错的问题?
3、解上述方程的全过程,展示了一元一次方程解法的一般步骤,试归纳、小结,并了解过程中每一步的主要依据.
教学内容
3.3解一元一次方程(二)——去括号与去分母4、5
教学目标
1、会把实际问题建成数学模型,会用去分母的方法解一元一次方程.
2、通过列方程解决实际问题,让学生逐步建立方程思想;通过去分母解方程,让学生了解数学中的“化归”思想.
3、让学生了解数学的渊源及辉煌的历史,激发学生的学习热情。
教学重点
实际问题中如何建立等量关系,并根据等量关系列出方程。
教学难点
会用去分母的方法解一元一次方程。
教 学 过 程
个性思考
1、情境引入
(课本95页问题)
英国伦敦博物馆保存着一部极其珍贵的文物—纸莎草文书.现存世界上最古老的方程就出现在这部英国考古学家兰德1858年找到的纸草书上.经破译,上面都是一些方程,共85个问题.其中有如下一道著名的求未知数的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数为几何?
3、目前初中数学主要分成代数与几何两大部分,其中代数学的最大特点是引人了未知数,建立方程,对未知数加以运算.而最早提出这一思想并加以举例论述的,是古代数学名著《算术》一书,其作者是古希腊后期数学家—“代数学之父”丢番图.丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一又过十二分之一,两颊长胡.再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进人冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”请你列出方程算一算,丢番图去世时的年龄?
相关文档
最新文档