【金识源】高中数学 2.1.2 空间中直线与直线之间的位置关系教案 新人教A版必修2

合集下载

人教A版高中数学必修二第二章空间中直线与直线之间的位置关系教案新

人教A版高中数学必修二第二章空间中直线与直线之间的位置关系教案新

§2.1.2 空间中直线与直线之间的位置关系一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。

3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。

难点:异面直线所成角的计算。

三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。

2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想(一)创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。

教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中,共面直线BB'∥AA',DD'∥AA',BB'与DD'平行吗?生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

2.1.2空间中直线与直线之间的位置关系教案

2.1.2空间中直线与直线之间的位置关系教案

张喜林制[2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。

难点:异面直线所成角的计算。

【教学过程】(一)创设情景、导入课题问题1:在平面几何中,两直线的位置关系如何?问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗?1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

思考:如图所示:正方体的棱所在的直线中,与直线AB异面的有哪些?2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗?生:平行。

再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条共面直线直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

例1空间四边形 A BCD 中,E.F.G.H 分别是AB.BC.CD.DA 的中点 求证:四边形EFGH 是平行四边形 证明:连接BD因为EH 是△A BD 的中位线,所以EH ∥BD 且EH=21BD 同理FG ∥BD 且FG=21BD 因为EH ∥FG 且EH=FG所以四边形 EFGH 是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD ,那么四边形EFGH 是什么图形? 4、组织学生思考教材P46的思考题 让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

人教A版高中数学必修二空间中直线与直线之间的位置关系教学案新人教A

人教A版高中数学必修二空间中直线与直线之间的位置关系教学案新人教A

2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力; (3)理解并掌握公理4; (4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。

难点:异面直线所成角的计算。

【教学过程】(一)创设情景、导入课题问题1: 在平面几何中,两直线的位置关系如何? 问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗? 1、通过身边诸多实物,引导学生思考、举例和相互交流得出 异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题) (二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

思考:如图所示:正方体的棱所在的直线中,与直线AB 异面的有哪些? 2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考: 长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗? 生:平行。

再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

共面直线=>a ∥c公理4作用:判断空间两条直线平行的依据。

例1空间四边形 ABCD 中,E.F.G.H 分别是AB.BC.CD.DA 的中点 求证:四边形EFGH 是平行四边形 证明:连接BD因为EH 是△ABD 的中位线,所以EH ∥BD 且EH=21BD 同理FG ∥BD 且FG=21BD 因为EH ∥FG 且EH=FG所以四边形 EFGH 是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD ,那么四边形EFGH 是什么图形? 4、组织学生思考教材P46的思考题 让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何? 生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

人教A版高中数学必修二空间中直线与直线之间的位置关系教案

人教A版高中数学必修二空间中直线与直线之间的位置关系教案

§2.1.2 空间中直线与直线之间的位置关系一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。

3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

二、教学重点、难点重点:1、异面直线的概念; 2、公理4及等角定理。

难点:异面直线所成角的计算。

三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。

2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想(一)复习(见投影)(二)创设情景、导入课题问题1:在平面几何中,两直线的位置关系如何?问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗?1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

思考:如图所示:正方体的棱所在的直线中,与直线A1B异面的有哪些?2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗?生:平行。

人教A版数学必修二教案:§2.1.2空间中直线与直线之间的位置关系

人教A版数学必修二教案:§2.1.2空间中直线与直线之间的位置关系

§2.1.2 空间中直线与直线之间的位置关系一、教材分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念.二、教学目标1.知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角公理;(5)异面直线所成角的定义、范围及应用。

2.过程与方法让学生在学习过程中不断归纳整理所学知识.3.情感、态度与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.三、重点难点两直线异面的判定方法,以及两异面直线所成角的求法.四、课时安排1课时五、教学设计(一)导入新课思路1.(情境导入)在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1(二)推进新课、新知探究、提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD—A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗?通过观察得出结论:BB′与DD′平行.再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行.符号表示为:a∥b,b∥c a∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5(三)应用示例思路1例1 如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.图6求证:四边形EFGH是平行四边形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,且FG=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.变式训练1.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD.求证:四边形EFGH是菱形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,EF∥AC,且FG=,EF=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.所以四边形EFGH为菱形.2.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD,AC⊥BD.求证:四边形EFGH是正方形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,EF∥AC,且FG=,EF=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH为两异面直线AC与BD所成的角.又因为AC⊥BD,所以EF⊥EH. 所以四边形EFGH为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法.例2 如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练如图8,已知正方体ABCD—A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.思路2例1 在长方体ABCD—A1B1C1D1中,E、F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.活动:学生先思考或讨论,然后再回答,教师点拨、提示并及时评价学生.证明:如图9,设G是DD1的中点,分别连接EG,GC1.图9∵EG A1D1,B1C1A1D1,∴EG B1C1.四边形EB1C1G是平行四边形,∴EB1GC1.同理可证DF GC1,∴EB1DF.∴四边形EB1FD是平行四边形.∴ED∥B1F.变式训练如图10,在正方体ABCD—A1B1C1D1中,E、F分别是AA1、AB的中点,试判断下列各对线段所在直线的位置关系:图10(1)AB与CC1;(2)A1B1与DC;(3)A1C与D1B;(4)DC与BD1;(5)D1E与CF.解:(1)∵C∈平面ABCD,AB平面ABCD,又C AB,C1平面ABCD,∴AB与CC1异面.(2)∵A1B1∥AB,AB∥DC,∴A1B1∥DC.(3)∵A1D1∥B1C1,B1C1∥BC,∴A1D1∥BC,则A1、B、C、D1在同一平面内.∴A1C与D1B相交.(4)∵B∈平面ABCD,DC平面ABCD,又B DC,D 1平面ABCD,∴DC与BD1异面.(5)如图10,CF与DA的延长线交于G,连接D1G,∵AF∥DC,F为AB中点,∴A为DG的中点.又AE∥DD1,∴GD1过AA1的中点E.∴直线D1E与CF相交.点评:两条直线平行,在空间中不管它们的位置如何,看上去都平行(或重合).两条直线相交,总可以找到它们的交点.作图时用实点标出.两条直线异面,有时看上去像平行(如图中的EB与A1C),有时看上去像相交(如图中的DC与D1B).所以要仔细观察,培养空间想象能力,尤其要学会两条直线异面判定的方法.例2如图11,点A是BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,且EF=AD,求异面直线AD和BC所成的角.图11解:设G是AC中点,连接EG、FG.因E、F分别是AB、CD中点,故EG∥BC且EG=,FG∥AD,且FG=.由异面直线所成角定义可知EG与FG所成锐角或直角为异面直线AD、BC所成角,即∠EGF为所求.由BC=AD知EG=GF=,又EF=AD,由勾股定理可得∠EGF=90°.点评:本题的平移点是AC中点G,按定义过G分别作出了两条异面直线的平行线,然后在△EFG中求角.通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系.变式训练设空间四边形ABCD,E、F、G、H分别是AC、BC、DB、DA的中点,若AB=,CD=,且HG·HE·sin∠EHG=,求AB和CD所成的角.解:如图12,由三角形中位线的性质知,HG∥AB,HE∥CD,图12∴∠EHG就是异面直线AB和CD所成的角.由题意可知EFGH是平行四边形,HG=,HE=,∴HG·HE·sin∠EHG=sin∠EHG.∴sin∠EHG=.∴sin∠EHG=.故∠EHG=45°.∴AB和CD所成的角为45°.(四)知能训练如图13,表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对____________.图13答案:三(五)拓展提升图14是一个正方体的展开图,在原正方体中,有下列命题:图14①AB与CD所在直线垂直;②CD与EF所在直线平行;③AB与MN所在直线成60°角;④MN与EF所在直线异面.其中正确命题的序号是()A.①③B.①④C.②③D.③④答案:D(六)课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.(七)作业课本习题2.1 A组3、4.。

高中数学2.1.2空间中直线与直线之间的位置关系教案新人教A版必修2

高中数学2.1.2空间中直线与直线之间的位置关系教案新人教A版必修2

2.1.2 空间中直线与直线之间的位置关系教材版本人民教育出版社普通高中课程标准实验教科书A版数学必修2教材分析空间中直线与直线的位置关系是在平面中两条直线位置关系及平面的基本性质的基础上提出来的。

它既是研究空间点、直线、平面之间各种位置关系的开始,又是学习这些位置关系的基础,是我们研究的重点。

学情分析本班学生为省级重点高中学生,初中基础较好,理解力较强。

空间直线的三种位置关系在现实中大量存在,学生对它们已有一定的感性认识。

其中,相交直线与平行直线是平面几何的内容,同学们已经非常熟悉。

异面直线的概念是学生比较生疏的,也是本节的重点和难点。

设计思想从日常生活中的实例入手,直观感知异面直线不同于相交直线、平行直线的特点,抽象概括出异面直线的定义;通过对位置关系的内涵的探讨,同时类比平面内两直线的位置关系的量化研究,引导学生发现两条异面直线的位置关系应包含角度与距离两项指标;让全体学生经历异面直线所成的角的科学性研究,引导学生发现公理4与等角定理两个理论依据,以及体会空间图形问题转化为平面图形问题的降维转化思想;例题的分析与讲解让学生加深对异面直线所成角的定义的理解,同时初步掌握平移的方法求异面直线所成的角.教学目标[知识与技能]1.知道空间直线的三种位置关系,理解异面直线的定义,初步掌握判断两直线的异面关系的方法,掌握异面直线的衬托画法;2.以公理4和等角定理为基础,初步理解异面直线所成角的概念,运用平移的方法求异面直线所成的角.[过程与方法]1. 从日常生活中的实例入手,让学生经历直观感知异面直线特点,并抽象概念出异面直线定义的过程;2. 通过类比日常生活中确定两个物体位置关系、以及平面几何中研究两直线位置关系的量化方法,发现研究异面直线位置关系的两个数量:角及距离;3. 让学生经历对异面直线所成的角定义的科学性的探究,发现公理4及等角定理是异面直线所成的角定义的科学性的理论依据;4. 经过对异面直线所成角的学习,让学生体会空间图形问题往往降维处理,转化成平面图形问题解决的思想.[情感、态度与价值观]由一系列问题引发学生思考,深化对概念的理解与应用,养成独立思考的习惯,形成严谨的科学研究态度。

高中数学 (2.1.2 空间中直线与直线之间的位置关系)示范教案 新人教A版必修2.doc

高中数学 (2.1.2 空间中直线与直线之间的位置关系)示范教案 新人教A版必修2.doc

2.1.2 空间中直线与直线之间的位置关系整体设计教学分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念.三维目标1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.重点难点两直线异面的判定方法,以及两异面直线所成角的求法.课时安排1课时教学过程导入新课思路1.(情境导入)在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C 所在直线的位置关系如何?图1推进新课新知探究提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD —A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行. 符号表示为:a∥b,b∥c ⇒a∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. ⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a 、b ,在空间中任取一点O ,过点O 分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O 有无限制条件? 答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O 取在a 或b 上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a 、b 相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5应用示例思路1例1 如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.图6求证:四边形EFGH 是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,且FG=BD 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形. 变式训练1.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD. 求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形.因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.2.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD ,AC⊥BD. 求证:四边形EFGH 是正方形.证明:连接EH ,因为EH 是△ABD 的中位线, 所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形.因为AC=BD ,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH 为两异面直线AC 与BD 所成的角.又因为AC⊥BD,所以EF⊥EH. 所以四边形EFGH 为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法.例2 如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练如图8,已知正方体ABCD—A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.思路2例1 在长方体ABCD—A1B1C1D1中,E、F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.活动:学生先思考或讨论,然后再回答,教师点拨、提示并及时评价学生.证明:如图9,设G是DD1的中点,分别连接EG,GC1.图9∵EG A1D1,B1C1A1D1,∴EG B1C1.四边形EB1C1G是平行四边形,∴EB1GC1.同理可证DF GC 1,∴EB 1DF. ∴四边形EB 1FD 是平行四边形. ∴ED∥B 1F. 变式训练如图10,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1、AB 的中点,试判断下列各对线段所在直线的位置关系:图10(1)AB 与CC 1; (2)A 1B 1与DC ; (3)A 1C 与D 1B ; (4)DC 与BD 1; (5)D 1E 与CF. 解:(1)∵C∈平面ABCD ,AB ⊂平面ABCD ,又C ∉AB ,C 1∉平面ABCD,∴AB 与CC 1异面. (2)∵A 1B 1∥AB,AB∥DC,∴A 1B 1∥DC.(3)∵A 1D 1∥B 1C 1,B 1C 1∥BC,∴A 1D 1∥BC,则A 1、B 、C 、D 1在同一平面内. ∴A 1C 与D 1B 相交.(4)∵B∈平面ABCD ,DC ⊂平面ABCD ,又B ∉DC ,D 1∉平面ABCD,∴DC 与BD 1异面. (5)如图10,CF 与DA 的延长线交于G ,连接D 1G , ∵AF∥DC,F 为AB 中点,∴A 为DG 的中点. 又AE∥DD 1,∴GD 1过AA 1的中点E.∴直线D 1E 与CF 相交.点评:两条直线平行,在空间中不管它们的位置如何,看上去都平行(或重合).两条直线相交,总可以找到它们的交点.作图时用实点标出.两条直线异面,有时看上去像平行(如图中的EB 与A 1C ),有时看上去像相交(如图中的DC 与D 1B ).所以要仔细观察,培养空间想象能力,尤其要学会两条直线异面判定的方法.例2 如图11,点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角.图11解:设G 是AC 中点,连接EG 、FG.因E 、F 分别是AB 、CD 中点,故EG∥BC 且EG=BC 21,FG∥AD,且FG=AD 21.由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求. 由BC=AD 知EG=GF=AD 21,又EF=22AD,由勾股定理可得∠EGF=90°.点评:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角.通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系. 变式训练设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB=212,CD=24,且HG·HE·sin∠EHG=312,求AB 和CD 所成的角.解:如图12,由三角形中位线的性质知,HG∥AB,HE∥CD,图12∴∠EHG 就是异面直线AB 和CD 所成的角. 由题意可知EFGH 是平行四边形,HG=2621=AB ,HE=3221=CD , ∴HG·HE·sin∠EHG=612sin∠EHG. ∴612sin∠EHG=312. ∴sin∠EHG=22.故∠EHG=45°. ∴AB 和CD 所成的角为45°. 知能训练如图13,表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有对____________.图13答案:三 拓展提升图14是一个正方体的展开图,在原正方体中,有下列命题:图14①AB 与CD 所在直线垂直;②CD 与EF 所在直线平行;③AB 与MN 所在直线成60°角;④MN 与EF 所在直线异面.其中正确命题的序号是( )A.①③B.①④C.②③D.③④ 答案:D 课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.作业课本习题2.1 A组3、4.设计感想空间中直线与直线的位置关系是立体几何的基础,本节通过空间模型让学生直观感受两直线的位置关系,进一步培养学生的空间想象能力.两直线的异面关系是本节的重点和难点,本节选用大量典型题目训练学生求两异面直线所成的角,使学生熟练掌握直线与直线的位置关系.另外,本节加强了三种语言的相互转换,因此这是一节值得期待的精彩课例.。

人教高一数学教学设计之《2.1.2空间中直线与直线之间的位置关系》

人教高一数学教学设计之《2.1.2空间中直线与直线之间的位置关系》

人教高一数学教学设计之《2.1.2空间中直线与直线之间的位置关系》一. 教材分析《2.1.2空间中直线与直线之间的位置关系》这一节主要让学生了解空间中直线与直线之间的平行和相交两种基本位置关系,以及判断直线与直线位置关系的方法。

教材通过实例引入,引导学生探究和发现规律,从而达到理解并掌握知识的目的。

二. 学情分析高一学生已经学习了平面几何的基础知识,对直线、平面等基本概念有了一定的理解。

但空间想象力相对较弱,对于空间中直线与直线之间的位置关系可能存在一定的困惑。

因此,在教学过程中,需要通过大量实例和模型帮助学生建立空间直观感受,提高空间想象力。

三. 教学目标1.了解空间中直线与直线之间的平行和相交两种基本位置关系。

2.学会判断空间中直线与直线位置关系的方法。

3.培养学生的空间想象力和逻辑思维能力。

四. 教学重难点1.重点:空间中直线与直线之间的平行和相交两种基本位置关系。

2.难点:判断空间中直线与直线位置关系的方法。

五. 教学方法1.采用实例引入,引导学生探究和发现规律。

2.利用模型和图片帮助学生建立空间直观感受。

3.采用分组讨论和小组合作的方式,提高学生的参与度和合作意识。

4.通过练习和问题引导学生自主学习,培养学生的逻辑思维能力。

六. 教学准备1.准备相关实例和图片,用于引导学生探究和发现规律。

2.准备模型和教具,帮助学生建立空间直观感受。

3.准备练习题和问题,用于巩固和拓展知识。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入本节内容,让学生观察和思考空间中直线与直线之间的位置关系。

2.呈现(10分钟)展示教材中的图片和实例,引导学生观察和分析直线与直线之间的位置关系,让学生通过观察和思考发现规律。

3.操练(10分钟)通过分组讨论和小组合作,让学生运用所学知识判断直线与直线的位置关系。

教师可提供一些模型和教具,帮助学生更好地理解和操作。

4.巩固(10分钟)让学生自主完成教材中的练习题,巩固所学知识。

安徽省高中数学第二章2.1.2空间中直线与直线之间的位置关系教案新人教A版

安徽省高中数学第二章2.1.2空间中直线与直线之间的位置关系教案新人教A版

2.1.2 空间中直线与直线之间的位置关系教学目标1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.教学重、难点两直线异面的判定方法,以及两异面直线所成角的求法.教学准备多媒体课件教学过程导入新课观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B 所在的直线与线段C′C所在直线的位置关系如何?图1提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD—A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗?通过观察得出结论:BB′与DD′平行.再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行.符号表示为:a∥b,b∥c⇒a∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a 或b上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5应用示例例1 如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.图6求证:四边形EFGH 是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,且FG=BD 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形. 变式训练1.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD.求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形. 因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.2.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD ,AC⊥BD. 求证:四边形EFGH 是正方形.证明:连接EH ,因为EH 是△ABD 的中位线, 所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH为两异面直线AC与BD所成的角.又因为AC⊥BD,所以EF⊥EH.所以四边形EFGH为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法. 例2 如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练如图8,已知正方体ABCD—A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;。

高中数学 2.1.2空间直线与直线之间的位置关系精品教案 新人教A版必修2

高中数学 2.1.2空间直线与直线之间的位置关系精品教案 新人教A版必修2

第二课时空间中直线与直线之间的位置关系〔一〕教学目标1.知识与技能〔1〕了解空间中两条直线的位置关系;〔2〕理解异面直线的概念、画法,培养学生的空间想象能力;〔3〕理解并掌握公理4;〔4〕理解并掌握等角公理;〔5〕异面直线所成角的定义、X围及应用。

2.过程与方法让学生在学习过程中不断归纳整理所学知识.3.情感、态度与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.〔二〕教学重点、难点重点:1、异面直线的概念; 2、公理4及等角定理.难点:异面直线所成角的计算.〔三〕教学方法师生的共同讨论与讲授法相结合;教学过程教学内容师生互动设计意图新课导入问题:在同一平面内,两条直线有几种位置关系?空间的两条直线还有没有其他位置关系?师投影问题,学生讨论回答生1:在同一平面内,两条直线的位置关系有:平行与相交.生2:空间的两条直线除平行与相交外还有其他位置关系,如教室里的电灯线与墙角线……师〔肯定〕:这种位置关系我们把它称为异面直线,这节课我们要讨论的是空间中直线与直线的位置关系.以旧导新培养学生知识的系统性和学生学习的积极性.探索新知1.空间的两条直线位置关系:共面直线异面直线:不同在任何一个平面内,没有公共点.师:根据刚才的分析,空间的两条直线的位置关系有以下三种:①相交直线—有且仅有一个公共点②平行直线—在同一平面内,没有公共点.③异面直线—不同在任何一个平面内,没有公共点.随堂练习:现在大家思考一下这三种位置关系可不可以进行分类生:按两条直线是否共面可以将三种位置关系分成两类:一类是平行直线和相交直培养学生分类的能力,加深学生对空间的一条直相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点如下图P50-16是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.答案:4对,分别是HG与EF,AB与CD,AB与EF,AB与HG. 线,它们是共面直线.一类是异面直线,它们不同在任何一个平面内.师〔肯定〕所以异面直线的特征可说成“既不平行,也不相交〞那么“不同在任何一个平面内〞是否可改为“不在一个平面内呢〞学生讨论发现不能去掉“任何〞师:“不同在任何一个平面内〞可以理解为“不存在一个平面,使两异面直线在该平面内〞线位置关系的理解〔1〕公理4,平行于同一条直线的两条直线互相平行〔2〕定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补例2 如下图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.证明:连接BD,因为EH是△ABD的中位线,所以EH∥BD,且12EH BD=.同理FG∥BD,且12FG BD=.因为EH∥FG,且EH = FG,所以四边形EFGH为平行四边形.师:现在请大家看一看我们的教室,找一下有无不在同一平面内的三条直线两两平行的.师:我们把上述规律作为本章的第4个公理.公理4:平行于同一条直线的两条直线互相平行.师:现在请大家思考公理4是否可以推广,它有什么作用.生:推广空间平行于一条直线的所有直线都互相平行.它可以用来证明两条直线平行.师〔肯定〕下面我们来看一个例子观察图,在长方体ABCD–A′B′C′D′中,∠ADC与∠A′D′C′,∠ADC与∠A′B′C′的两边分别对应平行,这两组角的大小关系如何?生:从图中可以看出,∠ADC = ∠A′D′C′,∠ADC + ∠A′B′C′=180°师:一般地,有以下定理:……培养学生观察能力语言表达能力和探索创新的意识.通过分析和引导,培养学生解题能力.这个定理可以用公理4证明,是公理4的一个推广,我们把它称为等角定理.师打出投影片让学生尝试作图,在作图的基础上猜想平行的直线并试图证明.师:在图中EH、FG有怎样的特点?它们有直接的联系吗?引导学生找出证明思路.探索新知3.异面直线所成的角〔1〕异面直线所成角的概念.两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).〔2〕异面直线互相垂直a、b,记作a⊥b.例 3 如图,正方体ABCD–A′B′C′D′.〔1〕哪些棱所在直线与直线BA′是异面直线?〔2〕直线BA′和CC′的夹角是多少?〔3〕哪此棱所在的直线与直线AA′垂直?解:〔1〕由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线.〔2〕由BB′∥CC′可知,∠B′BA′为异面直线B′A与CC′的夹角,∠B′BA′= 45°.〔3〕直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.师讲述异面直线所成的角的定义,然后学生共同对定义进行分析,得出如下结论.①两条异面直线所成角的大小,是由这两条异面直线的相互位置决定的,与点O的位置选取无关;②两条异面直线所成的角(0,]2πθ∈;③因为点O可以任意选取,这就给我们找出两条异面直线所成的角带来了方便,具体运用时,为了简便,我们可以把点O选在两条异面直线的某一条上;④找出两条异面直线所成的角,要作平行移动〔作平行线〕,把两条异面直线所成的角转化为两条相交直线所成的角;⑤当两条异面直线所成的角是直线时,我们就说这两条异面直线互相垂直,异面直线a和b互相垂直,也记作a⊥b;⑥以后我们说两条直线互相垂直,这两条直线可能是相交的,也可能是不相交的,即有共面垂直,也有异面垂直这样两种情形.然后师生共同分析例题加深对平面直线所成角的理解,培养空间想象能图力和转化化归以能力.随堂练习1.填空题:学生独立完成答案:.2.〔1〕因为BC∥B′C′,所以∠B′C′A′是异面直线〔1〕如图,AA′是长方体的一条棱,长方体中与AA′平行的棱共有条.〔2〕如果OA∥O′A′,OB ∥O′B′,那么∠AOB和∠A′O′B′.答案:〔1〕3条. 分别是BB′,CC′,DD′;〔2〕相等或互补.2.如图,长方体ABCD–A′B′C′D′中,AB =23,AD =23,AA′ =2.〔1〕BC和A′C′所成的角是多少度?〔2〕AA′和BC′所成的角是多少度?A′C′与BC所成的角. 在Rt△A′B′C′中,A′B′=23,B′C′=23,所以∠B′C′A′ = 45°.〔2〕因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BB′ 所成的角.在Rt△BB′C′中,B′C′= AD =23,BB′= AA′=2,所以BC′= 4,∠B′BC′= 60°.因此,异面直线AA′与BC′所成的角为60°.归纳总结1.空间中两条直线的位置关系.2.平行公理及等角定理.3.异面直线所成的角.学生归纳,教师点评并完善培养学生归纳总结能力,加深学生对知识的掌握,完善学生知识结构.作业 2.1 第二课时习案学生独立完成固化知识提升能力附加例题例1 “a、b为异面直线〞是指:①a∩b =∅,且a∥b;②a⊂面α,b⊂面β,且a∩b =∅;③a⊂面α,b⊂面β,且α∩β=∅;④a⊂面α,b⊄面α;⑤不存在面α,使a⊂面α,b⊂面α成立. 上述结论中,正确的选项是〔〕A .①④⑤正确B .①③④正确C .仅②④正确D .仅①⑤正确[解析] ①等价于a 和b 既不相交,又不平行,故a 、b 是异面直线;②等价于a 、b 不同在同一平面内,故a 、b例2 如果异面直线a 与b 所成角为50°,P 为空间一定点,那么过点P 与a 、b 所成的角都是30°的直线有且仅有条.[解析]如下图,过定点P 作a 、b 的平行线a ′、b ′,因a 、b 成50°角,∴a ′与b ′也成50°P 作∠A ′PB ′的平分线,取较小的角有∠A ′PO =∠B ′PO = 25°. ∵∠APA ′>A ′PO ,∴过P 作直线l 与a ′、b ′成30°角的直线有2条.例3 空间四边形ABCD ,AD =1,BD =3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角。

教学设计5:2.1.2 空间中直线与直线之间的位置关系

教学设计5:2.1.2 空间中直线与直线之间的位置关系
(1)AM和CN是否是异面直线?说明理由;
(2)D1B和CC1是否是异面直线?说明理由。
【解答】(1)AM和CN不是异面直线。理由:连接MN、A1C1、AC。∵M、N分别是A1B1、B1C1的中点,∴MN//A1C1,又∵A1A CC1,
∴A1ACC1为平行四边形。
∴A1C1//AC,得到MN//AC,
同学们,前边我们学习了异面直线的概念和平行公理,那么怎样在几何体中判断两直线是否是异面直线呢?请大家先独立思考做题思路,2分钟后小组讨论,然后找同学回答。
回答的很好,
大家注意:
要判断两直线是否是异面直线从以下三个方面入手
1、定义法(不易操作,很难实现);2、反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。此法在异面直线的判定中经常用到。
看书两分钟,了解空间两条直线的位置关系以及平行公理;
掌握两直线的位置关系。
出示课件2-1
空间两条直线的位置关系
平行公理4:平行于同一条直线的两条直线平行。符号表述: 。
平行公理表明:空间内平行于同一条直线的所有直线相互平行,因此它给出了判定空间内两条直线平行的一个依据。
同学们,现在看完书并解决以下几个问题:
同学们,我们已经学习了空间几何体及平面的性质,我们知道,在同一平面内两条直线的位置关系是:平行、相交、重合。那么,在空间两条直线的位置关系是什么呢?大家看课本44-47页要求大家掌握异面直线概念、及判定定理。看多媒体(出示《课件2-1》)
二、知新
(自主学习合作探究展示能力)
(35分钟)
空间两条直线的位置关系及平行公理
同学们,这节课我们共同学习了:异面直线的概念和判定定理以及平行公理,大家根据例题和练习题总结一下判断异面直线方法。

高中数学必修二《空间中直线与直线之间的位置关系》教学设计

高中数学必修二《空间中直线与直线之间的位置关系》教学设计

2.1.2空间中直线与直线之间的位置关系一、教学目标:(1)了解空间中两条直线的位置关系,并能判断直线与直线之间的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4,并能运用它证明简单的几何问题。

二、教学重、难点:1.重点: (1)空间中两条直线的位置关系的判定;(2)理解并掌握公理4。

2.难点: 理解异面直线的概念、画法。

三、教具准备多媒体课件长方体模型自制的空间四边形模型四、教学过程:(一)复习引入1前面我们已学习了平面的概念及其基本性质。

回顾一下,怎样确定一个平面呢?(公理3及其三个推论)2 在一个平面内,两直线有哪几种位置关系呢?在空间中呢?(二)新课推进1、空间中两条直线的位置关系以学生身边的实例引出空间两条直线位置关系问题相交:同一平面内,有且只有一个公共点平行:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点2、异面直线(1)概念:不同在任何一个平面内的两条直线 (2)判断:下列各图中直线l 与m 是异面直线吗?1 2 34 5 6【设计意图】:让学生直观判断异面直线,既加深了对概念的理解,又可引出异面直线的画法,还为下面的辨析作好铺垫。

(3)画法:用一个或两个平面衬托(4)探究αlm αlmlmαβlmαβαl m l m αβαlml αβm l mαβlm αβ共面直线:①、空间中没有公共点的两条直线是异面直线 ②、分别在两个不同平面内的两条直线是异面直线 ③、不同在某一平面内的两条直线是异面直线 ④、平面内的一条直线和平面外的一条直线是异面直线 ⑤、既不相交,又不平行的两条直线是异面直线 (以上面(2)判断中的图6做反例)(5)结合实例小结判断异面直线的关键① 例1:如图2.1.2-1,在正方体1111ABCD A B C D 中,哪些棱所在的直线与1BA 成异面直线?图2.1.2-1② 判断异面直线的关键:既不相交,又不平行 如图,正方体ABCD-EFGH 中,O 为侧面ADHE 的中心,求(1)BE 与CG 所成的角? (2)FO 与BD 所成的角?解:(1)如图: ∵BF ∥CG ,∴∠EBF(或其补角)为异面直线 BE 与CG 所成的角, 又 BEF 中∠EBF =45 , 所以BE 与CG 所成的角是45° (2)略。

2022年高中数学新人教版A版精品教案《2.1.2 空间中直线与直线之间的位置关系》

2022年高中数学新人教版A版精品教案《2.1.2 空间中直线与直线之间的位置关系》

两条异面直线所成的角[教学目的]:1、知识目标:理解空间两异面直线所成角的定义、范围,并会作出、求出两异面直线所成角。

2、能力目标:培养学生的识图、作图能力、在习题讲解中,培养学生的空间想象能力以及解决问题和分析问题的能力。

3、情感目标:在对学生进行创造性思维培养的同时,激发学生对科学文化知识的探求热情和逻辑清晰的辩证主义观点。

[教学重点和难点]:教学重点:对异面直线所成角的定义的理解和应用。

教学难点:如何在实际问题中求出异面直线所成的角。

[课时安排]:共一课时[教学过程]:一、新课引入利用多媒体课件引入新课:两异面直线所成的角二、讲授新课〔一〕、异面直线所成的角的定义1、实验:黑板上画有两条能相交的直线a、b〔但交点在黑板外〕.不许延长黑板上的线段,问如何能量出a、b所成的角的大小?2、实验:现在有两条异面直线a、b,它们之间有一定的角度关系,你用什么方法可以度量它们的角度。

3、异面直线所成的角的定义异面直线a、b,在空间中任取一点O,过点O分别作a′∥a,b′∥b,那么a′,b′所成的锐角〔或直角〕叫做两条异面直线所成的角.问题1:过点O引a′∥a和b′∥b的方法和依据是什么?问题2:由于点O可以任意选取,那么按此方法做出的角能有多少个?它们的大小有什么关系?注意:〔1〕异面直线所成的角只和两条异面直线的位置有关,而和点O位置的选择无关。

〔2〕注意把握异面直线所成角的范围,即0°<α≤90°〔3〕异面直线垂直:如果两条异面直线所成的角是直角,那么叫两条异面直线垂直。

今后再说两条直线互相垂直时,它们可能相交,也可能异面。

〔二〕异面直线所成角的求法[典例剖析]:例题1:如图:正方体,(1)哪些棱所在直线与直线垂直?(2)哪些棱所在直线与直线是异面直线?(3)异面直线的夹角是多少?(4)直线与的夹角是多少?(5)直线与的夹角是多少?总结:异面直线所成角的求法:1直接平移法;2中位线平移法;3补形平移法例2.空间四边形中,,分别是的中点,,求异面直线所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2 空间中直线与直线之间的位置关系一、教材分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念.二、教学目标1.知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角公理;(5)异面直线所成角的定义、范围及应用。

2.过程与方法让学生在学习过程中不断归纳整理所学知识.3.情感、态度与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.三、重点难点两直线异面的判定方法,以及两异面直线所成角的求法.四、课时安排1课时五、教学设计(一)导入新课思路1.(情境导入)在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1(二)推进新课、新知探究、提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD —A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行. 符号表示为:a∥b,b∥c ⇒a∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. ⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a 、b ,在空间中任取一点O ,过点O 分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O 有无限制条件? 答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O 取在a 或b 上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a 、b 相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5(三)应用示例思路1例1 如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.图6求证:四边形EFGH 是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,且FG=BD 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形. 变式训练1.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD. 求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形.因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.2.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD ,AC⊥BD. 求证:四边形EFGH 是正方形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且F G=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形.因为AC=BD ,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH 为两异面直线AC 与BD 所成的角.又因为AC⊥BD,所以EF⊥EH. 所以四边形EFGH 为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法.例2 如图7,已知正方体ABCD —A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线? (2)直线BA′和CC′的夹角是多少? (3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD 、DC 、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB 、BC 、CD 、DA 、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直. 变式训练如图8,已知正方体ABCD —A′B ′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数; (2)求异面直线CD′和BC′所成的角的度数. 解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角, ∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C 是异面直线CD′和BC′所成的角, ∵△AD′C 是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°. 点评:“平移法”是求两异面直线所成角的基本方法.思路2例1 在长方体ABCD—A1B1C1D1中,E、F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.活动:学生先思考或讨论,然后再回答,教师点拨、提示并及时评价学生.证明:如图9,设G是DD1的中点,分别连接EG,GC1.图9∵EG A1D1,B1C1A1D1,∴EG B1C1.四边形EB1C1G是平行四边形,∴EB1GC1.同理可证DF GC1,∴EB1DF.∴四边形EB1FD是平行四边形.∴ED∥B1F.变式训练如图10,在正方体ABCD—A1B1C1D1中,E、F分别是AA1、AB的中点,试判断下列各对线段所在直线的位置关系:图10(1)AB与CC1;(2)A1B1与DC;(3)A1C与D1B;(4)DC与BD1;(5)D1E与CF.解:(1)∵C∈平面ABCD,AB⊂平面ABCD,又C∉AB,C1∉平面ABCD,∴AB与CC1异面.(2)∵A1B1∥AB,AB∥DC,∴A1B1∥DC.(3)∵A1D1∥B1C1,B1C1∥BC,∴A1D1∥BC,则A1、B、C、D1在同一平面内.∴A1C与D1B相交.(4)∵B∈平面ABCD,DC⊂平面ABCD,又B∉DC,D1∉平面ABCD,∴DC与BD1异面.(5)如图10,CF与DA的延长线交于G,连接D1G,∵AF∥DC,F为AB中点,∴A为DG的中点.又AE∥DD1,∴GD1过AA1的中点E.∴直线D1E与C F相交.点评:两条直线平行,在空间中不管它们的位置如何,看上去都平行(或重合).两条直线相交,总可以找到它们的交点.作图时用实点标出.两条直线异面,有时看上去像平行(如图中的EB与A1C),有时看上去像相交(如图中的DC与D1B).所以要仔细观察,培养空间想象能力,尤其要学会两条直线异面判定的方法.例2 如图11,点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角.图11解:设G 是AC 中点,连接EG 、FG.因E 、F 分别是AB 、CD 中点,故EG∥BC 且EG=BC 21,FG∥AD,且FG=AD 21.由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求.由BC=AD 知EG=GF=AD 21,又EF=22AD,由勾股定理可得∠EGF=90°. 点评:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角.通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系.变式训练 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB=212,CD=24,且HG·HE·sin∠EHG=312,求AB 和CD 所成的角.解:如图12,由三角形中位线的性质知,HG∥AB,HE∥CD,图12∴∠EHG 就是异面直线AB 和CD 所成的角. 由题意可知EFGH 是平行四边形,HG=2621=AB ,HE=3221=CD , ∴HG·HE·sin∠EHG=612sin∠EHG. ∴612sin∠EHG=312.∴sin∠EHG=22.故∠EHG=45°. ∴AB 和CD 所成的角为45°.(四)知能训练如图13,表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对____________.图13答案:三(五)拓展提升图14是一个正方体的展开图,在原正方体中,有下列命题:图14①AB与CD所在直线垂直;②CD与EF所在直线平行;③AB与MN所在直线成60°角;④MN与EF所在直线异面.其中正确命题的序号是()A.①③B.①④C.②③D.③④答案:D(六)课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.(七)作业课本习题2.1 A组3、4.。

相关文档
最新文档