2012-2013学年度第二学期八年级数学下第一次月考试题
2012-2013学年下期第一次月考试卷高二数学(理科)
2012-2013学年下期第一次月考试卷高二数学(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设函数0()f x x 在可导,则000()(3)limt f x t f x t t→+--=( )A .'0()f x B .'02()f x - C .'04()f x D .不能确定 2.一物体的运动方程为s =2t sin t +t ,则它的速度方程 s ′为( )A .v =2sin t +2t cos t +1B .v =2sin t +2t cos tC .v =2sin tD .v =2sin t +2cos t +13.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 4.设函数f (x )={ EMBED Equation.DSMT4 |2x+lnx 则 ( ) A .x=为f(x)的极大值点 B .x=为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 5.函数的极大值是A. -B. 1C.D.6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .57.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x )g (x ) +f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)8.积分dxx421等于( )A .-2ln2B .2ln2C .-ln2D .ln2 9.设函数在定义域内可导,的图象如图所示,则导函数可能为( )10.已知三次函数f (x )=13|x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 11.设底面为等边三角形的直棱柱的体积为,则其表面积最小时,底面边长 为( ).A. B. C. D . 12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )- f (x )g ′(x )<0,则当 a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) 二、填空题(本大题共4个小题,每小题5分,共20分.) 13.曲线在点处的切线方程为___________________xyO图xyOAxyOBxy OC yODx14.若函数f (x )=ax 2-1x |的单调增区间为(0,+∞),则实数a 的取值范围是___.15.已知二次函数的图象如图所示,则它与x 轴所围成封 闭图形的面积为_______16.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则 a 1+a 2+…+a 99的值为________.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)求函数的极大值和极小值。
2012-2013学年度第二学期期终考试八年级数学试题
盐城市初级中学未找到引用源?学年度期终试题初未找到引用源?年级数学试题(考试时间:未找到引用源?分钟 卷面总[-=公Y 式乱码?/]未找到引用源?分)命题人:??????? 审核人:???????一、选“}}{L_PO-l[=o――po-o0056t0765o[;ghf4zx4x6D*/F-WEQ/G7TR*/EU*/YTz2+S*9+8A*S/*择题(本大题共8小题,每小题未找到引用[-=公Y 式乱码?/]源?分,共24分)1、一只因损坏而倾斜的椅子,从背后看到的形状如右图,其中两组对边的平行关系没有发生变化,未找到引用源?º,则未找到引用源?的大小是( ) A .75º B .115º[-=公Y 式乱码?/] C .65º D .105º2、下列四个函数:①未找到引用源?;②未找到引用源?;③未找到引用源?;④未找到引用源?未找到引用源?时,y 随x 的增大而减小的函数有( )A .1个B .2个C .3个D .4个 3、若分式未找到引用源?的值为零,则x 的值为() A .2 B .1 C .-1[-=公Y 式乱码?/] D .-24、如图右,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点(不与点B 重合)以BD 、BF 为邻边作平行四边形BDEF ,又AP //BE (点P 、E 在直线AB 的同侧),如果未找到引用源?那么△PBC 的面积与△ABC 面积之比为( ) A.41 B.53 C.51 D.43 5、一个不透明的袋子中除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,则摸到红球的概率减摸到黄球的概率是( ) A.41 B.85 C.83 D.216、已知△ABC 如图,则下列4个三角形中,与△ABC 相似的是( )L,7、小亮从家步行到公交车站台,等公交车去学校.右上图中的折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是( ) A .他离家8km 共用了30min [-=公Y 式乱码?/] B .他等公交车时间为6minC .他步行的速度是100m/minD .公交车的速度是8、如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数 和的图象于点P 和Q ,连接OP 和OQ . 则下列结论正确的是( ) A .∠POQ 不可能等于90° B .未找到引用源? 第1题图1 2DABPG EF C第4题图B AC 6 6 75° 55 75° 5 5 5 530° 40° 5 5 A. B. C. D. ;第6题图 第7题图.........................................................................................密.............................................封.............................................线.................................未找到引用源?........................................................ 班级:姓名:学号:考场号:C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是未找到引用源? 二、填空题(本大题共有8小题,每小题3分,共24分)9、若二次根式未找到引用源?有意义,则x 的取值范围是 .10、小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率I是 。
八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)
八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
洪山区2012-2013年8年级数学下学期数学试卷(答案)
2012—2013学年度第二学期期末调考八年级数学试参考答案一、选择题(共10小题,每小题3分,共30分)DCBBC BDAAD二、填空题(共6小题,每小题3分,共18分)11、菱形;12、20、20、10;13.2; 14.32; 15、12; 16. 512 或25。
(只填对一个得2分) 三、解答题(共8小题,共72分)17、解方程(本题8分)得到4x =--------6分;验根-------7分;下结论--------8分18、化简分式(本题8分)原式=2-x -------6分当3x =-时,原式=2-x =-5-------8分19、(本题8分)证明:∵四边形ABCD 是□ABCD ∴AB=CD,AB ∥CD,∴BG=DH, ∠GBE=∠HDF 又∵BE=DF△BEG ≌△DFH 可得GE=HF ,∠BEG=∠DFH 从而得∠GEF=∠EFH ∴GE ∥HF, 即GE = HF ,GE ∥HF, ∴四边形GEHF 为平行四边形20、(本题10分)①选取200名居民的读书时间(小时)组成的一组数据的中位数是 4 ,众数是 4 ,极差是 8 -------3分②在这次调查的200名居民中,在家读书的有 120 人-------6分③估计该组2000名居民中双休日读书时间不少于4小时的人数是 1420 人;------8分21、(本题8分)解:作CF ⊥AB 于F ∵四边形CDEB 是菱形. ∴BF=FD在Rt △ABC 中,由勾股定理得AB=5∵B C ×AC= AB ×CF ∴CF=512,在Rt △BFC 中,由勾股定理得BF=59∴BD=518∴AD=AB —BD=5—518=57 22、(本题8分)解:∵反比例函数)0(<=x xk y 的图象与正比例函数y x =-交于点P ,P D ⊥x 轴,P E ⊥y 轴 ∴PE=PD ,∠PDO=∠DOE=∠OEP=90°∴四边形PDOE 是正方形, -------3分∴PE=PD=OD=OE ,∵四边形PDOE 的周长为6∴PE=PD=32 -------6分 ∴k =94-------8分FE D B AC23、(本题10分).(1) 证明:过C 作CN ⊥BF 于N, ∵∠CFB=45°∴△CNF 为等腰直角三角形∴CN=NF,易证Rt △BGA ≌Rt △CNB ∴BG=CN,BN=AG ∵BN=BG+GN ∴BN=FN+GN=FG∴AG=FG--------4分(2) 解:过C 作CN ⊥BF 于N ,连GC,∵AM ⊥BF, ∠CFB=45°,C 为FM 中点∴Rt △MGF Rt △GCFRt △CNG Rt △CNF 均为等腰直角三角形∴GM=GF=AG,GN=NF=CN,易证△BGC ≌Rt △DFC ∴DF=BG,由(1)可知BG=CN ∴DF=BG=GN=CN=NF∴GM=2BG,在Rt △BGM 中,由勾股定理得BG 2+(2BG)2=BM 2∴BG=25∴DF=BG=25-------8分 (3) 210 -------10分25、(本题12分)如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA=6,OC=4,点E 是AB 的中点,在OA 上取一点D ,DF ⊥BC 于点F ,连BD,反比例函数k y x=(x>0)经过点F 及BD 的中点H, (1)求反比例函数的解析式;解:取DA 的中点K ,连HK,易证四边形DABF 矩形,∵H 是对角线BD 的中点,∴HK 是△BAD 的中位线,HK=21AB=2,由题意可得F (4k ,4) DK=24-6k ,,H (24-64k k +,2), ∵H 在双曲线上∴(24-64k k +)×2=k ∴k =8 ∴反比例函数的解析式为:8y x =-------3分∴P(12,0)综上所述,P (0,2)或(12,0)-------8分。
天津市河西区环湖中学八年级下学期第一次月考数学试题
天津市河西区环湖中学八年级下学期第一次月考数学试题一、单选题1有意义的x 的取值范围是( ) A .3x > B .3x ≥ C .4x > D .3x ≥且4x ≠ 2.下列计算正确的是( )A B .=6+C .D .3.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( ) A .a=1、b=2、B .a=1.5、b=2、c=3C .a=6、b=8、c=10D .a=3、b=4、c=54.如图,正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,长为无理数的边有( )A .0条B .1条C .2条D .3条5.下列不能判定一个四边形是平行四边形的是( )A .两组对边分别平行的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行另一组对边相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6.如图,在ABC V 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边,BC AC 相交于点D ,E ,连接AD .若,4,5BD DC AE AD ===,则AB 的长为( )A .9B .8C .7D .67.如图Rt ABC V 中,90BAC ∠=︒,分别以边AB ,CA ,BC 向外作正方形,正方形ABIH 的面积为25,正方形ACFG 的面积为144,则正方形BDEC 的面积是( )A .130B .119C .169D .1208.四边形ABCD 中,90B ??,1AB =,2BC =,3CD =,AD =ABCD 的面积是( )A .1B .1C .1D .19.若,,a b c 为直角三角形的三边,则下列判断错误的是( )A .2,2,2a b c 能组成直角三角形B .10,10,10a b c 能组成直角三角形C .,,333a b c 能组成直角三角形 D10.点()P 在平面直角坐标系中,则点到原点的距离是( )A .2B .−2C .10D .5二、填空题11.计算的结果是.12.如图,已知ABCD Y 的周长为18cm ,2BC AB =,2A B ∠=∠,则AB C D Y 的面积为2cm .13.如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.14=1x x -=. 15.ACB △和ECD V 都是等腰直角三角形,CA CB =,CE CD =,ABC V 的顶点A 在ECD V的斜边上,若AE =AD AC 的长为.三、解答题16.计算:(1)23-;(2)(3) 17.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?18.四边形ABCD 中,AB CD ∥,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AB BE =.(1)求证:四边形ABCD 是平行四边形;(2)连接BF ,若BF AE ⊥,60E ∠=︒,10AB =,求四边形ABCD 的面积.19.Rt ABC △中,90ABC ∠=︒,30C ∠=︒,12AC =,点E 从点A 出发沿AB 以每秒1个单位的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2个单位的速度向点A 运动,运动时间为t 秒()06t <<,过点D 作DF BC ⊥于点F ,连EF .(1)用含t 的式子表示下列线段长度(第一问直接填空)AE =______,AD =______,DF =______,EB =______,DC =______;(2)求证四边形AEFD 是平行四边形.20.四边形OABC 是一张放在平面直角坐标系中的长方形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 沿直线CE 折叠,使点B 落在OA 边上的点D 处.(1)CDE∠的大小=______(度);(2)若3AE k=,4AD k=,用含k的代数式表示DE,BE,OC.则DE=______,BE=______,OC=______.(3)在(2)的条件下,已知折痕CE的长为E的坐标.。
人教版八年级下学期第一次月考数学试卷含答案解析
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
苏教版八年级下数学期中试卷
2012—2013学年度第二学期期中试卷八年级数学(满分:150分 测试时间:120分钟)小题仅有一个答案正确,请把你认为正确的答案前的字母填 入下表相应的空格 ).如图,数轴上所表示的不等式组的解集是 ( )A 、x ≤2B 、-1≤x ≤C 、-1<x ≤2D 、x >-1 .在代数式①x2 ;②5y x + ; ③a-21;④1-πx中,属于分式的有 ( )A 、①② B、①③ C 、①③④ D、①②③④ .若反比例函数k y x=的图象经过点(-1,3),则这个函数的图象一定经过点( )A 、(13,3) B 、(13-,3) C 、(-3,-1) D 、(3,-1).若a b b-=13,则a b的值为 ( )A 、 32B 、 23C 、34D 、43.如图所示,点P 是反比例函数y=k x图象上一点,过点P 分别作x 轴、y•轴的垂线,4,那么反比例函数的解析式是 ( )A 、y=-2xB 、 y=2xC 、y=-4xD 、y=4x6.不等式21x <2的非负整数解有 ( )A 、 4个B 、 5个C 、3个D 、2个7.下列四个三角形,与左图中的三角形相似的是 ( )8.如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a克,再称得剩余电线的质量为b 克, 那么原来这卷电线的总长度是 () A 、b+1米 B 、(b a +1)米 C 、(a+b a +1)米 D 、(ab+1)米 二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上)9.不等式13x -≥-的解集为 。
10.若当x 满足条件___________,分式121+x 有意义。
11.点A 在函数6y x=-的图像上,则点A 的坐标可为 。
(写出一个即可)12.在比例尺为1︰20000的地图上测得AB 两地间的图上距离为8cm ,则AB 两地间的实际距离为 km 。
13.已知反比例函数32m y x-=(x<0),当m 时,y 随x 的增大而增大。
八年级下学期第一次月考数学试题含答案
一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个3.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 4.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A.62B.22C.210D.6 5.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.34B.35C.45D.1256.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm7.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个8.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()A.3.5 B.23C.13D.369.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.17B.5C.2D.710.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为()A.5 B.4 C7D.4或5二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.13.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.14.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.15.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.16.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.17.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.18.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.24.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.25.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)26.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.27.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图28.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.29.已知ABC是等边三角形,点D是BC边上一动点,连结AD()1如图1,若2DC=,求AD的长;BD=,4()2如图2,以AD为边作60∠=∠=,分别交AB,AC于点E,F.ADE ADF①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P 在x 轴正半轴上,①以OA 为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.3.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+ 254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.4.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''=+=PA PB -的最大值为:210.故答案为:210.5.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 6.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm ,∴BD=16cm ,Rt △A'DB 中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm .故选:D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.7.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B .考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.8.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.9.A解析:A【解析】试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBE AB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得25+9=34,在Rt△ABC中,根据勾股定理,得342=217.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.10.D解析:D【分析】根据题意,可分为已知的两条边的长度为两直角边,或一直角边一斜边两种情况,根据勾股定理求斜边即可.【详解】当3和4为两直角边时,由勾股定理,得:22345+=;当3和4为一直角边和一斜边时,可知4为斜边.∴斜边长为4或5.故选:D.【点睛】本题考查了勾股定理,关键是根据题目条件进行分类讨论,利用勾股定理求解.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,13.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC',分三种情况讨论:如图1,AB=4,BC'=1+2=3,∴在Rt△ABC'中,由勾股定理得AC'2243(cm),如图2,AC=4+2=6,CC'=1∴在Rt△ACC'中,由勾股定理得AC'=22+=37(cm),61如图3,AD =2,DC'=1+4=5,∴在Rt△ADC'中,由勾股定理得AC'=22+=29(cm)25∵5<29<37,∴蚂蚁爬行的最短路径长是5cm,故答案为:5cm.【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.14.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,OC ∴=∴【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.15.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.16.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,AE ∴=.在Rt DEC ∆中,30E ∠=︒,CD =2CE CD ∴==12DE ∴=,∴142ABE S ∆=⨯⨯= 1122CDE S ∆=⨯=CDE ABE ABDC S S S ∆∆∴=-=四边形.故答案为:【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.17.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.18.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 19.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD 22BE DE +2234+5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.24.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D作DG⊥AC于G,则∠ADG=160302⨯︒=︒,∴122AG AD==,22224223DG AD AG=-=-=,∴S△ADC=1423432⨯⨯=,S△ABC=12AB×BC=23,∴S四边形ABCD=S△ADC+S△ABC=63;②当CD=CB=BD=23时,如图所示:∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.25.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH 2AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD +BD ,故答案为:CD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.26.(1)2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-, 解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅, 即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.27.(1)见详解;(2)①t 值为:103s 或6s ;②t 值为:4.5或5或4912. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即2<t ≤5时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC =12×5x×4x=40cm 2,而x >0, ∴x=2cm ,则BD=4cm ,AD=6cm ,CD=8cm ,AB=AC=10cm .由运动知,AM=10-2t ,AN=t ,①当MN ∥BC 时,AM=AN ,。
武汉市武昌区2012-2013学年度第二学期月考八年级数学试题
武汉市武昌区2012-2013学年第二学期月考八年级数学试题考试时间:120分钟 试卷满分:120分 编辑人:怙恶测试内容:分式、反比例函数、勾股定理祝考试顺利!一、选择题(每小题3分,共36分)1. 在式子 1 a 、 2xy π 、 3a 2b 3c 4 、 5 6+x 、x 7+y 8、9x +10y 中,分式的个数是( )A .3个B .4个C .5个D .6个 2. 分式 x +yx -y 有意义,x 、y 应满足的关系式是( )A . x =yB . x ≠yC . x ≠-yD . x =-y 3. 下列等式正确的是( )A . (-3)-2=-19B . 4a -2 = 14a 2C .0.0000618=6.18³10-5 D .a 2÷a ³1a=a 24. 已知反比例函数图像经过点A (2,6),下列各点不在图像上的是( ) A .(3,4) B .(-212,-445) C .(2,5) D .(-3,-4)5. 在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是( ) A . a =9,b =41,c =40 B . a =b =5,c =5 2C . a ︰b ︰c =3︰4︰5D . a =11,b =12,c =156. 三角形的面积为4cm 2,底边上的高y (cm )与底边x (cm )之间的函数关系图像大致应为( )7. 如图,已知点A 是函数y =x 与y = 4x 的图像在第一象限内的交点,点B 在x 轴的负半轴上,OA =OB ,则△AOB 的面积为( ) A . 2 B . 2 C . 2 2 D . 48. 现要装配30台机器,在装配好6台以后,采用了新技术,每天工作效率提 高了1倍,结果共用了3天完成任务。
设原来每天装配机器x 台,下列所列 方程中正确的是( )A . 6x +242x =3B . 6x +24x +2 =3C . 6x +302x =3D . 30x +302x =39. 在△ABC 中,AB =13,AC =15,高AD =12,则△ABC 的面积为( )A . 84B . 14C . 14或4D . 84或24第7题第10题10. 如图,一次函数与反比例函数图像相交于A (-1,2)、B (2,-1)两点, 则图中反比例函数值小于一次函数的值的x 的取值范围是( ) A . x <-1 B . -1<x <0或x >2C . x >2D . x <-1或0<x <211. 已知反比例函数y = kx (k <0)的图像上有两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则y 1-y 2的值为( )A .正数B .负数C .非正数D .不能确定12. 下列说法:①当m >1时,分式1x 2-2x +m 总有意义;②若反比例函数y = kx 的图像经过点(-m ,33m ),则在每个分支内y 随着x 的增大而增大;③关于x 的方程x x -3-2 =mx -3有正数解,则m <6;④在Rt △ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,AB 边上的高CD =h ,那么以1a 、1b 、1h 长为边的三角形是直角三角形。
2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)
2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列汽车标志中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.为了解我县初中2012级8300名学生的体育成绩,抽查了其中1700名学生的体育成绩进行统计分析.下面叙述正确的是()A.8300名学生是总体B.每名学生是总体的一个个体C.1700名学生的体育成绩是总体的一个样本D.以上调查是普查3.关于矩形的性质,下面说法错误的是()A.矩形的中点四边形是菱形B.两条对角线相等的平行四边形是矩形C.菱形的两条对角线互相垂直平分D.两组对角分别相等且一组邻边也相等的四边形是正方形4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是()A.两枚骰子向上一面的点数和大于1B.两枚骰子向上一面的点数和等于3C.两枚骰子向上一面的点数和等于7D.两枚骰子向上一面的点数和大于125.如图,四边形ABCD是菱形,顺次连接菱形各边的中点E、F、G、,则说法正确的是()A.EFGH是菱形B.EFGH是正方形C.EFGH是矩形D.EFGH是平行四边形6.如图,在正方形OABC中,点B的坐标是,点E、分别在边、上,,若EO 平分则E点的横坐标是()A.2B.3C.D.二、填空题:本题共10小题,每小题3分,共30分。
7.下面调查中,最适合采用普查的是__________填序号①对全国中学生心理健康现状的调查②对菏泽市中学生视力情况的调查③对《新闻联播》节目收视率的调查④对某校七年班同学身高情况的调查8.如图,一张圆桌共有3个座位,甲、乙、丙3人随机坐到这3个座位上,则甲和乙相邻而坐为__________事件填“确定”或“随机”9.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出__________球的可能性最大.10.如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为__________米.11.如图,四边形ABCD中,,要使四边形ABCD为平行四边形,则需添加一个条件,这个条件可以是:__________.12.如图,菱形ABCD的对角线、相交于点O,过点A作于点H,连接若,,则OH的长为__________.13.如图,在四边形ABCD中,,垂足为点若四边形ABCD 的面积为13,则__________.14.如图,在中,,D为AB上不与点A,B重合的一个动点,过点D 分别作于点E,于点F,则线段EF的最小值为__________.15.如图,在矩形ABCD中,,,点E、F分别为AD、CD边上的点,且EF的长为4,点G为EF的中点,点P为BC上一动点,则的最小值为_________________.16.如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,的周长为__________.三、解答题:本题共10小题,共80分。
2012-2013学年度人教版八年级第二学期第一次月考试卷
2012-2013学年度人教版八年级数学下第一次月考模拟试卷 姓名 (认真答题,自我提高) 一、填空题(第小题3分,共30分) 1. 已知点A 是反比例函数3y x=-图象上的一点.若AB 垂直于y 轴,垂足为B ,则AOB △的面积= .2、用科学记数法表示0.000043为 。
3.计算:()=⎪⎭⎫⎝⎛+--1311 ; 232()3y x=__________;4、当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。
5、反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是 ;在每一象限内y 随x 的增大而 。
6、如果反比例函数xmy =过A (2,-3),则m= 。
7、 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 .8、分式222439xx x x --与的最简公分母是_______________. 9、若方程322x mx x-=--无解,则m =____________________. 10、若关于x 的分式方程1x aa x +=-无解,则a 的值为___________________.二、选择题(每题3分,共30分)11、若分式241x x -有意义,则x 应满足……………………………………( )A 、0x =B 、0x ≠C 、1x =D 、1x ≠12. 在式子a 1,π xy 2,2334a b c ,x+ 65, 7x +8y ,9 x +y 10 ,xx 2 中,分式的个数是( )A .5B .4C .3D .2 13、 下列各式,正确的是( )A .1)()(22=--a b b a B .b a b a b a +=++122 C .b a b a +=+111 D .x x ÷2=2 14. 下列关于分式的判断,正确的是( )A .当x =2时,21-+x x 的值为零B .无论x 为何值,132+x 的值总为正数 C .无论x 为何值,13+x 不可能得整数值 D .当x ≠3时,xx 3-有意义15. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍,那么分式的值将是原分式值的( ) A .2倍 B .4倍 C .一半 D .不变 16、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .1-B .0C .1D .217.一个直角三角形的两直角边长分别为y x ,,其面积为2,则y 与x 之间的关系用图象表示大致为( )18、已知00abc a b c ≠++=且,则a (11b c +)+b (11a c +)+c (11a b+)的值为( )A 、0B 、1C 、-1D 、-3 19.已知函数xky =的图象经过点(2,3),下列说法正确的是( )A .y 随x 的增大而增大 B.函数的图象只在第一象限C .当x <0时,必有y <0 D.点(-2,-3)不在此函数的图象上 20.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是( )三 计算每题(4分共8分)(21)x y y x y x ---22 (22)22111a a aa a ++---四解方程(8分) (23)1233xx x=+-- (24)482222-=-+-+x x x x x A B C D五应用题25(8分).如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图像和反比例函数my x=的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及三角形AOB 的面积.26.(10分)⑴先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值. (2)()213222xx x x +⎛⎫÷-+ ⎪+⎝⎭+,其中12x =x27. (6分)已知一次函数2y x=+与反比例函数kyx=,其中一次函数2y x=+的图象经过点P(k,5). (1)试确定反比例函数的表达式;(2)若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标28(8分)一列火车从车站开出,预计行程450km,当它开出3h后,因特殊任务多停一站,耽误了30min,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车原来的速度.29(8分)某花店老板用400元购买一批花瓶,途中不慎打碎了2个,他把余下的以每个高出成本30%的价格售出,一共获利68元,问:他购买了多少个花瓶?。
2012-2013第二学期八年级数学试卷
2012-2013学年度第二学期八年级阶段考数学试卷一、 选择题(每小题3分,共30分)1、在x 1、212+x 、πxy 3、yx +3、22x y x 、m a 1+中分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2、如果a >b ,那么下列结论中错误的是 ( )A 、a -3>b -3B 、3a >3bC 、33ba > D 、-a >-b3、下列从左到右的变形,是因式分解的是( )A 、()()9332-=-+a a aB 、)(2c b a a ac ab a +--=+--C 、()5152-+=-+x x x xD 、()22244+=++x x x4、不等式x x 228)2(5-≤+的非负整数解的个数是( )A 、1B 、2C 、3D 、无数个 5、在分式aba b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值 ( )A 、扩大为原来的2倍B 、缩小为原来的21C 、不变D 、不确定 6、身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是 ( ) A 、8米 B 、4.5米 C 、8厘米 D 、4.5厘米7、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )A 、9448448=-++x x B 、9448448=-++x x C 、9448=+x D 、9496496=-++x x 学校: 班级: 座号: 姓名: …………密………………封………………线………………内………………不………………要………………答………………8、不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是( )A 、4≥mB 、4≤mC 、4<mD 、4=m 9、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( ) A 、1 B 、1.5 C 、2 D 、2.510、如图,在梯形ABCD 中,AB//CD,且AD ∶BC=1∶3 ,对角线AC,BD 相交于点O , 那么AOD s ∆∶BOC S ∆∶AOB S ∆ 等于( ) A 、1∶3∶1 B 、1∶9∶1 C 、1∶9∶3 D 、1∶3∶2二、填空题(每小题4分,共24分)11、在比例尺为1∶200的地图上,测得两地的图上距离为4.5cm,则A 、B 两地间的实际距离是 m ; 12、如果=+-==+22,7,0xy y x xy y x 则 ;13、已知线段AB,点C 是线段AB 的黄金分割点,且AC>BC,若AB=2cm,则BC=________ cm ; 14、若12a c eb d f ===,那么2323ac e bd f -+=-+ ;15、若方程5-x x = 4 -xm-5 有增根,则m =__ __ __ ; 16、关于x 的方程11=+ax 的解是负数,则a 的取值范围是_________ ;三、 解答题(每小题5分,共15分)17、解不等式1215312≤+--x x ; ODABC18、计算:2242+++-a a a ;19、解方程:xx x -=---21223 ;四、 解答题(每小题8分,共24分)20、先化简)4(24422x x xx x x -÷-+-,然后从 55≤≤-x 的范围内选取一个适合的整数作为x 的值代入求值。
八年级下学期第一次月考数学试题+试题解析
八年级下学期第一次月考数学试卷一、选择题(每小题3分,共36分)1.函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣22.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较3.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0 D.y随x的增大而增大4.一次函数y=kx+b的图象如图,则()A.B.C.D.5.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36.永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是()A.B.C.D.7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定8.一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了.下面各图能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是()A.B.C.D.9.某厂的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排2人装箱,若3小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,这个函数的大致图象是()A.B.C.D.10.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,则m 的值为()A.2 B.﹣4 C.﹣2或﹣4 D.2或﹣411.一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()A.B.C.D.12.一天,小军和爸爸去登山,已知山脚到山顶的路程为100米.小军先走了一段路程,爸爸才开始出发.下图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时计时).则下列说法错误的是()A.爸爸登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快二、填空题(每小题4分,共20分)13.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b=.14.直线y=kx+b经过一、二、三象限,那么y=bx﹣k经过象限.15.函数y=(m﹣2)x中,已知x1>x2时,y1<y2,则m的范围是.16.直线y=3x+b与y轴的交点的纵坐标为﹣2,则这条直线一定不过象限.17.一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P 和点Q,若点P与点Q关于x轴对称,则m=.三、解答题18.已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?19.一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?20.(原创题)观察图,回答问题:(1)设图形的周长为L,梯形的个数为n,试写出L与n的函数关系式(提示:观察图形可以发现,每增加一个梯形,周长增加3);(2)n=11时图形的周长是.21.如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家千米,小刚在体育场锻炼了分钟.(2)体育场离文具店千米,小刚在文具店停留了分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?22.某移动公司开设了两种通信业务:“全球通”要缴月租费50元.另外每分钟通话费0.4元;“神州行”不缴月租费,但每分钟通话费0.6元.若一个月通话x(min),两种收费方式的费用分别为y1和y2元.(1)求y1、y2与x的函数解析式?(2)一个月内通话多少分钟,两种收费方式的费用是相同的?(3)若x=300,选择哪种收费方式更合适?23.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足②条件的直线与此同时y=﹣3x+1的交点.24.李老师每天坚持晨跑.如图反映的是李老师某天6:20从家出发小跑到赵化北门,在北门休息几分钟后又慢跑回家的函数图象.其中x(分钟)表示所用时间,y(千米)表示李欢离家的距离.(1)分别求出线段0≤x≤10和15≤x≤40的函数解析式;(2)李老师在这次晨跑过程中什么时间距离家500米?八年级下学期第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【考点】正比例函数的定义.【分析】根据正比例函数的定义得到:a﹣1=1,且a+1≠0.【解答】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.解得a=2.故选:A.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.2.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.3.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0 D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.【点评】此题主要考查了一次函数的性质,以及一次函数图象上点的坐标特点,关键是掌握一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.一次函数y=kx+b的图象如图,则()A.B.C.D.【考点】待定系数法求一次函数解析式.【分析】根据函数图象可知,直线与x、y轴的坐标分别为(3,0),(0,﹣1)代入一次函数y=kx++b,求出k、b的值即可.【解答】解:∵由函数图象可知,直线与x、y轴的坐标分别为(3,0),(0,﹣1),∴,解得.故选D.【点评】本题考查的是用待定系数法求一次函数的解析式,熟知用待定系数法求一次函数解析式的一般步骤是解答此题的关键.5.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3【考点】一次函数图象与系数的关系.【分析】因为一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,根据一次函数的性质,所以.【解答】解:∵函数y=(3﹣k)x﹣k的图象经过第二、三、四象限∴3﹣k<0,﹣k<0∴k>3故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小;6.永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是()A.B.C.D.【考点】函数的图象;分段函数.【专题】压轴题;数与式.【分析】本题是一个分段函数,在2千米以内,无论远近,运费一律为5元,应是平行x轴的一条线段,由此即可求出答案.【解答】解:因为2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元.故选B.【点评】本题是常见的函数题,属于分段函数,前面应是平行于x轴的一条线段,后面应是一次函数,图象为一条射线.7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定【考点】一次函数与一元一次不等式.【分析】求关于x的不等式k1x+b>k2x的解集就是求:能使函数y=k1x+b的图象在函数y=k2x 的上方的自变量的取值范围.【解答】解:能使函数y=k1x+b的图象在函数y=k2x的上方时的自变量的取值范围是x<﹣1.故关于x的不等式k1x+b>k2x的解集为:x<﹣1.故选B.【点评】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.8.一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了.下面各图能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据题意,亮亮的体温变化情况分四段:①从正常到早晨发烧,体温上升;②吃药后体温下降至基本正常;③下午体温又上升;④体温下降直到半夜体温正常,也就是身上不烫了.由此就可以作出选择.【解答】解:根据题意:亮亮的体温变化图象分上升、下降、上升、下降四段最后正常体温大约37℃.观察四个选项,只有C选项符合.故选C.【点评】正确分清体温的变化情况是解本题的关键,还需注意人的正常体温大约是37℃这一常识.9.某厂的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排2人装箱,若3小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,这个函数的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.【解答】解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的,∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多,∴3小时后,未装箱的产品数量是下降的,直至减至为零.表现在图象上为随着时间的增加,图象是先上升后下降至0的.故选A【点评】本题考查的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.10.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,则m 的值为()A.2 B.﹣4 C.﹣2或﹣4 D.2或﹣4【考点】一次函数的性质;一次函数图象上点的坐标特征.【专题】计算题.【分析】根据一次函数的性质求解.【解答】解:∵一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,∴m>0,|m+1|>0,把点(0,3)代入y=mx+|m+1|得:3=|m+1|=m+1,m=2.故选A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.11.一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()A.B.C.D.【考点】函数的图象.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.故选B.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.12.一天,小军和爸爸去登山,已知山脚到山顶的路程为100米.小军先走了一段路程,爸爸才开始出发.下图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时计时).则下列说法错误的是()A.爸爸登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快【考点】函数的图象.【分析】根据函数图象和爸爸登山的速度比小明快进行判断.【解答】解:由图象可知,小明和爸爸离开山脚登山的路程S(米)与登山所用时间t(分钟)的关系都是一次函数关系,因而速度不变.可知:爸爸前10分钟前在小军的后面,10分钟后小军在爸爸的后面.故选:D.【点评】此题主要考查了函数的图象,关键是要正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题(每小题4分,共20分)13.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b=16.【考点】两条直线相交或平行问题.【专题】计算题.【分析】把(m,8)代入两个一次函数,相加即可得到a+b的值.【解答】解:∵一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),∴﹣m+a=8①,m+b=8②,①+②得:a+b=16.故填16.【点评】用到的知识点为:两个函数的交点的横纵坐标适合这两个函数解析式;注意用加减法消去与所求字母无关的字母.14.直线y=kx+b经过一、二、三象限,那么y=bx﹣k经过一、三、四象限.【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数与系数的关系得到k>0,b>0,然后再利用一次函数与系数的关系判断直线y=bx﹣k经过的象限.【解答】解:∵直线y=kx+b经过一、二、三象限,∴k>0,b>0,∵b>0,﹣k<0,∴直线y=bx﹣k经过第一、三、四象限.故答案为一、三、四.【点评】本题考查了一次函数与系数的关系:对于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b 的图象在二、三、四象限.15.函数y=(m﹣2)x中,已知x1>x2时,y1<y2,则m的范围是m<2.【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据一次函数的性质得到m﹣2<0,然后解不等式即可.【解答】解:∵x1>x2时,y1<y2,∴m﹣2<0,∴m<2.故答案为m<2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上的点满足其解析式.也考查了一次函数的性质.16.直线y=3x+b与y轴的交点的纵坐标为﹣2,则这条直线一定不过二象限.【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】根据一次函数与系数的关系可判断直线y=3x+b经过第一、三、四象限.【解答】解:∵k=3,∴直线y=3x+b经过第一、三象限,∵直线y=3x+b与y轴的交点的纵坐标为﹣2,∴直线y=3x+b经过第四象限,∴直线y=3x+b不经过第二象限.故答案为二.【点评】本题考查了一次函数与系数的关系:对于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b 的图象在二、三、四象限.17.一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P 和点Q,若点P与点Q关于x轴对称,则m=﹣1.【考点】两条直线相交或平行问题.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称可列出等式解得m的值.【解答】解:∵y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,∴P(0,1﹣m),Q(0,m2﹣3)又∵P点和Q点关于x轴对称∴可得:1﹣m=﹣(m2﹣3)解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故答案为:﹣1.【点评】本题考查了两条直线相交或平行问题,直线与y轴的交点坐标,以及关于x轴对称的点的坐标特征,关键在于根据函数解析式求出P、Q的坐标.三、解答题18.已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?【考点】一次函数的性质.【分析】(1)根据一次函数的图象过原点及一次函数的定义列出关于k的不等式组,求出k 的值即可(2)根据一次函数的性质及一次函数的定义列出关于k的不等式,求出k的取值范围即可.【解答】解:(1)∵函数y=(1﹣3k)x+2k﹣1的图象过原点,∴,解得k=;(2)∵y随x增大而增大,∴1﹣3k>0,解得k<.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.19.一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?【考点】待定系数法求一次函数解析式.【专题】数形结合;待定系数法.【分析】(1)观察函数的图象,得出一次函数经过点(2,0)(0,﹣2),代入函数解析式即得出一次函数的表达式.(2)(3)再分别令x=10和y=12,即可得出对应的y,x的值.【解答】解:(1)观察图象可得一次函数的图象经过点(2,0),(0,﹣2)代入函数的解析式y=kx+b中,得,解得∴一次函数的表达式为y=x﹣2.(2)令x=10,得y=10﹣2=8(3)令y=12,得x=12+2=14.【点评】本题考查了待定系数法求一次函数的解析式,比较简单,同学们要熟练掌握.20.(原创题)观察图,回答问题:(1)设图形的周长为L,梯形的个数为n,试写出L与n的函数关系式L=3n+2(提示:观察图形可以发现,每增加一个梯形,周长增加3);(2)n=11时图形的周长是35.【考点】函数关系式.【专题】规律型.【分析】(1)由图可知,每增加一个梯型,就增加一个上下底的和,据此可得规律;(2)将数值代入解析式即可.【解答】解:(1)根据图,分析可得:梯形的个数增加1个,周长为L增加3;故L与n的函数关系式L=5+(n﹣1)×3=3n+2.(2)n=11时,代入所求解析式为:L=3×11+2=35.【点评】主要考查了函数的解析式的求法,首先审清题意,发现变量间的关系;再列出关系式或通过计算得到关系式,需注意结合实际意义,关注自变量的取值范围.21.如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家 2.5千米,小刚在体育场锻炼了15分钟.(2)体育场离文具店1千米,小刚在文具店停留了20分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离,观察函数图象的横坐标,可得在文具店停留的时间;(3)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店2.5﹣1.5=1(千米),由横坐标看出小刚在文具店停留了65﹣45=20(分).故答案为:2.5,15,1,20;(3)由纵坐标看出文具店距张强家1.5千米,由横坐标看出从文具店回家用了100﹣65=35(分钟),张强从文具店回家的平均速度是1.5÷35=.答:张强从文具店回家的平均速度是千米/分钟.【点评】本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.22.某移动公司开设了两种通信业务:“全球通”要缴月租费50元.另外每分钟通话费0.4元;“神州行”不缴月租费,但每分钟通话费0.6元.若一个月通话x(min),两种收费方式的费用分别为y1和y2元.(1)求y1、y2与x的函数解析式?(2)一个月内通话多少分钟,两种收费方式的费用是相同的?(3)若x=300,选择哪种收费方式更合适?【考点】一次函数的应用.【分析】(1)根据:全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元,可将通讯费用和通话时间的函数关系式求出;(2)令y1=y2,得出关于x的方程,解方程即可求得;(3)把x=300代入解析式求出y的值比较即可.【解答】解:(1)根据题意得y1=50+0.4x;y2=0.6x;(2)当y1=y2,则50+0.4x=0.6x,解得x=250.∴通话250分钟两种费用相同;(3)当x=300时,y1=50+0.4x=50+0.4×300=170,y2=0.6x=0.6×300=180,∴y1<y2,∴选择“全球通”比较合算.【点评】本题主要考查了解一元一次方程,一次函数的应用等知识点的理解和掌握,能把实际问题转化成数学问题.23.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足②条件的直线与此同时y=﹣3x+1的交点.【考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.24.李老师每天坚持晨跑.如图反映的是李老师某天6:20从家出发小跑到赵化北门,在北门休息几分钟后又慢跑回家的函数图象.其中x(分钟)表示所用时间,y(千米)表示李欢离家的距离.(1)分别求出线段0≤x≤10和15≤x≤40的函数解析式;(2)李老师在这次晨跑过程中什么时间距离家500米?【考点】一次函数的应用.【分析】(1)利用待定系数法即可求得;(2)求出OA的解析式,然后根据OA、BC的解析式,利用y=0.5千米计算求出相应的x 的值,再加上6点20分即可.【解答】解:(1)设OA的解析式为y1=kx,则10k=2,解得k=,所以,y=x,设直线BC解析式为y2=k1x+b,∵函数图象经过点(15,2),(40,0),∴,解得.所以,直线BC解析式为y=﹣x+;∴线段0≤x≤10的函数解析式为y1=x(0≤x≤10),线段15≤x≤40的函数解析式为y2=﹣x+(15≤x≤40);(2)当y1=0.5km时,0.5=x,x=2.5当y2=0.5km时,0.5=﹣x+,x==33.75,∴李老师在这次晨跑过程中分别于6点22.5分和6点53.75分距离家500米.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量,准确识图,理解转折点的坐标的意义是解题的关键.考点卡片1.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,列y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.2.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..3.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.4.正比例函数的定义(1)正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数.(2)正比例函数图象的性质正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.。
八年级第二学期第一次月考数学试题
一、选择题1.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCDS S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是A .13B .225+C .47D .133.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A .20B .24C .994D .5324.已知一个直角三角形的两边长分别为1和2,则第三边长是( ) A .3B 3C 5D 355.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2) 6.已知,等边三角形ΔABC 中,边长为2,则面积为( ) A .1B .2C .2D .37.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A .13B .19C .25D .1698.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =259.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .10二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.13.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.14.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.15.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.16.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.17.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________18.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.19.如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若12315S S S++=,则2S的值是__________.三、解答题21.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.(1)求BF的长;(2)求CE的长.22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC中,AB AC>(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒; ②求AB 的长.23.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.24.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积. 25.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.26.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________; (2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示) 27.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.28.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G . ①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是( )A .一定是锐角三角形B .可能是锐角三角形或直角三角形,但不可能是钝角三角形C .可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】过M 作ME AD ⊥于E ,得出12MDE CDA ∠=∠,12MAD BAD ∠=∠,求出1()902MDA MAD CDA BAD ∠+∠=∠+∠=︒,根据三角形内角和定理求出AMD ∠,即可判断①;根据角平分线性质求出MC ME =,ME MB =,即可判断④和⑤;由勾股定理求出DC DE =,AB AE =,即可判断③;根据SSS 证DEM DCM ∆≅∆,推出DEM DCM S S =三角形三角形,同理得出AEM ABM S S =三角形三角形,即可判断②. 【详解】解:过M 作ME AD ⊥于E ,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,12MDE CDA ∴∠=∠,12MAD BAD ∠=∠,//DC AB ,180CDA BAD ∴∠+∠=︒,11()1809022MDA MAD CDA BAD ∴∠+∠=∠+∠=⨯︒=︒,1809090AMD ∴∠=︒-︒=︒,故①正确;DM 平分CDE ∠,90()C MC DC ∠=︒⊥,ME DA ⊥,MC ME ,同理ME MB =,12MC MB ME BC ∴===,故⑤正确; M ∴到AD 的距离等于BC 的一半,故④错误;由勾股定理得:222DC MD MC =-,222DE MD ME =-,又ME MC =,MD MD =, DC DE ∴=, 同理AB AE =,AD AE DE AB DC ∴=+=+,故③正确; 在DEM ∆和DCM ∆中DE DC DM DM ME MC =⎧⎪=⎨⎪=⎩,()DEM DCM SSS ∴∆≅∆,DEM DCM S S ∴=三角形三角形 同理AEM ABM S S =三角形三角形, 12AMD ABCD S S ∴=三角形梯形,故②正确;故选:C .【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.2.C解析:C【分析】根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.【详解】四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .【点睛】理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.3.B解析:B【分析】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b 的值,得出x 2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据题意得 :2(ax+x 2+bx )=(a+x )(b+x ),化简得 :ax+x 2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x 2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.4.D解析:D【解析】当一直角边、斜边为1和2时,第三边==;当两直角边长为1和2时,第三边==; 故选:D . 5.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.6.D解析:D【解析】根据题意可画图为:过点A作AD⊥BC,垂足为D,∵∠B=60°,∴∠BAD=30°,∵AB=2,∴3,∴S△ABC= 12BC·AD=1233故选D. 7.C解析:C 【解析】试题分析:根据题意得:222c a b=+=13,4×12ab=13﹣1=12,即2ab=12,则2()a b+=222a ab b++=13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.8.D解析:D【解析】A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.C解析:C【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt △ABD 中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.二、填空题11.9625【分析】将△B´CF 的面积转化为求△BCF 的面积,由折叠的性质可得CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB ,可证得△ECF 是等腰直角三角形,EF =CE ,∠EFC =45°,由等面积法可求CE 的长,由勾股定理可求AE 的长,进而求得BF 的长,即可求解.【详解】根据折叠的性质可知,CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB , ∴∠DCE +∠B´CF =∠ACE +∠BCF , ∵∠ACB =90°,∴∠ECF =45°,且CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF =CE ,∠EFC =45°,∵S △ABC =12AC•BC =12AB•CE , ∴AC•BC =AB•CE ,∵根据勾股定理求得AB =10,∴CE =245, ∴EF =245,∵AE 185, ∴BF =AB−AE−EF =10-185-245=85, ∴S △CBF =12×BF ×CE =12×85×245=9625, ∴S △CB´F =9625, 故填:9625. 【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.12.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.258【分析】先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴AC=2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA ,∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258. 【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.14.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.15.【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y=;当x=9时,x 、y=;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.16.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.17.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 18.485【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 19.5【解析】试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF ,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.20.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.三、解答题21.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x ,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,CF+CE=EF,在Rt△CEF中,由勾股定理得:222∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E ,F 的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案; (3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴224DE EG -=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE的解析式为:y=kx+b,把D(1,3),E(5,0)代入y=kx+b,得350k bk b+=⎧⎨+=⎩,解得:34154kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线DE的解析式为:y=34-x+154;(3)∵MN∥DE,∴直线直线MN的解析式为:34y x b=-+,令y=3,代入34y x b=-+,解得:x=443b-,∴M(443b-,3).①当点M在线段DB上时,BM=6-(443b-)=4103b-+,∴1143(10)223S BM AB b=⋅=⨯⨯-+=215b-+,②当点M在DB的延长线上时,BM=443b--6=4103b-,∴1143(10)223S BM AB b=⋅=⨯⨯-=215b-,综上所述:1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.24.(1)该命题是真命题,理由见解析;(2)①a的值为92;②k的取值范围为13k≤<;(3)ABC∆203123.【分析】(1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+则2a c c a a c +-<<+,解得3c a <,即3c k a =< 故此时k 的取值范围为13k ≤<当2b c a +=时,则1c k b=≥ 由三角形的三边关系定理得c b a b c -<<+则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =2222,3AB BD x AD AB BD x ∴===-=22222(3)(4)224AC AD CD x x x x =+=++=++11432322ABC S BC AD x x ∆=⋅=⨯⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即222444x x x +++=,解得103x =则10203232333ABC S x ∆==⨯= 当2AC AB BC +=时,即222428x x x +++=,解得65x =则6123232355ABC S x ∆==⨯= 当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为203或123.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.25.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =,∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.26.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.27.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=,∴2BD DE =. 【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.28.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD的边长为2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M , ②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q的位置是解决(2)题的关键.29.(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ)2+++k k k221.【解析】【分析】(1)只要证明△BAE≌△ACD;(2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AE,BG∥AE即可;ⅱ)求出四边形BGAE的周长,△ABC的周长即可;【详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,∵AE=CD,∴△BAE≌△ACD,∴∠ABE=∠CAD.(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,∴BG=AE,∠ABG=∠BAE,∴BG∥AE,。
人教版八年级第二学期 第一次月考数学试卷含答案
故答案为 ;
(2)原式 ;
(3) , ,
,
.
【点睛】
本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.
26.在一个边长为(2 +3 )cm的正方形的内部挖去一个长为(2 + )cm,宽为( ﹣ )cm的矩形,求剩余部分图形的面积.
【答案】57+12 ﹣
二、填空题
11.比较实数的大小:(1) ______ ;(2) _______
12.设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第二个正方形AEGH,如此下去…….
⑴记正方形ABCD的边长为 ,按上述方法所作的正方形的边长依次为 ,请求出 的值;
⑵根据以上规律写出 的表达式.
23.阅读下列材料,然后解答下列问题:
在进行代数式化简时,我们有时会碰上如 , 这样的式 子,其实我们还可以将其进一步化简:
(一) ;
(二) ;
(三) .
以上这种化简的方法叫分母有理化.
(1)请用不同的方法化简 :
①参照(二)式化简 =__________.
②参照( 三)式化简 =_____________
18.已知 ,化简: _____.
19.若实数 ,则代数式 的值为___.
20.已知 ,则 的值为_______.
三、解答题
21.小明在解决问题:已知a= ,求2a2-8a+1的值,他是这样分析与解答的:
因为a= = =2- ,
所以a-2=- .
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
(3)首先化简 ,然后把所求的式子化成 代入求解即可.
2012年八年级下第一次月考数学试题卷
八年级(下)第一次月考数学试题卷(时间:100分钟 总分:100分 出卷人:李志铭)一、选择题(每小题2分,共20分)请将你认为正确的选择支的代号填在下面的表格里1、在x 1、21、212+x 、πxy3、y x +3、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2、下列约分正确的是 ( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 3、利用分式的基本性质将xx x22-变换正确的是( )A 、2122-=-x x x xB 、 22222-=-x xx x xC 、 222-=-x x x x xD 、222-=-x xx x x4、下列分式中,最简分式是( )A. 223a a ++B. 22a b a b -- C. 412()a a b - D. xyx5、下列函数是反比例函数的是 ( ) A 、y=3x B 、y=x6C 、y=x 2+2xD 、y=4x+8 6、下列将0.0000012用科学计数法表示正确的是( )A 、0.12×10-5B 、1.2×10-6C 、 12×10-7D 、1.2×10-97、下列各式计算正确的是( ) A 、 853a aa =⋅- B 、253--=⋅a a a C 、853a aa =+- D 、253--=+a a a班级 学号 姓名------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -)11(1xx x -÷-=⎪⎭⎫ ⎝⎛--23242+-x x 11x 2+-x 8、对分式2y x ,23x y ,14xy通分时, 最简公分母是( ) A .24x 2y3B .12x2y2C.24xy2D.12xy29、反比例函数xy 2-=经过( ) A 、一、三象限 B 、二、四象限 C 、二、三象限 D 、三、四象限 10、如图,函数k kx y +=与ky x=在同一坐标系中,图象只能是下图中的( )二、填空题(把正确的答案填在相应的横线上,每个空格2分,共26分)11、计算:()=-01 __________ 12、已知反比例函数y=kx 的图象过点(-2,1),则k=______.13、当x 时,分式 有意义, 当x 时,分式的值为零。
宝应县实验初中2012-2013学年度八年级数学第二学期第二次月考试题2013.6.8
宝应县实验初中2012-2013学年度第二学期月度调研测试八年级数学试题(2013.6.8)(卷面总分:150分 考试时间:120分钟)【卷首语】亲爱的同学们,你感受到数学的魅力了吗?这份试卷将会记录你的自信、沉着、智慧和收获,祝你成功!一.细心选择(本大题共8小题,每小题3分,计24分)1. 在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm ,则甲,乙的实际距离是【 】A .1250kmB .125kmC . 12.5kmD .1.25km 2. 如果把分式yx xy+中的x 和y 都扩大2倍,则分式的值【 】 A .扩大4倍 B .扩大2倍 C .不变 D .缩小2倍3. 下列命题:①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等; ④三角形中等边对等角.它们的逆命题...是真命题的个数是 【 】 A .1个 B .2个 C .3个 D .4个4. 若关于x 的方程011=---x xx m 有增根,则m 的值是 【 】 A .3 B .2C .1D .-15. 如图,正比例函数y =x 与反比例2y x=的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为 【 】A .1B .2C .4D .126.如果不等式组213(1)x x x m->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是 【 】A. m =2B. m >2C. m <2D.m ≥27.如图,△ABC 中,DE ∥BC ,AD :AB=1:3,则S △ADE :S △ABC =【 】A . 1:3B . 1:5C . 1:6D . 1:98如图,在x 轴的正半轴上依次截取OA 1=A 1A 2=A 2A 3=A 3A 4=A 4A 5,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数y=2x(x≠0)的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形OP 1A 1、A 1P 2A 2、A 2P 3A 3、A 3P 3A 4、A 4P 5A 5,并设其面积分别为S 1、(第7题)第5题(第8题)S 2、S 3、S 4、S 5,则S 1+S 2+S 3+S 4+S 5的值为【 】 A.2 B.17260 C.3 D.31760二.精心填空(本大题共10小题,每题3分,计30分) 9.当x ≠ 时,分式13-x 有意义. 10. 化简:=-xx 12 . 11.命题“矩形的对角线相等”的逆命题是_____________________.12.已知43=b a ,=-b a b . 13.分式m 2与21-m 的最简公分母是 .14.一次函数y =ax +b 图象过一、三、四象限,则反比例函数aby x=(x >0)的函数值随x 的增大而___ ____.15.如图,已知点A 是一次函数y =x +1与反比例函数2y x=图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为________.16.如图,在正方形ABCD 中,E 为AB 中点,G 、F 分别是AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为________.17.如图,小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是_ _米. 18.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE 是平行四边形,连接CE 交AD 于点F ,连接BD 交CE 于点G ,连接BE .下列结论中: ①CE=BD ; ②△ADC 是等腰直角三角形; ③∠ADB=∠AEB ; ④CD •AE=EF•CG; 一定正确的结论有 .(直接填序号)第15题 第16题 第17题 第18题宝应县实验初中2012-2013学年度第二学期月度调研测试八年级数学答题纸二.精心填空(本大题共10小题,每题3分,计30分)9. 10. 11. 12.13. 14. 15. 16. 17. 18.三.用心解答(本大题共6小题,计96分)解答应写出演算步骤. 19.(本题满分10分,每小题5分)计算:(1) abcc b a 222∙ (2)1112+++-a a a20.(本题满分10分,每小题5分)解下列方程: (1)xx 124=- (2)114112=---+x x x21.(本题满分6分)化简代数式:2224421142x x x x x x x-+-÷-+-+,并求当x =2013时,代数式的值.班级___ __ 姓名____ ____ 学号______ 考场____ ………………………………密………………………………封………………………………线……………………………………………如图,四边形ABCD 与四边形DEFG 都是矩形,顶点F 在BA 的延长线上,边DG 与AF 交于点H ,AD=4,DH=5,EF=6,求FG 的长23.(本题满分8分)如图,在正方形网格中,△TAB 的顶点坐标分别为T (1,1)、A (2,3)、B (4,2).(1)以点T (1,1)为位似中心,在位似中心的 同侧将△TAB 放大为原来的3倍,放大 后点A 、B 的对应点分别为A '、B ',画出 △TA 'B ':(2)写出点A '、B '的坐标: A '(_______)、B '(_______);(3)在(1)中,若C (a ,b )为线段AB 上任一 点,则变化后点C 的对应点C '的坐标为 (________).24.(本题满分10分)某一蓄水池的排水速度v (m 3/h )与排水时间t (h )之间的图象满足函数关系:vkt ,其图象为如图所示的一段曲线,且过点)400,12(A . (1)求k 的值;(2)若要用不超过10小时的时间排完蓄水池内的水,那么每小时至少应排水多少m 3? (3)如果每小时排水800m 3,则排完蓄水池中的水需要多长时间?(第22题)(第24题)A小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m ,CE=0.8m ,CA=30m (点A 、E 、C 在同一直线上).已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB .(结果精确到0.1m )26.(本题满分10分)我县教育部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?27.(本题满分12分)如图,在平面直角坐标系内,已知OA =OB =2,∠AOB =30°. (1)点A 的坐标为( , );(2)将△AOB 绕点O 顺时针旋转a 度(0<a <90). ①当a =30时,点B 恰好落在反比例函数y =kx(x >0)的图象上,求k 的值;②在旋转过程中,点A 、B 能否同时落在上述反比例函数的图象上,若能,求出a 的值;若不能,请说明理由.(1)如图1,把两块全等的含45°的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点E 与三角板ABC 的斜边中点重合.可知:△BPE ∽△CEQ (不需说理) (2)如图2,在(1)的条件下,把三角板ABC 固定不动,让三角板DEF 绕点E 旋转,让三角板两边分别与线段BA 的延长线、边AC 的相交于点P 、Q ,连接PQ .①若BC=4,设BP=x ,CQ=y ,则y 与x 的函数关系式为 ; ②写出图中能用字母表示的相似三角形 ;(3)如图3,在(1)的条件下,把三角板ABC 固定不动,让三角板DEF 绕点E 旋转,当点Q 在线段CA 的延长线上时,当BP =a ,CQ =92a 时,求P 、Q 两点间的距离 (用含a 的代数式表示).(4)①如图4,在(2)的条件下,将三角板ABC 改为等腰三角形,且AB=AC ,,三角板DEF 改为一般三角形,其它条件不变,要使(2)中的结论③成立,猜想∠BAC 与∠DEF 关系为 .(将结论直接填在横线上); ②如图4,在(1)的条件下,将三角板ABC 改为等腰三角形,且∠BAC =120°,AB=AC ,三角板DEF 改为∠DEF =30°直角三角形,把三角板ABC 固定不动,让三角板DEF 绕点E 旋转,让三角板两边分别与线段BA 的延长线、边AC 的相交于点P 、Q ,连接PQ .若S △PEQ =2,PQ=2,则点C 到AB 的距离为 .图1 EE F图2 图4C B A EP Q D F 图3。
人教版八年级下学期数学第一次月考数学试题含答案解析
八年级第一次月考 数 学 试 卷友情提示:请把选择题和填空题的答案搬到对应的答题卡上.一、选择题(共12题,每题2分,满分24分。
每小题只有一个正确的选项,) 1. 不等式311x x ->+的解集在数轴上表示为( )A .B .C .D .2. 若n m >,下列不等式不一定成立的是( ) A. 22+>+n m B. n m 22> C.22nm > D. 22n m > 3. 如图,在△ABC 中,AB=AC ,D 为BC 中点,∠BAD=35°,则∠C 的度数为( )A .35°B .45°C .55°D .60°4.如图,OP 平分∠AOB ,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论正确的是( ) A.PD =PE B.PE =OE C.∠DPO =∠EOP D.PD =OD5. 如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB,若BE=2,则AE 的长为( )A.√3B.1C.√2D.26.如图,在△ABC 中,AB=AC ,D ,E 两点分别在AC , BC 上,BD 是∠ABC 的平分线,DE//AB ,若BE=5 cm ,CE=3 cm ,则△CDE 的周长是( )A.15 cmB.13 cmC.11 cmD.9 cm7. 不等式组12,12x x +>⎧⎨-≤⎩的解集是( )A. 1<xB. x ≥3C. 1≤x <3D. 1<x ≤38. 下列不等关系中,正确的是( )A.m 与4的差是负数,可表示为04<-mB. x 不大于3可表示为3<xC. a 是负数可表示为0>aD. x 与2的和是非负数可表示为02>+x 9. 如图,函数42-=x y 与x 轴、y 轴交于点(2,0),(0,-4),当04<<-y 时,x 的取值范围是( )班级 姓名 班级座号 考室 考号考生座位号-2-1012-2-1012210-1-2-2-1012(第4题图)(第5题图)A DBCE (第6题图)A.x<-1B.-1<x<0C.0<x<2D.-1<x<210. 如图,已知∠BAC=∠DAE=90°,AB=AD,下列条件能使△ABC≌△ADE的是()A.∠E=∠CB.AE=ACC.BC=DED.ABC三个答案都是11. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个12. 若不等式组11xx m<⎧⎨>-⎩恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<0二、填空题(共6题,每题3分,共18分。
湖北省黄石市第九中学2013-2014学年八年级下学期第一次月考数学试题
一.选择题(每小题3分,共30分) 1.若分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x=1 D .x <1 2.反比例函数y=2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 3.下列各式从左到右变形正确的是( ) A.M B M A B A ⋅⋅= B.MB M A B A ÷÷=C.1212++=a b a b D.63321+=+x x 4.若函数xk y 1-=(k ≠1)在每一象限内,y 随x 的增大而减小,则k 的取值范围是( ) .A.k >1 B.k <1 C.k >0 D.k <05.把分式yx x +22中的x 和y 都扩大为原来的3倍,那么分式的值( )A.不变 B.扩大为原来的3倍 C.扩大为原来的6倍 D.扩大为原来的9倍6.已知点(3,1)是双曲线y=kx上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(-3,-1) C .(-1,3) D .(6,-12)7. 已知n n n-++=⋅)81(42124,则n 为( ) A .n =-3 B .n =-2 C.n =-1 D.n =0 8.已知关于x 的函数y=k (x+1)和y=-kx(k ≠0)它们在同一坐标系中的图象是( )9. 已知)1(11-≠+=mn n m x ,则x =( ) A.n m 1+ B.nm 1- C.1+mn m D.n mn 1+10.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 2二.填空题(每小题3分,共18分)11. 用科学记数法将0.000043表示为12. 已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间成_____比例13. 若求221,2--+=+a a a a 则的值求221,2--+=+a a a a 为_____14.如图,A 点是y 轴正半轴上一点,过点A 作x 轴的平行线交反比例函数yx ==-`4x y =的图象于点B ,交反比例函数xky =的图象于点C ,若 AB : AC=3:2,则k 的值是______ 15.已知:点A (m ,m )在反比例函数1y x=的图象上,点B 与点A 关于坐标轴对称,以AB 为边作等边△ABC ,则满足条件的点C 有 个 16.若关于x 的方程311x a x x--=-无解, 可求出a =_________ 三.解答题(共72分)17.(7分) 计算:2)31()2008(41-+--+-18.(7分)化简)1()1112(2-⨯+--a a a ,并代入一个你喜欢的数值进行计算.19.(7分)解方程: 91232312-=--+x x x20.( 8分) 如图,一次函数b kx y +=的图象与反比例函数xmy =的图象 交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数xmy =和一次函数b kx y +=的表达式;(2) 连接OA ,OC .求△AOC 的面积.21.(8分) 阅读下列材料:方程3121111---=-+x x x x 的解为x =1, 方程4131111---=--x x x x 的解为x =2,方程51412111---=---x x x x 的解为x =3, 1)请你观察上述方程与解的特征,写出能反映上述方程的一般规律的方程,并猜出这个方程的解 2)根据1)中所得的结论,写出一个解为x =-5的方程第14题图22.(8分)如图,直线y=2x+2与y 轴交于A 点,与反比例函数xky =(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且AO=2OH . (1)求k 的值;(2)点N (a ,1)是反比例函数xky =(x >0)图象上的点,在x 轴上是否存在点P ,使得PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明理由.23. (8分) 如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,该材料在加热过程中温度y 与时间x 成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系(要写出x 的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?24.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同. (1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来25.(10分) 已知:如图,正比例函数y=ax的图象与反比例函数y=kx的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.(提示:有三个角是直角的四边形是长方形)第25题图八年级下册三月份月考数学试卷答案1.A2.B3.D4.A5.B6.B7.A8. A9.C 10.B11.4.3×10-512.反 13.2 14.8/3 15.8 16.-2或1 17.原式=2+1-3+2=2 18.原式=a +3 19.解得x=3检验:当x=3时,(x+3)(x-3)=0 ∴x=3是原方程的增根,原方程无解20. (1)反比例函数的表达式为xy 10=;一次函数的表达式为y =x -3. (2) S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB21. (1)此方程为1111(1)(3)(4)x n x n x n x n -=---+-+-+,方程的解为2x n =+;(2)结构相似,解为5x =-的方程是11113467x x x x -=-++++22. 解:(1)k=1×4=4 (2)存在∵点N (a ,1)在反比例函数(x >0)上∴a=4.即点N 的坐标为(4,1)过点N 作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于P (如图所示). 此时PM+PN 最小∵N 与N 1关于x 轴的对称,N 点坐标为(4,1), ∴N 1的坐标为(4,﹣1).设直线MN 1的解析式为y=kx+b .由解得k=﹣,b=∴直线MN 1的解析式为. 令y=0,得x=.∴P 点坐标为(,0)23. 解:(1)一次函数表达式为915(05)y x x =+≤≤反比例函数表达式为300(5)y x x=> (2)由题意得:91530y x y =+⎧⎨=⎩ 解得153x =; 30030y x y ⎧=⎪⎨⎪=⎩ 解得210x =则215251033x x -=-= 所以对该材料进行特殊处理所用的时间为253分钟 24. 解:(1)设每个乙种零件进价为元,则每个甲种零件进价为元.由题意得,解得.检验:当x=10时,x(x-10)≠0,x=10是原分式方程的解.10-2=8(元)∴每个甲种零件的进价为8元,每个乙种零件的进价为10元. (2)设购进乙种零件y 个,则购进甲种零件(3y-5)个由题意得 解得为整数,或.共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.25. 解:(1)将()32A ,分别代入ky y ax x==,中, 得2323k a ==,, ∴ 263k a ==,. ∴ 反比例函数的表达式为:6y x = 正比例函数的表达式为23y x =(2)观察图象得,在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值. (3)BM DM =.理由:∵ 132OMB OAC S S k ==⨯=△△,∴ 63312OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形 即O C ·OB=12 ∵ 3OC =,∴ 4OB =.即 4n =.∴ 632m n ==. ∴ 3333222MB MD ==-=,.∴MB MD =.。
苏教版八下数学期中试卷
2012-2013学年度第二学期期中调研考试八年级数学试卷(试卷满分100分考试时间120分钟)一、选择题:(本大题共10个小题,每小题2分,共计20分)( )1.在ma y x x x 13212112+++、、、、中分式的个数有 A .2个 B .3个 C .4个 D .5个 ( )2.反比例函数y=x6-的图象位于( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限 ( )3. 不等式24x -<的解集是A .2x >-B .12x >-C . 2x <-D .12x <-( )4. 下列各式计算正确的是( )A.222a ab ba b b a-+=-- B.2232()x xy y x y x y ++=++C.23546x x y y ⎛⎫= ⎪⎝⎭D.11x y x y -=-+- ( )5. 已知a>b>0,则下列不等式不一定...成立的是 A. a+c>b+c B.2-a < 2-b C. ab>b 2 D.ac 2>bc 2 ( )6. 如果把分式xy x +中的x ,y 都扩大2倍,则该分式的值A . 扩大2倍B . 缩小2倍C . 不变 D.扩大3倍 ( )7. 把mn=pq (mn ≠0)写成比例式,写错的是A .m q p n= B .p n mq=C .q n mp=D .m p nq=( )8. 下列说法正确的是A .矩形都是相似图形;B .菱形都是相似图形C .各边对应成比例的多边形是相似多边形;D .等边三角形都是相似三角形 ( )9.如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是A .m >5B .m <5C .m ≥5D .m ≤5( )10.下列说法中,正确的个数有①在分式392--x x中,当x =±3时分式的值为零②若点1(,1)x -、2(,2)x -、3(,2)x 在双曲线1y x=-上,则213x x x >>③将双曲线2y x=-绕原点旋转90°后,可得到双曲线2y x=④若双曲线(0)k y k x=≠与直线y x =有交点, 则0k <A.1个B.2个C. 3个D.4个 二、填空题:(本大题共10个小题,每小题2分,共计20分) 11.函数13y x =-的自变量x 的取值范围是 .12.若2,3a b =则aa b=+ . 13.若分式方程233x m x x -=--有增根,则m 的值为_______________.14.反比例函数y = xk (k ≠0)的图象经过点(1,5)与(5,n-1)两点,则n = .15.当x = 时,分式242x x -+值为0.16.在比例尺为1∶4000000的中国地图上,量得无锡市与2008年奥运会举办地北京市相距27厘米,那么无锡市与北京市两地实际相距 千米. 17.若代数式23x -的值是负数,则正整数x = . 18.如图,点A 在反比例函数y=k x的图象上,AB 垂直于x 轴,若S △AOB =4,•那么这个反比例函数的解析式为________.19.如果关于x 的方程x+2m-3=3x+7的解为非负数,那么m 的取值范围是___ __. 20.两个反比例函数xy 3=,xy 6=在第一象限内的图象如图所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数xy 6=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作y 轴的平行线,与xy 3=的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2 005,y 2 005),则y 2 005= .第20题第18题三、解答题:(本大题共10个小题,共计60分)21.(每小题4分,共8分)解不等式(组),并把解集在数轴上表示出来(1)243643x x --<- (2) 2(5)63212.x x x +≥->+⎧⎨⎩,22.(4分) 计算 xx x x x x 9)332(2-⋅+--23.(4分)解方程 01122=-++x x x24.(4分)先化简,再求值: 212)14(-÷-+-a aa a a ,其中31=a25.(5分)已知y=y 1+y 2,其中y 1与x 成反比例,y 2与(x-2)成正比例.当x=1时,y=-1;x=3时,y=3.(1)求y 与x 的函数关系式;(3分) (2)当x=-1时,y 的值(2分)26.(5分)小明用12元买软面笔记本,小丽用21元买硬面笔记本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
x 印道中学2012—2013学年度第二学期第一次月考试卷
八年级• 数学
(时间120分钟 满分150分)
一、选择题(共10个小题,每小题3分,共30分)
1.在式子4
2,1,3,31n m b a b a ,x -++π中,分式有( )
A 、1个
B 、2个
C 、3个
D 、4个
2.反比例函数)0(≠=k x
k
y 的图象经过点(2-,3),则它还经过点( ) A.(6,1-) B.(1-,6-) C.(3,2) D.(2-,3.1)
3.若分式1
2
--x x 的值为0,则x 的值为 ( )
A. 1
B. -1
C. ±1
D.2
4、将2
81-⎪⎭
⎫ ⎝⎛、08-、()5
2-这三个数按从小到大的顺序排列,正确的排序结果是( ).
A.08-<2
81-⎪⎭⎫ ⎝⎛<()52- B.()5
2-<08-<2
81-⎪⎭⎫ ⎝⎛
C.2
81-⎪⎭⎫ ⎝⎛<08-<()52- D.()5
2-<2
81-⎪⎭
⎫ ⎝⎛<08- 5.把分式方程
12121=----x
x x 的两边同时乘以(x-2),约去分母是( ) A.1-(1-x)=1 B. 1-(1-x)=x-2 C. 1+(1-x)=1 D. 1+(1-x)=x-2 6. 若方程
2667=----x
k
x x 无解,则k 的值是( ) A .-1 B .0 C .6 D .1
7.矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可为( )
8、如图是三个反比例函数x k y 1
=
,x
k y 2=,x k y 3= 在x 轴上方的图象,由此观察得到1k 、2k 、3k 的大小关系为(
A. 321k k k >>
B. 123k k k >>
C. 132k k k >>
D. 213k k k >> 9.“五一”期间,几名同学包租一辆面包车前往“太白山”游玩, 面包车的租价为180元,出发时,又增加了2名学生,结果每个
同学比原来少分担3元车费,设原来参加游玩的同学为x 人,则可得方程( )
A .
180x -1802x +=3 B .1802x +-180x =3; C .180x -1802x -=3 D .1802x --180
x
=3
10.在同一直角坐标系中,函数y=kx+k 与(0)k
y k x
=≠的图像大致是( )
二、填空题(共8个小题,每小题4分,共32分) 11.当x 时,分式
3
1
-+x x 有意义. 12.用科学记数法表示:0.000 000 00209记为 。
13. 如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别作y 轴的
垂线,分别得到△P 1A 10、△P 2A 20、△P 3A 30,设它们的面积 分别是S 1、S 2、S 3,则 。
14、如图,P 为反比例函数x
k
y =图象上一点,PD 垂直x 轴于点D 若S △POD =5,则k = . 15.反比例函数x
m y 1
-=
的图象在第二、四象限,则m 的取值 范围是 .
16. 若分式416
2--x x 的值为0,则x 的值为 .
17. 已知25=b a ,则
=-a
b
a 32 . 18.直线
b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的
解为________。
三、解答题(9个大题,共88分) 19.计算(10分).(1) 111
212
-+++-a a a a (2)()332
96422+∙+-÷++-a a a a a a
(第14题)
班级: 姓名: 考号:
20.解方程(8分)1233x x x
=+--
21.(10分)先化简,再求值:1
1112-÷⎪⎭⎫ ⎝⎛
-+
x x
x ,其中:x=-2 22.(10分)已知反比例函数的图象过点A (-2,4)。
(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化? (2)点B (4,-2)、C (6,3
4
- )、D (1,8)是否在这个函数的图象上?
23.(10分)已知
21y y y +=,1y 与x +1成正比例,2y 与x +1成反比例,
当x =0时,y =-5;当x =2时,y =-7。
(1)求y 与x 的函数关系式; (2)当x =—2时,求y 的值.
24、(10分)已知A (-4,n )、B (2,-4)是反比例函数
y =的图象和一次函数b kx y +=的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;
25.(10分)A、B两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?
26、(10分)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y 与x 成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)分别写出药物燃烧时和药物燃烧后,y 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过多少分钟后,员工才能回到办公室? (3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
27.(10分)先阅读下面的材料,然后解答问题:通过观察,发现方程
11
22
x x +=+的解为1212,2x x ==; 1133x x +=+的解为1213,3x x ==;
1144x x +=+的解为121
4,4
x x ==;………………………… (1)观察上述方程的解,猜想关于x 的方程11
55x x +=+的解是________________;
(2)根据上面的规律,猜想关于x 的方程11
x c x c
+=+的解是___________________;
(3) 把关于x 的方程21111
x x a x a -+=+--变形为方程11
x c x c +=+的形式是______
_ _,方程的解是________ ___.。