2013-2014中考数学_矩形_菱形_正方形(含详细参考答案)
北师大版-九年级-数学-上册-第一章-特殊平行四边形-同步练习(含答案解析)
第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.73.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是( )A.2B.C.D.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.5.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.126.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.307.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件: ,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则= .三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.明)。
中考数学一轮总复习 第28课时 矩形、菱形、正方形(无答案) 苏科版
A B C DEA′第28课时:矩形、菱形、正方形【知识梳理】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件(1)矩形:①有一个角是 的平行四边形是矩形.②对角线 的平行四边形是矩形.③有三个角是 的四边形是矩形.(2)菱形:①一组 的平行四边形是菱形.②对角线 的平行四边形是菱形.③四条边都相等的四边形是菱形.(3)正方形:①有一个角是 的菱形是正方形.②对角线 的菱形是正方形.③有一组 的矩形是正方形.④对角线 的矩形是正方形.矩形 4.面积计算:(1)矩形:S=长×宽;(2)菱形:1212S l l =⋅(12l l 、是对角线);(3)正方形:S=边长2【课前预习】1、如图,将矩形ABCD 沿BE 折叠,若∠CBA′=30°则∠BEA′= .2、如图,菱形ABCD 的边长为10cm ,D E⊥AB,3sin 5A =,则这个菱形的面积= m 2. 3、如图,矩形内有两个相邻的正方形面积分别为25和4,那么阴影部分面积为 . 4、正方形的对角线长为a ,则它的对角线的交点到各边的距离为( ) A 、22 a B 、24 a C 、a2D 、2 2 a 【例题讲解】例1 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形. (若四边形ABCD 是矩形,则四边形EFGH 有什么变化?若四边形ABCD 是菱形呢……你能说明中点四边形的形状是由什么决定的么?) 正平行四边形矩形菱形方形B例2 如图,在平行四边形ABCD 中,∠D AB =60°,AB =2AD ,点 E 、F 分别是CD 的中点,过点A 作AG∥BD,交CB 的延长线于点G . (1)求证:四边形DEBF 是菱形;(2)请判断四边形AGBD 是什么特殊四边形?并加以证明.例3 如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,AG=2,求EB 的长.例4 如图,△ABC 中,已知∠BAC=45°,AD⊥BC 于D ,BD =2,DC =3,求AD 的长.解答了此题.请按照小萍的思路,探究并解答下列问题:(1)AB 、AC 为对称轴,画出△ABD、△ACD 的轴对称图形,D 为E 、F ,延长EB 、FC 相交于G点,证明四边形AEGF 是正方形;设AD=x ,利用勾股定理,建立关于x 的方程模型,求出x 的值.【巩固练习】 1、如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( ) A .2 B .4 C . D .2、如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN = EF ,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF .你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对 3、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .4、四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是 (只填一个你认为正确的即可).6、在□ABC D 中,BC AE ⊥于E ,CD AF ⊥于F ,BD 与AE 、AF 分别相交于G 、H .(1)求证:△ABE∽△ADF;(2)若AH AG =,求证:四边形ABCD 是菱形.【课后作业】 班级 姓名OD CA BA DC B GEH F一、必做题1、如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE//CA , DF//BA .下列四个判断中,不正确...的是( ) A. 四边形AEDF 是平行四边形B. 如果∠BAC=90°,那么四边形AEDF 是矩形C. 如果AD 平分∠BAC,那么四边形AEDF 是菱形D. 如果AD⊥BC 是AB =AC ,那么四边形AEDF 是正方形 2、下列命题正确的是( )A .对角线互相平分的四边形是菱形;B .对角线互相平分且相等的四边形是菱形C .对角线互相垂直且相等的四边形是菱形;D .对角线互相垂直且平分的四边形是菱形. 3、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形4、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD ED B ∠=∠C .ABE CBD △∽△ D .sin AE ABE ED∠=5、如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连DF ,∠CDF 等于 °.6、如图,矩形ABCD 中,AB=3,BC=5过对角线交点O 作OE⊥AC 交AD 于E 则AE 的长是 .7、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 .8、如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC 的中点,EP⊥CD 于点P ,则∠FPC= .9、如图,平行四边形 ABCD 中,O 是对角线AC 的中点,EF⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由.10、如图,已知矩形ABCD 的两条对角线相交于O ,∠ACB=30°,AB=2. (1)求AC 的长;(2)求∠AOB 的度数;(3)以O B 、OC 为邻边作菱形OBEC ,求菱形OBEC 的面积.二、选做题第3题图第5题图 第6题图第8题图CD C 'A B E第4题图11、如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α∠= 度.12、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .13、将五个边长都为2cm 的正方形按如图所示摆放,点A 、B 、C 、D 分别是正方形的中心,则途中四块阴影部分的面积和为__________cm 2.14、如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.15、如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF . (1)求证:∠ADP=∠EPB;(2)求∠CBE 的度数; (3)当APAB的值等于多少时,△PFD∽△BFP?并说明理由.16、学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第11题图 第13题图 DA B C ml α 65°C 'B第12题图 第14题图。
2024中考数学全国真题分类卷 第十八讲 矩形、菱形、正方形 (含答案)
2024中考数学全国真题分类卷第十八讲矩形、菱形、正方形命题点1矩形的相关证明与计算1.(2023陕西)在下列条件中,能够判定▱ABCD 为矩形的是()A.AB =AC B.AC ⊥BD C.AB =AD D.AC =BD2.(2023邵阳)已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为________cm 2.3.(2023十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF ,AG 分别架在墙体的点B ,C 处,且AB =AC ,侧面四边形BDEC 为矩形.若测得∠FBD =55°,则∠A =________°.第3题图4.(2023吉林省卷)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且AF =14AC ,连接EF .若AC =10,则EF =________.第4题图5.(2022绍兴)图①是一种矩形时钟,图②是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上,若AB =30cm ,则BC 长为________cm(结果保留根号).第5题图6.(2023黔东南州)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥B D.若AC =10,则四边形OCED 的周长是________.第6题图7.(2023青海省卷)如图,矩形ABCD 的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,若AB =3,BC =4,则图中阴影部分的面积为________.第7题图8.(2023甘肃省卷)如图,在矩形ABCD 中,AB =6cm ,BC =9cm ,点E ,F 分别在边AB ,BC 上,AE =2cm ,BD ,EF 交于点G ,若G 是EF 的中点,则BG 的长为________cm.第8题图9.(2023宜昌)如图,在矩形ABCD 中,E 是边AD 上一点,F ,G 分别是BE ,CE 的中点,连接AF ,DG ,FG ,若AF =3,DG =4,FG =5,矩形ABCD 的面积为________.第9题图10.(2022贵港)如图,在矩形ABCD 中,BD 是对角线,AE ⊥BD ,垂足为E .连接CE ,若tan ∠ADB =12,则tan ∠DEC 的值是________.第10题图11.(2023苏州)如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为点E ,AE 与CD 交于点F.(1)求证:△DAF≌△ECF;(2)若∠FCE=40°,求∠CAB的度数.第11题图12.(2022金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB =2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连接BE.记∠ABE=α,求tanα的值.第12题图13.(2023云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.第13题图源自北师九上P19第3题14.(挑战题)(2023自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB =A B.我们还可以得到FC=________,EF=________;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC 之间的距离.第14题图命题点2菱形的相关证明与计算15.(2023河池)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误..的是()第15题图A.AB=ADB.AC⊥BDC.AC=BDD.∠DAC=∠BAC16.(2023河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点,若OE=3,则菱形ABCD的周长为()第16题图A.6B.12C.24D.4817.(2023自贡)如图,菱形ABCD对角线交点与坐标原点O重合,点A(-2,5),则点C的坐标是()第17题图A.(5,-2)B.(2,-5)C.(2,5)D.(-2,-5)18.(2022绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC→CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()第18题图A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形19.(2023仙桃)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =()第19题图A.13 B.12 C.33 D.3220.(2023株洲)如图所示,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作CE ∥BD 交AB 的延长线于点E ,下列结论不一定...正确的是()第20题图A.OB =12CEB.△ACE 是直角三角形C.BC =12AE D.BE =CE 21.(2023海南)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若BF ∶CE =1∶2,EF =7,则菱形ABCD 的边长是()第21题图A.3B.4C.5D.47522.(新趋势)·条件开放性问题(2023齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是________________.(只需写出一个条件即可)第22题图23.(2023乐山)已知菱形ABCD的两条对角线AC,BD的长分别是8cm和6cm,则菱形的面积为________cm2.24.(2023温州)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N 在对角线AC上.若AE=3BE,则MN的长为________.第24题图25.(2023陕西)如图,在菱形ABCD中,AB=4,BD=7.若M,N分别是边AD,BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E,F,则ME+NF的值为________.第25题图26.(2023天津)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于________.第26题图27.(新趋势)·注重学习过程(2023嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=O D.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分B D.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个..条件,并证明.第27题图28.(2023北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.第28题图29.(2023连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥D C.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P,M,N分别在线段BE,BC,CE上运动,求PM+PN的最小值.第29题图30.(2023娄底)如图①,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值;(2)如图②,当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.第30题图31.(2023宜昌)已知菱形ABCD中,E是边AB的中点,F是边AD上一点.(1)如图①,连接CE,CF.CE⊥AB,CF⊥A D.①求证:CE=CF;②若AE=2,求CE的长;(2)如图②,连接CE,EF.若AE=3,EF=2AF=4,求CE的长.第31题图命题点3正方形的相关证明与计算32.(2023玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A.互相平分B.互相垂直C.互相平分且相等D.互相垂直且相等33.(2023重庆A卷)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB 上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°第33题图34.(2023滨州)正方形ABCD的对角线相交于点O(如图①),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB,BC相交于点E,F(如图②),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()第34题图A.线段B.圆弧C.折线D.波浪线35.(2022仙桃)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3,其中正确结论的个数有()A.1个B.2个C.3个D.4个第35题图36.(2023绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()第36题图A.1B.2C.3D.437.(新趋势)·数学文化(2023江西)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为________.第37题图38.(2020天水)如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为________.第38题图39.(2023无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.第39题图40.(2023海南)如图,正方形ABCD中,点E,F分别在边BC,CD上,AE=AF,∠EAF=30°,则∠AEB=________°;若△AEF的面积等于1,则AB的值是________.第40题图41.(2023泰安)如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE 折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为________.第41题图42.(2023山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.第42题图43.(2023安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=________°;(2)若DE=1,DF=22,则MN=________.第43题图44.(2023邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD 上,且BE=DF,OE=O A.求证:四边形AECF是正方形.第44题图45.(2023遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:△ADE ≌△CDG ;(2)若AE =BE =2,求BF 的长.第45题图46.(挑战题)(2023台州)图①中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图②,在正方形ABCD 各边上分别取点B 1,C 1,D 1,A 1,使AB 1=BC 1=CD 1=DA 1=45AB ,依次连接它们,得到四边形A 1B 1C 1D 1;再在四边形A 1B 1C 1D 1各边上分别取点B 2,C 2,D 2,A 2,使A 1B 2=B 1C 2=C 1D 2=D 1A 2=45A 1B 1,依次连接它们,得到四边形A 2B 2C 2D 2;…如此继续下去,得到四条螺旋折线.第46题图(1)求证:四边形A 1B 1C 1D 1是正方形;(2)求A 1B 1AB的值;(3)请研究螺旋折线BB 1B 2B 3…中相邻线段之间的关系,写出一个正确结论并加以证明.参考答案与解析1.D2.48【解析】∵矩形的一边长为6cm ,一条对角线的长为10cm ,由勾股定理可得矩形的另一边长为8cm ,∴矩形的面积为6×8=48(cm 2).3.1104.52【解析】∵四边形ABCD 是矩形,∴AC =BD =2AO =2OD =10,∴OD =12AC =5,∵AF =14AC ,∴AF =12OA ,∵E 是AD 的中点,∴EF 是△AOD 的中位线,∴EF =12OD =52.5.303【解析】∵钟表数字2和数字3之间的夹角为360°12=30°且钟表数字2的刻度在矩形ABCD 的对角线BD 上,AB =30cm ,∴∠DBC =∠ADB =30°,∴BC =AD =AB tan ∠ADB=AB tan 30°=3033=303(cm).6.20【解析】∵四边形ABCD 是矩形,∴AC =BD =10,OA =OC ,OB =OD ,∴OC =OD =12BD =5,∵DE ∥AC ,CE ∥BD ,∴四边形CODE 是平行四边形,∵OC =OD =5,∴四边形CODE 是菱形,∴四边形CODE 的周长为4OC =4×5=20.7.6【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,AO =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO EAO =∠FCO =OC AOE =∠COF,∴△AEO ≌△CFO (ASA),∴S △AEO =S △CFO ,∴阴影部分的面积等于矩形ABCD 的面积的一半,∵矩形面积为AB ·BC =3×4=12,∴阴影部分的面积为12×12=6.8.13【解析】∵四边形ABCD 是矩形,∴AB =CD =6cm ,∠ABC =∠C =90°,AB ∥CD ,∴∠ABD =∠BDC ,∵AE =2cm ,∴BE =AB -AE =6-2=4cm ,∵G 是EF 的中点,∴EG =BG =12EF ,∴∠BEG =∠ABD ,∠BEG =∠BDC ,∴△EBF ∽△DCB ,∴EB DC =BF CB,∴46=BF 9,∴BF =6,∴EF =BE 2+BF 2=42+62=213(cm),∴BG =12EF =13cm.9.48【解析】∵四边形ABCD 是矩形,∴∠BAD =∠CDA =90°.∵F ,G 为BE ,CE 中点,∴在Rt △ABE 中,AF =BF =EF =12BE ,在Rt △CDE 中,DG =CG =EG =12CE ,∴BE =6,CE =8,∵EF =3,EG =4,FG =5,EF 2+EG 2=FG 2,∴△EFG 为直角三角形,∠FEG =90°,∴S 矩形ABCD =2S △BEC =2×12BE ·CE =48.10.23【解析】如解图,过点C 作CF ⊥BD 于点F ,∵四边形ABCD 为矩形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,在△ABE 与△CDF 中AEB =∠CFDABE =∠CDF=CD,∴△ABE ≌△CDF (AAS),∴AE =CF ,BE =DF .∵AE ⊥BD ,tan ∠ADB =AB AD =12,∴设AB =a ,则AD =2a ,∴BD =5a ,∵S △ABD =12BD ·AE =12AB ·AD ,∴AE =CF =255a ,∴BE =DF =AB 2-AE 2=a 2-(255a )2=55a ,∴EF =BD -2BE =5a -2×55a =355a ,∵CF ⊥BD ,∴tan ∠DEC =CF EF =23.第10题解图11.(1)证明:将矩形ABCD 沿对角线AC 折叠,则AD =BC =EC ,∠D =∠B =∠E =90°,在△DAF 和△ECF 中,DFA =∠EFCD =∠E =EC,∴△DAF ≌△ECF (AAS);(2)解:∵△DAF ≌△ECF ,∴∠DAF =∠ECF =40°.∵四边形ABCD 是矩形,∴∠DAB =90°.∴∠EAB =∠DAB -∠DAF =90°-40°=50°.∵由折叠的性质得∠EAC =∠CAB ,∴∠CAB=25°.12.解:(1)∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OC=OB=OD.∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴AC=BD=2OB=4;(2)∵在矩形ABCD中,∠BAD=90°,∴AD=BD2-AB2=16-4=23.由(1)得,OA=OD.又∵OE⊥AD,∴AE=12AD=3,在Rt△ABE中,tanα=AEAB=32.13.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴AB∥DF,∴∠DFE=∠ABE.∵E为线段AD的中点,∴DE=AE.在△DFE和△ABE DFE=∠ABE DEF=∠AEB=AE,∴△DFE≌△ABE(AAS),∴DF=AB.又∵AB∥DF,∴四边形ABDF是平行四边形.∵∠BDF=90°,∴平行四边形ABDF是矩形;(2)解:∵四边形ABDF是矩形,∴∠ABD=90°,AF=BD,AB=DF.∵AD=5,DF=3,∴在Rt △ADF 中,AF =AD 2-DF 2=52-32=4,∴AF =BD =4,AB =DF =3.∵四边形ABCD 是平行四边形,∴CD =AB =3.∵∠BDF =90°,∴∠BDC =90°.∴S =S 矩形ABDF +S △BCD =DF ·BD +12CD ·BD =3×4+12×3×4=12+6=18.14.(1)解:DC ,AD ;(2)证明:∵EF =AD ,AD =BC ,∴EF =BC ,同理可得FC =EB ,∴四边形EFCB 为平行四边形,∴EF ∥BC ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴EF ∥AD ;(3)解:如解图,过点E 作EG ⊥BC 交BC 延长线于点G ,EG 即为EF 与BC 之间的距离,由题意可得,HC =40cm ,BC =30cm ,BE =DC =80cm ,第14题解图在Rt △HBC 中,HB =HC 2+BC 2=402+302=50cm ,∵HC ∥EG ,∴△BCH ∽△BGE ,∴HC EG =BH BE ,即40EG =5080,解得EG =64cm ,∴EF 与BC 之间的距离为64cm.15.C16.C17.B 【解析】菱形为中心对称图形,对角线的交点即为对称中心,∵A 点坐标为(-2,5),∴相应的C 点坐标为(2,-5).18.C 【解析】由∠B =60°知,菱形由两个等边三角形组合而成,当AP ⊥BC 时,此时△ABP 为直角三角形;当点P 到达点C 处时,此时△ABP 为等边三角形;当点P 在CD 上且位于CD 的中垂线时,则△ABP 为直角三角形;当点P 与点D 重合时,此时△ABP 为等腰三角形.19.C 【解析】如解图,由题意可得,∠BDC =60°,BD =CD =AC ,∴△BCD 是等边三角形,∴BC =BD ,∠BCD =60°,∴AC =BC ,∠ACB =120°,∴∠BAC =∠ABC =12×(180°-120°)=30°,∴tan ∠ABC =tan 30°=33.第19题解图20.D【解析】∵四边形ABCD 是菱形,∵AO =CO =12AC ,AC ⊥BD ,∵CE ∥BD ,∴△AOB ∽△ACE ,∠AOB =∠ACE =90°,∴AO AC =OB CE =AB AE =12,∴△ACE 是直角三角形,OB =12CE ,∴BC =12AE ,故选D.21.B 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,DC =BC ,∠A =∠C ,设BF =x ,则CE =2x ,∵点E 是CD 的中点,∴CD =AB =AD =4x ,如解图,过点D 作DH ⊥AB 于点H ,∵EF ⊥AB ,∴四边形DEFH 为矩形,∴EF =DH =7,HF =DE =2x ,∴AH =3x ,在Rt △ADH 中,AD 2=AH 2+DH 2,即(4x )2=(3x )2+(7)2,解得x =1(负值已舍去),∴AD =4x =4.第21题解图22.AB =CD (答案不唯一)【解析】由题中条件AC ⊥BD 可知,只需四边形ABCD 为平行四边形即可,又AB ∥CD ,故添加AB =CD (答案不唯一).23.24【解析】S =12×8×6=24(cm 2).24.32【解析】如解图,连接BD ,交AC 于O ,连接EF ,∵四边形ABCD 为菱形,∴AB=BC ,∵菱形AENH 和菱形CGMF 大小相同,∴AE =CF ,∴EF ∥AC ,由题意知,四边形AEFM ,EFCN 均为平行四边形,∴EF =AM =CN ,∵EF ∥AC ,∴△BFE ∽△BCA ,∴EFAC=BE BA ,∵AE =3BE ,AB =1,∴AB =4BE ,∴EF AC =BE BA =14,∴AM =CN =14AC ,∴MN =12AC=OA ,∵∠BAD =60°,AB =AD =1,AO 垂直平分BD ,∴OD =12,∴OA =AD 2-OD 2=12-(12)2=32,∴MN =32.第24题解图25.152【解析】如解图①,连接AC 交BD 于点O ,∵四边形ABCD 为菱形,∴AC ⊥BD ,OD =12BD =72,CD =4,∴OC =OA =42-(72)2=152,设AM =BN =a ,则DM =4-a ,∵ME ⊥BD ,NF ⊥BD ,∴△DME ∽△DAO ,△BNF ∽△BCO ,∴ME OA =DMDA =4-a 4,NF OC =BN BC =a 4,∴ME OA +NF OC =4-a 4+a 4=1,∴ME +NF =OA =152.第25题解图①【一题多解】如解图②,连接AC 交BD 于点O ,过点M 作MG ⊥AC 于点G ,∵四边形ABCD 为菱形,∴AC ⊥BD ,OD =12BD =72,CD =4,∴OC =OA =42-(72)2=152,∵AC ⊥BD ,ME ⊥BD ,∴∠AMG =∠ADO =∠CBO ,ME =GO ,又∵AM =BN ,NF ⊥BD ,∴△AMG ≌△NBF ,∴NF =AG ,∴ME +NF =GO +AG =AO =152.第25题解图②26.194【解析】如解图,过点F 作FM ⊥DE 于点M ,∵四边形ABCD 为菱形,∴AB =AD =CD =2.∵E 为AB 的中点,∠DAB =60°,∴AE =1,∠AED =90°,由勾股定理,得DE =AD 2-AE 2=3.∵四边形ABCD 为菱形,∴AB ∥CD ,∴∠ADC =120°,∠CDE =90°.∵FM⊥DE,F为CE的中点,∴M为DE的中点,即FM∥CD,FM=12CD=1,ME=DM=12DE=32,∴FM∥AB,FM=AE,∴∠EAG=∠MFG,∵∠AGE=∠FGM,∴△AEG≌△FMG(AAS),∴EG=MG=12ME=34,又∵FM∥CD,∴∠FMG=∠CDE=90°,在Rt△FMG中,由勾股定理,得FG=MG2+FM2=(34)2+12=194.第26题解图27.解:赞成小洁的说法,补充:AB=CB.证明:由小惠证法得:AB=AD,CB=CD,又∵AB=CB,∴AB=AD=CB=CD,∴四边形ABCD是菱形.28.证明:(1)∵四边形ABCD为平行四边形,∴BO=DO,AO=CO.又∵AE=CF,∴AO-AE=CO-CF,即OE=OF,∴四边形EBFD为平行四边形;(2)∵∠BAC=∠DAC,DO=BO,∴AO⊥BD.由(1)得四边形EBFD为平行四边形,∴四边形EBFD是菱形.29.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵DE=AD,∴DE=BC.又∵点E在AD的延长线上,∴DE∥BC,∴四边形DBCE为平行四边形.又∵BE ⊥DC ,∴四边形DBCE 为菱形;(2)解:如解图,由菱形对称性得,点N 关于BE 的对称点N ′在DE 上,第29题解图∴PM +PN =PM +PN ′.当P ,M ,N ′三点共线时,PM +PN =PM +PN ′=MN ′.过点D 作DH ⊥BC ,垂足为H ,∵DE ∥BC ,∴MN ′的最小值即为平行线间的距离DH 的长.∵△DBC 是边长为2的等边三角形,∴在Rt △DBH 中,∠DBH =60°,DB =2,∴DH =DB ·sin ∠DBH =2×32=3,∴PM +PN 的最小值为3.30.解:(1)①∵四边形BCDE 和四边形BCFG 都是菱形,∴BE =BC =CF ,CF ∥GE ,∴∠OCF =∠OBE ,∵∠COF =∠BOE ,∴△COF ≌△BOE (AAS),∴OC =OB ,OF =OE ,∴无论θ为何值,EF 与BC 相互平分;②θ=60°;【解法提示】∵OC =OB ,∴OB =12BC =12BE ,∵EF ⊥BC .∴∠BOE =90°,∴∠OEB =30°,∴∠OBE =60°,∵GF ∥BC ,∴∠G =∠OBE =60°,即当θ=60°时,EF ⊥BC .(2)tan ∠ABC =2,理由如下:由(1)知BC =BE =2OB ,当θ=90°时,则四边形BCDE 和四边形BCFG 都是正方形,∴∠OBE =90°,∴tan∠BOE=BEOB=2,∵BC为动点A所在圆弧对应圆的直径,∴∠BAC=90°,∵EF垂直平分AC,∴EF∥AB,∴∠ABC=∠BOE,∴tan∠ABC=tan∠BOE=2.∴当θ=90°时,tan∠ABC=2,使得EF垂直平分AC.31.(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°.∵四边形ABCD是菱形,∴∠B=∠D,BC=DC,∴△BEC≌△DFC(AAS),∴CE=CF;②解:∵E是边AB的中点,AE=2,∴BE=AE=2.∵四边形ABCD是菱形,∴BC=BA=4.∵CE⊥AB,∴在Rt△BEC中,CE=BC2-BE2=23;(2)解:如解图①,延长FE交CB的延长线于点M,∵四边形ABCD为菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM.∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴EM=EF,BM=AF.∵AE=3,EF=2AF=4,∴EM=4,BM=2,BE=3,∴BC =AB =2AE =6,∴CM =8,∴BM EM =24=12,EM CM =48=12,∴BM EM =EM CM ,∵∠BME =∠EMC ,∴△MEB ∽△MCE ,∴BE EC =BM EM =12,∵BE =3,∴CE =6.注:延长CE 交DA 的延长线于点N ,方法类似.第31题解图①【一题多解】如解图②,延长FE 交CB 的延长线于点M ,过点E 作EN ⊥BC 于点N .∵四边形ABCD 为菱形,∴AD ∥BC ,AB =BC ,∴∠AFE =∠M ,∠A =∠EBM ,∵E 是边AB 的中点,∴AE =BE ,∴△AEF ≌△BEM (AAS),∴EM =EF ,BM =AF .∵AE =3,EF =2AF =4,∴EM =4,BM =2,BE =3,∴BC =AB =2AE =6,∴CM =8.∵在Rt △MEN 和Rt △BEN 中,EM 2-MN 2=EN 2,BE 2-BN 2=EN 2,∴EM 2-MN 2=BE 2-BN 2,∴42-(2+BN )2=32-BN 2,解得BN =34,则CN =6-34=214,∴EN 2=BE 2-BN 2=32-(34)2=13516,∴在Rt △ENC 中,CE 2=EN 2+CN 2=13516+44116=36,∴CE =6(负值已舍去).第31题解图②32.D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第32题解图33.C【解析】∵四边形ABCD 是正方形,∴∠B =∠BAD =90°,∠BAC =45°,AB =AD ,又∵BE =AF ,∴△ABE ≌△DAF ,∴∠ADF =∠BAE .∵AE 平分∠BAC ,∴∠ADF =∠BAE =12∠BAC =22.5°,∴∠CDF =∠ADC -∠ADF =90°-22.5°=67.5°.34.A【解析】如解图,以点B 为坐标原点,建立平面直角坐标系xBy ,设正方形ABCD的边长为1,∵四边形ABCD 是正方形,∴∠OAE =∠OBF =45°,OA =OB .∵∠AOB =∠EOF =90°,∴∠AOB -∠EOB =∠EOF -∠EOB ,即∠AOE =∠BOF ,∴△AOE ≌△BOF (ASA),∴AE =BF .设AE =BF =a ,则F (a ,0),E (0,1-a ).∵点G 是EF 的中点,∴G (12a ,12-12a ),∴点G 在直线y =-x +12上运动,又∵点E ,F 分别在线段AB ,BC 上,∴点G 的运动轨迹是线段.第34题解图35.C【解析】①如解图,过点E分别作EM⊥CD于点M,EN⊥AD于点N,由题意得,EN=EF=BG,EM=EG=ND,在Rt△DEN和Rt△GFE中,EN=EF∠END=∠FEG ND=EG,∴Rt△DEN≌Rt△GFE(SAS),∴DE=FG,故结论①正确;②如解图,延长DE交FG于点P,由Rt△DEN≌Rt△GFE可得∠NDE=∠EGF,∵∠PEG=∠DEN,∴∠DPG=∠DNE=90°,∴DE⊥FG,故结论②正确;③在Rt△DEN和Rt△FGB中,DE=FG NE=BG,∴Rt△DEN≌Rt△FGB(HL),∴∠BFG=∠ADE,故结论③正确;④当点E为对角线AC,BD的交点时,FG取得最小值,最小值为22,故结论④错误.综上所述,正确的结论为①②③,共3个.第35题解图36.C【解析】∵对角线互相平分的四边形为平行四边形,∴当MN的连线过BD的中点O 时,∵BE=DF,∴BD的中点也是EF的中点,同时平分MN,∴存在无数个平行四边形MENF,说法①正确;当MN过点O时,四边形MENF为平行四边形,当EF=MN时,四边形MENF为矩形,∴存在无数个矩形MENF,当MN过点O且垂直于BD时,四边形MENF 恒定为菱形,∴存在无数个菱形MENF,∴说法②③正确;当MN过点O且垂直于BD时,若MN=EF,则四边形MENF为正方形,∵此时MN的长度恒定,∴EF的长度恒定,此时只存在一个正方形MENF,说法④错误.37.5【解析】由题图可知①②是两个全等的等腰直角三角形,∵拼成的正方形的对角线长为2,∴①②两个等腰直角三角形的直角边的长度为1,∴结合题图可知拼成的长方形的长为2,宽为1,∴其对角线的长为22+12=5.38.(-1,5)【解析】如解图,过点F 作FQ ⊥x 轴于点Q ,过点E 分别作EM ⊥x 轴于点M ,作EN ⊥FQ 于点N ,∴四边形NQME 是矩形,∴NQ =EM =3,∠NEM =90°.∵∠FEN +∠NEO =90°,∠NEO +∠OEM =90°,∴∠FEN =∠OEM .∵EF =EO ,∠FNE =∠EMO ,∴△EFN ≌△EOM ,∴EN =EM =3,FN =OM =2,∴FQ =FN +NQ =5,QO =EN -OM =1.∵F 在第二象限,∴F (-1,5).第38题解图39.1【解析】如解图,连接AG ,EG ,∵正方形ABCD 的边长为8,∴AB =BC =CD =8,∠B =∠C =90°,∵E 是CD 的中点,∴CE =4.设BG =x ,则CG =8-x ,在Rt △ABG 中,AG 2=AB 2+BG 2,即AG 2=82+x 2,在Rt △CEG 中,EG 2=CE 2+CG 2,即EG 2=42+(8-x )2.∵HG 垂直平分AE ,∴AG =EG ,∴AG 2=EG 2,∴82+x 2=42+(8-x )2,解得x =1,即BG =1.第39题解图40.60,3【解析】∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∵AE =AF ,∴Rt △ABE ≌Rt △ADF (HL),∴∠BAE =∠DAF =12×(90°-30°)=30°,∴∠AEB =∠AFD =60°,∴BE =12AE ,如解图,过点E 作EG ⊥AF 于点G ,∵∠BAE =∠GAE ,∴BE =GE .∵S △AEF =12AF ·EG =12×2BE ·BE =1,∴BE =1(负值已舍去),∴AB =3BE =3.第40题解图41.2【解析】如解图,连接AP ,∵四边形ABCD 为正方形,∴AB =AD =BC =CD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12BC =3,根据折叠的性质,得AF =AB =6,EF =BE =3,∠AFE =∠B =90°,∴AF =AD ,在Rt △APF 和Rt △APD 中,=AD=AP,∴Rt △APF ≌Rt △APD (HL),∴DP =FP .设DP =FP =x ,则EP =x +3,CP =6-x ,在Rt △PEC 中,根据勾股定理得CE 2+CP 2=EP 2,即32+(6-x )2=(x +3)2,解得x =2,∴DP =2.第41题解图42.434【解析】∵AN ⊥EF ,四边形ABCD 为正方形,∴∠AMF =∠ADF =90°,∴∠DAN+∠AGM =∠FGD +∠GFD =90°,∵∠AGM =∠FGD ,∴∠DAN =∠GFD ,设DN =x ,∵BE =DF =5,CN =8,∴AD =BC =CD =DN +CN =x +8,EC =BC -BE =x +8-5=x +3,CF =CD +DF =x +8+5=x +13,在Rt △FEC 中,tan ∠GFD =EC CF =x +3x +13,在Rt △ADN中,tan ∠DAN =DNAD =x x +8,∵∠DAN =∠GFD ,∴tan ∠GFD =tan ∠DAN ,即x +3x +13=xx +8,解得x =12,在Rt △AND 中,∠ADN =90°,AD =x +8=12+8=20,DN =x =12,则AN =AD 2+DN 2=434.【一题多解】如解图,过点G 作GH ⊥BC 于点H ,∵四边形ABCD 为正方形,∴AD =DC =BC =GH ,∠ADC =∠AGH =∠GHE =90°,∴∠AGM +∠EGH =90°,∵AN ⊥EF ,∴∠NAD +∠AGM =90°,∴∠EGH =∠NAD ,在△GHE 和△ADN中,GHE =∠ADN ,=AD ,EGH =∠NAD ,∴△GHE ≌△ADN (ASA),∴HE =DN .设DN =x ,则HE =x ,AD =BC=CD =x +8,CH =GD =BC -BE -EH =3,CF =CD +DF =x +13,CE =x +3,∵tan F =GD DF =EC CF ,∴35=x +3x +13,解得x =12,∴DN =12,AD =20,∴在Rt △ADN 中,AN =202+122=434.第42题解图43.(1)45;(2)2615【解析】(1)∵△BEF 为等腰直角三角形,∴BE =FE ,∠BEF =90°,∵FG ⊥AG ,∴∠G =90°,∵四边形ABCD 为正方形,∴∠A =90°,∴∠A =∠G ,∵∠AEB +∠GEF =∠GEF +∠GFE =90°,∴∠AEB =∠GFE ,∴△AEB ≌△GFE (AAS),∴AE =GF ,AB =EG ,又∵AD =AB ,∴EG =AD ,∴DG =AE ,∴DG =GF ,∴∠FDG =45°;(2)如解图①,过点F 作FO ⊥CD 于点O ,则四边形DGFO 为正方形,又∵DE =1,DF =22,∴FO =2,AD =AE +DE =GF +DE =3,∴DC =AD =BC =AB =EG =3,OD =OF =2,∴OC =DC -DO =1,∵FO ∥AG ,∴△EDM ∽△FOM ,∴DM OM =DE OF =12,∴DM =23,∴OM =43,∵FO ∥BC ,∴△OFN ∽△CBN ,∴ON CN =OF CB =23,∴ON OC =ON ON +CN =25,∴ON =25,∴MN =OM +ON =43+25=2615.第43题解图①第43题解图②【一题多解】解法一:如解图②,延长BC 交GF 的延长线于点H ,∵DE =1,DF =22,∠FDG =45°,∴DG =FG =2,∴AE =DG =2,∴AD =AE +DE =3,∵四边形ABCD 是正方形,∴AD =DC =3,∵DC ∥GH ,∠CDG =∠DGH =∠DCH =90°,∴四边形DCHG 为矩形,∴CH =DG =2,FH =GH -GF =DC -GF =1,∴△EDM ∽△EGF ,△BCN ∽△BHF ,∴ED EG =DM GF ,BC BH =NC FH ,即13=DM 2,35=NC 1,∴DM =23,NC =35,∴MN =DC -DM -NC =3-23-35=2615.解法二:由(1)得AE =GF ,AB =GE ,∵DE =1,DF =22,∠FDG =45°,∴AE =GF =2,∴AB =AD =GE =3,如解图③,以点D 为坐标原点,建立平面直角坐标系,∴B (-3,-3),F (2,-2),E (-1,0),设直线BF 的解析式为y 1=k 1x +b 1(k 1≠0),将B (-3,-3)和F (2,-2)3k 1+b 1=-3k 1+b 1=-21=151=-125,∴直线BF 的解析式为y 1=15x -125,令x =0,得y =-125,∴点N 的坐标为(0,-125),设直线EF 的解析式为y 2=k 2x +b 2(k 2≠0),将E (-1,0)和F (2,-2)k 2+b 2=0k 2+b 2=-22=-232=-23,∴直线EF 的解析式为y 2=-23x -23,令x =0,得y =-23,∴点M 的坐标为(0,-23),∴MN =(-23)-(-125)=2615.第43题解图③44.证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∵BE =DF ,∴BO -BE =DO -DF ,即OE =OF ,∴四边形AECF 是菱形.∵OA =OE ,∴OA =OC =OE =OF ,∴AC =EF ,∴四边形AECF 是正方形.45.(1)证明:∵正方形ABCD 和菱形EFGH ,∴AD =CD ,∠A =∠C =90°,DE =DG ,在Rt △ADE 与Rt △CDG 中,=CD=DG ,∴Rt △ADE ≌Rt △CDG (HL);(2)解:如解图,连接EG 交DF 于点O ,第45题解图∵AE =BE =2,由(1)得Rt △ADE ≌Rt △CDG ,∴CG =AE =2,BG =CB -CG =2,∵∠ABC =90°,∴在Rt △EBG 中,EG =EB 2+BG 2=22,∴EO =2,在Rt △ADE 中,AD =4,AE =2,∴EF =DE =AE 2+AD 2=25,在Rt △OEF 中,OF =EF 2-OE 2=20-2=32,∴DF =2OF =62,∵DB =2AB =42,∴BF =DF -DB =22.46.(1)证明:在正方形ABCD 中,AB =BC =AD ,∠A =∠B =90°,∵AB 1=BC 1=DA 1=45AB ,∴AA 1=BB 1=15AB ,∴△AB 1A 1≌△BC 1B 1,∴A 1B 1=B 1C 1,∠AB 1A 1=∠BC 1B 1,又∵∠BC 1B 1+∠BB 1C 1=90°,∴∠BB 1C 1+∠AB 1A 1=90°,∴∠A 1B 1C 1=90°.同理可证:B 1C 1=C 1D 1=D 1A 1=A 1B 1,∴四边形A 1B 1C 1D 1是正方形;(2)解:∵AB 1=BC 1=CD 1=DA 1=45AB ,设AB =5a ,则AB 1=4a ,∴B 1B =AA 1=a ,∴A 1B 1=17a ,∴A 1B 1AB =17a 5a =175;(3)解:结论1:螺旋折线BB 1B 2B 3…中相邻线段的比均为51717或175.证明:∵AB 1=45AB ,∴BB 1=15AB .同理,B 1B 2=15A 1B 1,∴B 1B B 1B 2=AB A 1B 1=51717.同理可得B 1B 2B 2B 3=51717,∴螺旋折线BB 1B 2B 3…中相邻线段的比均为51717或175.结论2:螺旋折线BB 1B 2B 3…中相邻线段夹角的度数不变.证明:∵B 1B BC 1=B 2B 1B 1C 2=14,∠A 1B 1C 1=∠ABC =90°,∴△BB 1C 1∽△B 1B 2C 2,∴∠BB 1C 1=∠B 1B 2C 2.∵∠C 1B 1B 2=∠C 2B 2B 3=90°,∴∠BB 1C 1+∠C 1B 1B 2=∠B 1B 2C 2+∠C 2B 2B 3,即∠BB 1B 2=∠B 1B 2B 3.同理可证∠B 1B 2B 3=∠B 2B 3B 4=…,∴螺旋折线BB 1B 2B 3…中相邻线段夹角的度数不变.。
2020年中考数学考点总动员第20讲 矩形、菱形和正方形(含答案解析)
第20讲矩形、菱形和正方形1.矩形、菱形、正方形的性质2.矩形、菱形、正方形的判定矩形:①有一个角是直角的平行四边形;②对角线相等的平行四边形;③有三个角是直角四边形;菱形:①有一组邻边_相等_的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形;正方形:①一组邻边相等的矩形;②有一个角是直角的菱形;③对角线互相垂直且相等的平行四边形。
3.平行四边形、矩形、菱形、正方形之间的关系考点1:矩形性质与判定【例题1】(2019湖北咸宁市)((7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.归纳:与矩形有关的计算:(1)若题目中涉及矩形的折叠,要注意折叠前后对应线段相等、对应角相等,即被折叠的角折叠之后在任何位置依旧是直角;(2)因为矩形四个角都是直角,则想到将所求或涉及的线段放在直角三角形中,常用到勾股定理,特殊角三角函数的计算;(3)常结合矩形对角线相等且互相平分的性质,故可根据矩形对角线的关系应用全等三角形的判定和性质或等腰三角形的性质进行求解. 考点2:菱形的性质与判定【例题2】在菱形ABCD 中,对角线AC 与BD 相交于点O.(1)如图1,若点E ,F 分别为边AB ,AD 的中点,连接EF ,OE ,OF ,求证:四边形AEOF 是菱形;图1 图2(2)如图2,若E ,F 分别在射线DB 和射线BD 上,且BE =DF. ①求证:四边形AECF 是菱形;②若∠AEC =60°,AE =6,AB =BE ,求AB 的长.【点拨】(1)利用直角三角形斜边上中线等于斜边的一半,结合四条边相等的四边形是菱形证明;(2)对于①可利用对角线互相垂直且平分的四边形是菱形进行证明,对于②可利用菱形的性质,转化到Rt △ABO 中进行求解. 【解答】解:(1)证明:∵点E ,F 分别为AB ,AD 的中点, ∴AE =12AB ,AF =12AD.又∵四边形ABCD 是菱形,∴AB =AD ,AC ⊥BD. ∵E ,F 是AB ,AD 的中点,∴AE =AF =OF =OE. ∴四边形AEOF 是菱形.(2)①证明:∵四边形ABCD 是菱形,∴OD =OB ,OA =OC ,BD ⊥AC. ∵BE =DF ,∴OB +BE =OD +DF ,即OE =OF. ∴四边形AECF 是菱形.②∵四边形AECF 是菱形,∴AE =CE ,AO ⊥EF ,∠AEO =∠CEO. ∵∠AEC =60°,∴∠AEO =30°. ∵AE =6,∴AO =3.∵AB =BE ,∴∠BAE =∠AEB =30°.∴∠ABO =∠AEB +∠BAE =60°. ∴在Rt △AOB 中,AB =AO sin ∠ABO =3sin60°=2 3.归纳:1.菱形判定的一般思路:首先判定四边形是平行四边形,然后根据平行四边形的邻边相等判定是菱形,这是判定菱形的最基本思路,同时也可以考虑其他判定方法,例如若能判定平行四边形对角线垂直即可判定为菱形等; 2.应用菱形性质计算的一般思路:菱形四边相等;菱形对角线相互垂直:常借助勾股定理和锐角三角函数来求线段的长,有一个角为60°的菱形,60°所对的对角线将菱形分成两个全等的等边三角形.也可以根据菱形既是轴对称图形,又是中心对称图形,结合它的对称性得出的一些结论. 考点3: 正方形的性质与判定【例题3】(2018·遵义)如图,正方形ABCD 的对角线相交于点O ,点E ,F 分别在AB ,BC 上(AE <BE),且∠EOF =90°,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN. (1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.【解析】:(1)证明:∵四边形ABCD 是正方形, ∴OA =OB ,∠DAO =∠OBA =45°. ∴∠OAM =∠OBN =135°. ∵∠EOF =∠AOB =90°, ∴∠AOM =∠BON. ∴△OAM ≌△OBN(ASA). ∴OM =ON.(2)过点O 作OH ⊥AD 于点H. ∵正方形ABCD 的边长为4, ∴OH =HA =2. ∵E 为OM 的中点, ∴A 为HM 的中点. ∴HM =4.∴OM=22+42=2 5.∴MN=2OM=210.归纳: 1.证明一个四边形是正方形的方法是先证明它是矩形,再证明它是菱形;或先证明它是菱形,再证明它是矩形,其证明过程往往需要借助全等三角形.2.在正方形中求解策略是:利用正方形四个角都是直角或对角线互相垂直且平分相等,通过勾股定理求解.注:正方形可以看作两个全等的等腰直角三角形以斜边为重合边拼接在一起.一、选择题:1. (2019•南京•2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【答案】B【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.2. (2019•浙江绍兴•4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【答案】D【解答】解:∵正方形ABCD和矩形ECFG中,∠DCB=∠FCE=90°,∠F=∠B=90°,∴∠DCF=∠ECB,∴△BCE∽△FCD,∴,∴CF•CE=CB•CD,∴矩形ECFG与正方形ABCD的面积相等.故选:D.3. (2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.4. (2018广西贵港)如图,在菱形ABCD中,,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B. C.2 D.4.5【答案】C【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P 、M 即为使PE+PM 取得最小值, 其PE+PM=PE′+PM=E′M, ∵四边形ABCD 是菱形, ∴点E′在CD 上,∵AC=6 ,BD=6,∴AB=3,由S 菱形ABCD =12AC•BD=AB•E′M 得12××6=3 •E′M,解得:E′M=2,即PE+PM 的最小值是2 ,故选:C .5. (2018广西南宁)如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP=OF ,则cos∠ADF 的值为( )A .1113 B .1315 C .1517D .1719【答案】C【解答】根据折叠,可知:△DCP≌△DEP, ∴DC=DE=4,CP=EP .在△OEF 和△OBP 中,,∴△OEF≌△OBP(AAS ), ∴OE=OB,EF=BP .设EF=x ,则BP=x ,DF=DE ﹣EF=4﹣x ,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC ﹣BP=3﹣x ,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴cos∠ADF=ADDF=1517.故选:C.二、填空题:6. 已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,则BE的长等于.【答案】4﹣2.【解答】解:∵四边形ABCD是正方形,∴CD=2,BD=2,∠EBD=45°,∵将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,∴DC′=DC=2,∠DC′E=∠C=90°,∴BC′=2﹣2,∠BC′E=90°,∴BE=BC′=4﹣2,故答案为:4﹣2.7. (2019•四川省凉山州•5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为 4 .【答案】4【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.8. (2018广西贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.【答案】70°.【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.9. (2019•湖北省咸宁市•3分)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是②③(把正确结论的序号都填上).【答案】②③【解答】解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.三、解答题:10. (2019•浙江宁波•10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E 为AD 中点, ∴AE=ED , ∵BG=DE , ∴AE=BG ,AE∥BG,∴四边形ABGE 是平行四边形, ∴AB=EG , ∵EG=FH =2, ∴AB=2,∴菱形ABCD 的周长=8.11. 如图,O 是矩形ABCD 的对角线的交点,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 上的点. (1)若AE =BF =CG =DH.求证:四边形EFGH 是矩形;(2)若E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,且DG ⊥AC ,OF =2,求矩形ABCD 的面积.【点拨】(1)在矩形ABCD 对角线上有条件,同时还在四边形EFGH 对角线上有条件,所以可通过对角线判定矩形;(2)求矩形ABCD 的面积可转化成求AC 与DG 的积或转化成AD 与CD 的积. 【解答】解:(1)证明:∵四边形ABCD 是矩形, ∴OA =OB =OC =OD.∵AE =BF =CG =DH ,∴OE =OF =OG =OH. ∴四边形EFGH 是矩形.(2)∵四边形ABCD 是矩形,∴OA =OB =OC =OD.∵OE =12OA ,OF =12OB ,OG =12OC ,OH =12OD ,∴OE =OF =OG =OH.∴四边形EFGH 是矩形.∵DG ⊥AC ,OG =2,∴OD =4.∴DG =2 3.又∵AC =4OF =8,∴S △ADC =12AC ·DG =8 3.∴S 矩形ABCD =2S △ADC =16 3.12. (2019•山东省滨州市 •13分)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.【分析】(1)根据题意和翻着的性质,可以得到△BCE ≌△BFE ,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF 的长,进而求得EF 和DF 的值,从而可以得到四边形CEFG 的面积. 【解答】(1)证明:由题意可得, △BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE , ∵FG ∥CE , ∴∠FGE =∠CEB , ∴∠FGE =∠FEG , ∴FG =FE , ∴FG =EC ,∴四边形CEFG 是平行四边形, 又∵CE =FE ,∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF , ∴∠BAF =90°,AD =BC =BF =10, ∴AF =8, ∴DF =2,设EF =x ,则CE =x ,DE =6﹣x , ∵FDE =90°, ∴22+(6﹣x )2=x 2,解得,x =,∴CE =,∴四边形CEFG 的面积是:CE •DF =×2=.13. 已知:在边长为8的正方形ABCD 的各边上截取AE =BF =CG =DH.(1)如图1,连接AF ,BG ,CH ,DE ,依次相交于点N ,P ,Q ,M ,求证:四边形MNPQ 是正方形; (2)如图2,若连接EF ,FG ,GH ,HE. ①求证:四边形EFGH 是正方形;②当四边形EFGH 的面积为50 cm 2时,求tan ∠FEB 的值.图1 图2【点拨】(1)先证明四边形MNPQ 是矩形,再证明一组邻边相等;(2)①先证明四边形EFGH 是菱形,再证明它是矩形;②利用勾股定理,求BE ,BF ,再利用正切三角函数定义求值. 【解答】解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =CD =DA ,∠BAD =∠ABC =∠BCD =∠CDA =90°. 在△ABF 和△BCG 中,⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠BCD ,BF =CG ,∴△ABF ≌△BCG(SAS). ∴∠BAF =∠GBC.∵∠BAF +∠AFB =90°,∴∠GBC +∠AFB =90°. ∴∠BNF =90°.∴∠MNP =∠BNF =90°.∴同理可得∠NPQ =∠PQM =90°.∴四边形MNPQ 是矩形. 在△ABN 和△BCP 中,⎩⎪⎨⎪⎧∠BAF =∠CBG ,∠ANB =∠BPC ,AB =BC ,∴△ABN ≌△BCP(AAS). ∴AN =BP.在△AME 和△BNF 中,⎩⎪⎨⎪⎧∠BAF =∠GBC ,∠AME =∠BNF ,AE =BF ,∴△AME ≌△BNF(AAS).∴AM =BN.∴MN =NP.∴四边形MNPQ 是正方形. (2)①证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =DA. 又∵AE =BF =CG =DH ,∴AH =BE =CF =DG. ∴△AEH ≌△BFE ≌△CGF ≌△DHG(SAS). ∴EH =FE =GF =GH ,∠AEH =∠BFE. ∴四边形EFGH 是菱形.∵∠BEF +∠BFE =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°. ∴四边形EFGH 是正方形.②∵四边形EFGH 的面积为50 cm 2,∴EF 2=50 cm 2. 设BE =CF =x cm ,则BF =(8-x)cm.在Rt △BEF 中,由勾股定理,得BE 2+BF 2=EF 2,即x 2+(8-x)2=50. 解得x 1=1,x 2=7.当BE =1 cm 时,BF =7 cm ,tan ∠FEB =BFBE =7;当BE =7 cm 时,BF =1 cm ,tan ∠FEB =BF BE =17.∴tan ∠FEB 的值为17或7.14. (2019•湖南株洲•8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC.BD 的交点,连接CE.DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =,求正方形OEFG 的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC.BD,可得∠DOA=∠DOC=90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH 长,从而求得HO,即可求得MO,再通过MH ∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC.BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2。
2021年中考数学真题 矩形菱形正方形(共42题)-(原卷版)
18矩形菱形正方形(共42题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·四川成都市·中考真题)如图,四边形ABCD是菱形,点E,F分别在,BC DC 边上,添加以下条件不能判定ABE ADF≌的是()A.BE DF=B.BAE DAF∠=∠C.AE AD=D.AEB AFD∠=∠2.(2021·四川遂宁市·中考真题)如图,在矩形ABCD中,AB=5,AD=3,点E 为BC上一点,把△CDE沿DE翻折,点C恰好落在AB边上的F处,则CE的长是()A.1B.43C.32D.533.(2021·重庆中考真题)如图,正方形ABCD的对角线AC,BD交于点O,M 是边AD上一点,连接OM,过点O做ON△OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B2C.2D.224.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是()A.直角三角形斜边上的中线等于斜边的一半B.等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C.若AB BC=,则点B是线段AC的中点D.三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)下列命题是真命题的是()A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形6.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若2AE BE=,则CGBH的值为()A .32B .2C .310D .35 7.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33B .223+C .23D .123+8.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A.60°B.65°C.75°D.80°9.(2021·四川乐山市·中考真题)如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD、DC延长线的垂线,垂足分别为点E、F.若120ABC∠=︒,2AB=,则PE PF-的值为()A.32B.3C.2D.5210.(2021·四川自贡市·中考真题)如图,在正方形ABCD中,6AB=,M是AD 边上的一点,:1:2AM MD=.将BMA△沿BM对折至BMN△,连接DN,则DN的长是()A.52B.958C.3D.65511.(2021·浙江绍兴市·中考真题)如图,菱形ABCD中,60B∠=︒,点P从点B 出发,沿折线BC CD-方向移动,移动到点D停止.在ABP△形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形12.(2021·陕西中考真题)如图,在菱形ABCD中,60ABC∠=︒,连接AC、BD,则ACBD的值为()A.12B.22C3D3二、填空题13.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;△车轮做成圆形,应用了“圆是中心对称图形”;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;△地板砖可以做成矩形,应用了“矩形对边相等”.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD中,点E 是BC的中点,点F在CD上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.15.(2021·四川成都市·中考真题)如图,在矩形ABCD中,4,8==,点E,AB ADF分别在边,AD BC上,且3AE=,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点'A恰好落在对角线AC上,点B的对应点为'B,则线段BF的长为_______;第二步,分别在,'EF A B上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为_______.16.(2021·江苏扬州市·中考真题)如图,在ABC中,AC BC=,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若4BF=,且2CF=,3=,DE EF则EF的长为________.17.(2021·云南中考真题)已知ABC的三个顶点都是同一个正方形的顶点,ABC∠的平分线与线段AC交于点D.若ABC的一条边长为6,则点D到直线AB的距离为__________.18.(2021·山东泰安市·中考真题)如图,将矩形纸片ABCD 折叠(AD AB >),使AB 落在AD 上,AE 为折痕,然后将矩形纸片展开铺在一个平面上,E 点不动,将BE 边折起,使点B 落在AE 上的点G 处,连接DE ,若DE EF =,2CE =,则AD 的长为________.19.(2021·江苏连云港市·中考真题)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.20.(2021·四川南充市·中考真题)如图,点E 是矩形ABCD 边AD 上一点,点F ,G ,H 分别是BE ,BC ,CE 的中点,3AF =,则GH 的长为________.21.(2021·四川凉山彝族自治州·中考真题)菱形ABCD 中,对角线10, 24AC BD ==,则菱形的高等于___________.22.(2021·重庆中考真题)如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,12AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)23.(2021·四川遂宁市·中考真题)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:△ABF DBE ∠=∠;△ABF DBE ∽;△AF BD ⊥;△22BG BH BD =;△若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)24.(2021·湖北十堰市·中考真题)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为_______.25.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若30cmAB=,则BC长为_______cm(结果保留根号).26.(2021·湖北黄冈市·中考真题)如图,正方形ABCD中,1∠AB=,连接AC,ACD的平分线交AD 于点E ,在AB 上截取AF DE =,连接DF ,分别交CE ,AC 于点G ,H ,点P 是线段GC 上的动点,PQ AC ⊥于点Q ,连接PH .下列结论:△CE DF ⊥;△DE DC AC +=;△3EA AH =;△PH PQ +的最小值是22.其中所有正确结论的序号是_____.27.(2021·湖南衡阳市·中考真题)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为__________厘米.28.(2021·湖南株洲市·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图△中的“様”和“隻”为“样”和“只”).图△为某蝶几设计图,其中ABD △和CBD 为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P 处,点P 与点A 关于直线DQ 对称,连接CP 、DP .若24ADQ ∠=︒,则DCP∠= ___________度.29.(2021·江苏苏州市·中考真题)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM∠=︒,过点D 作DF CM ⊥,垂足为F ,若5DF =,则对角线BD 的长为______.(结果保留根号)30.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形△的边BC及四边形△的边CD都在x轴上,“猫”耳尖E在y 轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是___________.三、解答题31.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE DF=.连接CE、CF.求证:CE CF=.32.(2021·江苏扬州市·中考真题)如图,在ABC中,BAC∠的角平分线交BC于DE AB DF AC.点D,//,//(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且22AD =,求四边形AFDE 的面积.33.(2021·浙江金华市·中考真题)已知:如图,矩形ABCD 的对角线,AC BD 相交于点O ,120,2BOC AB ∠=︒=.(1)求矩形对角线的长.(2)过O 作OE AD ⊥于点E ,连结BE .记ABE α∠=,求tan α的值.34.(2021·江苏连云港市·中考真题)如图,点C 是BE 的中点,四边形ABCD 是平行四边形.(1)求证:四边形ACED 是平行四边形;(2)如果AB AE =,求证:四边形ACED 是矩形.35.(2021·四川凉山彝族自治州·中考真题)如图,在四边形ABCD 中,90ADC B ∠=∠=︒,过点D 作DE AB ⊥于E ,若DE BE =.(1)求证:DA DC =;(2)连接AC 交DE 于点F ,若30,6ADE AD ∠=︒=,求DF 的长.36.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F . (1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.37.(2021·四川自贡市·中考真题)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF .38.(2021·浙江嘉兴市·中考真题)如图,在77⨯的正方形网格中,网格线的交点称为格点,B在格点上,每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.39.(2021·浙江丽水市·中考真题)如图,在菱形ABCD中,ABC∠是锐角,E是BC 边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE BC EAF ABC,时,△求证:AE AF=;△连结BD EF,,若2 5EFBD=,求ABCDAEF菱形SS的值;(2)当12EAF BAD∠=∠时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC MN,,若42AB AC==,,则当CE为何值时,AMN是等腰三角形.40.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,90ABC∠=︒,53BAD∠=︒,10AB cm=,6BC cm=.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.41.(2021·四川眉山市·中考真题)如图,在等腰直角三角形ABC中,90ACB∠=︒,25AC BC==,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.(1)求证:≌ACD BCE;(2)当点D在ABC内部,且90ADC∠=︒时,设AC与DG相交于点M,求AM的长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD 的长.42.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交'AC于点P,N(如图3),MN,AD,'PN存在一定的数量关系,并加以证明.。
中考数学热身 矩形、菱形、正方形(含解析)-人教版初中九年级全册数学试题
矩形、菱形、正方形一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为cm.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是cm.3.正方形的一条对角线长为2,则它的面积为.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.矩形、菱形、正方形参考答案与试题解析一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为2cm.【考点】矩形的性质.【分析】根据矩形的性质推出OA=OB,证出等边△OAB,求出BA,根据勾股定理求出BC即可得到答案.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=AC=2(cm),∵四边形ABCD是矩形,∴AB=CD=2cm,∠ABC=90°,在△ABC中,由勾股定理得:BC===2(cm),∴AD=BC=2(cm).故答案是:2.【点评】本题主要考查对矩形的性质,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能求出AB的长是解此题的关键.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是8 cm.【考点】勾股定理;菱形的性质.【专题】压轴题.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是3.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.【解答】解:在菱形ABCD中,AB=5,AC=6,因为对角线互相垂直平分,所以∠AOB=90°,AO=3,在RT△AOB中,BO==4,∴BD=2BO=8.【点评】注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.3.正方形的一条对角线长为2,则它的面积为 2 .【考点】正方形的性质.【专题】计算题.【分析】根据正方形的性质利用勾股定理可求得其边长,从而就不难求得其面积.【解答】解:由题意得,正方形的边长为,故面积为2.故答案为2.【点评】主要考查到正方形的性质和面积的求法.要注意:正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24 cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【考点】菱形的判定;矩形的判定;正方形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形【考点】剪纸问题.【专题】操作型.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于EF的位置是不确定的,只能得到所求的四边形的一组对边平行,所以是梯形.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.【考点】菱形的性质.【分析】根据菱形的对角线可以求得菱形ABCD的面积,根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:菱形的对角线BD,AC的长分别是6和8,则菱形的面积为×6×8=24,菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,答:菱形的周长为20,面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF ⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.【考点】菱形的性质.【专题】计算题.【分析】首先连接BD,根据菱形的四条边都相等,可得AB=BC=CD=AD;又由BE⊥AD,AE=ED,可得AB=AD=BD,所以∠A=60°,可得∠ADC=120°,即可得∠EBF的度数.【解答】解:连接BD,∵BE⊥AD,AE=ED,∴AB=BD,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,AB∥CD,∴AB=AD=BD,∴∠A=60°,∴∠ADC=120°,∵BE⊥AD,BF⊥CD,∴∠BED=∠BFD=90°,∴∠EBF=60°.【点评】此题考查了菱形的性质:菱形的四条边都相等.还考查了线段垂直平分线的性质.此题比较简单,解题要细心.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2分)(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).(5分)∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.【考点】全等三角形的判定与性质;正方形的判定.【专题】几何综合题.【分析】先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.【解答】(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.∴△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.【点评】此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【考点】矩形的判定.【专题】几何综合题.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.【点评】本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.。
2014年全国中考数学试题分类汇编25 矩形菱形与正方形(含解析)
矩形菱形与正方形一、选择题1. (2014•安徽省,第10题4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A. 1 B. 2 C. 3 D. 4考点:正方形的性质.菁优网分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于是本题的关键.2. (2014•福建泉州,第5题3分)正方形的对称轴的条数为()3. (2014•珠海,第2题3分)边长为3cm的菱形的周长是()4.(2014•广西玉林市、防城港市,第6题3分)下列命题是假命题的是()5.(2014•毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H 为AD边中点,菱形ABCD的周长为28,则OH的长等于()AAB6.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()PE===7.(2014•孝感,第9题3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()8.(2014·台湾,第12题3分)如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为何?( )A .16B .24C .36D .54分析:由于△ADC =△AGC ﹣△ADG ,根据矩形的性质和三角形的面积公式计算即可求解. 解:△ADC =△AGC ﹣△ADG =12×AG ×BC ﹣12×AG ×BF=12×8×(6+9)﹣12×8×9=60﹣36=24. 故选:B .点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算. 9.(2014·台湾,第27题3分)如图,矩形ABCD 中,AD =3AB ,O 为AD 中点,是半圆.甲、乙两人想在上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下: (甲) 延长BO 交于P 点,则P 即为所求;(乙) 以A 为圆心,AB 长为半径画弧,交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2A B.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.10.(2014•浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()===511.(2014•浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是()..=,=3,===2,=AF=×2=.11.(2014•呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD 相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()=12. (2014•湘潭,第7题,3分)以下四个命题正确的是()13. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()14. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第3题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。
2024成都中考数学复习专题 矩形、菱形、正方形的性质与判定(含答案)
2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。
2019届中考数学复习《矩形、菱形、正方形》专项训练题含答案
2019届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC =23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF 交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC =3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D12. 45°或105°13. ①③④14. 3015.2 216. 解:(1)在△ABC中,点D,E分别是边BC,AB上的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=12 AC,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE(2)当∠B=30°时,四边形ACEF为菱形.理由:在△ABC中,∠B=30°,∠ACB=90°,∴∠BAC=60°,AC=12AB=AE,∴△AEC为等边三角形,∴AC=CE,又∵四边形ACEF为平行四边形.∴四边形ACEF为菱形2019-2020学年数学中考模拟试卷一、选择题1.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A.正三角形B.平行四边形C.正五边形D.圆5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算正确的是()A. B. C. D.7.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A.75 B.90 C.105 D.1208.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间9.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是()A.正三角形B.正方形C.正五边形D.长方形10.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个11.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④B.①②③C.①④D.④12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .43π-B .83π-C .83π-D .843π- 二、填空题13.在实数范围内分解因式:24x -=______________________.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 17.如图,已知第一象限内的点A 在反比例函数上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为________________ .18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全图表中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.(某中学九年级学生共600人,其中男生320人,女生280人.该校对九年级所有学生进行了一次体育模拟测试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)a=; b=;(2)若将该表绘制成扇形统计图,那么Ⅲ类所对应的圆心角是°;(3)若随机抽取的学生中有64名男生和56名女生,请解释“随机抽取64名男生和56名女生”的合理性;(4)估计该校九年级学生体育测试成绩是40分的人数.【参考答案】*** 一、选择题二、填空题 13.()()22x x +- 14.85° 15.47° 16.3517. 18.14三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻 【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米 ∴(25﹣5)÷(8﹣4)=5(立方米/时) ∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米 ∴每小时出水量为:5﹣3=2(立方米) 当8≤x≤12时,3x+1≥28,解得:x≥9 当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想.21 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22.(1)见解析;(2【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m ﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根;(2)∵AB 、AC 的长是该方程的两个实数根,∴AB+AC =m+2,AB•AC=2m ,∵△ABC 是直角三角形,∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2,即(m+2)2﹣2×2m=32,解得:m ,∴m又∵AB•AC=2m ,m 为正数,∴m【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)2PM =BM+CN ,理由见解析;(3)5. 【解析】【分析】(1)根据平行相似,证明△APQ ∽△ABC ,利用相似三角形对应边的比等于对应高的比:PQ AK BC AR =,由“半高”三角形的定义可结论;(2)证明四边形PMNQ 是矩形,得PQ =MN ,PM =KR ,代入AR =12BC ,可得结论;(3)先根据△ABC 的面积等于16,计算BC 和AR 的长,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),根据勾股定理表示MQ ,配方可得最小值.【详解】(1)证明:如图,过A 作AR ⊥BC 于R ,交PQ 于K ,∵△ABC 是BC 边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)32,8,10%;(2)96;(3)1200人;(4)16. 【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值;(2)总人数乘以样本中“反思法”学生所占比例可得;(3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答【详解】解:(1)本次调查的学生有:20÷25%=80,a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%,故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人,故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人;(4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据25.(1)a =54;b =0.45; (2)72°;(3)“随机抽取64名男生和56名女生”比较合理;(4)该校九年级学生体育测试成绩是40分的人数约为180人.【解析】【分析】(1)先利用一类的频数除以频率计算出总频数c,再用总频数减去其余三类,即可得到a,再用a的频数除以总频数即可得到b(2)圆周角为360°,第三类占总数的0.2,所以第三类的圆心角=360°×0.2(3)根据九年级学生共600人,其中男生320人,女生280人进行反推即可解答(4)利用总人数乘频率即可解答【详解】(1)总频数=36÷0.3=120,a的频数=总频数-36-24-6=54,b频率=54÷120=0.45,a=54;b=0.45;(2)0.2×360°=72°;(3)∵6432056280== 120600120600,,∴“随机抽取64名男生和56名女生”比较合理;(4)0.3×600=180(人)答:该校九年级学生体育测试成绩是40分的人数约为180人.【点睛】此题考查了频数分布表,圆周角,用样本估计总体,熟练掌握运算法则是解题关键2019-2020学年数学中考模拟试卷一、选择题1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.下列等式一定成立的是()A.2a﹣a=1 B.a2•a3=a5C.(2ab2)3=2a3b6D.x2﹣2x+4=(x﹣2)23.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣45.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为()A.8B.9.5C.10D.11.56.关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.7.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°8.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=当k;正确的是( )A.①B.①②C.①③D.①②③9.若x是不等于1的实数,我们把11x-称为x的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1) --=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A.﹣13B.﹣2 C.3 D.410.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.2011.华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学计数法表示为()A.603×610B.6.03×810C.60.3×710D.0.603×91012.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图,点为等边内一点,若,,,则的度数是__________.15.如图,正三角形ABC的边长为2,点A,B的圆上,点C在圆内,将正三角形ABC绕点A 逆时针旋转,当边AC第一次与圆相切时,旋转角为_____.16.抛物线 221y x =-的顶点坐标是________.17.命题“若a =b ,则a 3=b 3.”是真命题.它的逆命题“若a 3=b 3,则a =b”是_____(填真或假)命题.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题19.关于x 的一次函数y =ax+b 与反比例函数y =k x(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式;(2)求一次函数的解析式.20.如图1,在平面直角坐标系xOy 中,A (0,4),B (8,0),C (8,4).(1)试说明四边形AOBC 是矩形.(2)在x 轴上取一点D ,将△DCB 绕点C 顺时针旋转90°得到△D'CB'(点D'与点D 对应).①若OD =3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.21.抛物线L :y =a (x ﹣x 1)(x ﹣x 2)(常数a≠0)与x 轴交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且x 1•x 2<0,AB =4,当直线l :y =﹣3x+t+2(常数t >0)同时经过点A ,C 时,t =1.(1)点C 的坐标是 ;(2)求点A ,B 的坐标及L 的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L 的大致图象;(4)将L 向右平移t 个单位长度,平移后y 随x 的增大而增大部分的图象记为G ,若直线l 与G 有公共点,直接写出t 的取值范围.22.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了小时.23.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m ,n]上的“闭函数”.如函数y =﹣x+4.当x =1时,y =3;当x =3时,y =1,即当1≤x≤3时,有1≤y≤3,所以说函数y =﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019y x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx+b (k≠0)是闭区间[m ,n]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).【参考答案】***一、选择题二、填空题13.1120、1320、32014.150°15.75°16.(0,-1)17.真18.-4<x <2三、解答题19.(1)m =1,y =4x ;(2)y =﹣x+5; 【解析】【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值;(2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式.【详解】(1)∵点B (4,1)在反比例函数y =k x (x >0)的图象上, ∴1=4k , ∴k =4. ∴反比例函数的解析式为y =4x∵点A(m,4)在反比例函数y=4x的图象上,∴4=4m,∴m=1.(2)点A(1,4)和点B(4,1)在一次函数y=ax+b的图象上,∴4 41 a ba b+=⎧⎨+=⎩解得15 ab=-⎧⎨=⎩∴一次函数的解析式为y=﹣x+5.【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.20.(1)见解析;(2)①D'的坐标为(4,9),②AD'+OD',点D'的坐标是(4,2).【解析】【分析】(1)根据矩形的判定证明即可;(2)①当点D在原点右侧时,根据旋转的性质和矩形的性质解答即可;②当点D在原点左侧时,根据旋转的性质和矩形的性质解答即可.【详解】(1)∵A(0,4),B(8,0),C(8,4).∴OA=4,BC=4,OB=8,AC=8,∴OA=BC,AC=OB,∴四边形AOBC是平行四边形,∵∠AOB=90°,∴▱AOBC是矩形;(2)∵▱AOBC是矩形,∴∠ACB=90°,∠OBC=90°,∵△D'CB'将△DCB绕点C顺时针旋转90°得到(点D'与点D对应),∴∠D'B'C=∠DBC=90°,B'C=BC=4,D'B'=DB,∠BCB'=90°,即点B'在AC边上,∴D'B'⊥AC,①如图1,当点D在原点右侧时:D'B'=DB=8﹣3=5,∴点D'的坐标为(4,9);②如图2,当点D在原点左侧时:D'B'=DB=8+3=11,∴点D'的坐标为(4,15),综上所述:点D'的坐标为(4,9)或(4,15).AD'+OD',点D'的坐标是(4,2).【点睛】此题考查四边形的综合题,关键是根据旋转的性质和矩形的性质解答.21.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≤t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.22.(1)该火车每次提速的百分率为10%.(2)0.2.【解析】【分析】(1)设该火车每次提速的百分率为x,根据提速前的速度及经两次提速后的速度,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第一次提速后的速度=提速前的速度×(1+提速的百分率)可求出第一次提速后的速度,再利用少用的时间=两地间铁路长÷提速前的速度﹣两地间铁路长÷第一次提速后的速度,即可求出结论.【详解】(1)设该火车每次提速的百分率为x,依题意,得:180(1+x)2=217.8,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:该火车每次提速的百分率为10%;(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从甲地到乙地所用的时间比提速前少用的时间为396396180198-=0.2(小时),故答案为:0.2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE⊥AB于E,设DE=DC=x,由∠A=30°,BC AD=2DE=2x,AB=2BC=由BC2+AC2=AB2得到关于x的方程,解之可得.【详解】(1)如图所示,BD即为所求;。
【名校名卷取精 命题探究】2014年数学中考抢分训练之“小题狂做”:矩形、菱形和正方形(含解析)
二、填空题(本大题共 2 小题,每小题 4 分,共 8 分) 6.如图,在平面直角坐标系中,矩形 OABC 的对角线 AC 平行于 x 轴,边 OA 与 x 轴正半轴的夹角为 30° , OC=2,则点 B 的坐标是______.
第 1 页(共 4 页)
山东世纪金榜科教文化股份有限公司
世纪金榜
圆您梦想
第 3 题图
第 4 题图
第五题图 )
4.如图,已知菱形 ABCD 的对角线 AC、BD 的长分别为 6 cm、8 cm,AE⊥BC 于点 E,则 AE 的长是( A.5 3 cm B.2 5 cm 48 C. cm 5 24 D. cm 5
5.如图,两个正方形的面积分别为 16,9, 两阴影部分面积分别为 a,b(a>b),则(a-b)等于( A.7 B.6 C.5 ) D.4
9.(10 分)如图,在正方形 ABCD 中,对角线 AC、BD 相交于点 O,E、F 分别在 OD、OC 上,且 DE=CF, 连接 DF、AE,AE 的延长线交 DF 于点 M. 求证:AM⊥DF.
10.(12 分)如图,四边形 ABCD 是正方形,点 G 是 BC 边上任意一点,DE⊥AG 于 E,BF∥DE,交 AG 于 F. (1)求证:AF-BF=EF; (2)将△ABF 绕点 A 逆时针旋转,使得 AB 与 AD 重合,记此时点 F 的对应点为点 F′,若正方形边长为 3,求点 F′与旋转前的图中点 E 之间的距离.
第 1 题图
第 2 题图
2.如图,菱形 ABCD 中,对角线 AC 与 BD 相交于 O,OE∥DC 且交 BC 于点 E,AD=6 cm,则 OE 的长 为( ) B.4 cm C.3 cm D.2 cm
A.6 cm
中考数学复习 几何专题:矩形、菱形(含答案)
2021中考数学 几何专题:矩形、菱形一、选择题(本大题共10道小题) 1. 如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是()2. 关于▱ABCD的叙述,正确的是( )A . 若AB ⊥BC ,则▱ABCD 是菱形 B . 若AC ⊥BD ,则▱ABCD 是正方形 C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形3. (2020·武威)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离.若AE 间的距离调节到60cm ,菱形的边长AB =20cm ,则∠DAB 的度数是( )A .90°B .100°C .120°D .150°4. (2020·牡丹江)如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为 ( )A .(2,23)--或(23,2)-B .(2,23)C .(2,23)-D .(2,23)--或(2,23)BCA y5. (2020·黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4∶1 B.5∶1 C.6∶1 D.7∶16. (2020·乐山)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于E,连接OA,则四边形AOED的周长为()A.9+2 3 B.9+ 3 C.7+2 3 D.87. 如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F.在下列结论中,不一定正确的是()A. △AFD≌△DCEB. AF=12ADC. AB=AFD. BE=AD-DF8. (2020·黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16 B.24 C.16或24 D.489. (2020·邵阳)将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于占M.若P1M⊥AB,则∠DP1M的大小是()A.135°B. 120°C. 112.5°D.115°10. (2020·绥化)如图,在R t△ABC中,CD为斜边AB的中线,过点D作DE⊥AC 于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=12BC;②四边形DBCF是平行四边形;③EF=EG;④BC=5是( )A.1个B.2个C.3个D.4个二、填空题(本大题共6道小题)11. 如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是________.12. 如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE.如果∠ADB =30°,则∠E=________度.13. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为________.14. (2020·四川甘孜州)如图,有一张长方形纸片ABCD,AB=8cm,BC=10cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,则线段DE的长为__________cm.15. 如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,点P,E,F分别为线段AB,AD,DB上的任意一点,则PE+PF的最小值是.GFDCB16. 如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG . 其中正确的是______________.(把所有正确结论的序号都选上)三、解答题(本大题共5道小题)17. 如图,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕MN ,将纸片展平;再一次折叠,使点D 落到MN 上的点F 处,折痕AP 交MN 于E ;延长PF 交AB 于G .求证: (1)△AFG ≌△AFP ; (2)△APG 为等边三角形.18. 如图,将▱ABCD的边AB 延长至点E ,使BE=AB ,连接BD ,DE ,EC ,DE交BC 于点O.(1)求证:△ABD ≌△BEC ;(2)若∠BOD=2∠A ,求证:四边形BECD 是矩形.19. 已知:如图,在菱形ABCD 中,点E ,F 分别在边BC ,CD 上,且BE=DF ,连结AE ,AF.求证:AE=AF.20. 如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE ,连接BD 、CE 交于点F. (1)求证:△AEC ≌△ADB ; (2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.21. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.中考数学 几何专题:矩形、菱形-答案一、选择题(本大题共10道小题)1. 【答案】C 【解析】本题考查菱形的性质、相似三角形的性质、函数的图象和二次函数的图象和性质. 解题思路:设AC 、BD 交于点O ,由于点P 是菱形ABCD的对角线AC 上一动点,所以0<x <2.当0<x <1时,△AMN ∽△ABD ⇒APAO =MN BD ⇒x 1=MN 1⇒MN =x ⇒y =12x 2.此二次函数的图象开口向上,对称轴是x =0,此时y 随x 的增大而增大. 所以B 和D 均不符合条件.当1<x <2时,△CMN∽△CBD ⇒CP CO =MN BD ⇒2-x 1=MN 1⇒MN =2-x ⇒y =12x(2-x)=-12x 2+x.此二次函数的图象开口向下,对称轴是x =1,此时y 随x 的增大而减小. 所以A 不符合条件.综上所述,只有C 是符合条件的.2. 【答案】C 【解析】逐项分析如下表:选项 逐项分析 正误 A 有一个角是直角的平行四边形是矩形,不是菱形 ×B对角线互相垂直的平行四边形是菱形,不一定是正方形×C对角线相等的平行四边形是矩形√D有一组邻边相等的平行四边形是菱形,不一定是正方形×3. 【答案】连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.4. 【答案】D【解析】菱形OABC中,点A的坐标为(2,23),所以OA=4,∠A=∠C=60°,分类讨论,①若顺时针旋转,旋转后的图形如图1所示,则OC=OA=4,∠C=60°,可求出点C对应点的坐标为(-2,-23);②若逆时针旋转,旋转后的图形如图2所示,则OC=OA=4,∠C=60°,可求出点C对应点的坐标为(2,23).5. 【答案】B【解析】本题考查了菱形的性质及锐角三角函数等知识.由菱形的周长为16可得其边长为4,而高为2,即转化为已知某一直角三角形的斜边为4,一直角边yxABCOyxAB CO图1图2为2,求该直角三角形的锐角.由sin α=2142=,可得锐角α=30°,所以该菱形的两邻角为150°和30°,两邻角之比5∶1,因此本题选B . 6. 【答案】B【解析】由已知及菱形的性质求得∠ABD =∠CDB =30º,AO ⊥BD ,利用含30º的直角三角形边的关系分别求得AO 、DO 、OE 、DE ,进而求得四边形AOED 的周长.∵四边形ABCD 是菱形,O 是对角线AC 的中点,∴AO ⊥BD ,AD =AB =4,AB ∥DC ;∵∠BAD =120º,∴∠ABD =∠ADB =∠CDB =30º;∵OE ⊥DC ,∴在R t △AOD 中,AD =4,AO =12AD =2,DO =AD 2-AO 2=23;在R t △DEO 中,OE =12OD =3,DE =AD 2-AO 2=3,∴四边形AOED 的周长为AO+OE +DE +AD =2+3+3+4=9+3. B 【解析】逐项分析如下表: 选项 逐项分析 正误A ∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B 只有当∠ADF =30°时,才有AF =12AD 成立× C 由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB=DC ,∴AB =AF√D ∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √ 8. 【答案】B【解析】解方程x 2﹣10x +24=0得(x ﹣4)(x ﹣6)=0,∴x =4,或x =6,分两种情况:①当AB =AD =4时,4+4=8,不能构成三角形;②当AB =AD =6时,6+6>8,即可得出菱形ABCD 的周长为4AB =24.9. 【答案】C【解析】本题考查了折叠问题、三角形内角和定理、矩形的性质,由折叠前后对应角相等且190∠=PMA 可先求出145∠=∠=DMP DMA ,进一步求出45ADM ∠=,再由折叠可求出122.5∠=∠=∠=MDP ADP PDM ,最后在1∆DPM 中由三角形内角和定理即可求解.解:由折叠知,190∠=PMA , ∴145∠=∠=DMP DMA ,即45ADM ∠=, 由折叠可得,∴1122.52∠=∠=∠=∠=MDP ADP PDM ADM , ∴在1∆DPM 中,1=1804522.5112.5∠--=DPM ,因此本题选C . 10. 【答案】D【解析】(1)∵DF ⊥AC ,BC ⊥AC ,∴DE ∥BC .∵点D 是AB 的中点,∴点E是AC 的中点.∴DE =12BC .可见结论①正确.(2)∵AC 与DF 互相垂直平分,∴四边形ADCF 是菱形.∴FC AD .∴FC DB .∴四边形DBCF 是平行四边形.可见结论②正确. (3)∵∠CDE +∠EGC =180°,∠EGF +∠EGC =180°,∴∠CDE =∠EGC .由菱形的性质得∠CDE =∠EFG ,∴∠EGF =∠EFG .∴EF =EG .可见结论③正确.(4)易知△FEG ∽△FCD ,∴FEFC=FGFD ,即FE·FD =FC·FG .∴2DE2=2×5,DE =5.∴BC =2DE =25.可见结论④正确.综上所述,正确结论有4个,故选D .二、填空题(本大题共6道小题)11. 【答案】24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD =12×8×6=24.解图12. 【答案】15【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB =15°.解图13. 【答案】105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.解图14. 【答案】5【解析】本题考查了矩形的性质,轴对称的性质,勾股定理.∵长方形纸片ABCD ,AB =8,BC =10,∴AB '=8,AD =10,B 'C '=10.在R t △ADB '中,由勾股定理,得DB '=6.∴DC '=4. 设DE =x ,则CE =C 'E =8-x .在R t △C 'DE 中,由勾股定理,得DE 2=EC '2+DC '2即x 2=(8-x )2+42.∴x =5.即线段DE 的长为5cm .461088-x x 108C'B'D A BCE15. 【答案】菱[解析]∵AC=BC ,∴△ABC 是等腰三角形.将△ABC 沿AB 翻折得到△ABD ,∴AC=BC=AD=BD ,∴四边形ADBC 是菱形. ∵△ABC 沿AB 翻折得到△ABD ,∴△ABC 与△ABD 关于AB 成轴对称.如图所示,作点E 关于AB 的对称点E',连接PE',根据轴对称的性质知AB 垂直平分EE',∴PE=PE', ∴PE +PF=PE'+PF ,当E',P ,F 三点共线,且E'F ⊥AC 时,PE +PF 有最小值,该最小值即为平行线AC 与BD 间的距离.作CM ⊥AB 于M ,BG ⊥AD 于G ,由题知AC=BC=2,AB=1,∠CAB=∠BAD , ∴cos ∠CAB=cos ∠BAD ,即=,∴AG=, 在Rt △ABG 中,BG===,由对称性可知BG 长即为平行线AC ,BD 间的距离, ∴PE +PF 的最小值=.16. 【答案】①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴EDFD =43≠AB AG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S △FGH =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG=5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.三、解答题(本大题共5道小题)17. 【答案】证明:(1)∵对折矩形纸片ABCD ,使AB 与CD 重合,得到折痕MN , ∴MN ∥AB ,M ,N 分别为AD ,BC 中点,由平行线的性质可知PF=GF . 由折叠的性质得∠PF A=∠GF A=90°, ∴△AFG ≌△AFP (SAS).(2)∵△AFG ≌△AFP ,∴AP=AG ,∠2=∠3. 又∵∠2=∠1,∴∠1=∠2=∠3.又∵∠1+∠2+∠3=90°,∴3∠2=90°,∴∠2=30°,∠P AG=2∠2=60°,∴△APG 为等边三角形.18. 【答案】[解析](1)根据平行四边形的判定与性质得到四边形BECD 为平行四边形,然后由SSS 推出两三角形全等即可;(2)欲证明四边形BECD 是矩形,只需推出BC=ED即可.证明:(1)在▱ABCD 中,AD=BC ,AB=CD ,AB ∥CD ,则BE ∥CD. 又∵BE=AB ,∴BE=DC ,∴四边形BECD 是平行四边形,∴BD=EC.在△ABD 与△BEC 中,∴△ABD ≌△BEC (SSS).(2)由(1)知四边形BECD 是平行四边形,则OD=OE ,OC=OB.∵四边形ABCD 是平行四边形,∴∠A=∠BCD ,即∠A=∠OCD.又∵∠BOD=2∠A ,∠BOD=∠OCD +∠ODC ,∴∠OCD=∠ODC ,∴OC=OD ,∴BC=ED ,∴平行四边形BECD 是矩形.19. 【答案】 ∵四边形ABCD 是菱形,∴AB=AD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△ADF ,∴AE=CF .20. 【答案】(1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,AE =AC ,∠BAC =∠DAE ,(1分)∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎨⎧AD = AE∠EAC =∠DAB AB =AC,∴△AEC ≌△ADB(SAS ).(3分)(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF , ∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,(5分)又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,∴∠DAB =90°,(6分)又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22, 在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.(8分)21. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°,∴△COP 和△BOP 都为等边三角形,∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。
中考数学真题《矩形菱形正方形》专项测试卷(附答案)
中考数学真题《矩形菱形正方形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(39题)一 、单选题1.(2023·湖南·统考中考真题)如图,菱形ABCD 中 连接AC BD , 若120∠=︒,则2∠的度数为( )A .20︒B .60︒C .70︒D .80︒2.(2023·湖南常德·统考中考真题)如图1 在正方形ABCD 中 对角线AC BD 、相交于点O E F 分别为AO DO 上的一点 且EF AD ∥ 连接,AF DE .若15FAC ∠=︒,则AED ∠的度数为( )A .80︒B .90︒C .105︒D .115︒3.(2023·湖南常德·统考中考真题)下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形4.(2023·浙江·统考中考真题)如图,在菱形ABCD 中 160AB DAB =∠=︒,,则AC 的长为( )A .12 B .1 C 3D 35.(2023·上海·统考中考真题)在四边形ABCD 中 ,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( )A .AB CD B .AD BC = C .A B ∠=∠D .A D ∠=∠6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE 连结,AE AD 设AED △ ABE ACD 的面积分别为12,,S S S 若要求出12S S S --的值 只需知道( )A .ABE 的面积B .ACD 的面积C .ABC 的面积D .矩形BCDE 的面积7.(2023·湖南·统考中考真题)如图所示 在矩形ABCD 中 AB AD > AC 与BD 相交于点O 下列说法正确的是( )A .点O 为矩形ABCD 的对称中心B .点O 为线段AB 的对称中心C .直线BD 为矩形ABCD 的对称轴 D .直线AC 为线段BD 的对称轴8.(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD 中 M 为对角线BD 上的一点 连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A .()331B .()3332C .)631D .()6332 9.(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O E 为边BC 的中点 连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .410.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH .若2AB = 4BC =,则四边形EFGH 的面积为( )A .2B .4C .5D .611.(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD 中 O 为对角线BD 的中点 60ABD ∠=︒.动点E 在线段OB 上 动点F 在线段OD 上 点,E F 同时从点O 出发 分别向终点,B D 运动 且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E 点F 关于,BC CD 的对称点为12,F F .在整个过程中 四边形1212E E F F 形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形12.(2023·重庆·统考中考真题)如图,在正方形ABCD 中 O 为对角线AC 的中点 E 为正方形内一点 连接BE BE BA = 连接CE 并延长 与ABE ∠的平分线交于点F 连接OF 若2AB =,则OF 的长度为( )A .2B 3C .1D 2二 解答题13.(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中 过对角线BD 的中点O 作BD 的垂线EF分别交AD BC 于点E F .(1)证明:BOF DOE ≌△△(2)连接BE DF 证明:四边形EBFD 是菱形.14.(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC BD 相交于点O ,DE AC CE BD .(1)求证:四边形OCED 是菱形(2)若32BC DC ==, 求四边形OCED 的面积.15.(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形其对角线相交于点O 3,8,5OA BD AB ===.(1)AOB 是直角三角形吗?请说明理由(2)求证:四边形ABCD 是菱形.16.(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O 90ABO DCO ∠=∠=︒ OB OC =.点E F 分别是AO DO 的中点.(1)求证:OE OF =(2)当30A ∠=︒时 求证:四边形BECF 是矩形.17.(2023·云南·统考中考真题)如图,平行四边形ABCD 中 AE CF 、分别是BAD BCD ∠∠、的平分线且E F 、分别在边BC AD 、上 AE AF =.(1)求证:四边形AECF 是菱形(2)若60ABC ∠=︒ ABE 的面积等于3 求平行线AB 与DC 间的距离.18.(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中 AD BC ∥ 点O 为对角线BD 的中点 过点O 的直线l 分别与AD BC 所在的直线相交于点E F .(点E 不与点D 重合)(1)求证:DOE BOF ≌(2)当直线l BD ⊥时 连接BE DF 试判断四边形EBFD 的形状 并说明理由.19.(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中 AE BC ⊥于点E AF CD ⊥于点F连接EF(1)求证:AE AF =(2)若=60B ∠︒ 求AEF ∠的度数.20.(2023·湖北鄂州·统考中考真题)如图,点E 是矩形ABCD 的边BC 上的一点 且AE AD =.(1)尺规作图(请用2B 铅笔):作DAE ∠的平分线AF 交BC 的延长线于点F 连接DF .(保留作图痕迹 不写作法)(2)试判断四边形AEFD 的形状 并说明理由.21.(2023·吉林长春·统考中考真题)将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A E B D 依次在同一直线上 连结AF CD .(1)求证:四边形AFDC 是平行四边形(2)己知6cm BC 当四边形AFDC 是菱形时.AD 的长为__________cm .22.(2023·湖南张家界·统考中考真题)如图,已知点A D C B 在同一条直线上 且AD BC = AE BF ==.CE DF(1)求证:AE BF∥=时求证:四边形DECF是菱形.(2)若DF FC23.(2023·湖南郴州·统考中考真题)如图,四边形ABCD是平行四边形.(1)尺规作图作对角线AC的垂直平分线MN(保留作图痕迹)(2)若直线MN分别交AD BC于E F两点求证:四边形AFCE是菱形AC BD交于点O分别以点,B C为圆心24.(2023·湖北十堰·统考中考真题)如图,ABCD的对角线,11,22AC BD 长为半径画弧 两弧交于点P 连接,BP CP .(1)试判断四边形BPCO 的形状 并说明理由(2)请说明当ABCD 的对角线满足什么条件时 四边形BPCO 是正方形?25.(2023·四川内江·统考中考真题)如图,在ABC 中 D 是BC 的中点 E 是AD 的中点 过点A 作AF BC ∥交CE 的延长线于点F .(1)求证:AF BD =(2)连接BF 若AB AC = 求证:四边形ADBF 是矩形.26.(2023·湖南岳阳·统考中考真题)如图,点M 在ABCD 的边AD 上 BM CM = 请从以下三个选项中①12∠=∠ ①AM DM = ①34∠∠= 选择一个合适的选项作为已知条件 使ABCD 为矩形.(1)你添加的条件是_________(填序号)(2)添加条件后 请证明ABCD 为矩形.27.(2023·四川乐山·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 点D 为AB 边上任意一点(不与点A B 重合) 过点D 作DE BC ∥ DF AC ∥ 分别交AC BC 于点E F 连接EF .(1)求证:四边形ECFD 是矩形(2)若24CF CE ==, 求点C 到EF 的距离.28.(2023·浙江台州·统考中考真题)如图,四边形ABCD 中 AD BC ∥ A C ∠=∠ BD 为对角线.(1)证明:四边形ABCD 是平行四边形.(2)已知AD AB > 请用无刻度的直尺和圆规作菱形BEDF 顶点E F 分别在边BC AD 上(保留作图痕迹 不要求写作法).三 填空题29.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD 中 AD BC = AC BD ⊥于点O .请添加一个条件:______ 使四边形ABCD 成为菱形.30.(2023·辽宁大连·统考中考真题)如图,在菱形ABCD 中 AC BD 、为菱形的对角线60,10DBC BD ︒∠== 点F 为BC 中点,则EF 的长为_______________.31.(2023·福建·统考中考真题)如图,在菱形ABCD 中 1060AB B ︒=∠=,,则AC 的长为___________.32.(2023·浙江绍兴·统考中考真题)如图,在菱形ABCD 中 40DAB ∠=︒ 连接AC 以点A 为圆心 AC 长为半径作弧 交直线AD 于点E 连接CE ,则AEC ∠的度数是________.33.(2023·甘肃武威·统考中考真题)如图,菱形ABCD 中 60DAB ∠=︒ BE AB ⊥ DF CD ⊥ 垂足分别为B D 若6cm AB =,则EF =________cm .34.(2023·山东聊城·统考中考真题)如图,在ABCD 中 BC 的垂直平分线EO 交AD 于点E 交BC 于点O 连接BE CE 过点C 作CF BE ∥ 交EO 的延长线于点F 连接BF .若8AD = 5CE =,则四边形BFCE 的面积为______..35.(2023·湖北十堰·统考中考真题)如图,在菱形ABCD 中 点E F G H 分别是AB BC CD AD 上的点 且BE BF CG AH === 若菱形的面积等于24 8BD =,则EF GH +=___________________.36.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一 最早是由三国时期数学家刘徽创建.“将一个几何图形 任意切成多块小图形 几何图形的总面积保持不变 等于所分割成的小图形的面积之和”是该原理的重要内容之一 如图,在矩形ABCD 中 5AB = 12AD = 对角线AC 与BD 交于点O 点E 为BC 边上的一个动点 EF AC ⊥ EG BD ⊥ 垂足分别为点F G ,则EF EG +=___________.37.(2023·山东滨州·统考中考真题)如图,矩形ABCD 的对角线,AC BD 相交于点O 点,E F 分别是线段,OB OA 上的点.若,5,1,3AE BF AB AF BE ====,则BF 的长为___________.38.(2023·山东枣庄·统考中考真题)如图,在正方形ABCD 中 对角线AC 与BD 相交于点O E 为BC 上一点 7CE = F 为DE 的中点 若CEF △的周长为32,则OF 的长为___________.39.(2023·浙江台州·统考中考真题)如图,矩形ABCD 中 4AB = 6AD =.在边AD 上取一点E 使BE BC = 过点C 作CF BE ⊥ 垂足为点F ,则BF 的长为________.参考答案一 单选题1.(2023·湖南·统考中考真题)如图,菱形ABCD 中 连接AC BD , 若120∠=︒,则2∠的度数为( )A .20︒B .60︒C .70︒D .80︒【答案】C 【分析】根据菱形的性质可得,BD AC AB CD ⊥∥,则1,290ACD ACD ∠=∠∠+∠=︒ 进而即可求解.【详解】解:①四边形ABCD 是菱形①,BD AC AB CD ⊥∥①1,290ACD ACD ∠=∠∠+∠=︒①120∠=︒①2902070∠=︒-︒=︒,故选:C .【点睛】本题考查了菱形的性质 熟练掌握是菱形的性质解题的关键.2.(2023·湖南常德·统考中考真题)如图1 在正方形ABCD 中 对角线AC BD 、相交于点O E F 分别为AO DO 上的一点 且EF AD ∥ 连接,AF DE .若15FAC ∠=︒,则AED ∠的度数为( )A .80︒B .90︒C .105︒D .115︒【答案】C 【分析】首先根据正方形的性质得到45OAD ODA ∠=∠=︒ AO DO = 然后结合EF AD ∥得到OE OF = 然后证明出()SAS AOF DOE △≌△ 最后利用三角形内角和定理求解即可.【详解】①四边形ABCD 是正方形①45OAD ODA ∠=∠=︒ AO DO =①EF AD ∥①45OEF OAD ∠=∠=︒ 45OFE ODA ∠=∠=︒①OEF OFE ∠=∠①OE OF =又①90AOF DOE ∠=∠=︒ AO DO =①()SAS AOF DOE △≌△①15ODE FAC ∠=∠=︒①30ADE ODA ODE ∠=∠-∠=︒①180105AED OAD ADE ∠=︒-∠-∠=︒故选:C .【点睛】此题考查了正方形的性质 全等三角形的性质和判定 等腰直角三角形三角形的性质等知识 解题的关键是熟练掌握以上知识点.3.(2023·湖南常德·统考中考真题)下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形【答案】A【分析】根据正方形 平行四边形 矩形 菱形的各自性质和构成条件进行判断即可.【详解】A 正方形的对角线相等且互相垂直平分 描述正确B 对角互补的四边形不一定是平行四边形 只是内接于圆 描述错误C 矩形的对角线不一定垂直 但相等 描述错误D 一组邻边相等的平行四边形才构成菱形 描述错误.故选:A .【点睛】本题考查平行四边形 矩形 菱形 正方形的性质和判定 解题的关键是熟悉掌握各类特殊四边形的判定和性质.4.(2023·浙江·统考中考真题)如图,在菱形ABCD 中 160AB DAB =∠=︒,,则AC 的长为( )A .12B .1C 3D 3【答案】D 【分析】连接BD 与AC 交于O .先证明ABD △是等边三角形 由AC BD ⊥ 得到1302OAB BAD ∠=∠=︒ 90AOB ∠=︒ 即可得到1122OB AB == 利用勾股定理求出AO 的长度 即可求得AC 的长度.【详解】解:连接BD 与AC 交于O .①四边形ABCD 是菱形①AB CD ∥ AB AD = AC BD ⊥ 12AO OC AC ==①60DAB ∠=︒ 且AB AD =①ABD △是等边三角形①AC BD ⊥ ①1302OAB BAD ∠=∠=︒ 90AOB ∠=︒ ①1122OB AB == ①2222111322AO AB OB ⎛⎫-= ⎪⎭=-⎝ ①23AC AO ==故选:D .【点睛】此题主要考查了菱形的性质 勾股定理 等边三角形的判定和性质 30︒角所对直角边等于斜边的一半 关键是熟练掌握菱形的性质.5.(2023·上海·统考中考真题)在四边形ABCD 中 ,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( )A .AB CD B .AD BC = C .A B ∠=∠D .A D ∠=∠【答案】C【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A :AB CD ,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故A 不符合题意B :AD BC = ,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故B 不符合题意C :AD BC ∥180A B ∴∠+∠=︒A B ∠=∠∴90A B ∠=∠=︒AB CD =∴ABCD 为矩形故C 符合题意D :AD BC ∥180A B ∴∠+∠=︒A D ∠=∠180D B ∴∠+∠=︒∴ABCD 不是平行四边形也不是矩形故D 不符合题意故选:C .【点睛】本题主要考查平行线的性质 平行四边形的判定和性质及矩形的判定等知识 熟练掌握以上知识并灵活运用是解题的关键.6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE 连结,AE AD 设AED △ ABE ACD 的面积分别为12,,S S S 若要求出12S S S --的值 只需知道( )A .ABE 的面积B .ACD 的面积C .ABC 的面积D .矩形BCDE 的面积【答案】C【分析】过点A 作FG BC ∥ 交EB 的延长线于点F DC 的延长线于点G 易得:,,FG BC AF BE AG CD =⊥⊥ 利用矩形的性质和三角形的面积公式 可得1212BCDES S S +=矩形 再根据1212ABC ABC BCDE BCDE S S S S S S S -=+-=+矩形矩形 得到12ABC S S S S -=- 即可得出结论.【详解】解:过点A 作FG BC ∥ 交EB 的延长线于点F DC 的延长线于点G①矩形BCDE①,,BC BE BC CD BE CD ⊥⊥=①,FG BE FG CD ⊥⊥①四边形BFGC 为矩形①,,FG BC AF BE AG CD =⊥⊥①1211,22S BE AF S CD AG =⋅=⋅①()12111222BCDE BE AF AG BE B S C S S =+=⋅=+矩形又1212ABC ABC BCDE BCDE S S S S S S S -=+-=+矩形矩形①121122ABC ABC BCDE BCDE S S S S S S S =+---=矩形矩形 ①只需要知道ABC 的面积即可求出12S S S --的值故选C .【点睛】本题考查矩形的性质 求三角形的面积.解题的关键是得到1212BCDES S S +=矩形 7.(2023·湖南·统考中考真题)如图所示 在矩形ABCD 中 AB AD > AC 与BD 相交于点O 下列说法正确的是( )A .点O 为矩形ABCD 的对称中心B .点O 为线段AB 的对称中心C .直线BD 为矩形ABCD 的对称轴D .直线AC 为线段BD 的对称轴【答案】A 【分析】由矩形ABCD 是中心对称图形 对称中心是对角线的交点 线段AB 的对称中心是线段AB 的中点 矩形ABCD 是轴对称图形 对称轴是过一组对边中点的直线 从而可得答案.【详解】解:矩形ABCD 是中心对称图形 对称中心是对角线的交点 故A 符合题意线段AB 的对称中心是线段AB 的中点 故B 不符合题意矩形ABCD 是轴对称图形 对称轴是过一组对边中点的直线故C D 不符合题意故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义 矩形的性质 熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8.(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD 中 M 为对角线BD 上的一点 连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A .()331B .()3332C .)631D .()6332 【答案】C【分析】先根据正方形的性质 三角形全等的判定证出ADM CDM ≅ 根据全等三角形的性质可得DAM DCM ∠=∠ 再根据等腰三角形的性质可得CMP DCM ∠=∠ 从而可得30DAM ∠=︒ 然后利用勾股定理 含30度角的直角三角形的性质求解即可得. 【详解】解:四边形ABCD 是边长为6的正方形6,90,45AD CD ADC ADM CDM ∴==∠=︒∠=∠=︒在ADM △和CDM 中 45DM DM ADM CDM AD CD =⎧⎪∠=∠=︒⎨⎪=⎩()SAS ADM CDM ∴≅DAM DCM ∴∠=∠PM PC =CMP DCM ∴∠=∠22APD CMP DCM DCM DAM ∴∠=∠+∠=∠=∠又18090APD DAM ADC ∠+∠=︒-∠=︒30DAM ∴∠=︒设PD x =,则22AP PD x == 6PM PC CD PD x ==-=-2236AD AP PD x ∴=-= 解得3x =663PM x ∴=-=- 243AP x ==(()43623631AM AP PM ∴=-=-= 故选:C .【点睛】本题考查了正方形的性质 勾股定理 含30度角的直角三角形的性质 等腰三角形的性质等知识点 熟练掌握正方形的性质是解题关键.9.(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O E 为边BC 的中点 连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .4【答案】B 【分析】先由菱形的性质得AC BD ⊥ 116322OC AC ==⨯= 118422OB BD ==⨯= 再由勾股定理求出5BC = 然后由直角 三角形斜边的中线等于斜边的一半求解.【详解】解:①菱形ABCD①AC BD ⊥ 116322OC AC ==⨯= 118422OB BD === ①由勾股定理 得225BC OB OC =+=①E 为边BC 的中点 ①1155222OE BC ==⨯= 故选:B .【点睛】本考查菱形的性质 勾股定理 直角三角形的性质 熟练掌握菱形的性质 直角三角形的性质是解题的关键.10.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH .若2AB = 4BC =,则四边形EFGH 的面积为( )A .2B .4C .5D .6【答案】B 【分析】由题意可得四边形EFGH 是菱形 2FH AB == 4GE BC == 由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:①将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH①EF GH ⊥ EF 与GH 互相平分①四边形EFGH 是菱形①2FH AB == 4GE BC ==①菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=. 故选:B【点睛】此题考查了矩形的折叠 菱形的判定和性质等知识 熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.11.(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD 中 O 为对角线BD 的中点 60ABD ∠=︒.动点E 在线段OB 上 动点F 在线段OD 上 点,E F 同时从点O 出发 分别向终点,B D 运动 且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E 点F 关于,BC CD 的对称点为12,F F .在整个过程中 四边形1212E E F F 形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意 分别证明四边形1212E E F F 是菱形 平行四边形 矩形 即可求解.【详解】①四边形ABCD 是矩形①AB CD ∥ 90BAD ABC ∠=∠=︒①60BDC ABD ∠=∠=︒ 906030ADB CBD ∠=∠=︒-︒=︒①OE OF = OB OD =①DF EB =①对称①21DF DF BF BF ==, 21,BE BE DE DE ==①1221E F E F =①对称①260F DC CDF ∠=∠=︒ 130EDA E DA ∠=∠=︒①160E DB ∠=︒同理160F BD ∠=︒①11DE BF ∥①1221E F E F ∥①四边形1212E E F F 是平行四边形如图所示当,,E F O 三点重合时 DO BO =①1212DE DF AE AE ===即1212E E E F =①四边形1212E E F F 是菱形如图所示 当,E F 分别为,OD OB 的中点时设4DB =,则21DF DF == 13DE DE ==在Rt △ABD 中 2,23AB AD ==连接AE AO①602ABO BO AB ∠=︒==,①ABO 是等边三角形①E 为OB 中点①AE OB ⊥ 1BE = ①22213AE - 根据对称性可得13AE AE =①2221112,9,3AD DE AE ===①22211AD AE DE =+①1DE A 是直角三角形 且190E ∠=︒①四边形1212E E F F 是矩形当,F E 分别与,D B 重合时 11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形①在整个过程中 四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形 故选:A .【点睛】本题考查了菱形的性质与判定 平行四边形的性质与判定 矩形的性质与判定 勾股定理与勾股定理的逆定理 轴对称的性质 含30度角的直角三角形的性质 熟练掌握以上知识是解题的关键. 12.(2023·重庆·统考中考真题)如图,在正方形ABCD 中 O 为对角线AC 的中点 E 为正方形内一点 连接BE BE BA = 连接CE 并延长 与ABE ∠的平分线交于点F 连接OF 若2AB =,则OF 的长度为( )A .2B 3C .1D 2【答案】D 【分析】连接AF 根据正方形ABCD 得到AB BC BE == 90ABC ∠=︒ 根据角平分线的性质和等腰三角形的性质 求得45BFE ∠=︒ 再证明ABF EBF ≌ 求得90AFC ∠=︒ 最后根据直角三角形斜边上的中点等于斜边的一半 即可求出OF 的长度.【详解】解:如图,连接AF四边形ABCD 是正方形AB BE BC ∴== 90ABC ∠=︒ 222AC ==BEC BCE ∴∠=∠1802EBC BEC ∴∠=︒-∠290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒ BF 平分ABE ∠1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒45BFE BEC EBF ∴∠=∠-∠=︒在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩()SAS BAF BEF ∴△≌△45BFE BFA ∴∠=∠=︒90AFC BAF BFE ∴∠=∠+∠=︒O 为对角线AC 的中点122OF AC ∴= 故选:D .【点睛】本题考查了等腰三角形的判定和性质 三角形内角和定理 正方形的性质 直角三角形特征 作出正确的辅助线 求得45BFE ∠=︒是解题的关键.二 解答题13.(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中 过对角线BD 的中点O 作BD 的垂线EF 分别交AD BC 于点E F .(1)证明:BOF DOE ≌△△(2)连接BE DF 证明:四边形EBFD 是菱形.【答案】(1)见解析 (2)见解析【分析】(1)根据矩形的性质得出AD BC ∥,则12,34∠=∠∠=∠ 根据O 是BD 的中点 可得BO DO = 即可证明()AAS BOF DOE ≌△△(2)根据BOF DOE ≌△△可得ED BF = 进而可得四边形EBFD 是平行四边形 根据对角线互相垂直的四边形是菱形 即可得证.【详解】(1)证明:如图所示①四边形ABCD 是矩形①AD BC ∥①12,34∠=∠∠=∠①O 是BD 的中点①BO DO =在BOF 与DOE 中1234BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BOF DOE ≌△△(2)①BOF DOE ≌△△①ED BF =又①ED BF ∥①四边形EBFD 是平行四边形①EF BD ⊥①四边形EBFD 是菱形.【点睛】本题考查了矩形的性质 全等三角形的性质与判定 菱形的判定 熟练掌握特殊四边形的性质与判定是解题的关键.14.(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC BD 相交于点O ,DE AC CE BD .(1)求证:四边形OCED 是菱形(2)若32BC DC ==, 求四边形OCED 的面积.【答案】(1)见解析 (2)3【分析】(1)先根据矩形的性质求得OC OD = 然后根据有一组邻边相等的平行四边形是菱形分析推理 (2)根据矩形的性质求得OCD 的面积 然后结合菱形的性质求解.【详解】(1)解:①DE AC CE BD ∥,∥ ①四边形OCED 是平行四边形又①矩形ABCD 中 OC OD =①平行四边形OCED 是菱形(2)解:矩形ABCD 的面积为326BC DC ⋅=⨯=①OCD 的面积为13642⨯= ①菱形OCED 的面积为3232⨯=. 【点睛】本题考查矩形的性质 菱形的判定 属于中考基础题 掌握矩形的性质和菱形的判定方法 正确推理论证是解题关键.15.(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形 其对角线相交于点O 3,8,5OA BD AB ===.(1)AOB 是直角三角形吗?请说明理由(2)求证:四边形ABCD 是菱形.【答案】(1)AOB 是直角三角形 理由见解析.(2)见解析【分析】(1)根据平行四边形对角线互相平分可得142BO BD == 再根据勾股定理的逆定理 即可得出结论(2)根据对角线互相垂直的平行四边形是菱形 即可求证.【详解】(1)解:AOB 是直角三角形 理由如下:①四边形ABCD 是平行四边形 ①142BO BD ==①222222345OA OB AB +=+==①AOB 是直角三角形.(2)证明:由(1)可得:AOB 是直角三角形①90AOB ∠=︒即AC BD ⊥①四边形ABCD 是平行四边形①四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质 勾股定理的逆定理 菱形的判定 解题的关键是掌握平行四边形对角线互相平分 对角线互相垂直的平行四边形是菱形.16.(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O 90ABO DCO ∠=∠=︒ OB OC =.点E F 分别是AO DO 的中点.(1)求证:OE OF =(2)当30A ∠=︒时 求证:四边形BECF 是矩形.【答案】(1)见解析 (2)见解析【分析】(1)直接证明()ASA AOB DOC ≌△△ 得出OA OD = 根据E F 分别是AO DO 的中点 即可得证(2)证明四边形BECF 是平行四边形 进而根据30A ∠=︒ 推导出BOE △是等边三角形 进而可得BC EF = 即可证明四边形BECF 是矩形.【详解】(1)证明:在AOB 与DOC △中90ABO DCO OB OCAOB DOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩①()ASA AOB DOC ≌△△①OA OD =又①E F 分别是AO DO 的中点①OE OF =(2)①OB OC OF OE ==,①四边形BECF 是平行四边形 22BC OB EF OE ==,①E 为AO 的中点 90∠=︒ABO①EB EO EA ==①30A ∠=︒①60BOE ∠=︒①BOE △是等边三角形①OB OE =①BC EF =①四边形BECF 是矩形.【点睛】本题考查了全等三角形的性质与判定 等边三角形的性质与判定 矩形判定 熟练掌握以上知识是解题的关键.17.(2023·云南·统考中考真题)如图,平行四边形ABCD 中 AE CF 、分别是BAD BCD ∠∠、的平分线 且E F 、分别在边BC AD 、上 AE AF =.(1)求证:四边形AECF 是菱形(2)若60ABC ∠=︒ ABE 的面积等于3 求平行线AB 与DC 间的距离.【答案】(1)证明见解析 (2)3【分析】(1)先证AD BC ∥ 再证AE FC 从而四边形AECF 是平行四边形 又AE AF = 于是四边形AECF 是菱形(2)连接AC 先求得60BAE DAE ABC ∠∠∠===︒ 再证AC AB ⊥9030ACB ABC EAC ∠∠∠=︒-=︒= 3AB AC= 得3AB AC = 再证AE BE CE == 从而根据面积公式即可求得AC =43 【详解】(1)证明:①四边形ABCD 是平行四边形①AD BC ∥ BAD BCD ∠∠=①BEA DAE ∠∠=①AE CF 、分别是BAD BCD ∠∠、的平分线①BAE DAE ∠∠==12BAD ∠ BCF ∠=12BCD ∠①DAE BCF BEA ∠∠∠==①AE FC①四边形AECF 是平行四边形①AE AF =①四边形AECF 是菱形(2)解:连接AC①AD BC ∥ 60ABC ∠=︒①180120BAD ABC ∠∠=︒-=︒①60BAE DAE ABC ∠∠∠===︒①四边形AECF 是菱形①EAC ∠=1230DAE ∠=︒①90BAC BAE EAC ∠∠∠=+=︒①AC AB ⊥ 9030ACB ABC EAC ∠∠∠=︒-=︒=①AE CE = tan 30tan AB ACB AC ︒=∠=3AB AC= ①3AB AC = ①BAE ABC ∠∠=①AE BE CE ==①ABE 的面积等于43 ①211338322ABC S AC AB AC AC AC =⋅=== ①平行线AB 与DC 间的距离AC =43【点睛】本题考查了平行四边形的判定及性质 菱形的判定 角平分线的定义 等腰三角形的判定 三角函数的应用以及平行线间的距离 熟练掌握平行四边形的判定及性质 菱形的判定 角平分线的定义 等腰三角形的判定 三角函数的应用以及平行线间的距离等知识是解题的关键.18.(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中 AD BC ∥ 点O 为对角线BD 的中点 过点O 的直线l 分别与AD BC 所在的直线相交于点E F .(点E 不与点D 重合)(1)求证:DOE BOF ≌(2)当直线l BD ⊥时 连接BE DF 试判断四边形EBFD 的形状 并说明理由.【答案】(1)见解析 (2)四边形EBFD 为菱形 理由见解析【分析】(1)根据AAS 证明DOE BOF ≌即可(2)连接EB FD 根据DOE BOF ≌ 得出ED BF = 根据ED BF ∥ 证明四边形EBFD 为平行四边形 根据EF BD ⊥ 证明四边形EBFD 为菱形即可.【详解】(1)证明:①点O 为对角线BD 的中点①BO DO =①AD BC ∥①ODE OBF ∠=∠ OED OFB ∠=∠在DOE 和BOF 中ODE OBF OED OFB BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS DOE BOF ≌(2)解:四边形EBFD 为菱形 理由如下:连接EB FD 如图所示:根据解析(1)可知 DOE BOF ≌①ED BF =①ED BF ∥①四边形EBFD 为平行四边形①l BD ⊥ 即EF BD ⊥①四边形EBFD 为菱形.【点睛】本题主要考查了三角形全等的判定和性质 菱形的判定 平行线的性质 解题的关键是熟练掌握三角形全等的判定方法和菱形的判定方法.19.(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中 AE BC ⊥于点E AF CD ⊥于点F 连接EF(1)求证:AE AF =(2)若=60B ∠︒ 求AEF ∠的度数.【答案】(1)证明见解析 (2)60︒【分析】(1)根据菱形的性质的三角形全等即可证明AE AF =.(2)根据菱形的性质和已知条件可推出BAD ∠度数 再根据第一问的三角形全等和直角三角形的性质可求出BAE ∠和DAF ∠度数 从而求出EAF ∠度数 证明了等边三角形AEF 即可求出AEF ∠的度数.【详解】(1)证明:菱形ABCD,AB AD B D ∴=∠=∠又,AE BC AF CD ⊥⊥90AEB AFD ∴∠=∠=︒.在AEB △和AFD △中AEB AFD B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABE ADF ∴≌.AE AF ∴=.(2)解:菱形ABCD180B BAD ∴∠+∠=︒=60B ∠︒120BAD ∴∠=︒.又90,60AEB B ∠=︒∠=︒30BAE =∴∠︒.由(1)知ABE ADF ≌30BAE DAF ∴∠=∠=︒.120303060EAF ∴∠=︒-︒-︒=︒. =AE AFAEF ∴等边三角形.60AEF ∴∠=︒.【点睛】本题考查了三角形全等 菱形的性质 等边三角形的性质 解题的关键在于熟练掌握全等的方法和菱形的性质.20.(2023·湖北鄂州·统考中考真题)如图,点E 是矩形ABCD 的边BC 上的一点 且AE AD =.(1)尺规作图(请用2B 铅笔):作DAE ∠的平分线AF 交BC 的延长线于点F 连接DF .(保留作图痕迹 不写作法)(2)试判断四边形AEFD 的形状 并说明理由.【答案】(1)见解析 (2)四边形AEFD 是菱形 理由见解析【分析】(1)根据题意结合尺规作角平分线的方法作图即可(2)根据矩形的性质和平行线的性质得出DAF AFE ∠=∠ 结合角平分线的定义可得EFA EAF ∠=∠,则AE EF = 然后根据平行四边形和菱形的判定定理得出结论.【详解】(1)解:如图所示:(2)四边形AEFD 是菱形理由:①矩形ABCD 中 AD BC ∥①DAF AFE ∠=∠①AF 平分DAE ∠①DAF EAF ∠=∠①EFA EAF ∠=∠①AE EF =①AE AD =①AD EF =①AD EF ∥①四边形AEFD 是平行四边形又①AE AD =①平行四边形AEFD 是菱形.【点睛】本题主要考查了尺规作角平分线 矩形的性质 平行线的性质 等腰三角形的判定 平行四边形的判定以及菱形的判定等知识 熟练掌握相关判定定理和性质定理是解题的关键.21.(2023·吉林长春·统考中考真题)将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A E B D 依次在同一直线上 连结AF CD .(1)求证:四边形AFDC 是平行四边形(2)己知6cm BC 当四边形AFDC 是菱形时.AD 的长为__________cm .【答案】(1)见解析 (2)18【分析】(1)由题意可知ACB DFE △≌△易得AC DF = 30CAB FDE ∠=∠=︒即AC DF ∥ 依据一组对边平行且相等的四边形是平行四边形可证明(2)如图,在Rt ACB △中 由30︒角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC == 60ABC ∠=︒ 由菱形得对角线平分对角得30CDA FDA ∠=∠=︒ 再由三角形外角和易证BCD CDA ∠=∠即可得6cm BC BD 最后由AD AB BD =+求解即可.【详解】(1)证明:由题意可知ACB DFE △≌△AC DF =∴ 30CAB FDE ∠=∠=︒AC DF ∥∴四边形AFDC 地平行四边形(2)如图,在Rt ACB △中 90ACB ∠=︒ 30CAB ∠=︒ 6cm BC212cm AB BC ∴== 60ABC ∠=︒四边形AFDC 是菱形AD ∴平分CDF ∠30CDA FDA ∴∠=∠=︒ABC CDA BCD ∠=∠+∠603030BCD ABC CDA ∴∠=∠-∠=︒-︒=︒BCD CDA ∴∠=∠6cm BC BD ∴==18cm AD AB BD ∴=+=故答案为:18.【点睛】本题考查了全等三角形的性质 平行四边形的判定 菱形的性质 30︒角所对的直角边等于斜边的一半和直角三角形锐角互余 三角形外角及等角对等边 解题的关键是熟练掌握相关知识综合求解. 22.(2023·湖南张家界·统考中考真题)如图,已知点A D C B 在同一条直线上 且AD BC = AE BF = CE DF =.。
中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)
第19讲矩形、菱形和正方形考纲要求命题趋势1.掌握平行四边形与矩形、菱形、正方形之间的关系.2.掌握矩形、菱形、正方形的概念、判定和性质.3.灵活运用特殊平行四边形的判定与性质进行有关的计算和证明.特殊的平行四边形是中考的重点内容之一,常以选择题、填空题、计算题、证明题的形式出现,也常与折叠、平移和旋转问题相结合,出现在探索性、开放性的题目中.知识梳理一、矩形的性质与判定1.定义有一个角是直角的____________是矩形.2.性质(1)矩形的四个角都是________.(2)矩形的对角线________.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是__________.3.判定(1)有三个角是________的四边形是矩形.(2)对角线________的平行四边形是矩形.二、菱形的性质与判定1.定义一组邻边相等的__________叫做菱形.2.性质(1)菱形的四条边都________.(2)菱形的对角线__________,并且每一条对角线平分一组对角.3.判定(1)对角线互相垂直的________是菱形.(2)四条边都相等的________是菱形.三、正方形的性质与判定1.定义一组邻边相等的________叫做正方形.2.性质(1)正方形的四条边都________,四个角都是______.(2)正方形的对角线______,且互相________;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.判定(1)一组邻边相等并且有一个角是直角的__________是正方形.(2)一组邻边相等的________是正方形.(3)对角线互相垂直的________是正方形.(4)有一个角是直角的________是正方形.(5)对角线相等的________是正方形.自主测试1.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=5,则AD 的长是( )A .52B .5 3C .5D .102.在菱形ABCD 中,AB =5 cm ,则此菱形的周长为( ) A .5 cm B .15 cm C .20 cm D .25 cm3.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .C .32D .24.下列命题中是真命题的是( )A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形5.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF .考点一、矩形的性质与判定【例1】如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE ,AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.分析:判定一个四边形是矩形,可以先判定四边形是平行四边形,再找一个内角是直角或说明对角线相等.解:当点O 运动到AC 的中点(或OA =OC )时, 四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又OA=OC,∴四边形AECF是平行四边形.又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,即∠ECF=90°.∴四边形AECF是矩形.方法总结矩形的定义既可以作为性质,也可以作为判定.矩形的性质是求证线段或角相等时常用的知识点.证明一个四边形是矩形的方法:(1)先证明它是平行四边形,再证明它有一个角是直角;(2)先证明它是平行四边形,再证明它的对角线相等;(3)证明有三个内角为90°.触类旁通1 如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD 于点F,连接AE.求证:(1)BF=DF;(2)AE∥BD.考点二、菱形的性质与判定【例2】如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为83,求AC的长.分析:(1)先证明四边形OCED是平行四边形,然后证明它的一组邻边相等;(2)因为△DOC是等边三角形,根据菱形的面积计算公式可以求菱形的边长,从而求出AC的长.解:(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形.(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.,在Rt△DFC中,tan 60°=DFFC∴DF=FC·tan 60°=3x.由已知菱形OCED的面积为83得OC·DF=83,即2x·3x=8 3.解得x=2.∴AC=4×2=8.方法总结菱形的定义既可作为性质,也可作为判定.证明一个四边形是菱形的一般方法:(1)四边相等;(2)首先证明是平行四边形,然后证明有一组邻边相等;(3)对角线互相垂直平分;(4)对角线垂直的平行四边形.触类旁通2 如图,在ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E和点F,求证:四边形BEDF是菱形.考点三、正方形的性质与判定【例3】如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为__________cm2.分析:根据题目的条件可先证△AEH,△BFE,△CGF,△DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EF=FG=GH=HE.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2)1方法总结证明一个四边形是正方形可从以下几个方面考虑:(1)“平行四边形”+“一组邻边相等”+“一个角为直角”(定义法);(2)“矩形”+“一组邻边相等”;(3)“矩形”+“对角线互相垂直”;(4)“菱形”+“一个角为直角”;(5)“菱形”+“对角线-相等”.1.(四川成都)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.(山东滨州)若菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为()A.3:1 B.4:1 C.5:1 D.6:13.(江苏泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有() A.1个 B.2个 C.3个 D.4个4.(江苏苏州)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4B.6C.8D.105.(贵州铜仁)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是__________.6.(山东临沂)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补2.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD3.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.∠D=90° B.AB=CD C.AD=BC D.BC=CD4.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4 3 B.3 3C.4 2 D.85.如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5千米,村庄C到公路l1的距离为4千米,则村庄C到公路l2的距离是()(第5题图)A.3千米 B.4千米 C.5千米 D.6千米6.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是__________.(第6题图)7.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD面积的__________.(第7题图)8.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别是AB,BC边上的中点,MP+NP的最小值是__________.(第8题图)9.如图(1)所示,在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,如图(2)所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案导学必备知识自主测试1.B2.C3.C∵设AG=A′G=x,∴x2+22=(4-x)2,解得x=32,故选C.4.C5.证明:如题图,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°.∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°.∴∠EAB=∠FBC.∴△ABE≌△BCF.∴BE=CF.探究考点方法触类旁通1.证明:(1)在矩形ABCD中,AD∥BC,AD=BC,∴∠1=∠2.∵∠2=∠3,∴∠1=∠3,∴BF=DF.(2)∵AD=BC=BE,BF=DF,∴AF=EF,∴∠AEB=∠EAF.∵∠AFE=∠BFD,∠1=∠3,∴∠AEB=∠3,∴AE∥BD.触类旁通2.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∵EF⊥BD,∴四边形BEDF是菱形.品鉴经典考题1.B因为菱形的对边平行且相等,所以A正确;对角线互相平分且垂直,但不一定相等,所以C,D正确,B错误.2.C根据已知可得到菱形的边长为2 cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.3.B①一组对边平行且一组对角相等的四边形是平行四边形是真命题;②对角线互相垂直且相等的四边形是正方形是假命题;③顺次连接矩形四边中点得到的四边形是菱形是真命题;④正五边形既是轴对称图形又是中心对称图形是假命题.故选B.4.C∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为4OC=4×2=8.故选C. 5.2 如图:∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD .∵AO ⊥OB ,∴∠AOB =90°,∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°,∴∠COA =∠DOB .∵在△COA 和△DOB 中,有⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠DOB ,∴△COA ≌△DOB ,∴OA =OB .∵∠AOB =90°,∴△AOB 是等腰直角三角形, 由勾股定理得:AB =OA 2+OB 2=2OA ,要使AB 最小,只需OA 取最小值即可.根据垂线段最短,OA ⊥CD 时,O A 最小.此时OA =12CF =1,即AB = 2.6.解:(1)证明:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF . 又∵∠A =∠D ,AB =DE ,∴△ABC ≌△DEF . ∴BC =EF ,∠ACB =∠DFE .∴BC ∥EF .∴四边形BCEF 是平行四边形.(2)若四边形BCEF 是菱形,连接BE ,交CF 于点G ,∴BE ⊥CF ,FG =CG .∵∠ABC =90°,AB =4,BC =3, ∴AC =AB 2+BC 2 =42+32=5.∵∠BGC =∠ABC =90°,∠ACB =∠BCG , ∴△ABC ∽△BGC .∴BC AC =CG BC ,即35=CG 3.∴CG =95.∴FC =2CG =185. ∴AF =AC -FC =5-185=75.因此,当AF =75时,四边形BCEF 是菱形.研习预测试题1.A 2.B 3.D4.A ∵点E 是CD 的中点,∴DE =CE =12CD =3.∵四边形ABCD 是矩形,∴AB =CD =6. 由折叠性质可知,AE =AB =6,BF =EF , 在Rt △ADE 中,AD =AE 2-DE 2=33,∴BC =3 3.设CF =x ,BF =EF =33-x , 在Rt △CEF 中,(33-x )2=x 2+32, ∴x = 3.∴BF =2 3.在Rt △ABF 中,AF =4 3.5.B 6.22.5° 7.148.1 在DC 上找N 点关于AC 的对称点N ′,连接MN ′,则MN ′的长即为MP +NP 的最小值,此时MN ′=AD =1.9.分析:(1)证MD =MN ,可证它们所在的三角形全等,易知MN 在钝角△MBN 中,而MD 在直角△AMD 中,显然需添加辅助线构造全等三角形,由△MBN 的特征想到可在AD 上取AD 的中点F ,构造△MDF ≌△NMB ;(2)可参照第(1)题的方法.(1)证明:取AD 的中点F ,连接MF . ∵M 是AB 的中点,F 是AD 的中点,∴MB =AM =12AB ,DF =AF =12AD .∵AB =AD ,∴AF =AM =DF =MB ,∴∠1=45°, ∴∠DFM =135°.∵BN 平分∠CBE ,∴∠CBN =45°. ∴∠MBN =135°.∴∠MBN =∠DFM . ∵∠DMN =90°,∴∠NMB +∠DMA =90°. ∵∠A =90°,∴∠ADM +∠DMA =90°. ∴∠NMB =∠ADM .∴△DFM ≌△MBN .∴MD =MN . (2)解:结论MD =MN 仍成立.证明:在AD 上取点F ,使AF =AM ,连接MF .由(1)中证法可得:DF =BM ,∠DFM =∠MBN ,∠FDM =∠BMN ,∴△DFM≌△MBN,∴MD=MN.11 / 11。
中考数学专题复习课件(第23讲_矩形、菱形、正方形)
由 F 为 AB 的中点知,∠CFA=90° ,∴ CF∥EA. 在等边三角形 ABC 中,CF= AD. 在等边三角形 ADE 中,AD=EA,∴CF=EA. ∴四边形 AFCE 为平行四边形. 又∵∠CFA=90° ,∴四边形 AFCE 为矩形.
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
(1)(2010· 芜湖 )下列命题中是真命题的是( A.对角线互相垂直且相等的四边形是正方形 B.有两边和一角对应相等的两个三角形全等 C.两条对角线相等的平行四边形是矩形 D.两边相等的平行四边形是菱形
)
(2)(2009· 凉山 )如图,将矩形 ABCD 沿对角线 BD 折叠,
举 一 反 三
使 C 落在 C′处,BC′交 AD 于点 E,则下列结论不一定 成立的是( ... A. AD =BC′ B.∠EBD=∠EDB C.△ ABE∽△ CBD AE D.sin∠ ABE= ED
【点拨】本题综合考查等边三角形的性质和矩形的判定.
【解答】(1)在等边△ABC 中,∵点 D 是 BC 边的中点,∴∠DAC= 30° .又∵△ ADE 是 举 .∴∠CAE=∠DAE-∠DAC=60° -30° =30° . 一 等边三角形,∴∠DAE= 60° 反 (2)由(1)知,∠EAF=90° . 三
举 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)
第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。
2013年中考数学考前热点拨《矩形、菱形、正方形(一) 》
图22-4
解:(1)证明:∵四边形ABCD是菱形,∴AB=CB,∠A=∠C. ∵BE⊥AD、BF⊥CD,∴∠AEB=∠CFB=90° . ∠A=∠C, 在△ABE和△CBF中,AB=CB, , ∠AEB=∠CFB=90° ∴△ABE≌△CBF(AAS),∴BE=BF. (2)如图, ∵对角线AC=8,BD=6, ∴对角线的一半分别为4、3, ∴菱形的边长为 42+32 =5,菱形的面积= 1 24 5BE= ×8×6,解得BE= . 2 5
)
7.如图22-3,若要使平行四边形ABCD成为菱形,则需 要添加的条件是( C )
A.AB=CD C.AB=BC
图22-3 B.AD=BC D.AC=BD
8.如图22-4,四边形ABCD是菱形,BE⊥AD、BF⊥CD, 垂足分别为E、F. (1)求证:BE=BF; (2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.
(2)四边形AGBD是矩形.理由如下: ∵AD∥BC且AG∥DB, ∴四边形AGBD是平行四边形. 由(1)的证明知AD=DE=AE=BE, ∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°, 故∠ADB=90°. ∴平行四边形AGBD是矩形.
[方法归纳] 解决和平行四边形有关的计算和说理问题, 关键是根据图形的特点结合平行四边形的性质以及平行线的 有关性质进行分析.有的问题还需要将平行四边形问题转化 为特殊三角形的问题,借助勾股定理解决.
考点2
菱形
定义 对 称 性 定 理
邻边 有一组________ 相等的平行四边形是菱形 菱形是轴对称图形,两条对角线所在的直 线是它的对称轴 菱形是中心对称图形,它的对称中心是两 条对角线的交点 相等 (1)菱形的四条边________ 垂直 (2)菱形的两条对角线互相________ 平分, 一组对角 并且每条对角线平分____________
中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
【2014中考复习方案】(人教版)中考数学复习权威课件 :25 矩形、菱形、正方形(30张ppt,含13年试题)
图25-7
考点聚焦 归类探究 回归教材
第25课时┃ 矩形、菱形、正方形
解:(1)证明:设AF与BE交于点G,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°, ∴Rt△ADF中,∠FAD+∠AFD=90°.
考点聚焦 归类探究 回归教材
第25课时┃ 矩形、菱形、正方形
归 类 探 究
探究一 矩形的性质及判定的应用
命题角度: 1. 矩形的性质; 2. 矩形的判定. 例1 [2013· 白银 ]如图25-1,在△ABC中,D是BC边
上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.
考点2
菱形
菱形
有一组________相等的平行四边形是菱形 邻边 菱形是轴对称图形,两条对角线所在的直线是
定义
对称性 菱形的 性质 定理
它的对称轴
菱形是中心对称图形,它的对称中心是两条对 角线的交点 (1)菱形的四条边________; 相等 垂直 (2)菱形的两条对角线互相________平分,并且 一组对角 每条对角线平分___________
∵D为BC中点,∴DB∶BC=1∶2,
∴BE∶AB=1∶2,∴E为AB中点,即BE=AE. ∵CF=AE,∴CF=BE,∴CF=FB=BE=CE,
∴四边形BECF是菱形.
(2)如图,∵四边形BECF为正方形, ∴∠BEC=90°.又AE=CE,∴∠A=45°.
考点聚焦
归类探究
回归教材
第25课时┃ 矩形、菱形、正方形
多边形证明(复习讲义)(三角形、平行四边形、矩形、正方形、菱形)(解析)-中考数学重难点题型专题汇总
题型四--多边形证明(三角形、平行四边形、矩形、正方形、菱形)(复习讲义)【考点总结|典例分析】考点01三角形全等及性质一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形5.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).6.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.7.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.8.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.四、等边三角形(1)定义:三条边都相等的三角形是等边三角形.(2)性质:等边三角形的各角都相等,并且每一个角都等于60°.(3)判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.五、直角三角形与勾股定理9.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.10.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .2.如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E.求证:∠A =∠D .【答案】证明:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF ,∴△ABC≌△DEF(SAS),∴∠A =∠D .3.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.4.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.【答案】证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE =BC .5.(2022·浙江省杭州市)如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM 上,EF ⊥AC 于点F ,连接CM ,CE.已知∠A =50°,∠ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.【答案】(1)证明:∵∠ACB =90°,点M 为边AB 的中点,∴MC =MA =MB ,∴∠MCA =∠A ,∠MCB =∠B ,∵∠A =50°,∴∠MCA =50°,∠MCB =∠B =40°,∴∠EMC =∠MCB +∠B =80°,∵∠ACE =30°,∴∠MEC =∠A +∠ACE =50°,∴∠MEC =∠EMC ,∴CE =CM ;(2)解:∵AB =4,∴CE =CM =12AB =2,∵EF ⊥AC ,∠ACE =30°,∴FC =CE ⋅cos30°=3.6.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.7.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE.(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒ ,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒ ,60ACB ∠=︒∴,CE BC = ,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC = ,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠,在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒.三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.8.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出∠ADE ,再利用平行线的性质求出∠ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1) BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2) 65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.9.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.【答案】见解析【分析】由,⊥⊥DE AC DF AB 得出90DEC DFB ∠=∠=︒,由SAS 证明DEC DFB ≌,得出对应角相等即可.【详解】证明:∵,⊥⊥DE AC DF AB ,∴90DEC DFB ∠=∠=︒.在DEC 和DFB △中,,,,DE DF DEC DFB CE BF =⎧⎪∠=∠⎨⎪=⎩∴DEC DFB ≌,∴B C ∠=∠.【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.10.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.考点02相似六、相似三角形的判定及性质11.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.12.性质(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.13.判定(1)有两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.【方法技巧】判定三角形相似的几条思路:(1)条件中若有平行线,可采用相似三角形的判定(1);(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.七、相似多边形14.定义对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.15.性质(1)相似多边形的对应边成比例;(2)相似多边形的对应角相等;(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.八、位似图形16.定义如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.27.性质(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或–k ;(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.18.找位似中心的方法将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.19.画位似图形的步骤(1)确定位似中心;(2)确定原图形的关键点;(3)确定位似比,即要将图形放大或缩小的倍数;(4)作出原图形中各关键点的对应点;(5)按原图形的连接顺序连接所作的各个对应点.11.(2021·云南中考真题)如图,在ABC 中,点D ,E 分别是,BC AC 的中点,AD 与BE 相交于点F ,若6BF ,则BE 的长是______.【答案】9【分析】根据中位线定理得到DE=12AB,DE∥AB,从而证明△DEF∽△ABF,得到12DE EFAB BF==,求出EF,可得BE.【详解】解:∵点D,E分别为BC和AC中点,∴DE=12AB,DE∥AB,∴△DEF∽△ABF,∴12 DE EFAB BF==,∵BF=6,∴EF=3,∴BE=6+3=9,故答案为:9.【点睛】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明△DEF∽△ABF.12.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AE AC的值.【分析】由平行线得三角形相似,得出AB•DE,进而求得AB,DE,再由相似三角形求得结果.【解析】∵BC∥DE,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC ,即4AB =DE 4=AE AC ,∴AB •DE =16,∵AB+DE =10,∴AB =2,DE =8,∴AE AC =DE BC =84=2,故答案为:2.13.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH =⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,∴DEH FEH ∠=∠,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.14.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE ﹣DE =2EC ,记∠BAF =α,∠FAE =β,求tan α+tan β的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC =x ,证明△ABF ∽△FCE ,可得AB CF =BF EC ,由此即可解决问题.(3)首先证明tan α+tan β=BF AB +EF AF =BF AB +CF AB =BF+CF AB =BC AB ,设AB =CD =a ,BC =AD =b ,DE =x ,解直角三角形求出a ,b 之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB+∠EFC =90°,∠EFC+∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF ∽△FCE .(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF==2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)2=a−x∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=考点03多边形十、多边形20.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.21.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2360°. 22.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.15.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.16.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是()A .72°B .36°C .74°D .88°【答案】A【分析】根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒-︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.17.(2021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B.对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C.过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D.三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.18.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.19.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯-=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.20.(2021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒-︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.21.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2)×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2)×180°”考点04平行四边形十一、平行四边形的性质23.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“ ”表示.24.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.25.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.26.平行四边形中的几个解题模型(1)如图①,AE 平分∠BAD ,则可利用平行线的性质结合等角对等边得到△ABE 为等腰三角形,即AB=BE .(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB ;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD ≌△COB,△AOB ≌△COD ;根据平行四边形的中心对称性,可得经过对称中心O 的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE ≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E 为AD 上一点,根据平行线间的距离处处相等,可得S △BEC =S △ABE +S △CDE .(4)如图④,根据平行四边形的面积的求法,可得AE ·BC=AF ·CD .十二、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.十三、矩形的性质与判定27.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S △ABD =4S △AOB .(如图)28.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.十四、菱形的性质与判定29.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.30.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.十五、正方形的性质与判定31.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;=4S△AOB.(3)面积=边长×边长=2S△ABD32.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.十六、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等(8)有三个角都是直角.十七、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4.22.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.23.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.24.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD ,∠ADC=∠ABC ,根据SAS 证明△BEC ≌△DFC ,可得CE=CF .【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.25.(2021·四川自贡市·中考真题)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE ,AB ∥CD ,故四边形DEBF 是平行四边形,即可得到答案.【详解】∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,又E 、F 分别是边AB 、CD 的中点,∴DF=BE ,又AB ∥CD ,∴四边形DEBF 是平行四边形,∴DE=BF .考点:1.矩形的性质;2.全等三角形的判定.26.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.。
初三数学中考复习专题6_四边形(含变换).
初三数学中考复习专题6_四边形(含变换).京华中学初三数学辅导班资料6 四边形及平移旋转对称一、1、知识框图:矩形四边形平行四边形菱形梯形2、正方形一组对边平行四边形一组对边不平行3、有一个角是直角梯形两腰相等直角梯形等腰梯形图形之间的变换关系轴对称连结对应点的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等对应点与旋转中心的距离不变;每一点都绕旋转中心旋转了同样大小的角度旋转对称中心对称平移旋转在轴对称、平移、旋转这些图形变换中,线段的长度不变,角的大小不变;图形的形状、大小不变二、例题分析1、四边形例1(1)凸五边形的内角和等于______度,外角和等于______度,(2)若一凸多边形的内角和等于它的外角和,则它的边数是_______.- 1 -2.平行四边形的运用例2 如图,∠1=∠2,则下列结论一定成立的是()A. AB∥CDB. AD∥BCC. ∠B=∠DD. ∠3=∠4 若ABCD是平行四边形,则上述四个结论中那些DA是正确?你还可以得到什么结论?41 23BC3.矩形的运用例3 如图1,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、则阴影部分的面积是矩形ABCD的面积的……………………………………………()A、4.菱形的运用例4 1. 一个菱形的两条对角线的长的比是2 :3 ,面积1113 B、C、D、54310AEBO图1DFC是12 cm2 ,则它的两条对角线的长分别为_____、____.2、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_______.5.等腰梯形的有关计算例5 已知:如图,等腰梯形ABCD中,AD∥BC,AD=3,AB=4,BC=7.求∠B的度数..AD BCE 6.轴对称的应用例6 如图,牧童在A处放牛,其家在B处,若牧童从A处出发牵牛到河岸CD边饮水后再回家,试问在何处饮水所走路程最短?_ B_ A_ C_ D- 2 -7.中心对称的运用例7 如图,作△ABC关于点O的中心对称图形△DEF AO BC8.平移作图例8 .在5×5方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是().(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格NNM图(1)M(2)图1 图图2 (第1题)9.旋转的运用例9 如图,△ABC和△ADE都是等腰直角三角形,∠C和∠AED都是直角,点C在AD上,如果△ABC经旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?解:_____是旋转中心,_______方向旋转了______.B基础达标一、选择题:ACDE1. 一个内角和是外角和的2倍的多边形是________边形.2. 有以下四个命题:(1)两条对角线互相平分的四边形是平行四边形.(2)两条对角线相等的四边形是菱形.(3)两条对角线互相垂直的四边形是正方形.(4)两条对角线相等且互相垂直的四边形是正方形,其中正确的个数为() A.4 B.3 C.2 D.1- 3 -3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4.在一个平面上有不在同一直线上的三点,则以这三点为顶点的平行四边形有()A.1个B.2个C.3个D.4个5. 如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于() A.18° B.36° C.72°D.108° A6、下列说法中,正确的是()A 、等腰梯形既是中心对称图形又是轴对称图形.BB 、正方形的对角线互相垂直平分且相等C 、矩形是轴对称图形且有四条对称轴D 、菱形的对角线相等7、如图,在平行四边形ABCD中,下列各式不一定正确的是()A.?1??2?180 B.?2??3?180 C.?3??4?180 D.?2??4?1808、在平行四边形ABCD中,延长AD至F,延长CD至E,连接EF,则?E??F? ?B?110?,()(A)110? (B)30? (C)50? (D)70? _ F_ E_ AD_ _ B_ C0000EDC9、如图7,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC,其中正确的结论有_________.10.如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是().A.3个B.4个C.5个D.6个- 4 -11.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到右图的是()..A.B.C. D.12.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.90o B.60o C.45o D.30o13.图2是我国古代数学赵爽所著的《勾股圆方图注》中所画的图形,它是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是()A.它是轴对称图形,但不是中心对称图形B.它是中心对称图形,但不是轴对称图形C.它既是轴对称图形,又是中心对称图形(图2) D.它既不是轴对称图形,又不是中心对称图形14、下图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()- 5 -A.90o B.60o C.45o D.30o14 图1515、如上图,O是正六边形ABCDE的中心,下列图形中可由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.OEF16.如图,D、E、F是△ABC三边的中点,且DE∥AB,DF∥AC,EF ∥BC,平移△AEF可以得到的三角形是()A.△BDFB.△DEFC.△CDED.△BDF 和△CDE AFACEOBDBDC图16 图1717.将两块直角三角尺的直角顶点重合为如图17的位置,若∠AOD=110°,则∠BOC=____°18、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()① ② ③ ④A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等19.如图,已知△ABC,画出△ABC绕点C逆时针旋转90°后的图形.- 6 -ACB20、矩形纸片ABCD中,AD=4cm ,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=______cm.E B A DF CC121、若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形22.如图:已知在Rt△ABC中,∠ABC=90°,∠C =60°,边AB=6cm.(1)求边AC和BC的值;(2)求以直角边AB所在的直线l为轴旋转一周所得的几何体的侧面积.(结果用含π的代数式表示) 解:F分别在AB、AC、BC上,DE//BC,23、(2022常州市)如图,在?ABC中,点D、E、EF//AB,且F是BC的中点.求证:DE?CF- 7 -ADEBFC24.三月三,放风筝,小明制了一个风筝,如右图,且DE=DF,EH=FH,小明不用度量就知道∠DEH =∠DFH.请你用所学过的数学知识证明之.(提示:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证.)25.如图,E、F是□ABCD的对角线AC上两点,AE=CF.求证:(1)△ABE≌△CDF.(2)BE∥DF.DEACFB- 8 -(B层)25、如图,在□ ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AC、BD分别交于E、F,求证:四边形AFCE是菱形.AE1DOB2FC26.(2022.上海)如图1,边长为3的正方形ABCD绕点C 按顺时针方向旋转30 °后得到正方形EFCG,EF交AD于点H,那么DH的长为________.- 9 -EAHDFBCG27.如图,已知正方形ABCD的边长为2.如果将线段BD 绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan?BAD′等于__________29、(2022广东省)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD 的高和底边BC的数量关系,并证明你的结论.- 10 -四边形及平移旋转对称答案二、考题例析例1 (n -2)·180o =360o.解得n=4. 例2 答案:B. 例3( B )例4_____4cm,6cm ___例5答案:∠B=60°.例6.中心对称的运用例7 例8 .(C)_____.AC BMM'D例9 点A是旋转中心,顺时针方向旋转了45.A'基础达标一、选择题:(D)9、(①AB∥CD;②AC⊥BD;③AO=OC;10.( B ).11.C. 12.(C )13.B.14 (C)15、D.16.(D ) 17.(_70°18、( D) 19.1.___6___2. D.3.(B )4.(C)5 ( B )6、(B 7、(D8、20、DE=___5.8___cm.21、C.菱形22.解:(1)AC=43 cm,BC=23cm (2)所求几何体的侧面积S=23、∵DE//BC,EF//AB- 11 -1?(2??23)?43?24?(cm2)2∴四边形DBFE是平行四边形∴ DE=BF,∵ F是BC的中点.∴BF=CF ∴DE?CF24.:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证.25.(1)证明:∵在△ABC与△EFD中,AB=EF,由EF∥AB得∠BAC=∠FED.由AD=CE得AC=ED.∴△ABC≌△EFD.(2)四边形BDFC是平行四边形.证明:∵△ABC≌△EFD,∴BC=FD,∠BCA=∠EDF.∴BC∥FD∴四边形BDFC是平行四边形.26剖析:解题时,注意区分判定定理与性质定理的不同使用.∵□ ABCD中,AE∥CF,∴?1??2. 又?AOE??COF,AO?CO.AE1D∴△AOE≌△COF,∴EO?FO. ∴四边形AFCE是平行四边形.又EF?AC,∴□ AFCE是菱形.27. _3_______. 28___2_______ 29、BO2FC- 12 -第一章图形与证明(二)1.1等腰三角形的性质和判断定理:等腰三角形的两个底角相等(简称“等边对等角”)定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考矩形 菱形 正方形
2.(2013•湖州)如图,已知四边形
A .
12 B C .
23
D .
2
7.(2013•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°
2.(2013•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()
A-1 B.C D
3.(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.
NQ是否相等?并说明理由.
8.(2013•淄博)矩形纸片ABCD中,AB=5,AD=4.
(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).
9.(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD 有什么数量关系?简单说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
一、选择题
1.(2013•铜仁地区)下列命题中,真命题是()
A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形
2.(2013•宜宾)矩形具有而菱形不具有的性质是()
A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等
3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.10
4.(2013•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()
A.6cm B.4cm C.2cm D.1cm
5.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()
A.12 B.24 C.D.
6.(2013•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()
7.(2013•茂名)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AC 的长是( )
A .2
B .4
C .2
D .8.(2013•成都)如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点C′重合,若AB=2,则C′D 的长为( ) A .1 B .2 C .3 D .4
9.(2013•包头)如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .3S 1=2S 2 10.(2013•扬州)如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( ) A .50° B .60° C .70° D .80° 11.(2013•绵阳)如图,四边形ABCD 是菱形,对角线AC=8cm ,BD=6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则GH=( ) A .
28
25
cm B .
2120
cm C .
2815
cm D .
25
21
cm 12.(2013•雅安)如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤S △CEF =2S △ABE .其中正确结论有( )个. A .2 B .3 C .4 D .5
AB=10,AC=BD=2,点P
26.(2013•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.
27.(2013•广州)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
28.(2013•厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE 交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.
29.(2013•黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.
30.(2013•铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
31.(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求线段AE的长.
32.(2013•贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
33.(2013•曲靖)如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG ∥CF交DE于点G.
(1)求证:△DCF≌△ADG.
(2)若点E是AB的中点,设∠DCF=α,求sinα的值.
有,请说明理由.。