「最新」人教版最新高中数学复习试题(完整版)Word版-可编辑修改
「精选」人教版最新高考数学总复习(各种专题训练)附参考答案-精选文档
第1讲集合第2讲(附参考答案)一.课标要求:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二.命题走向有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主,分值5分。
预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体题型估计为:(1)题型是1个选择题或1个填空题;(2)热点是集合的基本概念、运算和工具作用。
三.要点精讲1.集合:某些指定的对象集在一起成为集合。
a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作Ab∉;记作A(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
(完整版)高中数学试题及答案
(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题7. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?A. 2.5B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题6. 57. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1四、应用题16. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?答案:小明和小红一共有8个苹果。
【2020】人教版最新高中数学数列专题复习(综合训练篇含答案)Word版
编 辑:__________________
时 间:__________________
———综合训练篇
一、选择题:
1. 在等差数列中,,则的值为 ( D )
A.18B.20C.22D.24
2.等差数列满足:,若等比数列满足则为( B ) A.16B.32C.64D.27
(Ⅰ)求证:数列为等差数列;
(Ⅱ)若,求数列的前n项和Sn.
17.解:(Ⅰ),
,…………………………………………2分
,即
………………………………………………4分
∴数列为首项,公差为2的等差数列 …………………………6分
(Ⅱ)由(1)得:,即
……………………………………………………8分
b1 = 1,当,
(I)哪一年两产品获利之和最小?
(II)至少经过几年即可达到或超过预期计划?
16.
故第20xx年两产品获利最小.……………………………………………………(6分)
(II)
…………………………………………(1分)
17.(选做题)已知函数的反函数为,数列{an}满足:a1 = 1, ,数列是首项为1,公比为的等比数列.
三、解答题:
15.已知是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6,成等比数列.
15.[解法1]由已知………………(2分)
当
…………(4分)
………………(8分)
当……(10分)
所以,成等比数列.………………………………………………(12分)
[解法2]由已知,……………(2分)
A. B. C. D.
人教版最新高中数学三角函数复习专题Word版.docx
高中数学三角函数复习专题( 附参考答案 )一、知识点整理 :1、角的概念的推广:正负,范围,象限角,坐标轴上的角;2、角的集合的表示:①终边为一射线的角的集合:x x2k, k Z =|k360 , k Z②终边为一直线的角的集合:x x k, k Z ;③两射线介定的区域上的角的集合:x 2k x2k, k Z④两直线介定的区域上的角的集合:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径, a 为圆心角弧度数,l为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径,l为弧长。
2(3)三角函数定义:角中边上任意一点 P 为( x, y),设| OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为: P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特殊角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存0不存03在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tan a cot a 1sin a ②商数关系: tan acos a③平方关系: sin 2 a cos2 a1( 8)诱导公试sin cos tan三角函数值等于的同名三角函数值,前面-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前面2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 :sin x cos x cos x比如444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin s i na( ) s i na c o s c o as s i ntan a(atan a tan注:公式的逆用或者变形)1 tan a tan.........(2)二倍角公式:sin 2a 2 sin acosa c o 2sa2222c o sa s i n a 1 2s i n a 2 c o sa 1tan 2a2 tan a 1 tan 2 a(3)几个派生公式:①辅助角公式: a sin x bcosx a2b2 sin(x)a2b2 cos(x)例如: sinα±cosα=2 sin= 2 cos.44sinα±3 cosα= 2sin=2cos等.33②降次公式: (sin cos) 2 1 sin 2cos2 1 cos 2,sin 2 1 cos 222③ tan tan tan()(1tan tan)5、三角函数的图像和性质:(其中 k z )三角函数y sin x定义域( - ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2 k,2 k]22单调性单调递增[ 2 k,2 k 3 ]22单调递减x k对称性2(k ,0)零值点x ky cos x(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k]单调递增[( 2k ,( 2k 1) ]单调递减x k(k,0)2x ky tan xx k2( - ∞, +∞)T奇(k,k)22单调递增k(,0)x k2。
新人教版高三数学专题总复习Word完整版.doc
新人教版高三数学专题总复习Word完整版2018年高考数学复习专题专题一集合、逻辑与不等式集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N* (2)0{-1,1} (3)∈{0}∉∅(4){0} (5){0}∈{0,1} (6){0}{0}∅∉⊆其中正确的关系是______.解答:(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作;N 表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.∅2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:aA.∉3.明确集合与集合的关系及符号表示:如果集合A 中任意一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集.记作:AB 或BA .⊆⊇如果集合A 是集合B 的子集,且B 中至少有一个元素不属于A ,那么,集合A 叫做集合B 的真子集.AB 或BA .4.子集的性质:①任何集合都是它本身的子集:AA ;⊆②空集是任何集合的子集:A ;∅⊆提示:空集是任何非空集合的真子集.③传递性:如果AB ,BC ,则AC ;如果AB ,BC ,则AC .⊆⊆⊆例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(UA)∩(UB)={1,9},A ∩B ={2},B ∩(UA)={4,6,8}.求集合A ,B .解:根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A ={2,3,5,7},B ={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素构成的集合叫做A 、B 的交集.记作:A ∩B .对于两个给定的集合A 、B ,把它们所有的元素并在一起构成的集合叫做A 、B 的并集.记作:A ∪B .如果集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合叫做A 在U 中的补集.记作UA .2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a}.若M ∩N =,则实数a 的取值范围是______.∅答:(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合,则b -a =______.},,0{},,1{b ab a b a =+【分析】因为,所以a +b =0或a =0(舍去,否则没有意义),},,0{},,1{b a ba b a =+a b 所以,a +b =0,=-1,所以-1∈{1,a +b ,a},a =-1,ab 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①;②Q ;③|-3|N*;④.其中正确命题的个数是( )R ∈212∉∉Q ∈-|3|(A)1 (B)2 (C)3 (D)42.下列各式中,A 与B 表示同一集合的是( )(A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C)A ={0},B = (D)A ={y |y =x2+1},B ={x |y =x2+1}∅3.已知M ={(x ,y)|x >0且y >0},N ={(x ,y)|xy >0},则M ,N 的关系是( )(A)MN (B)NM (C)M =N (D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则下式中正确的关系是( )(A)U =A ∪B (B)U =(UA)∪B (C)U =A ∪(UB) (D)U =(UA)∪(UB)二、填空题5.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =______.6.设M ={1,2},N ={1,2,3},P ={c |c =a +b ,a ∈M ,b ∈N},则集合P 中元素的个数为______.7.设全集U =R ,A ={x |x ≤-3或x ≥2},B ={x |-1<x <5},则(UA)∩B =______.8.设集合S ={a0,a1,a2,a3},在S 上定义运算为:aiaj =ak ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则a2a3=______;满足关系式(xx)a2=a0的x(x ∈S)的个数为______.⊕⊕⊕⊕⊕三、解答题9.设集合A ={1,2},B ={1,2,3},C ={2,3,4},求(A ∩B)∪C .10.设全集U ={小于10的自然数},集合A ,B 满足A ∩B ={2},(UA)∩B ={4,6,8},(UA)∩(UB)={1,9},求集合A 和B .11.已知集合A ={x |-2≤x ≤4},B ={x |x >a},①A ∩B ≠,求实数a 的取值范围;∅②A ∩B ≠A ,求实数a 的取值范围;③A ∩B ≠,且A ∩B ≠A ,求实数a 的取值范围.∅§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p 则q .逆命题:若q 则p .否命题:若p ,则q .逆否命题:若q ,则p .注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.⌝⌝⌝⌝4.充要条件如果pq ,则p 叫做q 的充分条件,q 叫做p 的必要条件.⇒如果pq 且qp ,即qp 则p 叫做q 的充要条件,同时,q 也叫做p 的充要条件.⇒⇒⇔5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例1 分别写出由下列命题构成的“p∨q”“p∧q”“p”形式的复合命题,并判断它们的真假.⌝(1)p:0∈N,q:1N;∉(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.解:(1)p∨q:0∈N,或1N;∉p∧q:0∈N,且1N;p:0N.∉⌝∉因为p真,q假,所以p∨q为真,p∧q为假,p为假.⌝(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,p为真.⌝【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则AB.解:(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若AB,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.评述:原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【分析】由定义知,若pq且qp,则p是q的充分不必要条件;⇒若pq且qp,则p是q的必要不充分条件;⇒若pq且qp,p与q互为充要条件.⇒⇒于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4 设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M ∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件解:条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x <3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}R,所以p是q的必要非充分条件,选B.⊆【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若AB 且BA,则p是q的充分非必要条件;若AB且BA,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.⊆⊆例5 命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x ∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)x∈Z,1<4x<3 (B)x∈Z,3x-1=0∃∃(C)x∈R,x2-1=0 (D)x∈R,x2+2x+2>0∀∀2.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈Ax∈B,则称AB”.那么“A不是B的子集”可用数学语言表达为( )⇒⊆(A)若x∈A但xB,则称A不是B的子集∀∉(B)若x∈A但xB,则称A不是B的子集∃∉(C)若xA但x∈B,则称A不是B的子集∃∉(D)若xA但x∈B,则称A不是B的子集∀∉二、填空题5.“p 是真命题”是“p ∨q 是假命题的”__________________条件.⌝6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“AB ”是“UBUA ”的______条件.⊆⊆8.设A 、B 为两个集合,下列四个命题:①AB 对任意x ∈A ,有xB ②ABA ∩B =⇔∉⇔∅③ABAB ④AB 存在x ∈A ,使得xB ⇔⇔∉ 其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)x ∈{x |x ∈Z},log2x >0;∃ (4).041,2≥+-∈∀x x x R 10.已知实数a ,b ∈R .试写出命题:“a2+b2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.§1-3 不等式(含推理与证明)【知识要点】1.不等式的性质.(1)如果a >b ,那么b <a ;(2)如果a >b ,且b >c ,那么a >c ;(3)如果a >b ,那么a +c >b +c(如果a +c >b ,那么a >b -c);(4)如果a >b ,c >d ,那么a +c >b +d ;(5)如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc ;(6)如果a >b >0,c >d >0,那么ac >bd ;(7)如果a >b >0,那么an >bn(n ∈N +,n >1);(8)如果a >b >0,那么;)1,N (>∈>+n x b a n n2.进行不等式关系判断时常用到的实数的性质:若a ∈R ,则.)R (0.0||;02+∈≥≥≥a a a a3.会解一元一次不等式,一元二次不等式,简单的分式不等式、绝对值不等式.简单的含参数的不等式.4.均值定理:如果a 、b ∈R +,那么当且仅当a =b 时,式中等号成立..2ab b a ≥+ 其他常用的基本不等式:如果a 、b ∈R ,那么a2+b2≥2ab ,(a -b)2≥0. 如果a 、b 同号,那么.2≥+b a a b5.合情推理之归纳推理与类比推理;演绎推理;综合法、分析法与反证法.【复习要求】1.运用不等式的性质解决以下几类问题:(1)根据给定的条件,判断给出的不等式能否成立;(2)利用不等式的性质,实数的性质以及函数的有关性质判断实数值的大小关系;(3)利用不等式的性质等判断不等式变换中条件与结论间的充分必要关系.2.熟练掌握一元一次不等式,一元二次不等式、简单的分式不等式、绝对值不等式的解法.并会解简单的含参数的不等式.3.了解合情推理和演绎推理的含义,能利用归纳和类比等进行简单的推理.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.能较为灵活的运用综合法、分析法与反证法证明数学问题.熟练运用比较法比较数与式之间的大小关系.比较法:常有“作差比较法”和“作商比较法”;综合法:从已知推导致结果的思维方法;分析法:从结果追溯到产生这一结果的原因的思维方法;反证法:由证明pq 转向证明qr …t ,而t 与假设矛盾,或与某个真命题矛盾,从而判定q 为假,进而推出q 为真的方法,叫做反证法.⇒⌝⇒⇒⇒⌝一般来讲,由分析法得到的证明思路往往用综合法的方式来书写.【例题分析】例1 若a >b >c ,则一定成立的不等式是( )A .a |c |>b |c |B .ab >acC .a -|c |>b -|c |D .cb a 111<< 【分析】关于选项A .当c =0时,a |c |>b |c |不成立.关于选项B .当a <0时,ab >ac 不成立.关于选项C .因为a >b ,根据不等式的性质a -|c |>b -|c |,正确. 关于选项D .当a >b >0>c 时,不成立.所以,选C .c b a 111<< 例2 a ,b ∈R ,下列命题中的真命题是( )A .若a >b ,则|a |>|b |B .若a >b ,则b a 11<C .若a >b ,则a3>b3D .若a >b ,则1>b a 【分析】关于选项A .当a =-1,b =-2时,|a |>|b |不成立. 关于选项B .当a >0,b <0时,不成立.ba 11< 关于选项C .因为a >b ,根据不等式的性质a3>b3,正确. 关于选项D .当b <0时,不成立.所以,选C .1>b a【评析】判断不等关系的正误,其一要掌握判断的依据,依据相关的理论判断,切忌仅凭感觉进行判断;其二要掌握判断的方法.判断不等式的理论依据参看本节的知识要点,另外,后面专题讲到的函数的相关知识尤其是函数的单调性也是解决不等式问题的非常重要的方法.判断一个不等式是正确的,就应该给出一个合理的证明(或说明),就像例1、例2对正确的选项判断那样.判断一个不等式是不正确的,应举出反例.例3 解下列不等式:(1)x2-x -1>0;(2)x2-3x +2>0;(3)2x2-3x +1≤0;(4)(5)|2x -1|<3;(6);021>--x x .1212≤--x x 解:(1)方程x2-x -1=0的两个根是结合函数y =x2-x -1的图象,可得不等式x2-x -1>0的解集为251,21±=x x }.251251|{+>-<x x x 或 (2)不等式x2-3x +2>0等价于(x -1)(x -2)>0,易知方程(x -1)(x -2)=0的两个根为x1=1,x2=2,结合函数y =x2-3x +2的图象,可得不等式x2-3x +2>0的解集为{x |x <1或x >2}.(3)不等式2x2-3x +1≤0等价于(2x -1)(x -1)≤0,以下同(2)的解法, 可得不等式的解集为}.121|{≤≤x x(4)等价于(x -1)(x -2)>0,以下同(2)的解法,可得不等式的解集为{x |x <1或x >2}.021>--x x (5)不等式|2x -1|<3等价于-3<2x -1<3,所以-2<2x <4,即-1<x <2,所以不等式|2x -1|<3的解集为{x |-1≤x <2}.(6)不等式可以整理为1212≤--x x ,021≤-+x x ,021≤-+x x 等价于以下同(4)的解法,可得不等式的解集为{x |-1≤x <2}..021021=-+<-+x x x x 或 【评析】一元一次不等式、一元二次不等式的解法要熟练掌握.其他不等式的解法适当掌握.1.利用不等式的性质可以解一元一次不等式.2.解一元二次不等式要注意函数、方程、不等式三者之间的联系,通过研究与一元二次不等式相对应的一元二次方程的根的情况、进而结合相应的二次函数的图象就可以解决一元二次不等式解集的问题了.所以,解一元二次不等式的步骤为:计算二次不等式相应的方程的判别式;求出相应的一元二次方程的根(或根据判别式说明无根);画出相应的二次函数的简图;根据简图写出二次不等式的解集.3、不等式与(x -a)(x -b)>0同解;不等式与(x -a)(x -b)<0同解;0>--bx a x 0<--b x a x 4*、不等式|f(x)|<c 与-c <f(x)<c 同解;不等式|f(x)|>c 与“f(x)>c 或f(x)<-c ”同解.在解简单的分式不等式时要注意细节,例如(5)题关于“≤”号的处理.例4 解下列关于x 的不等式;(1)ax +3<2;(2)x2-6ax +5a2≤0.解:(1)由ax +3<2得ax <-1,当a =0时,不等式解集为;∅当a >0时,不等式解集为;}1|{ax x -<当a <0时,不等式解集为.}1|{a x x -> (2)x2-6ax +5a2≤0等价于不等式(x -a)(x -5a)≤0,当a =0时,不等式解集为{x |x =0};当a >0时,不等式解集为{x |a ≤x ≤5a};当a <0时,不等式解集为{x |5a ≤x ≤a}.【评析】含参数的不等式的解法与不含参数的不等式的解法、步骤是完全一致的.要注意的是,当进行到某一步骤具有不确定性时,需要进行分类讨论.如(2)的解决过程中,当解出方程(x -a)(x -5a)=0的两根为x1=a ,x2=5a 之后,需要画出二次函数y =x2-6ax +5a2的草图,这时两根a 与5a 的大小不定,需要讨论,当分a =0,a >0,a <0三种情况之后,就可以在各自情况下确定a 与5a 的大小,画出二次函数y =x2-6ax +5a2的草图写出解集了.例5 已知a >b >0,c <d <0,m <0.求证:⋅->-db mc a m 证明:方法一(作差比较)由已知b -a <0,c -d <0,又m <0,所以m[(b -a)+(c -d)]>0,因为a >b >0,c <d <0,所以a -c >0,b -d >0, 所以,所以0))(()]()[(>---+-d b c a d c a b m ⋅->->---db mc a md b m c a m 即,0 方法二因为c <d <0,所以c -d <0,又a >b >0,所以a -b >0,所以a -b >c -d ,所以a -c >b -d >0,所以,又因为m <0,所以d b c a -<-11⋅->-db mc a m 例6 已知a +b +c =0,a >b >c ,求证:(1)a >0;(2).2->a c证明:(1)假设a ≤0,因为a >b >c ,所以b <0,c <0.所以a +b +c <0,与a +b +c =0矛盾.(2)因为b =-a -c ,a >b ,所以,所以2a >-c ,又a >0,所以,所以a c ->2.2->a c 例7 已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 证明:假设(1-a)b ,(1-b)c ,(1-c)a 均大于,41 即,41)1(,41)1(,41)1(>->->-a c c b b a 因为a ,b ,c ∈(0,1),所以1-a ,1-b ,1-c ∈(0,1),所以,同理(1-b)+c >1,(1-c)+a >1,1)1(2)1(>-≥+-b a b a所以(1-a)+b +(1-b)+c +(1-c)+a >3,即0>0,矛盾.所以(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 【评析】证明常用的方法有比较法、综合法、分析法与反证法等.证明不等式也是如此.1、例5中的方法一所用到的比较法从思维、书写的角度都较为容易,也相对易于把握,要熟练掌握.2、例5中的方法二所用到的综合法是一般证明题常用的方法,其书写方法简明、易读,但要注意的是,这样的题的思路常常是分析法.比如,例5中的方法二的思路我们可以认为是这样得到的:欲证只需证明m(b -d)>m(a -c)(因为b -d >0,a -c >0),即只需证明b -d <a -c ,即只需证明a -b >c -d ,,db mc a m ->- 而由已知a -b >0,c -d <0,所以可以循着这个思路按照相反的顺序书写.所以,在很多情况下,分析法更是思考问题的方法,而综合法更是一种书写方法.3、适合用反证法证明的常见的命题一般是非常显而易见的问题(如例6(1))、否定式的命题、存在性的命题、含至多至少等字样的命题(如例7)等等.证明的步骤一般是:(1)假设结论的反面是正确的;(2)推出矛盾的结论;(3)得出原来命题正确的结论.例8 根据图中图形及相应点的个数找规律,第8个图形相应的点数为______.【分析】第一个图有1行,每行有1+2个点;第二个图有2行,每行有2+2个点;第三个图有3行,每行有3+2个点;……第八个图有8行,每行有8+2个点,所以共有8×10=80个点.答:80.练习1-3一、选择题1.若则下列各式正确的是( )011>>b a (A)a >b(B)a <b (C)a2>b2 (D)2211b a < 2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a2<b2 (B)a2b <ab2 (C) (D)b a ab 2211<b a a b < 3.已知A ={x ||x |<a},B ={x |x >1},且A ∩B =,则a 的取值范围是( )∅(A){a |a ≤1} (B){a |0≤a ≤1} (C){a |a <1} (D){a |0<a <1}4.设集合M ={1,2,3,4,5,6},S1,S2,…,Sk 都是M 的含有两个元素的子集,且满足:对任意的Si ={ai ,bi}、Sj ={aj ,bj}(i ≠j ,i ,j ∈{1,2,3,…,k})都有,(min{x ,y}表示两个数x ,y 中的较小者),则k 的最大值是( )},min{},min{j j j j i i i i a b b a a bb a =/ (A)10 (B)11 (C)12 (D)13二、填空题5.已知数列{an}的第一项a1=1,且,请计算出这个数列的前几项,并据此归纳出这个数列的通项公式an =______.),3,2,1(11 =+=+n a aa n n n6.不等式x2-5x +6<0的解集为____________.7.设集合A ={x ∈R ||x |<4},B ={x ∈R |x2-4x +3>0},则集合{x ∈R |x ∈A ,且xA ∩B}=____________.∉8.设a ∈R 且a ≠0,给出下面4个式子:①a3+1;②a2-2a +2;③;④a a 1+⋅+221aa 其中恒大于1的是______.(写出所有满足条件式子的序号)三、解答题9.解下列不等式:(1)2x2+x >0;(2)x2+3x +1<0;(3);(4)|2-x |<3;(5).032<-x x 21>-x x 10.已知a +b +c =0,求证:ab +bc +ca ≤0.11.解下列关于x 的不等式:(1)x2-2ax -3a2<0;(2)ax2-x >0;习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( )(A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x |(C)若x 是负数,则x ≠|x | (D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N)∪P (B)(M ∩N)∩P(C)(M ∩N)∪(UP) (D)(M ∩N)∩(UP)3.“”是“对任意的正数”的( )81=a 12,≥+xa x x(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a&b ∈P ”,则运算“&”可以是( )(A)加法 (B)减法 (C)乘法 (D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )(A)ab >ac (B)c(b -a)<0 (C)cb2<ab2 (D)ac(a -c)<0二、填空题6.若全集U ={0,1,2,3}且UA ={2},则集合A =______.7.命题“x ∈A ,但xA ∪B ”的否定是____________.∃∉8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A},则B =____________.9.已知集合A ={x |x2-3x +2<0},B ={x |x <a},若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a2+b2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)三、解答题11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a2+b2的大小.13.设a ≠b ,解关于x 的不等式:a2x +b2(1-x)≥[ax +b(1-x)]2.14.设数集A 满足条件:①AR ;②0A 且1A ;③若a ∈A ,则⊆∉∉.11A a ∈- (1)若2∈A ,则A 中至少有多少个元素;(2)证明:A 中不可能只有一个元素.专题一 集合、逻辑与不等式参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A 表示非负偶数集,集合B 表示能被4整除的自然数集,所以{正奇数}(UB),从而U =A ∪(UB).二、填空题5.{x |x <4} 6.4个 7.{x |-1<x <2} 8.a1;2个(x 为a1或a3).三、解答题9.(A ∩B)∪C ={1,2,3,4}10.分析:画如图所示的韦恩图:得A ={0,2,3,5,7},B ={2,4,6,8}.11.答:①a <4;②a ≥-2;③-2≤a <4提示:画数轴分析,注意a 可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件 6.若|x |≤1,则x ≥-1 7.充要条件 8.④ 提示:8.因为AB ,即对任意x ∈A ,有x ∈B .根据逻辑知识知,AB ,即为④.⊆ 另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab =0,则a2+b2=0;是假命题;例如a =0,b =1否命题:若a2+b2≠0,则ab ≠0;是假命题;例如a =0,b =1逆否命题:若ab ≠0,则a2+b2≠0;是真命题;因为若a2+b2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.练习1-3一、选择题1.B 2.C 3.A 4.B二、填空题5. 6.{x |2<x <3} 7.{x ∈R |1≤x ≤3| 8.④n1 三、解答题9.答:(1);(2);}210|{-<>x x x 或}253253|{+-<<--x x (3);(4){x |-1<x <5};(5).}230|{<<x x }310|{<<x x 10.证明:ab +bc +ca =b(a +c)+ac =-(a +c)(a +c)+ac =-a2-ac -c2所以ab +bc +ca ≤0.11.解:(1)原不等式(x +a)(x -3a)<0.⇔分三种情况讨论:①当a <0时,解集为{x |3a <x <-a};②当a =0时,原不等式x2<0,解集为;⇔∅③当a >0时,解集为{x |-a <x <3a}.(2)不等式ax2-x >0x(ax -1)>0.⇔分三种情况讨论:①当a =0时,原不等式-x >0,解集为{x |x <0};⇔②当a >0时,x(ax -1)>0x(x -)>0,解集为;⇔a 1}10|{ax x x ><或 ③当a <0时,x(ax -1)>0x(x -)<0,解集为.⇔a 1}01|{<<x a x 习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③.∀ 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式即21<x ,021,021<-<-xx x 所以,此不等式等价于x(2x -1)>0,解得x <0或,012>-x x 21>x 所以,原不等式的解集为{x |x <0或}.21>x 12.解:(1)由a +b =1得a =1-b ,因为0<a <b , 所以1-b >0且1-b <b ,所以.121<<b(2)a2+b2-b =(1-b)2+b2-b =2b2-3b +1=⋅--81)43(22b 因为,所以121<<b ,081)43(22<--b即a2+b2<b .13.解:原不等式化为(a2-b2)x +b2≥(a -b)2x2+2b(a -b)x +b2,移项整理,得(a -b)2(x2-x)≤0.因为a ≠b ,故(a -b)2>0,所以x2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,,2三个元素.21 (2)假设A 中只有一个元素,设这个元素为a ,由已知,则.即a2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.A a∈-11a a -=11专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a2+2a +2=-1,即a2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( )(A) (B)22)(,t y x y ==2|,|t y x y ==(C) (D)1,112+=--=x y x x y x x y x y 2,== 【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1)(2);11--=x y ;3212-+=x x y (3) (4);)1()3lg(0-+-=x xx y ;2|2|12---=x x y 解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}.。
「优质」人教版最新高中数学复习试题(完整版)Word版
§1.1 集合(附参考答案)重难点:(1)集合的含义及表示.(2)集合的基本关系 (3)集合的基本运算经典例题:1.若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件?2.已知A ={x |x =8m +14n ,m 、n ∈Z },B ={x |x =2k ,k ∈Z },问: (1)数2与集合A 的关系如何? (2)集合A 与集合B 的关系如何?3.已知集合A={}20,xx x -= B={}2240,x ax x -+=且A ⋂B=B ,求实数a 的取值范围.基础训练:1.下面给出的四类对象中,构成集合的是( )A .某班个子较高的同学B .长寿的人CD .倒数等于它本身的数2.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是__________. 3. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y 且0,0x y <>} B . {(x,y)0,0x y <>} C. {(x,y) 0,0x y <>} D. {x,y 且0,0x y <>} 4.用适当的符合填空:0__________{0}, a __________{a },π________Q ,21________Z ,-1________R , 0________N , 0Φ.{a }_______{a,b,c }.{a }_________{{a },{b },{c }},Φ_______{a,b }5.由所有偶数组成的集合可表示为{x x = }.6.用列举法表示集合D={2(,)8,,x y y x x N y N =-+∈∈}为 .7.已知集合A={2210,,x ax x a R x R ++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围. 8.设U 为全集,集合M 、NU ,且M ⊆N ,则下列各式成立的是( )A .M C U ⊇N C UB .MC U ⊆M C .M C U ⊆N C UD .M C U ⊆N9. 已知全集U ={x |-2≤x ≤1},A ={x |-2<x <1 =,B ={x |x 2+x -2=0},C ={x |-2≤x <1 =,则( )A .C ⊆AB .C ⊆C uA C.C uB =CD . CuA =B10.已知全集U ={0,1,2,3}且C UA ={2},则集合A 的真子集共有( ) A .3个 B .5个 C .8个 D .7个11.如果M ={x |x =a 2+1,a ∈N*},P ={y |y =b 2-2b +2,b ∈N +},则M 和P 的关系为M _________P . 12.集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B A ,则实数m 的值是 . 13.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形};(2)A={2|20x x x --=},B={|12x x -≤≤},C={2|44x x x +=}; (3)A={10|110x x ≤≤},B={2|1,x x t t R =+∈},C={|213x x +≥};(4)11{|,},{|,}.2442k k A x x k Z B x x k Z ==+∈==+∈1.已知集合{}{}{}2220,0,2Mx xpx N x xx q M N =++==--=⋂=且,则q p ,的值为 ( ). A .3,2p q =-=- B .3,2p q =-= C .3,2p q ==- D .3,2p q ==2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆A ∩B 的集合C 的个数是( ). A .0B .1C .2D .33.已知集合{}{}|35|141A x x B x a x a =-≤≤=+≤≤+,,A B B ⋂=且, B φ≠,则实数a 的取值范围是( ). .1.01A a B a ≤≤≤.0.41C a D a ≤-≤≤4.设全集U=R ,集合{}{}()()0,()0,0()f x M x f x N xg x g x =====则方程的解集是( ).A .MB . M ∩(CuN )C . M ∪(CUN )D .M N ⋃5.有关集合的性质:(1) Cu (A ⋂B)=( Cu A )∪(Cu B ); (2) Cu (A ⋃B)=( Cu A )⋂(Cu B ) (3) A ⋃ (Cu A)=U (4) A ⋂ (Cu A)=Φ 其中正确的个数有( )个. A.1 B . 2 C .3 D .46.已知集合M ={x |-1≤x <2=,N ={x |x —a ≤0},若M ∩N ≠Φ,则a 的取值范围是 . 7.已知集合A ={x |y =x 2-2x -2,x ∈R },B ={y |y =x 2-2x +2,x ∈R },则A ∩B = 8.表示图形中的阴影部分 .9.集合U ,M ,N ,P(A )M ∩(N ∪P ) (B )M ∩C U (N ∪P )(C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P )A BC10.在直角坐标系中,已知点集A={}2(,)21y x y x -=-,B={}(,)2x y y x =,则(CuA) ⋂ B= . 11.已知集合M={}{}{}2222,2,4,3,2,46,2a a N a a a a M N +-=++-+⋂=且,求实数a 的的值12.已知集合A=}{240x Rx x ∈+=,B=}{222(1)10x Rx a x a ∈+++-=,且A ∪B=A ,试求a 的取值范围.§1.2函数与基本初等函数重难点:(1)函数(定义域、值域、单调性、奇偶性、最大值、最小值) (2)基本初等函数(指数函数、对数函数、幂函数)(函数基本性质)典型例题:1.设函数f (x )的定义域为[0,1],求下列函数的定义域(1)H (x )=f (x 2+1);(2)G (x )=f (x +m )+f (x -m )(m >0).2.已知函数f (x )=2x 2-mx +3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f (1)等于 ( )A .-3B .13C .7D .含有m 的变量基础训练:1. 下列四组函数中,表示同一函数的是( )A .(),()f x x g x ==.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D .()()f x g x ==2.函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上 3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠B .{}2x x ≠-C .{}1,2x x ≠--D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞ B .5(,]4-∞ C . 4[,)3+∞ D .4(,]3-∞5.函数()f x 对任何x R +∈恒有122()()f x x f x x ⋅=,已知(8)3f =,则f = .6.规定记号“∆”表示一种运算,即a b a b a b R +∆=+∈,、. 若13k ∆=,则函数()f x k x =∆的值域是___________.7.求函数y x =-8. 求下列函数的定义域 : ()121x f x x =--9.已知f(x)=x 2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t). 10.函数()f x =是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数 11.奇函数y =f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ()12.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 . 13. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是.14.如果函数y =f (x +1)是偶函数,那么函数y =f (x )的图象关于_________对称15. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.16.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象, 基础训练:(指数函数)经典例题:求函数y =3322++-x x的单调区间和值域1.数111684111(),(),()235a b c ---===的大小关系是( )A .a b c <<B .b a c <<C .c a b <<D .c b a <<2.下列函数中,图象与函数y =4x的图象关于y 轴对称的是( )A .y =-4xB .y =4-xC .y =-4-xD .y =4x +4-x3.把函数y=f(x)的图象向左、向下分别平移2个单位长度,得到函数2xy =的图象,则( ) A .2()22x f x -=+ B .2()22x f x -=- C .2()22x f x +=+ D .2()22x f x +=-4.设函数()(0,1)xf x a a a -=>≠,f(2)=4,则( )A .f(-2)>f(-1)B .f(-1)>f(-2)C .f(1)>f(2)D .f(-2)>f(2) 5.设2m nmnx a -+=,求x -= .6.函数1()1(0,1)x f x aa a -=->≠的图象恒过定点 .7.(1)已知x ∈[-3,2],求f(x)=11142xx-+的最小值与最大值.(2)已知函数233()x x f x a-+=在[0,2]上有最大值8,求正数a 的值.8.求下列函数的单调区间及值域: (1) (1)2()()3x x f x +=; (2)124xxy -=; (3)求函数()2f x =基础训练:(对数函数)经典例题:已知f (log a x )=22(1)(1)a x x a --,其中a >0,且a ≠1.(1)求f (x ); (2)求证:f (x )是奇函数; (3)求证:f (x )在R 上为增函数. 1.若lg 2,lg 3a b ==,则lg 0.18=( )A .22a b +-B .22a b +-C .32a b --D .31a b +- 2.函数y =)A .[1-+B .[0,1]C .[0,)+∞D .{0}3.设函数200,0(),()1,lg(1),0x x f x f x x x x ≤=>+>⎧⎨⎩若则的取值范围为( )A .(-1,1)B .(-1,+∞)C .(,9)-∞D .(,1)(9,)-∞-+∞4.已知函数f (x )=2log (0)3(0)x x x x >≤⎧⎨⎩,则f [f (14)]的值是( )A .9B .19C .-9D .-195.计算200832log [log (log 8)]= .6.函数f(x)的定义域为[0,1],则函数3[log (3)]f x -的定义域为 . 基础训练:(幂函数)经典例题:比较下列各组数的大小:(1)1.531,1.731,1; (2)232-,(-107)32,1.134-;1.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0)(2,+∞)C .(-∞,0)[2,+∞ )D .(0,2) 2.函数y =52x 的单调递减区间为( )A .(-∞,1)B .(-∞,0)C .[0,+∞ ]3.如图,曲线c 1, c 2分别是函数y =x m和y =x n在第一象限的图象,那么一定有( )A .n<m<0B .m<n<0C .m>n>04.幂函数的图象过点(2,14), 则它的单调递增区间是.5.设x∈(0, 1),幂函数y=ax的图象在y=x的上方,则a的取值范围是.§1.3函数的应用重难点:(1)函数与方程(零点与一元二次方程根存在性的关系,了解二分法)(2)函数模型及其应用(指数函数、对数函数、幂函数、分段函数的增长特点)(函数与方程)经典例题:研究方程|x2-2x-3|=a(a≥0)的不同实根的个数.1.如果抛物线f(x)= x2+bx+c的图象与x轴交于两点(-1,0)和(3,0),则f(x)>0的解集是()A. (-1,3) B.[-1,3] C.(,1)(3,)-∞-⋃+∞ D.(,1][3,)-∞-⋃+∞2.某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是()件(即生产多少件以上自产合算)A.1000 B.1200 C.1400 D.16003.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台 D.180台§2.1 空间几何体重难点:(1)空间几何体的结构(2 ) 空间几何体的三视图和直观图(3)空间几何体的表面积和体积典型例题:半径为R 的半圆卷成一个圆锥,则它的体积为( )A3R B3R C3R D3R 基础训练:一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A .棱台 B .棱锥 C .棱柱 D .都不对2.下图是由哪个平面图形旋转得到的( )A B C D3.棱长都是1的三棱锥的表面积为( )A B . C . D . 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 5.正方体的内切球和外接球的半径之比为( )A B 2 C .2 D 36.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,主视图 左视图 俯视图则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 7.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
人教版高一数学必修1,2期末复习资料总复习题(精编共5套)
人教版高一数学必修一二复习资料期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xa x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( ) A. 0>a B. 1>a C. 1<a D. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、y =D9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________x17、将(61)0,2,log 221,log 0.523由小到大排顺序:18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
高中数学新课标测试题及答案精选全文
可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。
3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。
4、高中数学课程应注重提高学生的数学(思维)能力。
5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。
6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。
7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。
9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。
10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。
二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。
(错,改:高中数学课程每个模块2学分,每个专题1学分。
)2、函数关系和相关关系都是确定性关系。
(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
(对)5、教师应成为学生进行数学探究的领导者。
(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。
)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
人教版高中数学选择性必修第一册全册基础复习必刷检测卷(全解全析)
高二数学人教版选择性必修第一册全册考试复习必刷检测卷(基础版)全解全析1.D解:对于选项A :若{a ,b ,}c 可以作为空间的一个基底,d 与c 共线,0d ≠,则{a ,b ,}d 也可以作为空间的一个基底,故A 是真命题.对于选项B :已知向量//a b ,则a ,b 与任何向量都不能构成空间的一个基底,故B 是真命题.对于选项C :已知A ,B ,M ,N 是空间中的四点,若BA ,BM ,BN 不能构成空间的一个基底,则A ,B ,M ,N 四点共面,故C 是真命题.对于选项D :已知{a ,b ,}c 是空间的一个基底,若m a c =+,则{a ,b ,}m 也是空间的一个基底,故D 是真命题.故选:D .2.A 【详解】由题设,(1,1,0)(1,0,2)(1,,2)ka b k k k +=+-=-,22(1,1,0)(1,0,2)(3,2,2)a b -=--=-,∵ka b +与2a b -互相平行,∴ka b +(2)a b λ=-且R λ∈,则13222k k λλλ-=⎧⎪=⎨⎪=-⎩,可得21k λ=-⎧⎨=-⎩.故选:A 3.B 【详解】因为两直线3x +4y -10=0与ax +8y +11=0平行,所以8113410a =≠-,解得:a =6,所以ax +8y +11=0为6x +8y +11=0,即113402x y ++=,由两平行线间的距离公式可得:两条平行直线3x +4y -10=0与6x +8y +11=0之间的距离为:3110d =.故选:B.4.B 【详解】圆的方程为222440x y x y +---=,化为标准方程:()()22129x y -+-=,圆心为()1,2N ,半径为3r =,当过点()1,3M 的直线与NM垂直时,弦长最短,且AC ==当过点()1,3M 的直线且过圆心时,弦长最长,且26BD r ==,此时,AC BD ⊥,所以四边形ABCD 面积为11622S AC BD =⋅=⨯=故选:B 5.D 【详解】由题意知11||18AB AF BF ++=.又||4AB =,所以1114AF BF +=.根据双曲线的定义可知1212|2a AF AF BF BF =-=-∣,所以()1122414410a AF BF AF BF =+-+=-=,解得52a =,所以2254m a ==.故选:D 6.B 【详解】设1122,MF r MF r ==,则1222,r r a +==由余弦定理得2221212122||||||2||||cos3F F MF MF MF MF π=+-所以21244,r r c =-22221212124()c r r r r r r =++=+因为1212F MF F MAF MASSS=+,所以12121211sin ||sin ||sin232323r r r MA r MA πππ=⋅⋅+⋅⋅整理得()1212·,r r r r MA =+即23442,2c -=⨯整理得21,4c =所以11,1,,22c c a e a ====故选:B.7.C 【详解】因为,AC AB BD AB ⊥⊥,所以0,0CA AB BD AB ⋅=⋅=,因为二面角为60︒,所以1cos 6068242AC BD AC BD ⋅=⋅⋅︒=⨯⨯=,即24CA BD ⋅=-,所以()222CD CD CA AB BD==++222222CA AB BD CA AB CA BD AB BD=+++⋅+⋅+⋅222361664048068CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++-+=,所以CD =CD 的长为故选:C.8.B 【详解】由题可知:22:(1)(2)2C x y -+-=,圆心()1,2C ,半径r =又CE CF ⊥,P 是EF 的中点,所以112CP EF ==,所以点P 的轨迹方程22(1)(2)1x y -+-=,圆心为点()1,2C ,半径为1R =,若直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则以AB 为直径的圆要包括圆22(1)(2)1x y -+-=,点()1,2C 到直线l 的距离为d =所以AB 长度的最小值为()212d +=,故选:B .9.BD 【详解】解:因为AB AC =,由题意可得三角形ABD 的欧拉线为BC 的中垂线,由(2,4)B -,点(5,3)C -可得BC 的中点为31,22⎛⎫⎪⎝⎭,且43125BC k +==---,所以线段BC 的中垂线方程为:1322y x -=-,即10x y --=,因为三角形ABC 的“欧拉线”与圆222:(5)M x y r -+=相切,所以圆心(5,0)到直线10x y --=的距离d r ===所以圆M 的方程为:22(5)8x y -+=,因为圆心(5,0)到直线30x y -+=的距离d =,A 中,圆M 上点到直线30x y -+=的距离的最大值为d r +==故A 不正确:B 中,圆M 上点到直线30x y -+=的距离的最小值为d r -==B 正确;C 中:令t x y =+,所以y t x =-,代入圆M 的方程22(5)8x y -+=,可得22(5)()8x t x -+-=,整理可得222(102)170x t x t -+++=,由于(,)x y 在圆上,所以222(102)170x t x t -+++=有根,则()()2210242170t t ∆=+-⨯⨯+≥,整理可得:29100t t -+≤,解得:19t ≤≤,所以t 的最小值为1,即x y +的最小值为1,所以C 错误;D 中:22(1)()2x a y a --+-=圆心坐标(1,)a a +;圆M 的22(5)8x y -+=的圆心坐标为(5,0),半径为要使圆22(1)()2x a y a --+-=与圆M 有公共点,则圆心距∈,≤22470410a a a a ⎧-+≥⎨--≤⎩,解得22a ≤≤D 正确;故选:BD .10.BD解:对于111:A AC AB BC CC AB AD AA =++=++,∴22221111222AC AB AD AA AB AD AD AA AD AA =+++⋅+⋅+⋅363636266cos 60266cos 60266cos 60216=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,所以1||AC =A 错误;对于:B 11()()AC BD AB AD AA AD AB ⋅=++⋅-22110AB AD AB AD AB AD AA AD AA AB =⋅-+⋅+⋅--⋅=,所以10AC DB ⋅=,即1AC DB ⊥,2222()()0AC BD AB AD AD AB AD AB AD AB ⋅=+⋅-==--=,所以0AC BD ⋅=,即AC BD ⊥,因为1AC AC A ⋂=,1,AC AC ⊂平面1ACC ,所以BD ⊥平面1ACC ,选项B 正确;对于C :向量1B C 与1BB 的夹角是18060120︒-︒=︒,所以向量1B C 与1AA 的夹角也是120︒,选项C 错误;对于11:D BD AD AA AB =+-,AC AB AD=+所以()2222211111222BD AD AA AB AD AA AB AD AA AD AB AA AB =+-=+++⋅-⋅-⋅,1||BD ∴=同理,可得||AC =11()()18183636181836AC BD AD AA AB AB AD ⋅=+-⋅+=+-++-=,所以111cos||||AC BDBD ACAC BD⋅<⋅>==⋅D正确.故选:BD.11.AD【详解】如图所示,设椭圆的左焦点为F',连接AF',根据椭圆的对称性知||AF BF'=,所以||||||26AF BF AF AF a'+=+==,故A正确;由椭圆22193x y+=,可得3a=,则26a=,因为0m<<||AB的取值范围是(0,6),所以ABF的周长为||||||||6AB AF BF AB++=+,其取值范围是(6,12),故B错误;联立方程组22193yx y⎧=⎪⎨+=⎪⎩,解得(A,B,又由F,所以(60BA BF⋅=-⋅=-<,所以ABF∠为钝角,则ABF为钝角三角形,故C错误;联立方程组221193yx y=⎧⎪⎨+=⎪⎩,解得(A,B,可得((0,1)0BA BF⋅=-⋅-=,所以90ABF∠=︒,又由||1BF=,||AB=112ABFS=⨯=D正确.故选:AD.12.BCD【详解】∵圆()22:116C x y+-=的圆心为()0,1C,半径4r=,∴与y轴正半轴的交点为()0,5,∵抛物线2:4E x y =的焦点为()0,1F ,准线方程为1y =-,由()2224116x y x y ⎧=⎪⎨+-=⎪⎩,得3x y ⎧=±⎪⎨=⎪⎩P 的纵坐标()3,5P y ∈,故A 错误;由抛物线的定义可得PN NF +等于点P 到抛物线E 的准线的距离,故B 正确;易知圆C 的圆心到抛物线E 的准线的距离为2,故C 正确;PFN 的周长为()158,10P P PF PN NF r y y ++=++=+∈,故D 正确.故选:BCD.13.4-解:因为向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,所以向量()2,1,3a b x +=-+,因为()a b c +⊥,所以()0a b c +⋅=,即()()211230x x -⨯+⨯-++=,解得4x =-故答案为:4-14【分析】建立空间直角坐标系,利用空间向量法求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,则()10,0,0A ,()4,0,4B ,()0,0,4A ,()0,4,1E ,所以()14,0,4A B =,()0,4,3AE =-,设异面直线1A B 与AE 所成角为θ,则11cos 10A B AE A B AEθ⋅==⋅故答案为:321015255【详解】由于1Rt PMC 与2Rt PNC 中,PM PN =,121MC NC ==,∴1Rt PMC 与2Rt PNC 全等,∴有12PC PC =,则P 在线段12C C 的垂直平分线上,根据10(0)C ,、2(24)C ,,直线12C C 的斜率为422k ==,∴线段12C C 的垂直平分线的斜率为12-,12C C 的的中点坐标为()1,2,∴其垂直平分线为()1212y x -=--,即250x y +-=,22(5)(1)a b -++()P a b ,、(51)Q -,两点间的距离,∴最小值就是Q 到250x y +-=的距离,2252525512--+.255.165【详解】解:依题意可得12PF PF ⊥,1QF OQ ⊥,所以2//PF OQ ,因为O 为12F F 的中点,所以Q 为1PF 的中点,()1,0F c -到直线:b l y x a =-的距离122bc d QF b a b===+,所以1122PF QF b ==,222211OQ OF QF c b a =-=-=,所以222PF OQ a==又122PF PF a -=,即222b a a -=,所以2b a =,所以2215c be a a==+=故答案为:517.(1)由直线:10l mx y m -+-=,可得()11y m x -=-,故直线l 过定点()1,1M ,因为()221115+-<,故M 在圆C 内,所以直线l 与圆C 总有两个不同的交点.(2)由(1)可得P 在圆内,因为2AP PB =,可得2AP PB =,如图所示,设PA a =,则2PB a =,故3AB a =,设AB 的中点为D ,则2aPD =且CD AB ⊥,设CD d =,因为()()2201111CP =-+-=,可得222222CA DA CD CP DP CD ⎧-=⎪⎨-=⎪⎩,即2222954114a d a d ⎧-=⎪⎪⎨⎪-=⎪⎩,解得22d =,221m m =+1m =±,故直线方程为0x y -=或20x y +-=.18.解(1)证明:因为ABCD 为菱形,所以O 为AC 的中点,因为PA PC =,所以PO AC ⊥,又因为PO CD ⊥,AC CD C =,,AC CD ⊂面ABCD 所以PO ⊥平面ABCD (2)PO ⊥平面ABCD ,以O 为原点,OB ,OC ,OP 的方向分别为x 轴,y 轴,z 轴,建立空间直角坐标系,//AB CD ,PBA ∴∠为异面直线PB 与CD 所成角,60PBA ∴∠=︒,在菱形ABCD 中,设2AB =,60ABC ∠=︒,1OA ∴=,3OB =设PO a =,则21PA a =+,23PB a +,在PBA △中,由余弦定理得:2222cos PA BA BP BA BP PBA =+-⋅⋅∠,∴22211432232a a a +=++-⨯+,解得6a =()0,1,0A ∴-,)3,0,0B,()0,1,0C ,(6P ,()3,0,0D -设平面PCD 的法向量(),,n x y z =r,()3,1,0CD =--,(0,6CP =-,则3060n CD x y n CP y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1z =,得()2,6,1n =-,设CM CP λ=,[]0,1λ∈则()(()0,1,00,1,60,1,6OM OC CM OC CP λλλλ=+=+=+-=-设直线OM 与平面PCD 所成角为θ,()()22sin 331667n OM n OMθλλ⋅∴==⋅⨯-+,解得17λ=,所以()2211716777CM CP ==⨯+=,即77CM =19.解:(1)因为直线l 过点()0,M b -和(,0)N a ,所以直线l 的方程为0bx ay ab --=,所以坐标原点O 到直线l 的距离2245ab d a b =+,又离心率3c e a ==222c a b =-,解得22164a b ⎧=⎨=⎩,即42a b =⎧⎨=⎩,所以椭圆方程为221164x y +=,22224225MN a b =+=+=(2)设直线:3m x ty =+,()11,A x y ,()22,B x y ,联立2231164x ty x y =+⎧⎪⎨+=⎪⎩消去x 得()224670t y ty ++-=,所以12264ty y t +=-+,12274y y t =-+,所以()1222211222133442674242AOBSt OE y y y y y y t t ⎛⎫⎛⎫=-=+-=-⨯ ⎪ ⎪⎝⎭⎝--++⎭()()2222222222776411246312122479781444241t t t t t t t ++=+⎛⎫⎛⎫++++++⎪ ⎪⎝⎭=⎝=⎭22221212411818179971616274272444t t t t ⎛=⎫⎛⎫+++++⋅ ⎪ ⎪⎝⎭≤⎝⎭+=+当且仅当2281716744t t ⎛⎫+= ⎪⎝⎭+即212t =时取等号,即()max4AOB S=,所以()()222222221122112222|||3|3OA O y B x y x y ty y t y =++++++=+++()()()22212121618t y y t y y =+++++()2222267612618444t t t t t t t ⎡⎤⎛⎫⎛⎫⎛⎫=+--⨯-+-+⎢⎥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()2222222211363636143611422118118201144214444222t t t t t t ⎡⎤⎢⎥⎡⎤⨯⨯⎛⎫⎢⎥⎢⎥=++-+=++-+= ⎪⎢⎥⎢⎥++⎝⎭⎛⎫+++⎣⎦+⎢⎥ ⎪⎝⎭⎣⎦20.(1)由已知设圆心(),3t t ,则由圆与x 轴正半轴相切,可得半径3r t =,∵圆心到直线:0l x y -=的距离d ==,由垂径定理得2272r t +=,解得1t =±,故圆心为()1,3或()1,3--,半径等于3,∵圆与x 轴正半轴相切,∴圆心只能为()1,3,故圆C 的方程为()()22139x y -+-=.(2)设(),M x y ,则(),A A AM x x y y =--,()7,6MB x y =--,∴142122A A x x xy y y -=-⎧⎨-=-⎩,∴143123A Ax x y y =-+⎧⎨=-+⎩,∵点A 在圆C 上运动,∴()()22314131239x y --+--=,即()()223153159x y -+-=,即()()22551x y -+-=,所以点M 的轨迹方程为()()22551x y -+-=,它是一个以()5,5为圆心,以1为半径的圆.21.(1)选①.如图,延长DA 到O ,使得AO =2AD ,沿EF 将四边形AEFD 翻折至四边形A EFD '',则ODF 也一同折起,折起后O 、A '、D '共线,连接OE ,连接OC ,OC 与BE 的交点即为平面A 'D 'C 与线段EB 的交点,即为点H ,又因为23OE OA OF OD ==,所以23EH CF =,因为CF =1,所以EH =23.选②.三棱锥C A EF '-看成以A '为顶点,即为A CEF '-,棱锥A EFH '-的体积是三棱锥C A EF '-体积的23,即△HEF 的面积是△CEF 的面积的23,即△FEH 的面积是△ECF 的面积的23,所以EH 是CF 的23,∵CF =1,∴EH =23.(2)(2)如图所示,以E 为原点,FE 方向为x 轴,与FE 垂直的方向为y 轴,由于平面A EFD ''与平面BCFE 垂直,故z 轴在平面A EFD ''.取BE 的中点M ,连接MF ,则,2,1,MF BE MF EM EF ⊥===设MEF α∠=,则cosαα==.∵EH =23,∴22cos sin ,033H αα⎛⎫- ⎪⎝⎭,,即H ⎛⎫ ⎪⎝⎭由EF =()F ,∴,1515FH ⎛⎫= ⎪ ⎪⎝⎭.xEA A EF AEF MEF ππθ∠=-∠=-∠=∠'=',又∵2,3,EA FD ''==∴()()2cos ,0,2sin ,3cos ,0,3sin A D αααα'',∴)cos 0sin ,0,55D A αα⎛''=-=- ⎝⎭,,,,0,55D ⎛'- ⎝⎭∵P 在线段A 'D '上,故可设0D P t D A ⎫'''==-⎪⎪⎝⎭,,,[]0,1t ∈.设P (x ,y ,z ),则,D P x y z ⎛'=- ⎝⎭,∴,0,5555P t ⎛⎫-+- ⎪ ⎪⎝⎭,∴FP ⎫=⎪⎪⎝⎭,设平面PHF 的法向量为(),,a m n p =,则0,0,a FH a FP ⋅=⋅=即134000m n m p +=⎧⎪⎫⎛⎫⎨++=⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎩,令m =4,则n =-13,p =()2343t t+--,()2344,13,3t a t ⎛⎫+=-- -⎝⎭,平面EFH 的法向量之一为()0,0,1b =,记()2343t s t+=-(0s >).所以二面角P HF E --的平面角为θ,cos a b a bθ⋅==为使cos θ最大,于是s 要最大.()23430833t s tt+==-+--,当t =1时s 最大为7,此时P 与A'重合,cos θ的最大值为=22.(1)∵A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且AB =,直线AB 的斜率为12-,由(),0A a ,()0,B b,得AB ==又0102b b k a a -==-=--,解得2a =,1b =,∴椭圆的方程为2214x y +=;(2)证明:直线l 的方程为2x y m =-+,即122m y x =-+,将其代入2214x y +=,消去y ,整理得222240x mx m -+-=.设()11,C x y ,()22,D x y .∴12x x m +=,212122x x m =-.记OCM 的面积是1S ,ODN △的面积是2S .由题意(),0M m ,0,2m N ⎛⎫⎪⎝⎭,∵12x x m +=,∴111212222m y x x m x ⎛⎫=-+=-+= ⎪⎝⎭,∵112OCM S m y =△,2122ODN m S x =△.∴OCM 的面积等于ODN △的面积;(3)证明:由(2)知,(),0M m ,12x x m +=,212122x x m =-,∴()()2222222112x m CM M y D y x m =-++-++,22222211122211222222m m x mx m x x mx m x ⎛⎫⎛⎫=-++-++-++-+ ⎪ ⎪⎝⎭⎝⎭,()()2212121255554222x x x x m x x m =+--++,2222551552542222m m m m ⎛⎫=---+= ⎪⎝⎭.。
「精选」人教版最新高三复习数学题及参考答案-精选文档
精选文档 可编辑修改1 俯视图侧视图正视图334高考复习数学试题(附参考答案)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中,2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .363. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( )A .2-B .2C .-4D .44.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( ) A. 192- B. 192 C. -6 D. 6 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x ,若A B C D精选文档 可编辑修改212012x x <<<<,则ba的取值范围是( ) A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b a b+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅=,123tan 3PF F ∠=,则该椭圆的离心率为 . (二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A bB a= 且sin cos C A = (Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.7 98 4 4 6 4 7 9 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i i i =2009输出 f i (x )精选文档 可编辑修改317. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分,负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过C B F ,,三点作圆P ,其中圆心P 的坐标为()n m ,.(Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论.19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4, 公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列; (Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由. 21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ).对阵队员A 队队员胜 A 队队员负 1A 对1B 23 132A 对2B 2535 3A 对3B 37 35精选文档 可编辑修改 4(Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
高中数学复习题(含答案)
高中数学复习题(含答案)一、单选题1.不等式(5)(4)18x x -+≥的解集是( ) A .[]1,2-B .[]2,1-C .(][],12,-∞-+∞ D .(][),21,-∞-+∞2.函数13x y -=的值域为( ) A .(],3-∞B .(]0,1C .(]0,3D .(]1,33.函数22y x x =-,[]1,3x ∈-的值域为( ) A .[]0,3B .[]1,3-C .[]1,0-D .[]1,34.已知函数()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .32B .74C .D .945.已知函数()g x 的定义域为R ,对任意实数m 、n 都有()()()2022g m n g m g n +=++,且函数()()22022x x f x g x -=+的最大值为p ,最小值为q ,则p q +=( )A .2-B .2022C .2022-D .4044-6.已知()log 83a y ax =-在[]12,上是减函数,则实数a 的取值范围是( ) A .0,1 B .41,3⎛⎫⎪⎝⎭ C .4,43⎡⎫⎪⎢⎣⎭D .(1,+∞)7.已知213alog <,(0a >且1)a ≠,则a 的取值范围为( ) A .31,2⎛⎫⎪⎝⎭ B .2,13⎛⎫ ⎪⎝⎭ C .()30,11,2⎛⎫⋃ ⎪⎝⎭ D .()20,1,3⎛⎫⋃+∞ ⎪⎝⎭8.已知21()f x x ax x=+-,若对任意12[2,,)x x ∈+∞,当12x x ≠时恒有()()1212121f x f x x x x x ->-,则实数a 的取值范围是( ) A .[2,)-+∞B .[4,)-+∞C .(,2]-∞D .(,4]-∞9.三星堆遗址被称为20世纪人类最伟大的考古发现之一,其出土文物是宝贵的人类文化遗产,在人类文明发展史上占有重要地位.2021年,“沉睡三千年,一醒惊天下”的三星堆遗址的重大考古发现再一次惊艳世界.为推测文物年代,考古学者通常用碳14测年法推算(碳14测年法是根据碳14的衰变程度计算出样品的大概年代的一种测量方法).2021年,考古专家对某次考古的文物样本上提取的遗存材料进行碳14年代测定,检测出碳14的残留量约为初始量的66%,已知碳14的半衰期是5730年(即每经过5730年,遗存材料的碳14含量衰减为原来的一半).以此推算出该文物大致年代是( )(参考数据:log 190.7034≈-,log 346.4634≈-) A .公元前1600年到公元前1500年 B .公元前1500年到公元前1400年 C .公元前1400年到公元前1300年 D .公元前1300年到公元前1200年10.已知函数()ln ln(2)f x x x =+-,则A .y =()f x 的图像关于点(1,0)对称B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .()f x 在(0,2)单调递增11.已知函数221,1(){(2),1x x f x x x -≤=->,函数()y f x a =-有四个不同的的零点1x ,2x ,3x ,4x ,且1234x x x x <<<,则( )A .a 的取值范围是(0,12) B .21x x -的取值范围是(0,1)C .342x x +=D .12342212x x x x +=+ 二、多选题12.若1a b c >>>,则( )A .33a b >B .a b b c +>+C .c b a< D .22ac bc >13.下列函数中是偶函数,且在(1,)+∞为增函数的是( )A .()||f x x =B .2()23f x x x =--C .2()2||1f x x x =--D .1,0()1,0x x f x x x -+<⎧=⎨+>⎩ 14.已知:p x y >,则下列条件中是p 成立的必要条件的是( )A .22x y >B .33x y >C .11x y> D .332x y -+>15.已知函数(),0()23,0x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩,满足对任意12x x ≠,都有()()1212f x f x x x -<-0成立,则a 的取值不可以是( )A .34B .54C .13D .1616.已知函数()2431x f x =-+,则( ) A .()34f x << B .()()6f x f x +-=C .()3f x -为偶函数D .()f x 的图象关于点()0,3中心对称17.已知函数()f x 的定义域为R ,且满足()()()()2log 1,012,0x x f x f x f x x ⎧-≤⎪=⎨--->⎪⎩,则下列结论中正确的是( )A .()11f -=B .()20231f =-C .()()8102f f +=D .()f x 在[]2023,2023-上有675个零点参考答案:1.A【分析】将不等式化为220x x --≤,根据一元二次不等式的解法即可求解. 【详解】原不等式可化为220x x --≤,即(2)(1)0x x -+≤,解得12x -≤≤. 所以不等式的解集为[]1,2-. 故选:A 2.C【分析】11,结合指数函数的单调性,即可得到函数函数13y =的值域.【详解】∵0,∴11,∴1033<≤.故选:C 3.B【分析】求出函数的对称轴,结合二次函数的最值和对称轴的关系进行求解即可. 【详解】解:函数的对称轴为1x =,[]1,3x ∈-,∴当1x =时,函数取得最小值121y =-=-,当3x =或=1x -时函数取得最大值123=+=y , 即函数的值域为[]1,3-, 故选:B . 4.B【分析】直接根据分段函数解析式代入求值即可; 【详解】解:()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,222log 4log 7log 8<<,即()2log 72,3∈()()()22log 7log 72222227log 7log 71log 72224f f f -∴=-=-=== 故选:B 5.D【分析】由()()()2022g m n g m g n +=++,分别令0m n ==,m n =-,得到()2022g x +是奇函数,进而得到2022f x是奇函数求解.【详解】解:因为函数()g x 的定义域为R ,对任意实数m 、n 都有()()()2022g m n g m g n +=++,令0m n ==,得02022g ,令m n =-,得()()202220220g n g n ++-+=, 所以()2022g x +是奇函数,设()h x =因为()()2022h x h x x -==--+,所以()h x 是奇函数, 所以2022f x是奇函数,又因为奇函数的最大值和最小值互为相反数, 所以202220220p q +++=,即4044p q +=-, 故选:D 6.B【分析】令83t ax =-,由于底数0a >,故t 为减函数,再根据复合函数“同增异减”性质判断,结合真数大于0的特点即可求解a 的取值范围【详解】因为0a >,所以83t ax =-为减函数,而当1a >时,log a y t =是增函数,所以()log 83a y ax =-是减函数,于是1a >;由830ax ->,得83a x<在[]1,2上恒成立,所以min 8843323a x ⎛⎫<== ⎪⨯⎝⎭. 故选:B 7.D【分析】直接分a 大于1和大于0小于1两种情况讨论再结合函数的单调性即可求解. 【详解】解:因为:21log 3a a log a <=, 当1a >时,须23a <,所以1a >; 当01a <<时,21log 3aa log a <=,解得203a >>. 综上可得:a 的取值范围为:()20,1,3⎛⎫+∞ ⎪⎝⎭.故选:D . 8.B【分析】依题意,设12x x <,则()()1212122111x x f x f x x x x x --<=-,即函数()()1g x f x x=+在[2,)+∞上单调递增,再根据二次函数的性质解答即可.【详解】解:对任意的12[2,,)x x ∈+∞,都有()()1212121f x f x x x x x ->-,即()()222212112212121212121211x x x ax x ax x x a x x x x x x x x x x ⎛⎫⎛⎫-+--+--+-+ ⎪ ⎪⎝⎭⎝⎭=--()12121211x x a x x x x =+++>, 所以,()12a x x >-+,1x 、[)22,x ∈+∞且12x x ≠,所以,124x x +>,则()124x x -+<-,因此,4a ≥-. 故选:B . 9.B【分析】设时间经过了x 年,则573010.662x ⎛⎫= ⎪⎝⎭,结合参考数据计算得到答案.【详解】设时间经过了x 年,则573010.662x⎛⎫= ⎪⎝⎭,即()57360.50.66x=,573657365736573657360.50.50.50.50.5log 0.66log 66log 100log 662log 10x ==-=-219034.734634.43435⨯-==. 343240254111=--.故选:B. 10.C【详解】因为()(2)2ln 2ln(2)0f x f x x x +-=+-≠ ,所以A 错;1122()012(2)x f x x x x x x -=-==⇒=∴--' B ,D 错 因为()(2)f x f x =- ,所以C 对,选C.11.D【分析】将问题转化为()f x 与y a =有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】()y f x a =-有四个不同的零点1x 、2x 、3x 、4x ,即()f x a =有四个不同的解.()f x 的图象如下图示,由图知:1201,01a x x <<<<<,所以210x x ->,即21x x -的取值范围是(0,+∞). 由二次函数的对称性得:344x x +=,因为121221x x -=-,即12222x x +=,故12342212x x x x +=+. 故选:D 12.ABC【分析】根据不等式的性质进行逐项判断.【详解】对于选项A :因为1a b >>,所以33a b >,A 正确; 对于选项B :因为a c >,所以a b b c +>+,B 正确; 对于选项C :因为1a b c >>>,所以1c ab a a<=<,C 正确; 对于选项D :当0c =时,22ac bc =,D 错误. 故选:ABC 13.ACD【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案. 【详解】解:根据题意,依次分析选项:对于A ,()||f x x =,偶函数,且在(1,)+∞为增函数,符合题意; 对于B ,2()23f x x x =--,不是偶函数,不符合题意; 对于C ,2()2||1f x x x =--,是偶函数,在1(,)4+∞上为增函数,故在(1,)+∞为增函数,符合题意;对于D ,1,0()1,0x x f x x x -+<⎧=⎨+>⎩,是偶函数,且在(1,)+∞为增函数,符合题意;故选:ACD . 14.BD【分析】利用特殊值判断AC ,根据指数函数的单调性判断B ,利用基本不等式判断D ;【详解】解:当0x =,1y =-,满足x y >,但22x y >不成立,故A 错误; 因为x y >,3x y =在定义域上单调递增,所以33x y >,故B 正确; 当2x =,1y =时,满足x y >,但11x y>不成立,故C 错误; 因为30x >,30y ->,则33x y -+≥x y >,所以0x y ->,所以31x y ->所以2>,所以332x y -+>,故D 正确; 故选:BD 15.AB【分析】根据条件知()f x 在R 上单调递减,从而得出012031a a a <<⎧⎪-<⎨⎪≤⎩,求a 的范围即可得出答案.【详解】∵()f x 满足对任意12x x ≠,都有()()1212f x f x x x -<-0成立,∴()f x 在R 上是减函数,∴00120(2)03a a a a a <<⎧⎪-<⎨⎪-⨯+≤⎩,解得103a <≤,∴a 的取值范围是10,3⎛⎤⎥⎝⎦.故选:AB . 16.BD【分析】对A ,由31x +的范围得到131x+的范围,进而求出函数的值域;对B ,通过运算()()f x f x +-即可得到答案;对C ,根据函数奇偶性的定义即可判断;对D ,结合C 中的推理即可判断答案.【详解】对A ,因为31(1,)x +∈+∞,则1(0,1)31x ∈+,2(2,0)31x -∈-+, 所以2()4(2,4)31x f x =-∈+.A 错误; 对B ,22()()443131x x f x f x -+-=-+-++ 11332828263131332x x x x x x---++⎛⎫=-+=-⋅= ⎪++++⎝⎭.B 正确;对C ,记231()()31,R 3131x x x F x f x x -=-=-=∈++,311331()()311331x x x x xx F x F x ------===-=-+++,则函数()3f x -为奇函数.C 错误; 对D ,由C 可知,()3f x -为奇函数,则()3f x -的图象关于点(0,0)对称,所以()f x 的图象关于点(0,3)中心对称.D 正确. 故选:BD. 17.ABD【分析】根据解析式可直接求得()1f -的值,判断A ;根据0x >时的性质,利用变量代换,推出此时函数的周期,结合解析式,即可求值,判断B ,C ;利用函数周期以及(0)0f =,推出(3)0f =,即可推出()(3)(6)(9)(12)(2022)00f f f f f f =======,即可判断D.【详解】对于A ,()21log 21f -==,A 正确;对于B ,当0x >时,()(1)(2)f x f x f x =---,即(2)(1)()f x f x f x +=+-, 则(3)(2)(1)f x f x f x +=+-+,即得(3)()f x f x +=-, 则(6)(3)()f x f x f x +=-+=,即0x >时,6为()f x 的周期;()22023(33761(1)(1)(0)1)0log 2f f f f f =⨯+=--=-=-=,B 正确; 对于C ,由B 的分析可知()8(2)(1)(0)(1)1f f f f f ==-=--=-,()(4)(3)(2)(1)10f f f f f ==-=-(0)(1)1f f =-+-=, 故()()8100f f +=,C 错误;对于D ,当0x <时,11x ->,()2()log 10f x x =->,此时函数无零点; 由于(0)0f =,则()(5)(4)(4)(3)(4)(3)(0)06f f f f f f f f =-=--=-==, 故(3)0f =,则()(3)(6)(9)(12)(2022)00f f f f f f =======,由于20223674=⨯,故()f x 在[]2023,2023-上有675个零点,D 正确, 故选:ABD。
「最新」人教版最新高中数学总复习题总结(有答案)高考必备及参考答案-可编辑修改
数学总复习题总结(附参考答案)第一章 集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1} 2.若A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ).A .0B .1C .2D .0或1或2 3.函数y =f (x )的图象与直线x =1的公共点数目是( ).A .1B .0C .0或1D .1或2 4.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1 B .2x -1 C .2x -3 D .2x +7 5. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( ).A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞) 6.设函数f (x )=⎩⎨⎧00++2 x c x c bx x ,,≤, 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},下列从A 到B 的对应法则f 不是映射的是( ).A .f :x →y =21x B .f :x →y =31xC .f :x →y =41xD .f :x →y=61x8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ).A .1B .2C .3D .4 9.函数y =x 2-6x +10在区间(2,4)上是( ). A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减10.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ).(第5题)>A .f (1)<f (2)<f (4)B .f (2)<f (1)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1) 二、填空题11.集合{3,x ,x 2-2x }中,x 应满足的条件是 .12.若集合A ={x | x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___.13.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.14.已知f (x +1)=x 2-2x ,则f (x )= ;f (x -2)= . 15.y =(2a -1)x +5是减函数,求a 的取值范围 .16.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )= .三、解答题17.已知集合A ={x ∈R | ax 2-3x +2=0},其中a 为常数,且a ∈R . ①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.18.已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求a ,b 的值.19.证明f (x )=x 3在R 上是增函数.20.判断下列函数的奇偶性:(1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -.第一章 集合与函数概念参考答案一、选择题 1.B 解析:集合M 是由直线y =x +1上除去点(2,3)之后,其余点组成的集合.集合P 是坐标平面上不在直线y =x +1上的点组成的集合,那么M P 就是坐标平面上不含点(2,3)的所有点组成的集合.因此C U (M P )就是点(2,3)的集合.C U(M P )={(2,3)}.故选B .2.D解析:∵A 的子集有∅,{a },{b },{a ,b }.∴集合B 可能是∅,{a },{b },{a ,b }中的某一个,∴选D .3.C解析:由函数的定义知,函数y =f (x )的图象与直线x =1是有可能没有交点的,如果有交点,那么对于x =1仅有一个函数值.4.B解析:∵g (x +2)=2x +3=2(x +2)-1,∴g (x )=2x -1. 5.A 解析:要善于从函数的图象中分析出函数的特点.解法1:设f (x )=ax (x -1)(x -2)=ax 3-3ax 2+2ax ,比较系数得b =-3a ,c =2a ,d =0.由f (x )的图象可以知道f (3)>0,所以f (3)=3a (3-1)(3-2)=6a >0,即a >0,所以b <0.所以正确答案为A .解法2:分别将x =0,x =1,x =2代入f (x )=ax 3+bx 2+cx +d 中,求得d =0,a =-31b ,c =-32b . ∴f (x )=b (-31x 3+x 2-32x )=-3bx [(x -23)2-41]. 由函数图象可知,当x ∈(-∞,0)时,f (x )<0,又[(x -23)2-41]>0,∴b <0.x ∈(0,1)时,f (x )>0,又[(x -23)2-41]>0,∴b <0.x ∈(1,2)时,f (x )<0,又[(x -23)2-41]<0,∴b <0.x ∈(2,+∞)时,f (x )>0,又[(x -23)2-41]>0,∴b <0.故b ∈(-∞,0). 6.C解:由f (-4)=f (0),f (-2)=-2,得22422b b c ⎧-=-⎪⎨⎪-+=-⎩,∴42b c =⎧⎨=⎩ . ∴f (x )=⎩⎨⎧)0 ( 2)0 (2+4+2x ,x ,x x 由⎩⎨⎧ 得x =-1或x=-2;由得x =2. 综上,方程f (x )=x 的解的个数是3个. 7.A解:在集合A 中取元素6,在f :x →y =21x 作用下应得象3,但3不在集合B ={y |0≤y ≤2}中,所以答案选A .8.A提示:①不对;②不对,因为偶函数或奇函数的定义域可能不包含0;③正确;④不对,既是奇函数又是偶函数的函数还可以为f (x )=0,x ∈(-a ,a ).所以答案选A .x >0 x =2≤>x ≤0 x 2+4x +2=x (第5题)9.C解析:本题可以作出函数y =x 2-6x +10的图象,根据图象可知函数在(2,4)上是先递减再递增.答案选C .10.B解析:∵对称轴 x =2,∴f (1)=f (3). ∵y 在〔2,+∞〕上单调递增, ∴f (4)>f (3)>f (2),于是 f (2)<f (1)<f (4). ∴答案选B . 二、填空题11.x ≠3且x ≠0且x ≠-1.解析:根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧ 解得x ≠3且x ≠0且x ≠-1. 12.a =31,b =91.解析:由题意知,方程x 2+(a -1)x +b =0的两根相等且x =a ,则△=(a-1)2-4b =0①,将x =a 代入原方程得a 2+(a -1)a +b =0 ②,由①②解得a =31,b =91.13.1 760元.解析:设水池底面的长为x m ,水池的总造价为y 元,由已知得水池底面面积为4 m 2.,水池底面的宽为x4m . 池底的造价 y 1=120×4=480.池壁的造价 y 2=(2×2x +2×2×x4)×80=(4x +x16)×80. 水池的总造价为 y =y 1+y 2=480+(4x +x16)×80, 即 y =480+320(x +x4)=480+320⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛4+22x -x . 当 x =x2, 即x =2时,y 有最小值为 480+320×4=1 760元.14.f (x )=x 2-4x +3,f (x -2)=x 2-8x +15.解析:令x +1=t ,则x =t -1,因此f (t )=(t -1)2-2(t -1)=t 2-4t +3,即f (x )=x 2-4x +3.∴f (x -2)=(x -2)2-4(x -2)+3=x 2-8x +15.15.(-∞,21).解析:由y =(2a -1)x +5是减函数,知2a -1<0,a <21.16.x (1-x 3).解析:任取x ∈(-∞,0], 有-x ∈[0,+∞), ∴f (-x )=-x [1+(-x )3]=-x (1-x 3),∵f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3), 即当x ∈(-∞,0]时,f (x )的表达式为x (1-x 3).三、解答题x ≠3,x 2-2x ≠3, x 2-2x ≠x .17.解:①∵A 是空集,∴方程ax 2-3x +2=0无实数根. ∴⎩⎨⎧∆,a a 08-9=,0 解得a >89.②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =32;当a ≠0时,令Δ=9-8a =0,得a =89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或a =89时,A 中只有一个元素.③若A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥89.18.解:根据集合中元素的互异性,有 ⎩⎨⎧==⎩⎨⎧==a b b a b b a a 2222或解得 或 或再根据集合中元素的互异性,得 或 19.证明:设x 1,x 2∈R 且x 1<x 2,则 f (x 1)-f (x 2)=31x -32x =(x 1-x 2)(21x +x 1x 2+22x ).又21x +x 1x 2+22x =(x 1+21x 2)2+4322x .由x 1<x 2得x 1-x 2<0,且x 1+21x 2与x 2不会同时为0,否则x 1=x 2=0与x 1<x 2矛盾,所以 21x +x 1x 2+22x >0.因此f (x 1)- f (x 2)<0,即f (x 1)<f (x 2), f (x )=x 3 在 R 上是增函数.20.解:(1)∵ 函数定义域为{x | x ∈R ,且x ≠0}, f (-x )=3(-x )4+21)(-x =3x 4+21x =f (x ),∴f (x )=3x 4+21x 是偶函数.(2)由xx -+11≥0⇔⎩⎨⎧≠01--1+1x x x ))(( 解得-1≤x <1. ∴ 函数定义域为x ∈[-1,1),不关于原点对称,∴f (x )=(x -1)xx-11+为非奇非偶函数.(3)f (x )=1-x +x -1定义域为x =1,a =0b =1a =0b =0a =41b =21 a =0 b =1a =41 b =21≥0≠<∴ 函数为f (x )=0(x =1),定义域不关于原点对称, ∴f (x )=1-x +x -1为非奇非偶函数. (4)f (x )=1-2x +2-1x 定义域为≥ -10≥1-22x x ⇒ x ∈{±1},∴函数变形为f (x )=0 (x =±1),∴f (x )=1-2x +2-1x 既是奇函数又是偶函数.高一数学必修1一、选择题:(每小题5分,共30分)。
(完整版)高中数学基本不等式知识点归纳及练习题(可编辑修改word版)
W>0,W2=3x+2y+2 3x· 2y=10+2 3x· 2y≤10+( 3x)2·( 2y)2 =10+(3x+2y)=20
∴ W≤ 20=2 5
变式: 求函数 y
2x 1
5
2x
1 (
x
5 )
的最大值。
2
2
解析:注意到 2x 1与 5 2x 的和为定值。
y2 ( 2x 1 5 2x )2 4 2 (2x 1)(5 2x) 4 (2x 1) (5 2x) 8
3
1
1
当 x<0 时, y=x+ = -(- x- )≤-2 x·=-2
x
x
∴值域为(-∞,-2]∪[2,+∞)
解:因 4x 5 0 ,所以首先要“调整”符号,又 (4x 2)A 1 不是常数,所以对 4x 2 要进行拆、凑项,
4x 5
x
5 4
,5
4
x
0
,
y
4
x
2
4
1 x
5
5
4x
5
1 4x
2
2
2
巧和公式等号成立的条件等.
两个变形
( ) a2+b2 a+b
(1)
≥
2≥ab(a,b∈R,当且仅当 a=b 时取等号);
2
2
a2+b2 a+b
2
(2)
≥ ≥ ab≥ (a>0,b>0,当且仅当 a=b 时取等号).
2
2
11
+
ab
这两个不等式链用处很大,注意掌握它们.
三个注意
1
(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽 视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中 “正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.
新人教高三数学总复习试卷
一、选择题(每题5分,共50分)1. 已知函数 \( f(x) = x^3 - 3x \),则 \( f(x) \) 的图像与x轴的交点个数是:A. 1个B. 2个C. 3个D. 0个2. 若 \( \sin \alpha + \cos \alpha = \sqrt{2} \),则 \( \sin \alpha \cos \alpha \) 的值为:A. 0B. \(\frac{1}{2}\)C. \(\frac{\sqrt{2}}{2}\)D. 13. 在平面直角坐标系中,点A(2,3),点B(4,-1),则线段AB的中点坐标是:A. (3,2)B. (3,-1)C. (2,2)D. (2,3)4. 已知等差数列的前三项分别为3,5,7,则该数列的公差是:A. 1B. 2C. 3D. 45. 函数 \( y = \log_2 (x - 1) \) 的定义域是:A. \( x > 1 \)B. \( x \geq 1 \)C. \( x < 1 \)D. \( x \leq 1 \)6. 下列命题中,正确的是:A. 对于任意实数 \( x \),都有 \( x^2 \geq 0 \)B. 函数 \( y = \frac{1}{x} \) 在 \( x = 0 \) 处有极限C. \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \)D. \( \lim_{x \to \infty} (1 + \frac{1}{x})^x = e \)7. 若 \( a^2 + b^2 = 1 \),则 \( ab \) 的取值范围是:A. \([-1, 1]\)B. \([0, 1]\)C. \([-1, 0]\)D. \([0, 1)\)8. 已知 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则 \( \cos A \) 的值为:A. \(\frac{1}{2}\)B. \(\frac{1}{3}\)C. \(\frac{1}{4}\)D. \(\frac{3}{4}\)9. 下列函数中,是偶函数的是:A. \( y = x^2 - 1 \)B. \( y = x^3 \)C. \( y = \frac{1}{x} \)D. \( y = \sin x \)10. 已知 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 2B. 4C. 8D. 16二、填空题(每题5分,共25分)11. 函数 \( y = \frac{x^2 - 1}{x + 1} \) 的定义域是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1 集合(附参考答案)重难点:(1)集合的含义及表示.(2)集合的基本关系 (3)集合的基本运算经典例题:1.若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件?2.已知A ={x |x =8m +14n ,m 、n ∈Z },B ={x |x =2k ,k ∈Z },问: (1)数2与集合A 的关系如何? (2)集合A 与集合B 的关系如何?3.已知集合A={}20,xx x -= B={}2240,x ax x -+=且A ⋂B=B ,求实数a 的取值范围.基础训练:1.下面给出的四类对象中,构成集合的是( )A .某班个子较高的同学B .长寿的人CD .倒数等于它本身的数2.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是__________. 3. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y 且0,0x y <>} B . {(x,y)0,0x y <>} C. {(x,y) 0,0x y <>} D. {x,y 且0,0x y <>} 4.用适当的符合填空:0__________{0}, a __________{a },π________Q ,21________Z ,-1________R , 0________N , 0Φ.{a }_______{a,b,c }.{a }_________{{a },{b },{c }},Φ_______{a,b }5.由所有偶数组成的集合可表示为{x x = }.6.用列举法表示集合D={2(,)8,,x y y x x N y N =-+∈∈}为 .7.已知集合A={2210,,x ax x a R x R ++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围. 8.设U 为全集,集合M 、N U ,且M ⊆N ,则下列各式成立的是( ) A .M C U ⊇N C U B .M C U ⊆M C .M C U ⊆N C U D .M C U ⊆N9. 已知全集U ={x |-2≤x ≤1},A ={x |-2<x <1 =,B ={x |x 2+x -2=0},C ={x |-2≤x <1 =,则( )A .C ⊆AB .C ⊆C uA C.C uB =CD . CuA =B10.已知全集U ={0,1,2,3}且C UA ={2},则集合A 的真子集共有( ) A .3个 B .5个 C .8个 D .7个11.如果M ={x |x =a 2+1,a ∈N*},P ={y |y =b 2-2b +2,b ∈N +},则M 和P 的关系为M _________P . 12.集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B A ,则实数m 的值是 . 13.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形};(2)A={2|20x x x --=},B={|12x x -≤≤},C={2|44x x x +=}; (3)A={10|110x x ≤≤},B={2|1,x x t t R =+∈},C={|213x x +≥};(4)11{|,},{|,}.2442k k A x x k Z B x x k Z ==+∈==+∈1.已知集合{}{}{}2220,0,2Mx xpx N x xx q M N =++==--=⋂=且,则q p ,的值为 ( ). A .3,2p q =-=- B .3,2p q =-= C .3,2p q ==- D .3,2p q ==2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆A ∩B 的集合C 的个数是( ). A .0B .1C .2D .33.已知集合{}{}|35|141A x x B x a x a =-≤≤=+≤≤+,,A B B ⋂=且, B φ≠,则实数a 的取值范围是( ). .1.01A a B a ≤≤≤.0.41C a D a ≤-≤≤4.设全集U=R ,集合{}{}()()0,()0,0()f x M x f x N xg x g x =====则方程的解集是( ).A .MB . M ∩(CuN )C . M ∪(CUN )D .M N ⋃5.有关集合的性质:(1) Cu (A ⋂B)=( Cu A )∪(Cu B ); (2) Cu (A ⋃B)=( Cu A )⋂(Cu B ) (3) A ⋃ (Cu A)=U (4) A ⋂ (Cu A)=Φ 其中正确的个数有( )个. A.1 B . 2 C .3 D .46.已知集合M ={x |-1≤x <2=,N ={x |x —a ≤0},若M ∩N ≠Φ,则a 的取值范围是 . 7.已知集合A ={x |y =x 2-2x -2,x ∈R },B ={y |y =x 2-2x +2,x ∈R },则A ∩B = 8.表示图形中的阴影部分 .9.集合U ,M ,N ,P(A )M ∩(N ∪P ) (B )M ∩C U (N ∪P )(C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P )A BC10.在直角坐标系中,已知点集A={}2(,)21y x y x -=-,B={}(,)2x y y x =,则(CuA) ⋂ B= . 11.已知集合M={}{}{}2222,2,4,3,2,46,2a a N a a a a M N +-=++-+⋂=且,求实数a 的的值12.已知集合A=}{240x Rx x ∈+=,B=}{222(1)10x Rx a x a ∈+++-=,且A ∪B=A ,试求a 的取值范围.§1.2函数与基本初等函数重难点:(1)函数(定义域、值域、单调性、奇偶性、最大值、最小值) (2)基本初等函数(指数函数、对数函数、幂函数)(函数基本性质)典型例题:1.设函数f (x )的定义域为[0,1],求下列函数的定义域(1)H (x )=f (x 2+1);(2)G (x )=f (x +m )+f (x -m )(m >0).2.已知函数f (x )=2x 2-mx +3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f (1)等于 ( )A .-3B .13C .7D .含有m 的变量基础训练:1. 下列四组函数中,表示同一函数的是( )A .(),()f x x g x ==.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D .()()f x g x ==2.函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上 3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠B .{}2x x ≠-C .{}1,2x x ≠--D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞ B .5(,]4-∞ C . 4[,)3+∞ D .4(,]3-∞5.函数()f x 对任何x R +∈恒有122()()f x x f x x ⋅=,已知(8)3f =,则f = .6.规定记号“∆”表示一种运算,即a b a b a b R +∆=+∈,、. 若13k ∆=,则函数()f x k x =∆的值域是___________.7.求函数y x =-8. 求下列函数的定义域 : ()121x f x x =--9.已知f(x)=x 2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t). 10.函数()f x =是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数 11.奇函数y =f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ()12.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 . 13. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是.14.如果函数y =f (x +1)是偶函数,那么函数y =f (x )的图象关于_________对称15. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.16.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象, 基础训练:(指数函数)经典例题:求函数y =3322++-x x的单调区间和值域1.数111684111(),(),()235a b c ---===的大小关系是( )A .a b c <<B .b a c <<C .c a b <<D .c b a <<2.下列函数中,图象与函数y =4x的图象关于y 轴对称的是( )A .y =-4xB .y =4-xC .y =-4-xD .y =4x +4-x3.把函数y=f(x)的图象向左、向下分别平移2个单位长度,得到函数2xy =的图象,则( ) A .2()22x f x -=+ B .2()22x f x -=- C .2()22x f x +=+ D .2()22x f x +=-4.设函数()(0,1)xf x a a a -=>≠,f(2)=4,则( )A .f(-2)>f(-1)B .f(-1)>f(-2)C .f(1)>f(2)D .f(-2)>f(2) 5.设2m nmnx a -+=,求x -= .6.函数1()1(0,1)x f x aa a -=->≠的图象恒过定点 .7.(1)已知x ∈[-3,2],求f(x)=11142xx-+的最小值与最大值.(2)已知函数233()x x f x a-+=在[0,2]上有最大值8,求正数a 的值.8.求下列函数的单调区间及值域: (1) (1)2()()3x x f x +=; (2)124xxy -=; (3)求函数()2f x =基础训练:(对数函数)经典例题:已知f (log a x )=22(1)(1)a x x a --,其中a >0,且a ≠1.(1)求f (x ); (2)求证:f (x )是奇函数; (3)求证:f (x )在R 上为增函数. 1.若lg 2,lg 3a b ==,则lg 0.18=( )A .22a b +-B .22a b +-C .32a b --D .31a b +- 2.函数y =)A .[1-+B .[0,1]C .[0,)+∞D .{0}3.设函数200,0(),()1,lg(1),0x x f x f x x x x ≤=>+>⎧⎨⎩若则的取值范围为( )A .(-1,1)B .(-1,+∞)C .(,9)-∞D .(,1)(9,)-∞-+∞4.已知函数f (x )=2log (0)3(0)x x x x >≤⎧⎨⎩,则f [f (14)]的值是( )A .9B .19C .-9D .-195.计算200832log [log (log 8)]= .6.函数f(x)的定义域为[0,1],则函数3[log (3)]f x -的定义域为 . 基础训练:(幂函数)经典例题:比较下列各组数的大小:(1)1.531,1.731,1; (2)232-,(-107)32,1.134-;1.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0)(2,+∞)C .(-∞,0)[2,+∞ )D .(0,2) 2.函数y =52x 的单调递减区间为( )A .(-∞,1)B .(-∞,0)C .[0,+∞ ]3.如图,曲线c 1, c 2分别是函数y =x m和y =x n在第一象限的图象,那么一定有( )A .n<m<0B .m<n<0C .m>n>04.幂函数的图象过点(2,14), 则它的单调递增区间是.5.设x∈(0, 1),幂函数y=ax的图象在y=x的上方,则a的取值范围是.§1.3函数的应用重难点:(1)函数与方程(零点与一元二次方程根存在性的关系,了解二分法)(2)函数模型及其应用(指数函数、对数函数、幂函数、分段函数的增长特点)(函数与方程)经典例题:研究方程|x2-2x-3|=a(a≥0)的不同实根的个数.1.如果抛物线f(x)= x2+bx+c的图象与x轴交于两点(-1,0)和(3,0),则f(x)>0的解集是()A. (-1,3) B.[-1,3] C.(,1)(3,)-∞-⋃+∞ D.(,1][3,)-∞-⋃+∞2.某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是()件(即生产多少件以上自产合算)A.1000 B.1200 C.1400 D.16003.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台 D.180台§2.1 空间几何体重难点:(1)空间几何体的结构(2 ) 空间几何体的三视图和直观图(3)空间几何体的表面积和体积典型例题:半径为R 的半圆卷成一个圆锥,则它的体积为( )A3R B3R C3R D3R 基础训练:一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A .棱台 B .棱锥 C .棱柱 D .都不对2.下图是由哪个平面图形旋转得到的( )A B C D3.棱长都是1的三棱锥的表面积为( )A B . C . D . 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 5.正方体的内切球和外接球的半径之比为( )A B 2 C .2 D 36.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,主视图 左视图 俯视图则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 7.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。