高三总复习第一轮之平面向量2
高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全
第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价. 即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y 2. 2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、习题改编1.(必修4P99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析:选D.由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3).设P (x ,y ),则P 1P →=(x-1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1).故选D.2.(必修4P119A 组T8改编)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=( )A .-12B.12 C .-2D .2解析:选A.由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( ) (5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B.平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A.法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).故选A.平面向量基本定理及其应用(师生共研)(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC→=b ,则DE →=( )A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b(2)(2020·某某市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=.【解析】 (1)DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC→=b ,则PQ →=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A.由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A.2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →, 所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →, 又因为OP →=mOA →+OB →, 所以OB →=OB →+(m +1)OA →,依题意OA →,OB →是非零向量且不共线, 所以m +1=0, 解得m =-1.平面向量的坐标运算(师生共研)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为→=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7). 答案:(4,7)2.如图所示,以e 1,e 2为基底,则a =.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2平面向量共线的坐标表示(多维探究) 角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =. 解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ).因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0,即2m -3=0,所以m =32.思想方法系列8 坐标法解决平面向量的线性运算(2020·某某某某调研)在直角三角形ABC 中,∠A =90°,AB =3,AC =4,P 在△ABC斜边BC 的中线AD 上,则AP →·(PB →+PC →)的最大值为( )A.2516B.258C.254D .252【解析】 以A 为坐标原点,AB →,AC →的方向分别为x 轴、y 轴正方向建立平面直角坐标系,则B (3,0),C (0,4),BC 中点D ⎝ ⎛⎭⎪⎫23,2,则直线AD 的方程为y =43x .设P ⎝ ⎛⎭⎪⎫x ,43x ,所以PB →=⎝ ⎛⎭⎪⎫3-x ,-43x ,PC →=⎝ ⎛⎭⎪⎫-x ,4-43x ,AP→=⎝ ⎛⎭⎪⎫x ,43x ,AP →·(PB →+PC →)=-509x 2+253x =-509⎝ ⎛⎭⎪⎫x -342+258,所以当x =34时,AP →·(PB →+PC →)的最大值为258.故选B. 【答案】 B系要建得巧,题就解得妙坐标是向量代数化的媒介,而坐标的获得又要借助于直角坐标系,对于某些平面向量问题,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系;(2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限.如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=.解析:法一:以AB ,AD 所在直线分别为x 轴,y 轴,建立平面直角坐标系,如图所示,设正方形的边长为1,则AM →=⎝ ⎛⎭⎪⎫1,12,BN →=⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).因为AC →=λAM →+μBN→=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25,所以λ+μ=85.法二:由AM →=AB →+12AD →,BN →=-12AB →+AD →,得AC →=λAM →+μBN →=⎝ ⎛⎭⎪⎫λ-μ2AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25.所以λ+μ=85.答案:85[基础题组练]1.已知e 1=(2,1),e 2=(1,3),a =(-1,2).若a =λ1e 1+λ2e 2,则实数对(λ1,λ2)为( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)解析:选B.因为e 1=(2,1),e 2=(1,3),所以a =λ1e 1+λ2e 2=λ1(2,1)+λ2(1,3)=(2λ1+λ2,λ1+3λ2).又因为a =(-1,2),所以⎩⎪⎨⎪⎧2λ1+λ2=-1,λ1+3λ2=2,解得⎩⎪⎨⎪⎧λ1=-1,λ2=1.故选B.2.(2020·某某某某三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A.13 B .-13C .-3D .3解析:选B.法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B.法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B.3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎫-23,-23B.⎝ ⎛⎭⎪⎫-13,-13C.⎝ ⎛⎭⎪⎫13,13D .⎝ ⎛⎭⎪⎫23,23 解析:选A.易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以E ⎝ ⎛⎭⎪⎫-23,-23.4.(2020·某某豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C .3D .2 3解析:选A.如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0). AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=.解析:因为a =(1,2),b =(2,3),所以λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3).因为向量λa +b 与向量c =(-4,-7)共线, 所以-7(λ+2)+4(2λλ=2. 答案:26.已知点A (2,3),B (4,5),C (7,10),若AP →=AB →+λAC →(λ∈R ),且点P 在直线x -2y =0上,则λ的值为.解析:设P (x ,y ),则由AP →=AB →+λAC →,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x =5λ+4,y =7λP 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.答案:-237.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=.解析:选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.答案:438.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,所以A ,B ,M 三点共线.[综合题组练]1.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2).2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1 B. 2 C. 3D .2解析:选B.因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.设OA →=(-2,4),OB →=(-a ,2),OC →=(b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为.解析:由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 因为A ,B ,C 三点共线,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫3+2a b +b a ≥12⎝ ⎛⎭⎪⎫3+22a b ·b a =32+2(当且仅当a =2-2,b =22-2时等号成立).答案:32+ 24.(2020·某某某某二模)已知W 为△ABC 的外心,AB =4,AC =2,∠BAC =120°,设AW →=λ1AB →+λ2AC →,则2λ1+λ2=.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.根据已知条件可知A (0,0),B (4,0),C (-1,3). 根据外心的性质可知点W 在直线x =2上(如图所示).易知线段AC 中点的坐标为⎝ ⎛⎭⎪⎫-12,32,直线AC 的斜率为-3,故线段AC 的中垂线l的斜率为33(如图所示),方程为y -32=33⎝ ⎛⎭⎪⎫x +12. 令x =2,解得y =433,故W ⎝ ⎛⎭⎪⎫2,433.由AW →=λ1AB →+λ2AC →得⎝ ⎛⎭⎪⎫2,433=λ1(4,0)+λ2(-1,3),即⎩⎪⎨⎪⎧4λ1-λ2=2,3λ2=433,解得⎩⎪⎨⎪⎧λ1=56,λ2=43.所以2λ1+λ2=53+43=3.答案:3。
高考数学一轮复习 第五章 平面向量 第2讲 平面向量的基本定理及向量坐标运算 理-人教版高三全册数学
第2讲 平面向量的基本定理及向量坐标运算一、选择题1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ).A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴.答案 C2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ).A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8).答案 C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( ).A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,解得x =-2,y =-6,所以d =(-2,-6).故选D.答案 D4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ).A.14B.12C .1D .2 解析 依题意得a +λb =(1+λ,2),由(a +λb )∥c ,得(1+λ)×4-3×2=0,∴λ=12. 答案 B5. 若向量AB =(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2)解析 因为AC =AB +BC =(4,6),所以选A.答案 A6.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ).A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析 ∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),∴⎩⎪⎨⎪⎧ -x +y =2,x +2y =4,即⎩⎪⎨⎪⎧ x =0,y =2.∴a 在基底m ,n 下的坐标为(0,2).答案 D二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________. 解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12. 答案 128.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析 设a =λb (λ<0),则|a |=|λ||b |,∴|λ|=|a ||b |, 又|b |=5,|a |=2 5.∴|λ|=2,∴λ=-2.∴a =λb =-2(2,1)=(-4,-2).答案 (-4,-2)9.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C三点共线,则1a +2b的最小值为________. 解析 AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(a -1)-(-b -1)=0,∴2a +b =1.∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b ) =4+b a +4a b ≥4+2 b a ·4a b=8. 当且仅当b a =4a b ,即a =14,b =12时取等号. ∴1a +2b的最小值是8. 答案 810.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知点A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.解析 由条件中的四边形ABCD 的对边分别平行,可以判断该四边形ABCD 是平行四边形.设D (x ,y ),则有AB →=DC →,即(6,8)-(-2,0)=(8,6)-(x ,y ),解得(x ,y )=(0,-2).答案 (0,-2)三、解答题11.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标. 解析 设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有 ⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧ -1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,和⎩⎪⎨⎪⎧ x 2=-2,y 2=0. 所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4).12.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?解 法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧ k -3=10λ,2k +2=-4λ.解得k =λ=-13,∴当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ).∵λ=-13<0,∴k a +b 与a -3b 反向.法二 由法一知k a +b =(k -3,2k +2),a -3b =(10,-4),∵k a +b 与a -3b 平行∴(k -3)×(-4)-10×(2k +2)=0,解得k =-13,此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ).∴当k =-13时,k a +b 与a -3b 平行,并且反向.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cosθ,t ), (1)若a ∥AB →,且|AB →|=5|OA →|,求向量OB →的坐标;(2)若a ∥AB →,求y =cos 2θ-cos θ+t 2的最小值.解 (1)∵AB →=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0.∴cos θ-1=2t .①又∵|AB →|=5|OA →|,∴(cos θ-1)2+t 2=5.②由①②得,5t 2=5,∴t 2=1.∴t =±1.当t =1时,cos θ=3(舍去),当t =-1时,cos θ=-1,∴B (-1,-1),∴OB →=(-1,-1).(2)由(1)可知t =cos θ-12,∴y =cos 2θ-cos θ+cos θ-124=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝⎛⎭⎪⎫cos θ-352-15, ∴当cos θ=35时,y min =-15. 14.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 (1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎪⎨⎪⎧ 1+3t <0,2+3t >0.∴-23<t <-13. (2)因为OA →=(1,2),PB →=(3-3t,3-3t ).若OABP 为平行四边形,则OA →=PB →,∵⎩⎪⎨⎪⎧ 3-3t =1,3-3t =2无解.所以四边形OABP 不能成为平行四边形.。
高三一轮复习 平面向量的概念及线性运算
第二十六课时平面向量的概念及线性运算考纲要求:1.平面向量的概念(B) 2.平面向量的加法、减法及数乘运算(B)知识梳理:1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量.规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b +c)减法求a与b的相反向量-b的和的运算a-b=a+(-b) 数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在惟一一个实数λ,使得b=λa.基础训练::1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)向量不能比较大小,但向量的模可以比较大小.( )(2)向量与有向线段是一样的,因此可以用有向线段来表示向量.( )( )(4)向量a-b与b-a是相反向量.( )(5)若a∥b,b∥c,则a∥c.( )(6)向量与向量是共线向量,则A,B,C,D四点在一条直线上.( )(7)当两个非零向量a,b共线时,一定有b=λa,反之成立.( )答案:(1)√(2)×(3)√(4)√(5)×(6)×(7)√2.如图,设O是正六边形ABCDEF的中心,则图中与相等的向量有________.3.化简:4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________.答案:-13[典题1](1)给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________. (2)给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题为________.(填序号) 解析:(1)①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.(2)①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量. 答案:(1)②③ (2)①③④ 小结:(1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.[典题2](1)设D 为△ABC 所在平面内一点,则下列结论正确的是________.(填序号)(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . (λ1,λ2为实数),则λ1+λ2的值为________.答案:(1)① (2)12答案:23小结:向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.练习:答案:3[典题3]设两个非零向量a 和b 不共线.(1)若=a +b ,=2a +8b ,=3(a -b ).求证:A 、B 、D 三点共线. (2)试确定实数k ,使k a +b 和a +k b 共线. 解析: (1)因为=a +b ,=2a +8b ,=3(a -b ),所以=+=2a +8b +3(a -b )=5(a +b )=5,所以,共线.又与有公共点B , 所以A 、B 、D 三点共线.(2)因为k a +b 与a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ),即⎩⎪⎨⎪⎧k =λ,1=λk ,解得k =±1.即k =±1时,k a +b 与a +k b 共线. [探究1] 若将本例(1)中“=2a +8b ”改为“=a +m b ”,则m 为何值时,A 、B 、D 三点共线?解:+=(a +m b )+3(a -b )=4a +(m -3)b ,即=4a +(m -3)b .若A 、B 、D 三点共线,则存在实数λ,使=λ,即4a +(m -3)b =λ(a +b ),∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7.故当m =7时,A 、B 、D 三点共线.[探究2] 若将本例(2)中的“共线”改为“反向共线”,则k 为何值? 解:因为k a +b 与a +k b 反向共线,所以存在实数λ,使k a +b =λ(a +k b )(λ<0),所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1.故当k =-1时两向量反向共线. 小结:(1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.练习:1.已知a ,b 是两个不共线的非零向量,且a 与b 起点相同.若a ,t b ,13(a +b )三向量的终点在同一直线上,则t =________.解析:∵a ,t b ,13(a +b )三向量的终点在同一条直线上,且a 与b 起点相同.∴a -t b 与a -13(a +b )共线,即a -t b 与23a -13b 共线,∴存在实数λ,使a -t b =λ⎝ ⎛⎭⎪⎫23a -13b , ∴⎩⎪⎨⎪⎧1=23λ,t =13λ,解得λ=32,t =12,即t =12时,a ,t b ,13(a +b )三向量的终点在同一条直线上.答案:3总结:1.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.注意:1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.课后作业1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量与相等;④若非零向量与是共线向量,则A ,B ,C ,D 四点共线.则所有正确命题的序号是________.解析:根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量与互为相反向量,故③错误;由于方向相同或相反的向量为共线向量,故与也可能平行,即A ,B ,C ,D 四点不一定共线,故④错误.3.如图,已知AB 是圆O 的直径,点C 、D 是半圆弧的两个三等分点,=a ,=b ,则=________.解析:连结CD ,由点C 、D 是半圆弧的三等分点,得CD ∥AB 且=12a ,所以=b +12a .4.A 、B 、O 是平面内不共线的三个定点,且点P 关于点A 的对称点为Q ,点Q 关于点B 的对称点为R ,则=________.6.如图,在△ABC中,AH⊥BC交BC于H,M为AH的中点,若则λ+μ=________.7.△ABC所在的平面内有一点P,满足则△PBC与△ABC的面积之比是________.9.如图,在△ABC中,BO为边AC上的中线,,若且 (λ∈R),则实数λ的值为________.10.在平行四边形ABCD 中,点E 是AD 的中点,BE 与AC 相交于点F ,若(m ,n ∈R ),则m n的值为________.解析:设=a ,=b ,则=m a +n b ,=12b -a ,由向量与共线可知存在实数λ,使得即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ,所以mn=-2.11.如图,在平行四边形ABCD 中,设S ,R ,Q ,P 分别为AP ,SD ,RC ,QB 的中点,若=m a +n b ,则m +n =________.答案:6512.如图所示,在△ABO 中,AD 与BC 相交于点M ,设试用a 和b 表示向量.解:设=m a +n b ,则=m a +n b -a =(m -1)a +n b ,=12 =-a +12b . ∵A 、M 、D 三点共线,故存在实数t ,使得即(m -1)a +n b =t ⎝⎛⎭⎪⎫-a +12b , ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t n =t 2,消去t 得m -1=-2n ,即m +2n =1.①联立①②,解得m =17,n =37.故=17a +37b .。
2021版高考数学一轮复习第五章平面向量第2讲平面向量基本定理及坐标表示练习理北师大版
第2讲 平面向量基本定理及坐标表示[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D.因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b=(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D.2.(2020·安徽合肥第一次质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( )A.⎝ ⎛⎭⎪⎫-65,85B .(-6,8) C.⎝ ⎛⎭⎪⎫65,-85D .(6,-8)解析:选D.因为向量b 与向量a 方向相反,所以可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=25λ2=5|λ|=-5λ=10,所以λ=-2,所以b =(6,-8).故选D.3.已知向量AC →,AD →和AB →在边长为1的正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λ+μ等于( )A .2B .-2C .3D .-3解析:选A.如图所示,建立平面直角坐标系,则AD →=(1,0),AC →=(2,-2),AB →=(1,2).因为AC →=λAB →+μAD →,所以(2,-2)=λ(1,2)+μ(1,0)=(λ+μ,2λ),所以⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3.所以λ+μ=2.故选A. 4.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任一向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)解析:选C.平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m ,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A.因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.(2020·湖北荆门阶段检测)在△AOB 中,AC →=15AB →,D 为OB 的中点,若DC →=λOA →+μOB →,则λμ的值为________.解析:因为AC →=15AB →,所以AC →=15(OB →-OA →),因为D 为OB 的中点,所以OD →=12OB →,所以DC →=DO →+OC →=-12OB →+(OA →+AC →)=-12OB →+OA →+15(OB →-OA →)=45OA →-310OB →,所以λ=45,μ=-310,则λμ的值为-625.答案:-6257.已知O 为坐标原点,向量OA →=(1,2),OB →=(-2,-1),若2AP →=AB →,则|OP →|=________. 解析:设P 点坐标为(x ,y ),AB →=OB →-OA →=(-2,-1)-(1,2)=(-3,-3),AP →=(x-1,y -2),由2AP →=AB →得,2(x -1,y -2)=(-3,-3),所以⎩⎪⎨⎪⎧2x -2=-3,2y -4=-3,解得⎩⎪⎨⎪⎧x =-12,y =12.故|OP →|=14+14=22. 答案:228.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1. 答案:19.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18). 10.如图,AB 是圆O 的直径,C ,D 是圆O 上的点,∠CBA =60°,∠ABD =45°,CD →=xOA →+yBC →,求x +y 的值.解:不妨设⊙O 的半径为1,以圆心O 为坐标原点,以OB ,OD 为x ,y 轴的正方向,建立如图所示的直角坐标系,则A (-1,0),B (1,0),D (0,1),C ⎝ ⎛⎭⎪⎫12,-32.所以CD →=⎝ ⎛⎭⎪⎫-12,1+32,BC →=⎝ ⎛⎭⎪⎫-12,-32.又CD →=xOA →+yBC →, 所以⎝ ⎛⎭⎪⎫-12,1+32=x (-1,0)+y ⎝ ⎛⎭⎪⎫-12,-32.所以⎩⎪⎨⎪⎧-12=-x -12y ,1+32=-32y ,解得⎩⎪⎨⎪⎧x =3+33,y =-3+233.所以x +y =3+33-3+233=-33.[综合题组练]1.已知P ={}a |a =(1,0)+m (0,1),m ∈R ,Q ={b |b =(1,1)+n (-1,1),n∈R }是两个向量集合,则P ∩Q 等于( )A.{}(1,1) B .{}(-1,1) C.{}(1,0)D .{}(0,1)解析:选A.设a =(x ,y ),则所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.2.(2020·包河区校级月考)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,合得其中较长的一段AC 是全长与另一段CB 的比例中项,即满足AC AB =BC AC =5-12,后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点,在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,设AP →x 1AB→+y 1AC →,AQ →=x 2AB →+y 2AC →,则x 1x 2+y 1y 2=( )A.5+12B .2 C. 5D .5+1解析:选C.由题意, AP →=AB →+BP →=AB →+⎝ ⎛⎭⎪⎫1-5-12BC →=AB →+3-52(AC →-AB →) =⎝⎛⎭⎪⎫1-3-52AB →+3-52AC →=5-12AB →+3-52AC →,同理,AQ →=AB →+BQ →=AB →+5-12BC →=AB →+5-12(AC →-AB →)=3-52AB →+5-12AC →. 所以x 1=y 2=5-12,x 2=y 1=3-52. 所以x 1x 2+y 1y 2=5-13-5+3-55-1= 5.3.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2. 所以a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)4.已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且PA →=λAB →(λ∈R ),则点P (x ,y )的轨迹方程是________.解析:由PA →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0.答案:x +y -2=0 5.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎪⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB→|cos(α+45°)=-35,y B =|OB →|sin (α+45°)=45,即B ⎝ ⎛⎭⎪⎫-35,45,由OC →=m OA →+n OB →,可得⎩⎪⎨⎪⎧15=m -35n ,75=45n ,解得⎩⎪⎨⎪⎧m =54,n =74,所以m +n =54+74=3. 法二:由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB→=1×1×⎝ ⎛⎭⎪⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n ②,联立①②,解得⎩⎪⎨⎪⎧m =54,n =74.所以m+n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线. (1)求AD 的长度;(2)过点D 作直线交AB ,AC 的延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x+2y的值,并说明理由.解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y =3.。
平面向量 第二节
本题主要考查平面向量的坐标运算、两
《 走 向 高 考 》 高 考 总 复 习 · 数 学
规 律 方 法 提 炼
向量平行的充要条件 ∵λa+b=λ(1,2)+(2,3)=(λ+2,2λ+3),∵λa +b与c共线,∴(λ+2)·(-7)-(2λ+3)·(-4)=0.解出λ=2. [答案] 2
课 后 强 化 作 业
的两个 单位向量 i、j作为基底,对任一向量a,有且只有一 对实数x、y使得a=xi+yj,则实数对 (x,y) 叫做向量a的直 角坐标,记作 a=(x,y) ,其中x,y分别叫做a在x轴、y轴 上的坐标, a=(x,y) 叫做向量a的坐标表示,相等的向量
《 走 向 高 考 》 高 考 总 复 习 · 数 学
《 走 向 高 考 》 高 考 总 复 习 · 数 学
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第5章
知 识 梳 理
平面向量
●回归教材 1.(教材P1232题改编)若向量a=(3,2),b=(0,-1), 则向量2b-a的坐标是 A.(3,4) B.(-3,4) ( )
课 堂 题 型 设 计
课 堂 题 型 设 计
解析:设c=λa+μb,则(4,2)=(λ-μ,λ+μ).
《 走 向 高 考 》 高 考 总 复 习 · 数 学
规 律 方 法 提 炼
故选B. 答案:B
课 后 强 化 作 业
首页
上页
下页
末页
第5章
知 识 梳 理
平面向量
3.已知a=(-1,3),b=(x,-1),且a∥b,则x等于 ( )
首页 上页 下页 末页
第5章
知 识 梳 理
2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt
)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,
【高考一轮复习,二级结论高效解题】专题6 平面向量
专题6 平面向量二级结论1:极化恒等式【结论阐述】(1)极化恒等式:()()2214⎡⎤⋅=+--⎣⎦a b a b a b ; (2)极化恒等式平行四边形型:在平行四边形ABCD 中,()2214AB AD AC BD ⋅=-,即向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14;(3)极化恒等式三角形模型:在ABC 中,M 为边BC 中点,则;2214AB AC AM BC ⋅=-. 说明:(1)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决;(2)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.【应用场景】极化恒等式常用于解决与平面向量数量积有关的求值(定值)、最值、范围等问题. 【典例指引1】(2022·甘肃·高台县第一中学模拟预测)1.如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4⋅=BA CA ,1BF CF ⋅=- ,则BE CE ⋅ 的值是_______.【典例指引2】2.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( )A .2-B .32-C .43-D .1-【针对训练】(2022·山东日照市·高三二模)】3.如图,在平行四边形ABCD 中,已知8,5,3,2AB AD CP PD AP BP ===⋅=,则AB AD ⋅的值是( )A .44B .22C .24D .72(2022·河北武强中学高三月考)4.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5.若AB AD ⋅=-7,则BC DC ⋅的值是________.(2022·全国福建省漳州市高三期末)5.在ABC ∆中,,2,1,,AB AC AB AC AB AC E F +=-==为BC 的三等分点,则·AE AF = A .89B .109C .259D .269(2022·海南海口·二模)6.在正三角形ABC 中,点,E F 是线段,AB AC 的中点,点P 在直线EF 上,若三角形ABC 的面积为2,则2+PC PB BC ⋅的最小值是___________ (2022•南通期末)7.在面积为2的ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则2PC PB BC ⋅+的最小值是______.(天津高考)8.如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.二级结论2:三角形“四心”向量形式的充要条件【结论阐述】设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC ∆的外心()()()02sin aOA OB OC OA OB AB OB OC BC OA OC AC A⇔===⇔+⋅=+⋅=+⋅=. (如图1)(2)如图2,O 为ABC ∆的重心⇔OA OB OC ++=0.(3)如图2,O 为ABC ∆的垂心⇔OA OB OB OC OC OA ⋅=⋅=⋅. (4)如图3,O 为ABC ∆的内心sin sin sin aOA bOB cOC A OA B OB C OC ⇔++=⇔⋅+⋅+⋅=00.说明:三角形“四心”——重心,垂心,内心,外心 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.【应用场景】主要用于有关向量与三角形“四心”问题的判断与研究. 【典例指引1】9.在ABC 所在平面内有三点O ,N ,P ,则下列说法正确的是( ) A .满足||||||OA OB OC ==,则点O 是ABC 的外心 B .满足0NA NB NC ++=,则点N 是ABC 的重心 C .满足PA PB PB PC PC PA ⋅=⋅=⋅,则点P 是ABC 的垂心 D .满足()0||||AB AC BC AB AC +⋅=,且12||||AB AC AB AC ⋅=,则ABC 为等边三角形【典例指引2】10.已知,,,O A B C 是平面上的4个定点,,,A B C 不共线,若点P 满足()OP OA AB AC λ=++,其中R λ∈,则点P 的轨迹一定经过ABC 的( )A .重心B .外心C .内心D .垂心【针对训练】11.在△ABC 中,=3AB ,=4AC ,=5BC ,O 为△ABC 的内心,若AO AB BC λμ=+,则λμ+=( ) A .23B .34C .56D .3512.已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪ ⎪⎝⎭()R λ∈,则点P 的轨迹一定经过ABC 的( )A .重心B .外心C .内心D .垂心13.设G 为ABC 的重心,若=2AB ,BC ==4AC ,则AG BC ⋅=___________ 14.设O 为ABC 的外心,若=4AB ,BC =BO AC ⋅=___________. 15.设I 为ABC 的内心,若=2AB ,BC ==4AC ,则AI BC ⋅=___________二级结论3:奔驰定理【结论阐述】奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅=.说明:本定理图形酷似奔驰的车标而得名. 奔驰定理在三角形四心中的具体形式:△O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=. △O 是ABC ∆的内心⇔::::A B C S S S a b c =⇔0aOA bOB cOC ++=. △O 是ABC ∆的外心::sin 2:sin 2:sin 2sin 2sin 2sin 20A B C SS SA B C A OA B OB C OC ⇔=⇔⋅+⋅+⋅=.△O 是ABC ∆的垂心⇔::tan :tan :tan A B C S S S A B C =⇔tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=.奔驰定理是三角形四心向量式的完美统一.【应用场景】奔驰定理常用于解答与三角形内任意一点有关的三角形面积问题. 【典例指引1】(2022·四川西昌·高二期末)16.在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( ) A .外心 B .内心C .重心D .垂心【典例指引2】17.设G 是△ABC 重心,且(56sin )(40sin )(35sin )0A GA B GB C GC ++=,则B ∠=_________.【针对训练】 一、单选题18.若O 是平面上的定点,A ,B ,C 是平面上不共线的三点,且满足()OP OC CB CA λ=++(R λ∈),则P 点的轨迹一定过ABC 的( )A .外心B .内心C .重心D .垂心19.若O 是平面内一定点,A ,B ,C 是平面内不共线的三点,若点P 满足2OB OCOP +=+λAP (λ△(0,+∞)),则点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心20.已知O 是平面内一定点,,,A B C 是平面上不共线的三个点,动点P 满足()()0,,λλ⎛⎫⎪=++∈+∞ ⎪⎝⎭AB AC OP OA AB AC 则点P 的轨迹一定通过ABC 的( ) A .外心 B .内心 C .重心 D .垂心21.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪+ ⎪⎝⎭=+,m R ∈,则点P 的轨迹一定通过ABC 的( )A .重心B .内心C .外心D .垂心二、多选题(2022·重庆实验外国语学校高一期中)22.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,内心为Q ,则下列结论正确的是( )A .212AO AB AB ⋅=B .GA GB GA GC GB GC ⋅=⋅=⋅C .0HA HB HC ++=D .若A P Q 、、三点共线,则存在实数λ使||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭(2022·广东·东莞市光明中学高一阶段练习)23.点O 在ABC 所在的平面内,则以下说法正确的有( ) A .若0OA OB OC ++=,则点O 是ABC 的重心.B .若0||||||||AC AB BC BA OA OB AC AB BC BA ⎛⎫⎛⎫⋅-=⋅-= ⎪ ⎪⎝⎭⎝⎭,则点O 是ABC 的内心. C .若()()0OA OB AB OB OC BC +⋅=+⋅=,则点O 是ABC 的外心. D .若OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC 的垂心.三、填空题24.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++⎪⎝⎭,[)0,λ∈+∞,则动点P 的轨迹一定通过ABC 的________(填序号).△内心 △垂心 △ 重心 △外心参考答案:1.78【详解】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(), 2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()()【考点】向量数量积【名师点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解. 2.B【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【详解】建立如图所示的坐标系,以BC 中点为坐标原点,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,则()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,则22223()222[(]4PA PB PC x y x y +=-+=+-∴当0x =,y =时,取得最小值332()42⨯-=-,故选:B .3.B【分析】以{},AB AD 为基底分别表示出,AP BP ,再利用平面向量数量积的运算律即可解出. 【详解】因为3CP PD =,所以14AP AD DP AD AB =+=+,1344BP AP AB AD AB AB AD AB =-=+-=-,而2AP BP ⋅=,所以, 13244AD AB AD AB ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭,化简得:2213582216AB AD -⋅-⨯=,即22AB AD ⋅=. 故选:B . 4.9【解析】根据平面向量的线性表示与数量积运算,利用AB AD ⋅=()()AO OB AO OD +⋅+,求出||||4OB OD ==,再利用()()BC DC BO OC DO OC ⋅=+⋅+,运算可求出结果. 【详解】在平面四边形ABCD 中,O 为BD 的中点,且3,5,0OA OC OB OD ==∴+=若7AB AD ⋅=-,则()()AO OB AO OD +⋅+2AO AO OD AO OB OB OD =+⋅+⋅+⋅22()AO OA OD OB OB =+⋅+-223OB =-7=-,216OB ∴=,||||4OB OD ∴==,()()BC DC BO OC DO OC ∴⋅=+⋅+2BO DO BO OC OD OC OC =⋅+⋅+⋅+=222()4BO OC BO OD OC -+⋅++=-2059++=.故答案为:9【点睛】本题考查了平面向量的线性表示与数量积运算,考查了转化思想和运算能力,属于中档题. 5.B【详解】试题分析:因为AB AC AB AC +=-,所以AB AC ⊥,以点A 为坐标原点,,AB AC分别为,x y 轴建立直角坐标系,设()()2,00,1AB AC ==,,又E F ,为BC 的三等分点所以,4122,,,3333AE AF ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以412210,,33339AE AF ⎛⎫⎛⎫⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,故选B.考点:平面向量的数量积.【一题多解】若AB AC AB AC +=-,则222222AB AC AB AC AB AC AB AC ++⋅=+-⋅, 即有0AB AC ⋅=,,E F 为BC 边的三等分点,则()()1133AE AF AC CE AB BF AC CB AB BC ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭21123333AC AB AC AB ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭22225210(14)099999AC AB AB AC =++⋅=++=,故选B .6【分析】取BC 中点D ,由题意,计算得2BC =ABC BC ,数形结合可知,PD 的最小值为PBC △BC ,利用向量的基底表示与线性运算将问题转化为2222113+=+?+=+224PC PB BC PD BC PD BC BC PD BC ⋅-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,代值计算.【详解】取BC 中点D ,由正ABC 的面积为2,221πsin 223ABCSBC BC ∴=⋅⋅=⇒=ABC 的高为πsin3h BC =⋅=,数形结合得,PD 的最小值为PBC △的高,即12PD h ≥=, 所以22316PD BC ≥,所以2211+=+?+22PC PB BC PD BC PD BC BC ⋅-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2222221333154416416PD BC BC PD BC BC -+=+≥+7.【分析】由平面几何的知识结合三角形面积公式可得2sin PB PC BPC⋅=∠,由平面向量数量积的运算可得2cos sin BP PC P CB B PC∠=∠⋅,由余弦定理结合基本不等式可得244cos sin BP B CBP C C-∠∠≥,进而可得242cos sin PC P BPC BP B C BC ⋅-∠∠+≥,令()42cos (),0,sin x f x x x π-=∈,利用导数求得()f x 的最小值后即可得解. 【详解】因为E 、F 分别是AB 、AC 的中点, 所以EF 到BC 的距离等于点A 到BC 的距离的一半, 所以2ABCPBCS S=,又2ABCS=,所以11sin 2PBCS PB PC BPC ==⋅⋅∠, 因此2sin PB PC BPC⋅=∠,所以2cos cos sin BPCPB PC BP PC B PC P C B ∠⋅⋅∠∠⋅==;又由余弦定理可得:2222cos =+-⋅⋅∠BC PB PC PB PC BPC 44cos s 22cos in PB PC PB PC BP BPCBPCC ≥⋅-⋅-∠=∠∠,当且仅当PB PC =时,取等号; 所以22cos 44cos 42cos sin sin sin BPC BPC BP PC PB BC CBPC BPC BPC∠-∠-∠++∠∠≥=∠⋅,令=∠x BPC ,42cos ()sin xf x x-=,()0,x π∈;又2222sin (42cos )cos 24cos ()sin sin x x x xf x x x---'==,由()0f x '>得1cos 2x <,所以3x ππ<<;由()0f x '<得1cos 2x >,所以03x π<<;所以()f x 在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫⎪⎝⎭上单调递增;所以min()3f x fπ⎛⎫===⎪⎝⎭因此2PC PB BC⋅+的最小值是故答案为:【点睛】本题考查了基本不等式、余弦定理、导数的应用及向量数量积的最值问题,考查了运算求解能力与转化化归思想,属于中档题.8.16132【分析】可得120BAD∠=,利用平面向量数量积的定义求得λ的值,然后以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,设点(),0M x,则点()1,0N x+(其中05x≤≤),得出DM DN⋅关于x的函数表达式,利用二次函数的基本性质求得DM DN⋅的最小值.【详解】AD BCλ=,//AD BC∴,180120BAD B∴∠=-∠=,cos120AB AD BC AB BC ABλλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=-⎪⎝⎭,解得16λ=,以点B为坐标原点,BC所在直线为x轴建立如下图所示的平面直角坐标系xBy,()66,0BC C=∴,,△3,60AB ABC=∠=︒,△A的坐标为32A⎛⎝⎭,△又△16AD BC=,则52D⎛⎝⎭,设(),0M x,则()1,0N x+(其中05x≤≤),5,2DM x ⎛=- ⎝⎭,3,2DN x ⎛=- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题. 9.ABCD【分析】根据三角形外心、重心和垂心的定义逐一用向量判断ABC ,用向量的数量积和运算律判断D 即可.【详解】解:对于A ,因为||||||OA OB OC ==,所以点O 到ABC 的三个顶点的距离相等,所以O 为ABC 的外心,故A 正确;对于B ,如图所示,D 为BC 的中点,由0NA NB NC ++=得:2ND NA =-,所以||:||2:1AN ND =,所以N 是ABC 的重心,故B 正确;对于C ,由PA PB PB PC ⋅=⋅得:()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥;同理可得:AB PC ⊥,所以点P 是ABC 的垂心,故C 正确; 对于D ,由()0||||AB ACBC AB AC +⋅=得:角A 的平分线垂直于BC ,所以AB AC =; 由12||||AB AC AB AC ⋅=得:1cos 2A =,所以3A π=,所以ABC 为等边三角形,故D 正确.故选:ABCD . 10.A【分析】设BC 边的中点为D ,则2AB AC AD +=,进而结合题意得2AP AD λ=,再根据向量共线判断即可.【详解】解:根据题意,设BC 边的中点为D ,则2AB AC AD +=, 因为点P 满足()OP OA AB AC λ=++,其中R λ∈ 所以,()2OP OA AP AB AC AD λλ-==+=,即2AP AD λ=, 所以,点P 的轨迹为ABC 的中线AD , 所以,点P 的轨迹一定经过ABC 的重心. 故选:A11.C【分析】根据向量的减法法则化简题中的等量关系,结合三角形内心的性质得到系数的关系求解.【详解】由AO AB BC λμ=+得()()AO OB OA OC OB λμ=-+-, 则()()1++=0OA OB OC -λλ-μμ,因为O 为△ABC 的内心,所以++=0BC OA AC OB AB OC , 从而()()1::5:4:3λλμμ--=, 解得712λ=,14μ=,所以56λμ+=.故选:C. 12.C【分析】根据向量的线性运算,结合已知条件,即可判断点P 轨迹. 【详解】因为AB AB为AB 方向上的单位向量,AC AC为AC 方向上的单位向量,则||||AB ACAB AC +的方向与BAC ∠的角平分线一致, 由AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪ ⎪⎝⎭,可得AB AC OP OA AB AC λ⎛⎫ ⎪-=+ ⎪⎝⎭,即AB AC AP AB AC λ⎛⎫⎪=+ ⎪ ⎪⎝⎭, 所以点P 的轨迹为BAC ∠的角平分线所在直线, 故点P 的轨迹一定经过ABC 的内心. 故选:C. 13.4【分析】由G 为ABC 的重心,易得()1=,3AG AB AC +又=BC AC AB -,结合数量积运算律即可得到结果.【详解】由已知可得ABC 是以B 为直角顶点的直角三角形, 因为G 为ABC 的重心,所以()22+1===+,3323AB AC AG AF AB AC ⋅ =BC AC AB-,△()()()()22111=+==164=4333AG BC AB AC AC AB AC AB ⋅⋅---, 故答案为:4 14.2-【分析】根据条件和几何意义,将BO AC 转化为相应的向量投影即可求解. 【详解】如图,设D 、E 分别为,AB BC 的中点,则,OD AB OE BC ⊥⊥,所以()BO AC BO BC BA BO BC BO BA =-=- cos cos BO BC OBC BO BA OBA =∠-∠ 2211=?·==222BE BC BA BD BC BA --- , 故答案为:-2 . 15.6-【分析】利用向量的数量积运算求解或根据投影的几何意义求解.【详解】解法1:不难发现,ABC 是以B 为直角顶点的直角三角形,如图,设圆I 与AB 、AC 、BC 分别相切于点D 、E 、F ,设圆I 的半径为r ,则ID IE IF r ===,显然四边形BDIF 是正方形,所以BD BF r ==,从而2AD r =-,CF r =,易证=AE AD ,=CE CF ,所以2AE r =-,CE r =,故224AE CE r AC +=+==,从而1r =,23AD r =-=()AI BC AI AC AB AI AC AI AB ⋅=⋅-=⋅-⋅cos cos AI AC IAC AI AB IAB =⋅⋅∠-⋅⋅∠ ()26AE AC AD AB AD AC AB AD =⋅-⋅=-==-故答案为:6-解法2:按解法1求得ABC 的内切圆半径1r ,由图可知AI 在BC 1,所以()316AI BC ⋅=⨯-故答案为:6- 16.B【分析】利用三角形面积公式,推出点O 到三边距离相等。
2023年新高考数学大一轮复习专题二平面向量与三角函数第1讲平面向量(含答案)
新高考数学大一轮复习专题:第1讲 平面向量[考情分析] 1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性,在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合,主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度;平面向量在解答题中一般为中等难度. 考点一 平面向量的线性运算 核心提炼1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.例1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14答案 A解析 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则m n=________. 答案 -2解析 ∵a ∥b ,∴m ×(-1)=2×n ,∴m n=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 由题意可得,OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.跟踪演练1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题意可设CG →=xCE →(0<x <1), 则CG →=x (CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.答案 [1,3]解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略), 则B (1,0),A ⎝ ⎛⎭⎪⎫12,32,C (cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y (1,0),即⎩⎪⎨⎪⎧x 2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g (θ)=3cos θ-33sin θ, 易知g (θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3, 当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].考点二 平面向量的数量积 核心提炼1.若a =(x ,y ),则|a |=a ·a =x 2+y 2. 2.若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b|a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 答案 C解析 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.答案 ⎣⎢⎡⎦⎥⎤255,22 解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 B解析 方法一 设a 与b 的夹角为θ,因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B. 方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3,即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题强化练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( )A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →答案 A解析 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 答案 B解析 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2B .-1C .-12D.12答案 A解析 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 答案 D解析 由P (3,1),得P ⎝⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2, 又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 答案 C解析 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23B.34C.56D .1 答案 A解析 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC →+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .23B .33C .43D .5 3 答案 D解析 设△ABC 的外接圆的圆心为O , 则圆的半径为332×12=3,OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →.又||4PO →+OC→2=51+8PO →·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A.2B.3C .2D .2 2 答案 C解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0), 设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 答案 BC解析 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a -b 的夹角为π4,故C 正确. 11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( )A .若k <-2,则a 与b 的夹角为钝角B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝ ⎛⎭⎪⎫22,-22 D .若|a |=2|b |,则k =22或-2 2 答案 CD解析 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b |b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76答案 BCD解析 因为AE →=EB →,△ABC 是等边三角形,所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO →=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233, 又BO →∥DO →,所以y -233=-13y ,解得y =32, 即O 是CE 的中点,OE →+OC →=0,所以选项B 正确;|OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32, 所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确. 三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0.因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.答案 5解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝ ⎛⎭⎪⎫12,32.设C (a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32 =-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4. ∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12()BA →+BC → =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36. ∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5. 15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________. 答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|. ∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13, 即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案 2829解析 设e 1=(1,0),e 2=(x ,y ),则a =(x +1,y ),b =(x +3,y ).由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=2-x 2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b|a |·|b |2=⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y 2x +32+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5=4x +13x +5=433x +5-833x +5=43-833x +5,。
2019-2020年高考数学一轮复习 第五篇 平面向量 第2讲 平面向量基本定理及其坐标表示教案 理 新人教版
2019-2020年高考数学一轮复习 第五篇 平面向量 第2讲 平面向量基本定理及其坐标表示教案 理 新人教版【xx 年高考会这样考】1.考查平面向量基本定理的应用. 2.考查坐标表示下向量共线条件. 【复习指导】本讲复习时,应理解基本定理,重点运用向量的坐标进行加、减、数乘的运算以及向量共线的运算.基础梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线的向量e 1,e 2叫表示这一平面内所有向量的一组基底. 2.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2-x 2y 1=0时,向量a ,b 共线.一个区别向量坐标与点的坐标的区别:在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA→=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变,即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.两个防范(1)要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.(2)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.双基自测1.(人教A 版教材习题改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ). A .(4,3)B .(-4,-3)C .(-3,-4)D .(-3,4)解析 a 1+a 2+…+a n -1=-a n =(-3,-4). 答案 C2.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ). A .3a +b B .3a -b C .-a +3b D .a +3b解析 设c =x a +y b ,则⎩⎪⎨⎪⎧x -y =4,x +y =2,∴⎩⎪⎨⎪⎧x =3,y =-1.∴c =3a -b . 答案 B3.(xx·郑州月考)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( ).A .-1B .1C .-2D .2解析 设a =λb (λ<0),即m =λ且1=λm .解得m =±1,由于λ<0,∴m =-1. 答案 A4.设向量a =(1,-3),b =(-2,4),若表示向量4a 、3b -2a 、c 的有向线段首尾相接能构成三角形,则向量c =( ).A .(4,6)B .(-4,-6)C .(4,-6)D .(-4,6) 解析 设c =(x ,y ), 则4a +(3b -2a )+c =0,∴⎩⎪⎨⎪⎧4-6-2+x =0,-12+12+6+y =0,∴⎩⎪⎨⎪⎧x =4,y =-6.答案 C5.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析 a +b =(1,m -1).∵(a +b )∥c ,∴2-(-1)(m -1)=0,∴m =-1. 答案 -1考向一 平面向量基本定理的应用【例1】►(xx·南京质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.[审题视点] 由B ,H ,C 三点共线可用向量AB →,AC →来表示AH →.解析 由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12.答案 12应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.【训练1】 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.解析 以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系如图,令AB =2,则AB →=(2,0),AC →=(0,2),过D 作DF ⊥AB 交AB 的延长线于F ,由已知得DF =BF =3,则AD →=(2+3, 3).∵AD →=xAB →+yAC →,∴(2+3,3)=(2x,2y ).即有⎩⎨⎧2+3=2x ,3=2y ,解得⎩⎪⎨⎪⎧x =1+32,y =32.另解:AD →=AF →+FD →=⎝ ⎛⎭⎪⎫1+32AB →+32AC →,所以x =1+32,y =32. 答案 1+32 32考向二 平面向量的坐标运算【例2】►(xx·合肥模拟)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →.求M ,N 的坐标和MN →.[审题视点] 求CA →,CB →的坐标,根据已知条件列方程组求M ,N . 解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA →=(1,8),CB →=(6,3).∴CM →=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6). 设M (x ,y ),则CM →=(x +3,y +4). ∴⎩⎪⎨⎪⎧x +3=3,y +4=24,得⎩⎪⎨⎪⎧x =0,y =20.∴M (0,20).同理可得N (9,2),∴MN →=(9-0,2-20)=(9,-18).利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.【训练2】 在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( ). A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析 由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5). 答案 B考向三 平面向量共线的坐标运算【例3】►已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方[审题视点] 根据共线条件求k ,然后判断方向.解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).若这两个向量共线,则必有 (k -3)×(-4)-(2k +2)×10=0. 解得k =-13.这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ).即两个向量恰好方向相反, 故题设的实数k 存在.向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值. 【训练3】 (xx·西安质检)已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ).A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73解析 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1).∵(c +a )∥b ,∴-3×(1+m )=2×(2+n ),又c ⊥(a +b ), ∴3m -n =0,解得m =-79,n =-73.答案 D阅卷报告5——平面几何知识应用不熟练致误【问题诊断】 在平面几何图形中设置向量问题,是高考命题向量试题的常见形式,求解这类问题的常规思路是:首先选择一组基向量,把所有需要的向量都用基向量表示,然后再进行求解.【防范措施】 一是会利用平行四边形法则和三角形法则;二是弄清平面图形中的特殊点、线段等.【示例】►(xx·湖南)在边长为1的正三角形ABC 中,设BC →误.=2BD →,CA →=3CE →,则AD →·BE →=错因 搞错向量的夹角或计算错 实录 -12(填错的结论多种).正解 由题意画出图形如图所示,取一组基底{AB →,AC →},结合图形可得AD →=12(AB →+AC →),BE →=AE →-AB →=23AC →-AB →,∴AD →·BE →=12(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-AB →=13AC →2-12AB →2-16AB →·AC →=13-12-16cos 60°=-14. 答案 -14【试一试】 (xx·天津)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. [尝试解析]以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ),PA →=(2,-x ),PB →=(1,a -x ),∴PA →+3PB →=(5,3a -4x ),|PA →+3PB →|2=25+(3a -4x )2≥25,∴|PA →+3PB →|的最小值为5. 答案 52019-2020年高考数学一轮复习 第五篇 平面向量 第3讲 平面向量的数量积教案 理 新人教版【xx 年高考会这样考】1.考查平面向量数量积的运算.2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系.基础梳理1.两个向量的夹角已知两个非零向量a 和b (如图),作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向;如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 2.两个向量的数量积的定义已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.3.向量数量积的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b|cos θ的数量积. 4.向量数量积的性质设a 、b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ; (2)a ⊥b ⇔a ·b =0;(3)当a 与b 同向时,a ·b =|a |·|b |;当a 与b 反向时,a ·b =-|a ||b |,特别的,a ·a =|a |2或者|a |=a ·a ;(4)cos θ=a ·b |a ||b |;(5)|a ·b |≤|a ||b |. 5.向量数量积的运算律 (1)a ·b =b ·a ;(2)λa ·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 6.平面向量数量积的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2; (2)|a |=x 21+y 21; (3)cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21 x 22+y 22; (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.7.若A (x 1,y 1),B (x 2,y 2),AB →=a ,则|a |=x 1-x 22+y 1-y 22(平面内两点间的距离公式).一个条件两个向量垂直的充要条件:a ⊥b ⇔x 1x 2+y 1y 2=0. 两个探究(1)若a ·b >0,能否说明a 和b 的夹角为锐角? (2)若a ·b <0,能否说明a 和b 的夹角为钝角? 三个防范(1)若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c 若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.(2)数量积运算不适合结合律,即(a ·b )c ≠a (b ·c ),这是由于(a ·b )c 表示一个与c 共线的向量,a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )c 与a (b ·c )不一定相等.(3)向量夹角的概念要领会,比如正三角形ABC 中,AB →与BC →的夹角应为120°,而不是60°.双基自测1.(人教A 版教材习题改编)已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角为( ). A.π3 B.π4 C.2π3 D.3π4 解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,∴θ=2π3.答案 C2.若a ,b ,c 为任意向量,m ∈R ,则下列等式不一定成立的是( ). A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m bD .(a ·b )·c =a ·(b ·c )答案 D3.(xx·广东)若向量a ,b ,c 满足a ∥b ,且a ⊥c ,则c ·(a +2b )=( ). A .4 B .3 C .2 D .0解析 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0. 答案 D4.已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于( ). A .9 B .4 C .0 D .-4 解析 a -b =(1-x,4). 由a ⊥(a -b ),得1-x +8=0. ∴x =9. 答案 A5.(xx·江西)已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________. 解析 由|a |=|b |=2,(a +2b )(a -b )=-2, 得a ·b =2,cos 〈a ,b 〉=a ·b |a ||b |=22×2=12,又〈a ,b 〉∈[0,π]所以〈a ,b 〉=π3. 答案π3考向一 求两平面向量的数量积【例1】►(xx·合肥模拟)在△ABC 中,M 是BC 的中点,|AM →|=1,AP →=2PM →,则PA →·(PB →+PC →)=________.[审题视点] 由M 是BC 的中点,得PB →+PC →=2PM →.解析 如图,因为M 是BC 的中点,所以PB →+PC →=2PM →,又AP →=2PM →,|AM →|=1,所以PA →·(PB →+PC →)=PA →·2PM →=-4|PM →|2=-49|AM →|2=-49,故填-49.答案 -49当向量表示平面图形中的一些有向线段时,要根据向量加减法运算的几何法则进行转化,把题目中未知的向量用已知的向量表示出来,在这个过程中要充分利用共线向量定理和平面向量基本定理、以及解三角形等知识. 【训练1】 如图,在菱形ABCD 中,若AC =4,则CA →·AB →=________.解析 AB →=AO →+OB →,故CA →·AB →=CA →·(AO →+OB →)=CA →·AO →+CA →·OB →.而AO →=-12CA →,CA →⊥OB →.所以CA →·AB →=-12CA 2=-8.答案 -8考向二 利用平面向量数量积求夹角与模【例2】►已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.[审题视点] 由平面向量数量积的运算法则得a ·b 的值,再求其夹角的余弦值,从而得其夹角.解 (1)(2a -3b )·(2a +b )=61,解得a ·b =-6. ∴cos θ=a ·b |a ||b |=-64×3=-12,又0≤θ≤π,∴θ=2π3. (2)|a +b |2=a 2+2a ·b +b 2=13, ∴|a +b |=13.|a -b |2=a 2-2a ·b +b 2=37. ∴|a -b |=37.在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a ·a 要引起足够重视,是求距离常用的公式.【训练2】 已知a 与b 是两个非零向量,且|a |=|b |=|a -b |,求a 与a +b 的夹角. 解 设a 与a +b 的夹角为θ,由|a |=|b |得|a |2=|b |2. 又由|b |2=|a -b |2=|a |2-2a ·b +|b |2.∴a ·b =12|a |2, 而|a +b |2=|a |2+2a ·b +|b |2=3|a |2,∴|a +b |=3|a |. ∴cos θ=a a +b |a ||a +b |=|a |2+12|a |2|a |·3|a |=32. ∵0°≤θ≤180°,∴θ=30°,即a 与a +b 的夹角为30°.考向三 平面向量的数量积与垂直问题【例3】►已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R ).(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.[审题视点] 利用a ⊥b ⇔x 1x 2+y 1y 2=0及a ∥b ⇔x 1y 2-x 2y 1=0,求解.解 (1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0.整理,得x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则有1×(-x )-x (2x +3)=0,即x (2x +4)=0,解得x =0或x =-2.当x =0时,a =(1,0),b =(3,0),a -b =(-2,0),∴|a -b |=-2+02=2. 当x =-2时,a =(1,-2),b =(-1,2),a -b =(2,-4),∴|a -b |=2 5.综上,可知|a -b |=2或2 5.已知两向量垂直就是利用其数量积为零列出方程,通过解方程求出其中的参数值.在计算数量积时要注意方法的选择:一种方法是把互相垂直的两个向量的坐标求出来,再计算数量积;另一种方法是根据数量积的运算法则进行整体计算,把这个数量积的计算化归为基本的向量数量积的计算.【训练3】 已知平面内A ,B ,C 三点在同一条直线上,OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),且OA →⊥OB →,求实数m ,n 的值.解 由于A ,B ,C 三点在同一条直线上,则AC →∥AB →,AC →=OC →-OA →=(7,-1-m ),AB →=OB →-OA →=(n +2,1-m ),∴7(1-m )-(-1-m )(n +2)=0,即mn +n -5m +9=0,①又∵OA →⊥OB →,∴-2n +m =0.②联立①②,解得⎩⎪⎨⎪⎧ m =6,n =3或⎩⎪⎨⎪⎧ m =3,n =32.规范解答10——如何解决平面向量与解三角形的综合问题【问题研究】 平面向量与三角的综合性问题大多是以三角题型为背景的一种向量描述.它需要根据向量的运算性质将向量问题转化为三角的相关知识来解答,三角知识是考查的主体.考查的要求并不高,解题时要综合利用平面向量的几何意义等将题中的条件翻译成简单的数学问题.【解决方案】 解决这类问题时,首先要考虑向量工具性的作用,如利用向量的模与数量积转化边长与夹角问题,然后注意三角形中边角的向量关系式的表达形式,最后用三角知识规范解答.【示例】► (本题满分12分)(xx·安徽)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值.先求sin A ,再利用面积公式求bc ,最后利用数量积及余弦定理可解决.[解答示范] 由cos A =1213,得sin A = 1-⎝ ⎛⎭⎪⎫12132=513.(2分) 又12bc sin A =30, ∴bc =156.(4分)(1)AB →·AC →=bc cos A =156×1213=144(8分) (2)a 2=b 2+c 2-2bc cos A =(c -b )2+2bc (1-cos A ) =1+2×156×⎝ ⎛⎭⎪⎫1-1213=25,又a >0(10分) ∴a =5.(12分)三角形的三边可与三个向量对应,这样就可以利用向量的知识来解三角形了,解决此类问题要注意内角与向量的夹角之间的联系与区别,还要注意向量的数量积与三角形面积公式之间关系的应用.【试一试】 已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,设AB →与BC →的夹角为θ.(1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值.[尝试解答] (1)∵AB →·BC →=6,∴|AB →|·|BC →|·cos θ=6.∴|AB →|·|BC →|=6cos θ. 又∵S =12|AB →|·|BC →|·sin(π-θ)=3tan θ, ∴3≤3tan θ≤3,即33≤tan θ≤1. 又∵θ∈(0,π),∴π6≤θ≤π4. (2)f (θ)=1+2cos 2θ+sin 2θ=cos 2θ+sin 2θ+2=2sin ⎝⎛⎭⎪⎫2θ+π4+2, 由θ∈⎣⎢⎡⎦⎥⎤π6,π4,得2θ∈⎣⎢⎡⎦⎥⎤π3,π2,∴2θ+π4∈⎣⎢⎡⎦⎥⎤712π,34π. ∴当2θ+π4=34π即θ=π4时,f (θ)min =3.。
高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版
设 a=(x1,y1),b=(x2,y2),其中 a≠b 则 a∥b⇔ _x_1_y_2-__x_2_y_1=__0___.
第三页,共18页。
1.对平面向量基本(jīběn)定理的理 解
(1)平面内的任何两个向量都可以作为一组基底.( ) (2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1=μ2.( ) (3)(2013·广东卷改编)已知 a 是已知的平面向量且 a≠0.关于向量 a
1234 A.5 B.5 C.5 D.5
解析 因为A→B=A→N+N→B =A→N+C→N (x=jiīě)A→N+(C→A+A→N)=2A→N+C→M+M→A
=所2A以→NA→-B=14A→85BA→-NA-→M45A,→M, 所以 λ+μ=45. 答案 D
第十页,共18页。
平面(píngmiàn)向量的
考
坐标运算
点
【例 2】已知 A(-2,4),B(3,-1),C(-3,-4),设A→B=a,
B→C=b, C→A=c,且C→M=3c, C→N=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
(3)求 M,N 的坐标及向量M→N的坐标.
解析 由已知得 a=(5,-5), b=(-6,-3), c=(1,8)
点
【例 3】平面内给定三个向量 a=(3,2),
审题路线
b=(-1,2),c=(4,1).
(1)若(a+kc)∥(2b-a),求实数 k;
(1)分别求出(a+kc)
(2)若 d 满足(d-c)∥(a+b),且|d-c|= 5, 与(2b-a)的坐标
求 d 的坐标.
高三数学一轮复习平面向量复习教案和学案
1、向量的概念及运算 一、考纲要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;③了解向量的线性运算性质及其几何意义.(3)平面向量的基本定理及坐标表示了解平面向量的基本定理及其意义;二、知识梳理:1.向量的概念①向量既有大小又有方向的量。
向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB .几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的大小即向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行.零向量a =0 ⇔|a|=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b 。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量长度相等且方向相同的向量.相等向量经过平移后总可以重合,记为b a =。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 。
100测评网2022届高三数学第一轮复习资料——平面向量
100测评网2022届高三数学第一轮复习资料——平面向量由100测评网上传提供,一线特高级教师整理编辑,非常有助于中小学生的学业提升平面向量第2章平面向量§2.1向量的概念及其表示考纲要求:①了解向量的实际背景.②理解平面向量的概念及向量相等的含义.③理解向量的几何表示.经典例题:下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行当堂练习:1.下列各量中是向量的是()A.密度B.体积C.重力D.质量2下列说法中正确的是()A.平行向量就是向量所在的直线平行的向量B.长度相等的向量叫相等向量C.零向量的长度为零D.共线向量是在一条直线上的向量3.设O是正方形ABCD的中心,则向量AO、OB、CO、OD是()A.平行向量B.有相同终点的向量C.相等的向量D.模都相同的向量4.下列结论中,正确的是()A.零向量只有大小没有方向B.对任一向量a,|a|>0总是成立的C.||=||D.||与线段BA的长度不相等5.若四边形ABCD是矩形,则下列命题中不正确的是()A.AB与CD共线B.AC与BD相等C.AD与CB是相反向量D.AB与CD模相等6.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,(1)与BC相等的向量有;(2)与OB长度相等的向量有;(3)与DA共线的向量有.7.在①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量中,不正确的命题是.并对你的判断举例说明由100测评网上传提供,一线特高级教师整理编辑,非常有助于中小学生的学业提升.8.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:(1)与AO相等的向量有;(2)写出与AO共线的向有;(3)写出与AO的模相等的有;(4)向量AO与CO是否相等?答.9.O是正六边形ABCDE的中心,且OAa,OBb,ABc,在以A,B,C,D,E,O为端点的向量中:(1)与a相等的向量有;(2)与b相等的向量有;(3)与c相等的向量有10.在如图所示的向量a,b,c,d,e中(小正方形的边长为1),是否存在:(1)是共线向量的有;(2)是相反向量的为;(3)相等向量的的;(4)模相等的向量.11.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,(1)与向量FE共线的有.(2)与向量DF的模相等的有.(3)与向量ED相等的有.FC12.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时,它位于A点,这只“马”第一步有几种可能的走法?试在图中画出来.若它位于图中的P点,这只“马”第一步有几种可能的走法?它能否从点A走到与它相邻的B?它能否从一交叉点出发,走到棋盘上的其它任何一个交叉点?第2章平面向量§2.2向量的线性运算重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件.考纲要求:①掌握向量加法,减法的运算,并理解其几何意义.②掌握向量数乘的运算及其意义。
2024届新高考一轮复习北师大版 第5章 第2节 平面向量的基本定理及坐标表示 课件(44张)
返回导航
3.若 P1(1,3),P2(4,0)且 P 是线段 P1P2 的一个三等分点,则点 P 的 坐标为( )
A.(2,2)
B.(3,-1)
C.(2,2)或(3,-1)
D.(2,2)或(3,1)
D 由题意得P→1P=13 P→1P2或P→1P=23 P→1P2,P→1P2=(3,-3).设 P(x,y),
返回导航
2.设向量 a=(x1,y1),b=(x2,y2),则xx12 =yy12 是 a∥b 的___________ 条件.( )
A.充要
B.必要不充分
C.充分不必要
D.既不充分也不必要
C 若xx12 =yy12 ,则 x1y2-x2y1=0,∴a∥b,若 a∥b,有可能 x2 或 y2 为 0,故选 C.
记作____{_e_1_,__e_2}______. (3)正交基:若基中的两个向量互__相__垂__直__,则称这组基为正交基.在正
交基下向量的线性表示称为正交分解.若基中的两个向量是互相垂直的 单__位__向__量__,则称这组基为标准正交基.
返回导航
2.平面向量的坐标运算 (1)向量加法、减法、数乘运算及向量的模 设 a=(x1,y1),b=(x2,y2),则 a+b=______(_x_1+__x_2_,__y_1+__y_2_)_________,
返回导航
[思考辨析] 判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任意两个向量都可以作为一组基底.( )
(2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( )
返回导航
(3)若
a=(x1,y1),b=(x2,y2),则
a∥b
平面向量 高三 一轮复习(完整版)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)
高三第一轮复习专题 平面向量表示、三点共线研究 一、平面向量基本定理:设12,e e 是同一平面内两个不共线向量,a 是这一平面内的任一向量。
在平面内任取一点O ,作12,,OA e OB e OC a ===,过C 作OB 的平行线,交直线OA 于M ;过C 作OA 的平行线,交直线OB 于N 。
因OM 与OA 共线,则存在实数1λ,使得:11OM e λ=;因ON 与OB 共线,则存在实数2λ,使得:22ON e λ=; OC OM ON =+1122a e e λλ∴=+也即,任一向量a 都可表示成1122e e λλ+的形式。
平面向量基本定理:若12,e e 是同一平面内的两个不共线向量,则对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使得:1122a e e λλ∴=+。
(也可称为a 用12,e e 表示出来)不共线向量12,e e 称为表示这一平面内所有向量的一组基底,12,e e 称为基向量。
例1。
ABCD 两条对角线交于O ,AB a =,AD b =,用a 、b 表示OA 、OB 、OC 、OD 。
2e2ea解:AC AB AD a b =+=+,DB AB AD a b =-=-O ABCD 为两条对角线的交点()1122OA AC a b ∴=-=-+,()1122OC AC a b ==+()1122OB DB a b ==-, ()1122OD DB a b =-=--。
故在一个图形中,任意两个不共线向量都可以作为一组基底,其余向量都可用这一组基向量表示出来。
在具体问题中,基向量的选择十分重要,它决定了是否容易表示。
二、向量的表示:★★★★★在研究向量间关系时,常先取两个基向量作为一组基底,其余向量用这两个基向量表示出来,这样能够更清晰地找出所研究向量间的关系。
1.,其余向量用这两个基向量表示出来。
例。
在ABC 中,2BD DC =,设,AB a AC b ==,用,a b 表示AD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r r r r 2 2 2 2 5.若a ( x1,y1 ), b ( x2 , y2 ), cos a, b x1 y1 x2 y2 ;
x1 x2 y1 y2
热身练习
u ur r u ur u 1.对于n个向量a1 , a2, ,n , 若存在n个不全为零 L a u r ur u ur r u 的实数k1 , k 2 , L , k n , 使得k1 a1 +k 2 a2 + L +k n an 0 u ur r u ur u 成立,则称向量a1 , a2, ,n 是线性相关的。按 L a u r ur u ur 此规定,能使向量 a1 =(1,0),a2 (1, 1), a3 (2, 2)
知识再现
r r r r 1.若a ( x1,y1 ), b ( x2 , y2 ), 则a b x1 x2 y1 y2 ; r r 2 r r r 2 2 2 2 x y ;| a | x y 2.若a ( x,y),| a | a a ; uur u ( x2 - x1 )2 ( y2 - y1 )2 3.若A( x1,y1 ), B( x2 , y2 ), 则 | AB | ; r r r r 4.若a ( x1,y1 ), b ( x2 , y2 ), 则a b x1 x2 y1 y2 0 ;
是线性相关的实数k1 , k 2 , k3的值依次是 ; r r r r 2. 已知平面向量a =(1,2), b=(2, m),且a / / b, r r 则2a +3b ; r r r r 3. 已知平面向量a =(1, 3), b=(4, 2), a b与 r a垂直,则 ;
u r r x x 变式练习:已知向量m (2 3 sin , 2), n (cos , 4 4 2 x cos ). 4 u r r (1)若m n 2, 求 cos( x )的值; 3 u r r (2)记f ( x) m n, 在ABC中,角A、B、C的对边分 别是a、b、c,且满足(2a c) cos B b cos C ,求f ( A) 的取值范围。
小结
典例分析
r r r 1. 设向量a =(1, 3), b=(2, 4), (1, 2), c r r r r r u r 若表示向量4a、b 2c、 a c)、 4 2( d的有向线 u r 段首尾相接能构成四边形,求d的坐标。
典例分析
变式练习: P在平面上做匀速直线运动, 点 r 速度向量v (4, 3),设开始时点P的坐标 为(10,10), 则5秒后点P的坐标为
;
典例分析
r r 2.已知向量a (cos 23o , cos 67o ), b (cos 68o , cos 22o ), r r 求 | a tb | (t R)的最小值。
典例分析
u r r 变式练习:已知向量m (cos ,sin ), n ( 2 sin , u r r cos ), [ ,2 ],求 | m n | 的最大值。
高三总复习第一轮
之
平面向量
知识结构图之平面向量
二、向量分解 与 坐标运算
知识再现
知识再现
r r r r 1.若a ( x1,y1 ), b ( x2 , y2 ), 则a b ( x1 x2 , y1 y2 ) ; ux2 , y2 ), 则AB ( x2 x1 , y2 y1 ) ; r r 3.若a ( x,y), 则 a ( x, y ) ; r r r r 4.若a ( x1,y1 ), b ( x2 , y2 ), 则a / /b x1 y2 x2 y1 0;
典例分析
r rr 3.已知向量a、 c是同一平面内的三个向量, 其中 b、 r a =(1, 2)。 r r r r (1)若|c | 2 5, 且c / / a, 求c的坐标; r r r r r r r 5 (2)若|b | , 且a 2b与2a b垂直,求a与b 的 2 夹角。
典例分析