2-14有理数、数轴、绝对值A
1.2数轴、相反数和绝对值例题与讲解
1.2 数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】 指出数轴上A ,B ,C ,D ,E ,F 各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】 把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112. 分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度. 解:解技巧 确定数在数轴上的对应点 (1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定: 0的相反数是0.辨误区 相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零. 析规律 相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】 填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数; (5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13. 答案:(1)5 (2)-6 (3)-0.7 (4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数. 谈重点 绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】 下列说法正确的是( ).A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】 回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧 确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】 如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】 已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0. 多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】 填空:(1)-⎝⎛⎭⎫-127的相反数是__________; (2)如果-x =+(-80.5),那么x =__________.解析:(1)∵-⎝⎛⎭⎫-127=127,因此此题实际上是求127的相反数,∴-⎝⎛⎭⎫-127的相反数是-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5 【例6-2】 化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧 准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】 化简:(1)-⎪⎪⎪⎪-23; (2)+|-24|;(3)⎪⎪⎪⎪-⎝⎛⎭⎫+312; (4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-⎪⎪⎪⎪-23=-23; (2)+|-24|=24;(3)⎪⎪⎪⎪-⎝⎛⎭⎫+312=312; (4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧 求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】 已知a =-5,|a |=|b |,则b 的值等于( ).A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】 下面推理正确的是( ).A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC.若|m|=-n,则m=nD.若m=n,则|m|=|n|解析:A中若|m|=|n|,则m=±n;B中若|m|=n(n一定是非负数),则m=±n,例如|±2|=2,此时m=±2,n=2,显然m=±n;C中若|m|=-n,则m=n或m=-n,例如|±3|=-(-3)(n一定是非正数),此时m=±3,n=-3,所以m=±n.答案:D9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。
初中数学知识点精讲精析 绝对值 (2)
2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。
2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。
3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。
知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。
相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。
(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。
一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。
2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。
(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。
(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。
用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。
七年级数学 第一章《有理数》专题4 绝对值的几何意义
第一章《有理数》专题4 绝对值的几何意义一.知识要点:1.绝对值:数轴上表示数a的点到原点得距离叫做a的绝对值,记作|a|.2.知识拓展:观察数轴,回答下列问题:4到2的距离:2=|4-2| ;0到5的距离:5=|0-5| ;3到-4的距离:7=|3-(-4)|;-2到-4的距离:2=|-2-(-4)|.总结:a到b的距离:|a-b| .3.绝对值的最值问题:奇点偶段例1:求|x-2|+|x+4|的最小值.分析:|x-2|+|x+4|表示数轴上的点x到2与-4的距离和①求出零点2与-4②结合数轴,分类讨论:当x<-4时,|x-2|+|x+4|>6当-4≤x≤2时,|x-2|+|x+4|=6当x>2时,|x-2|+|x+4|>6综上所述,当-4≤x≤2时,|x-2|+|x+4|有最小值是6.例2.求|x-2|+|x+4|+|x+1|的最小值.分析:①求出零点2,-1,-4②结合数轴,分类讨论:当x<-4时,|x-2|+|x+4|+|x+1|>6当-4≤x<-1时,|x-2|+|x+4|+|x+1|>6当x=-1时,|x-2|+|x+4|+|x+1|=6当-1<x≤2时,|x-2|+|x+4|+|x+1|>6当x>2时,|x-2|+|x+4|+|x+1|>6综上所述,当x=-1时,|x-2|+|x+4|+|x+1|有最小值是6.二.模块训练:(一)基础练习:1.|5-4|表示:;2.|-2-3|表示:;3.|-2+3|表示:;4.|x-5|表示:;5.|x+2|表示:;6.|a+b|表示:;7.|x-1|+|x+3|表示:.(二)最值问题:1.当时,|x+1|+|x-2|有最小值,最小值是;2.当时,|x+1|+|x-2|+|x-3|有最小值,最小值是;3.当时,|x+1|+|x-2|+|x-3|+|x-6|有最小值,最小值是;4.当时,|x-2|+|x-4|+|x-6|+…+|x-20|有最小值,最小值是;5.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为;②|x﹣a|+|x﹣b|+|x+1|的最小值为;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为.6.已知a,b,c,d在数轴上的位置如图:(不能用具体数字代)(1)求|a+b﹣1|﹣|3﹣a﹣b|的值;(2)比较下列各式的大小,并用“<”号连接:①a+c;②b﹣c ﹣a;③d﹣b;④b+c(3)求|x﹣a|+|x﹣b|的最小值.7.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB=|a﹣b|,回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点分别是点A和B,如果AB=2,那么x=;(3)互不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|c﹣a|+|b﹣c|=|a﹣b|,那么,在点A,B,C中居中的点是.(4)当|x+2|+|x﹣1|取最小值时,相应的x的取值范围是.若|x﹣a|+|x﹣b|的最小值为4,若a=3,则b的值为.式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣617|的最小值是.8.我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义,进一步地,数轴上两个点A、,B,分别用a和b表示,那么A、B两点之间的距离为AB=|a﹣b|利用此结论,回答以下问题:(1)数轴上表示3和7的两点之间的距离是,数轴上表示﹣3和﹣7的两点之间的距离是,数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A、B之间的距离是,如果|AB|=3,那么x的值为(3)当代数式|x﹣1|+|x﹣3|取最小值时,相应的x的取值范围是多少?最小值是多少?(4)已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b﹣1)2=0,设点P在数轴上对应的数是x,当|P A|﹣|PB|=2时,求x的值.。
有理数、数轴、相反数、绝对值、加减
有理数、数轴、相反数一、有理数是一个整数a和一个整数b的比,表示ab。
无理数:不能写作两个整数的比,也就是无限不循环小数。
如果一个数既不是整数,也不是分数,那么它一定不是有理数。
有理数的分类:正整数正整数正有理数整数0正分数负正数有理数0 有理数负正数正分数负有理数分数负分数负分数正数:大于0的数负数:在正数前加上“-”(读负号)的数。
0既不是正数,也不是负数。
二、数轴:规定了原点,正方向,单位长度的直线。
在直线上任取一点表示数0,这个点叫做原点,规定直线上从原点向右或向上为正方向,选取适当的长度为单位长度,以便在数轴上去点。
数轴的三要素:原点、正方向、单位长度。
三、相反数相反数:只有符号不同的两个数叫做互为相反数。
性质:任何一个数都有且只有一个相反数。
正数的相反数是负数,负数的相反数是正数,0的相反数是0。
特征:a与b互为相反数。
a+b=0化简:正号省略,负负得正。
正号的个数不影响最终结果。
负号的个数如果是偶数不影响最终结果;负号的个数如果是奇数个只保留一个负号。
不管是正数还是负数求它的相反数,只在它们前面加一个负号,然后化简符号。
例题:写出它们的相反数,并化简。
﹣6 ﹣(5)+(﹣7)﹣(﹣4)+9四、绝对值数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
记作a 。
正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;①如果a >0,那么a =a ②如果a <0,那么a =﹣a③如果a =0,那么a =0 ④若a,b 为有理数,a =b ,则a =±b五、有理数的大小(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;六、有理数的加法(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.七、有理数的减法①减去一个数等于加上它的相反数。
2023-2024学年七年级数学上册同步学与练(人教版)第04讲绝对值(含答案与解析)
i.-2的绝对值是()5-4c-f D.且2【即学即练2】2.数轴上有力、B、C、。
四个点,其中绝对值等于2的点是(),4B C-J_I A二18・•]]L A-4-3-2-1012•345A.点力B.点BC.点。
D.点D【即学即练3】3.已矢口u—-2,b=l,则同+|-句的值为()A.3B.1C.0D.-1知识点02绝对值的性质1.绝对值的非负性:由定义可知,绝对值表示到原点的距离,所以不能为O所以绝对值是一个,所以绝对值具有。
即若|。
|0o几个非负数的和等于o,这几个非负数一定分别等于0o即:若\a\+\b\+...+I m|=0,则一定有o题型考点:根据绝对值的非负性求值。
【即学即练1】4.已知|x-2|+加T|=0,则x-y的相反数为()A.-1B.1C.3D.-3【即学即练2】5.若向+例=0,则口与力的大小关系是()A.a=b=0B.口与力互为倒数C.Q与b异号D.口与力不相等知识点03绝对值与数轴1.绝对值与数轴:在数轴上,一个数离原点越近,绝对值就,一个数离原点越远,绝对值,题型考点:根据绝对值与数轴进行求解判断。
6.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越・【即学即练2】7.如图,四个有理数m n,p,q在数轴上对应的点分别为N,P,0若乃+0=0,则秫,n,p,q四个有理数中,绝对值最小的一个是()M OA.p知识点04绝对值与相反数1.绝对值与相反数:①数轴上互为相反数的两个数在原点的两侧,且到原点的距离相等,所以互为相反数的两个数他们的绝对值_________o即若。
与5互为相反数,贝」|q|\b\o②绝对值等于某个正数的数一定有,它们o即若|x|=q(q>0),则③绝对值相等的两个数要么,要么o即若|。
|=|们,则有或o题型考点:根据相反数的绝对值进行求解。
【即学即练1】8.若|x|=5,贝0x—.【即学即练2】9.已知□=-5,同=|句,则人的值为()A.±5B.-5C.+5D.0【即学即练3】10.绝对值等于5的数是,它们互为.知识点05求式子的绝对值1.求式子的绝对值:先判断式子与的大小关系,再对式子进行求绝对值。
2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版
又因为| a |=4,所以 a =-4.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 若| a |=- a ,则在下列选项中, a 不可能是(
D
)
-
A. -2
B.
C. 0
D. 5
【点拨】
因为| a |=- a ,
所以 a ≤0,
所以 a 不可能是正数.
数中最小的数是0.
(1)当 x =
时,| x -2 026|有最小值,这个最
2 026
小值是
0
(2)当 x =
1
大值是
;
时,2 026-| x -1|有最大值,这个最
.
2 026
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点
忽略0也是绝对值等于其相反数的数而致错
11. [新考法 逆向思维法]如果| x -2|=2- x ,那么 x 的取
12
13
14
15
14. [新考向 知识情境化]一条直线流水线上依次有5个机器
人,它们站的位置在数轴上依次用点 A1, A2, A3,
A4, A5表示,如图.
在点
上的机器人表示的数的绝对值最大,站
A1
(1)站在点
A2
和点
A5
,点
和点
A3
A4
初中数学.有理数——绝对值
内容基本要求 略高要求 较高要求 绝对值借助数轴理解绝对值的意义,会求实数的绝对值 会利用绝对值的知识解决简单的化简问题 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.中考要求重难点绝对值【例1】到数轴原点的距离是2的点表示的数是( )A .±2B .2C .-2D .4【例2】下列说法正确的有( )①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A .②④⑤⑥B .③⑤C .③④⑤D .③⑤⑥【例3】如果a 的绝对值是2,那么a 是( )A .2B .-2C .±2D .12【例4】若a <0,则4a +7|a |等于( )A .11aB .-11aC .-3aD .3a例题精讲课前预习【例5】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( )A .正数B .负数C .非负数D .非正数【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例9】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例10】a <0,ab <0,计算|b -a +1|-|a -b -5|,结果为( )A .6B .-4C .-2a +2b +6D .2a-2b-6【例11】若|x +y |=y -x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x =0,y ≥0或y =0,x ≤0【例12】已知:x <0<z ,xy >0,且|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值( )A .是正数B .是负数C .是零D .不能确定符号【例11】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数; (3)若|m |>m ,则m <0;(4)若|a |>|b |,则a >b ,其中正确的有( )A .(1)(2)(3)B .(1)(2)(4)C .(1)(3)(4)D .(2)(3)(4)【例12】已知a ,b ,c 为三个有理数,它们在数轴上的对应位置如图所示,则|c -b |-|b -a |-|a -c |= _________c ba 0-11【例13】若x <-2,则|1-|1+x||=______若|a|=-a ,则|a-1|-|a-2|= ________【例14】()2120a b ++-=,分别求a b ,的值【例15】451+-++x x 的最小值是_______【例16】计算111111 (23220072006)-+-++-= .【例17】若|a |+a =0,|ab |=ab ,|c |-c =0,化简:|b |-|a+b |-|c -b |+|a -c |= ________【例18】已知:abc ≠0,且M =a b c a b c++,当a ,b ,c 取不同值时,M 有 ____种不同可能. 当a 、b 、c 都是正数时,M = ______;当a 、b 、c 中有一个负数时,则M = ________;当a 、b 、c 中有2个负数时,则M = ________;当a 、b 、c 都是负数时,M =__________ .1. 若a 的绝对值是12,则a 的值是( )A .2B .-2C .12 D .12±2. 若|x |=-x ,则x 一定是( )A .负数B .负数或零C .零D .正数3. 如果|x -1|=1-x ,那么( )A .x <1B .x >1C .x ≤1D .x ≥14. 若|a -3|=2,则a +3的值为( )A .5B .8C .5或1D .8或45. 若x <2,则|x -2|+|2+x |=________________课堂检测6. 绝对值小于6的所有整数的和与积分别是__________7. 如图所示,a .b 是有理数,则式子|a |+|b |+|a +b |+|b -a |化简的结果为 __________ba 0-118. 已知|x |=2,|y |=3,且xy <0,则x+y 的值为 _________1. -19的绝对值是________2. 如果|-a |=-a ,则a 的取值范围是(A .a >0B .a ≥0C .a ≤0D .a <03. 对值大于1且不大于5的整数有 __________个.4. 绝对值最小的有理数是 _________.绝对值等于本身的数是________.5. 当x __________时,|2-x|=x-2.6. 如图,有理数x ,y 在数轴上的位置如图,化简:|y-x |-3|y +1|-|x |= ________y x -12107. 若3230x y -++=,则yx 的值是多少?课后作业。
1、有理数的意义、数轴、绝对值-学生版
一、知识梳理:1、有理数的意义:(1)整数和分数统称为有理数。
(2)有理数的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数;⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 (3)任何一个有理数都可写成分数a b (其中a 、b 为整数,0b ≠)的形式。
如221=,20.45=,所以,所有的有理数都是分数。
2、数轴: (1)数轴:规定了原点、正方向和单位长度的一条直线叫做数轴。
数轴的三要素:原点、正方向、单位长度。
(2)任何一个有理数都可以用数轴上的点来表示;反之不然,数轴上的点不一定都用来表示有理数。
(3)在数轴上,原点左边是负有理数,原点右边是正有理数,原点为0。
3、相反数:(1)相反数:只有符号不同的两个数,我们称其中的一个数为另一个数的相反数,也称这两个数互为相反数。
(2)正数的相反数是负数,负数的相反数是正数。
零的相反数是零。
(3)互为相反数的两数和为0;反之,如果两数和为0,那么这两个数互为相反数。
即如果a 、b 互为相反数,那么0a b +=。
反之,如果0a b +=,那么a 、b 互为相反数。
(4)互为相反数的两个数的几何意义:在数轴上,互为相反数的两个点位于原点两侧且到原点的距离相等。
4、绝对值:(1)绝对值:一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值。
一般用符号a 表示a 的绝对值。
(2)任何一个数的绝对值都大于或等于零,即0a ≥。
(3)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
反过来:绝对值是它本身的数是正数和零,即非负数;绝对值是它相反数的数是负数和零,即非正数;即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(互为相反数的两个数,它们的绝对值相等)5、有理数的大小比较:(1)表示一个数的点离开原点距离越远,绝对值越大;离开原点距离越近,绝对值越小。
数轴与绝对值
数轴与绝对值一、绝对值定义:正数的绝对值是这个正数本身,负数的绝对值是这个负数的相反数,零的绝对值是零。
也就是说:一个数的绝对值是按照这个数的符号情况,来分类决定的。
如果用字母a 表示这个数,那么用式子来表示就是:⎩⎨⎧≤-≥=⎪⎩⎪⎨⎧<-=>=)0()0(0000a a a a a a a a a a a 它本身,所以,因为零的相反数就是时),(当时),(当时),(当 即:零和正数的绝对值是它本身,零和负数的绝对值是它的相反数。
这里,a 表示什么?如果它是2,结果怎样?如果是 -3呢?如果是x -2呢?如果没有告诉你x 的取值范围,那么该如何化简2-x ?(示例)。
);()解方程:(例x x x x 21212111.1=++=+ 解: (1)略;(2)当 x + 1 < 0,即 x < - 1 时,原方程为 – (x + 1) = 2x , x =31-; 当 x + 1 ≥ 0,即 x ≥ - 1 时,原方程为 x + 1 = 2x ,x = 1,∴原方程的根是 x 1 = 31- , x 2 = 1 。
指导学生:①分析解题依据及步骤;②检查答案(2)的正确性。
既然已经发现答案是错误的,那么可以肯定解答过程有误,请找出错误。
指导语:在解这类含有绝对值的方程(或不等式)时,应注意:(1) 需根据绝对值符号内的整体内容的符号来决定将绝对值符号去掉后的内容,是原来的,还是其相反数。
也就是说,要根据绝对值符号内的整体的“零点”情况来划分自变量的取值范围,对方程(或不等式)进行分类讨论。
(2) 要注意检查相应的“解”是否在相应讨论的数的范围之内。
(3) 当方程(或不等式)中含有多个绝对值时,应该针对所有的“零点”来划分自变量的取值区间,对方程(或不等式)进行分类讨论。
例2.解方程: |x - 2|+|x + 3| = 6 .二、绝对值与相反数的几何意义1.绝对值:|a| ←→数轴上,和数a对应的点与原点之间的距离。
有理数、数轴、相反数、绝对值
有理数基本概念1.有理数分类⎧⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎨⎪⎩⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩正整数自然数零整数负整数有理数(按定义分类)正分数分数负分数 ⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数(按符号分类)零负整数负有理数负分数⎧⎫⎪⎬⎨⎭⎪⎩有限小数可化成分数形式,是有理数小数无限循环小数无限不循环小数——不可以化成分数形式,不是有理数2.有理数的运算律1) 加法交换律 a+b=b+a2) 加法结合律 a+b)+c=a+(b+c)3) 乘法交换律 ab=ba4) 乘法结合律 (ab)c=a(bc)5) 分 配 律 a(b+c)=ab+ac数轴 绝对值 相反数1. “四非”的概念⑴ 零和正数 统称为非负数; ⑵ 负数和零统称为非正数;⑶ 正整数和零统称为非 负整数 ; ⑷ 负整数和零 统称为非正整数.2. 数轴数轴的三要素 ① 原点 ② 正方向 ③ 单位长度.1)在数轴上表示的两个数,右边的数总比左边的数大;2)正数都大于0,负数都小于0;正数大于一切负数;3)所有有理数都可以用数轴上的点表示。
3. 相反数⑴ 若两个数a 与b 互为相反数,则 0a b += 若0a b +=则a 与b 互为相反数.⑵ 正数的相反数是负数,0的相反数是0 ,负数的相反数是正数.一个数的相反数等于其本身,则这个数一定是 0 .4. 绝对值⑴ 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是 相反数 ;0的绝对值是 0 .⑵ 一个数a 的绝对值就是数轴上表示数a 的点 到原点的 距离.数a 的绝对值记作a .⑶ ① _____(0)___0__(0)_____(0)a a a a a a >⎧⎪==⎨⎪-<⎩② (0)(0)a a a a a ⎧=⎨-<⎩≥ ③ (0)(0)a a a a a >⎧=⎨-⎩≤ ⑷ ① 绝对值具有非负性,取绝对值的结果总是正数或0.② 如果若干个非负数的和为0,那么这若干个非负数都必为 0 .5. 倒数(负倒数)乘积为1的两个数互为倒数,特别地,0没有倒数;正数的倒数是正数,负数的倒数是负数.负倒数:乘积为1-的两个数互为负倒数,特别地,0没有负倒数.1)a 的倒数是1a (a ≠0);2)0没有倒数3)若a 与b 互为倒数,则ab=1.绝对值绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b b a b a ;④222a a a ==. 3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离. 例题【例1】已知321===c b a ,,,且c b a >>,那么c b a -+= .【例2】 如果c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能的值为( ).A .0B . 1或一lC .2或一2D .0或一2【例3】已知12--b •ab 与互为相反数,试求代数式:)2002)(2002(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值.数轴,相反数,绝对值提高训练练习一:1、(易错题)化简(4)--+的结果为___________3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( )A 、0a >B 、0a ≥C 、0a ≤D 、0a <4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、55、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( )A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-< 巩固练习1、(1)绝对值等于4的数有____个,它们是__ _;(2)绝对值小于4的整数有___个,它们是___(3)绝对值大于1且小于5的整数有_个,它们是___;(4)绝对值不大于4的负整数有_个,它们是___4、求下列各式中的x 的值(1)|x|-3=0 (2)2|x|+3=6练习二:3、如果甲数的绝对值大于乙数的绝对值,那么 ( )A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定4、绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个5、下列说法正确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数6、数轴上,绝对值为4,且在原点左边的点表示的数为___________.7、绝对值小于π的整数有______________________8、当0a >时,a =_________,当0a <时,a =_________,9、如果3a >,则3a -=__________,3a -=___________.10、若1x x =,则x 是___(选填“正”或“负”)数;若1x x=-,则x 是___(选填“正”或“负”)数; 11、已知3x =,4y =,且x y <,则x y +=________12、已知420x y -++=,求x ,y 的值练习三(一)、掌握命题动态3、(广东深圳)实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是A 、2a-bB 、bC 、-bD 、-2a+b(二)、把握命题趋势1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.2、(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--0b ac3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值b O a提高篇1. 若3-x 与5+y 互为相反数,求yx y x -+的值。
重难点02 有理数与数轴的复杂应用题(原卷版)-【暑假自学课】2024年新七年级数学暑假精品课(苏科
重难点02 有理数与数轴的复杂应用题1.通过数轴可以更直观地理解一些重要的概念,如正数和负数、相反数、绝对值等;2.利用数轴可以比较有理数的大小;3.数轴使得数和点能够相互转化,因此,数轴是数形结合的“桥梁”,是第一个数形结合体,是解决数学问题的一种重要工具.一. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理教,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.二.数轴与相反数(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称). (2)互为相反数的两数和为0.三.数轴与绝对值1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.一.选择题(共2小题)1.(2022秋•钟楼区校级月考)如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,数b对应的点在P与R之间,若|a|+|b|=3,则原点可能是()A.N或P B.M或R C.M或N D.P或R2.(2022秋•钟楼区校级月考)如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2014的点与圆周上重合点的数字是()A.0B.1C.2D.3二.解答题(共15小题)3.(2022秋•邗江区月考)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣6表示的点与表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①数字7表示的点与表示的点重合;②若数轴上A、B两点之间的距离为78(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?4.(2022秋•兴化市期末)“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.如图,线段AB、CD都在数轴上,且AB=2(单位长度),CD=4(单位长度),点B从M出发沿射线MN方向,以6个单位长度/秒的速度运动;同时,点C从N出发沿射线NM方向,以2个单位长度/秒的速度运动,在点B、C运动的过程中,线段AB、CD随之运动.已知点M在数轴上表示的数是﹣8,点N在数轴上表示的数是16.(1)如图,当点B、C分别与点M、N重合时,则点A在数轴上表示的数是,点D在数轴上表示的数是.(2)运动t秒后.①点A在数轴上对应的数为,点D在数轴上对应的数为(用含t的代数式表示).②当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.(3)若点P是线段AB上的任意一点,在整个运动过程中,是否存在P A+PC+PB+PD的值为定值?若存在,求出该定值以及定值所持续的时间;若不存在,请说明理由.5.(2022秋•邗江区期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,则在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.借助于数轴回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;(2)数轴上表示数x与﹣2两点之间的距离可以表示为,若距离是3,那么x=;(3)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=;(4)如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点向右出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为12个单位长度.6.(2022秋•如东县期中)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO 和CB仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位/秒的速度沿着“坡数轴”向左运动,经过多久,=3?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时=3?直接写出t的值.7.(2022秋•鼓楼区校级月考)【阅读】|4﹣1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离:|4+1|可以看作|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.(1)|4﹣(﹣1)|=;(2)利用数轴找出所有符合条件的整数x,使得|x+3|=4,则x=;(3)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是:.8.(2022秋•港闸区校级月考)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.通过研究数轴,我们发现了许多重要的规律,比如:数轴上点A和点B表示的数为a,b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可化简为AB=a﹣b.若点P为数轴上一动点,点P对应的数记为a,请你利用数轴解决以下问题:(1)若点P与表示有理数﹣2的点的距离是3个单位长度,则a的值为;(2)若数轴上点P位于表示﹣5的点与表示2的点之间,则|a﹣2|+|a+5|=;(3)若数轴上比a小2的数用b表示,比a大5的数用c表示,则|b﹣2|+|c+5|的最小值为;(4)若a1=a,a2=a,a3=a,…,a9=a.则式子|a1﹣1|+2|a2+2|+3|a3﹣3|+…+9|a9﹣9|的最小值为.9.(2022秋•洪泽区校级月考)如图所示的数轴中,点A表示1,点B表示﹣2,试回答下列问题:(1)A、B两点之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是;(3)若将数轴折叠,使点A与表示﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2022(点M在点N的左侧),且M,N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是和.10.(2022秋•丹徒区期中)数轴上,点A,B表示的数分别为a,b,请利用刻度尺或圆规画图.(1)如图1,若a+b=0,请在数轴上画出原点O;(2)如图2,若a=2b,请在数轴上画出原点O;(3)如图3,若a﹣b=2,在数轴上画出表示数a+b的点C;(4)如图4,若a+b=3,在数轴上画出表示数a﹣b的点D.11.(2022秋•宜兴市期中)已知数轴上三点A,B,C表示的数分别为﹣12,﹣5,5,P,Q两点分别从A,C两点同时出发,相向而行,点P的速度为4个单位/秒,点Q的速度为6个单位/秒.(1)点A与点C之间的距离为;(2)P,Q在数轴上的相遇位置对应的数是;(3)设点P运动时间为t(s),当点B到点Q的距离是点B到点P距离的2倍时,求t的值;(4)当点P到A、B、C三点的距离之和为20个单位长度时,点P立即调头返回.速度不变.当P,Q 两点在数轴上相遇时,相遇位置对应的数是.12.(2022秋•江阴市校级月考)已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足|b|=|c|=5,b<c,点A在点B的左边且与点B距离8个单位长度.一只电子小蜗牛从A点向正方向移动,速度为3个单位/秒.(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为2个单位长度?(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是多少?13.(2022秋•广陵区校级月考)已知,a,b满足|4a﹣b|+(a﹣4)2=0,分别对应着数轴上的A,B两点.(1)a=,b=,并在数轴上画出A,B两点;(2)若点P从点A出发,以每秒3个单位长度向数轴正半轴运动,求运动时间为多少时,点P到点A 的距离是点P到点B距离的2倍;(3)数轴上还有一点C对应的数为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,点Q到达点C后停止运动.求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求此时点Q对应的数.14.(2022秋•江都区月考)已知:点A、B、P为数轴上三点,我们约定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示0,点A表示﹣2,点B表示1,则P是[A,B]的“2倍点”,记作:P[A,B]=2.(1)如图,A、B、P、Q、M、N为数轴上各点,如图图示,回答下面问题:①P[A,B]=②M[N,A]=;③若C[Q,B]=1,则C表示的数为.(2)若点A表示﹣1,点B表示5,点C是数轴上一点,且C[A,B]=3,则点C所表示数为.(3)数轴上,若点M表示﹣10,点N表示50,点K在点M和点N之间,且K[M,N]=5.从某时刻开始,点M出发向右做匀速运动,且M的速度为5单位/秒,设运动时间为t(t>0),当t为何值时,M[N,K]=3.15.(2022秋•钟楼区校级月考)平移和翻折是初中数学两种重要的图形变换(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动4个单位长度,再向正方向移动1个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+4)+(+1)=+5B.(+4)+(﹣1)=+3C.(﹣4)﹣(+1)=﹣5D.(﹣4)+(+1)=﹣3②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2022次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2022的点与表示的点重合;②若数轴上A、B两点之间的距离为2022(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣19、8,现以点C为折点,将数轴向右对折,若点A对应的点A'落在点B的右边,并且A'B=2,求点C表示的数.16.(2022秋•靖江市月考)如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.17.(2022秋•鼓楼区校级月考)在数轴上有三个点A、B、C,它们表示的有理数分别为a、b、c.已知a 是最大的负整数,且|b+4|+(c﹣2)2=0.(1)求A、B、C三点表示的有理数分别是多少?(2)填空:①如果数轴上点D到A,C两点的距离相等,则点D表示的数为;②如果数轴上点E到点A的距离为2,则点E表示的数为;(3)在数轴上是否存在一点F,使点F到点A的距离是点F到点B的距离的2倍?若存在,请直接写出点F表示的数;若不存在,请说明理由.一.解答题(共14小题)1.(2021秋•溧水区期末)【数学概念】如图,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段P A和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段P A和PB的长度相等,则将线段P A或PB的长度定义为点P到线段AB的“靠近距离”.【概念理解】如图①,点A表示的数是﹣4,点B表示的数是2.(1)若点P表示的数是﹣2,则点P到线段AB的“靠近距离”为;(2)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为(写出所有结果);【概念应用】(3)如图②,在数轴上,点P表示的数是﹣6,点A表示的数是﹣3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.2.(2021秋•海陵区校级月考)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣8|=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=5时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.3.(2021秋•宜兴市校级月考)如图,点A在数轴上所对应的数为2.(1)点B在点A左侧且距点A为3个单位长度,则点B所对应的数为,请在数轴上标出点B的位置;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向右运动,点B以每秒2个单位长度沿数轴向左运动,当点A运动到5所在的点处时停止运动,同时点B也停止运动,求此时A,B两点间距离;(3)在(2)的条件下,若点A不动,点B沿数轴开始向右运动,经过t秒A,B两点相距3个单位长度,求t值;(4)在(1)的条件下,点A以每秒1个单位长度,点B以每秒2个单位长度同时沿数轴向左运动,当点B运动到所对应的数为m时停止运动,请直接写出此时点A所对应的数为;若点A继续运动,请直接写出当AB=2时,点A继续运动的距离为.(用含m的式子表示)4.(2021秋•崇川区校级月考)数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为;(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知|x+1|+|x﹣2|=7时,x的取值是;(4)|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2021|的最小值为,此时x的取值是.5.(2021秋•高港区校级月考)【操作感知】如图1,长方形透明纸上有一条数轴,AB是周长为4的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动1周,点A落在数轴上的点A'处;将圆从原点出发沿数轴负方向滚动半周,点B落在数轴上的点B′处,折叠长方形透明纸,使数轴上的点A′与点B′重合,此时折痕与数轴交点表示的数为.【建立模型】折叠长方形透明纸,使得数轴上表示数a的点C与表示数b的点D重合,则折痕与数轴交点表示的数为.(用含a,b的代数式表示)【问题解决】如图2,点P表示的数为﹣10,点Q表示的数为20,如果点M从点P的位置出发,以每秒2个单位的速度向点Q运动,当点M到达点Q时停止运动,设运动时间为t秒(t>0).(1)若点M到P,Q两点中一点的距离为到另一点距离的两倍,求t值.(2)若点M从点P出发,同时点N从点Q开始运动,以每秒1个单位的速度向点P运动,并与点M 同时停止,请求出当点M,N,P中其中一点到另外两点距离相等时t的值.6.(2021秋•兴化市校级月考)如图,请回答问题:(1)点B表示的数是,点C表示的数是.(2)折叠数轴,使数轴上的点B和点C重合,则点A与数字重合.(3)m、n两数在数轴上所对的两点之间的距离可以表示为|m﹣n|,如5与﹣2两数在数轴上所对的两点之间的距离可以表示为|5﹣(﹣2)|,从而很容易就得出在数轴上表示5与﹣2两点之间的距离是7.①若x表示一个有理数,则|x﹣3|+|x﹣6|的最小值=.②若x表示一个有理数,且|x﹣4|+|x+3|=7,则满足条件的所有整数x的和是.③当x=时,2|x﹣2|+2|x﹣3|+5|x﹣4|取最小值.④当x取何值时,2|2x﹣1|+|3x﹣2|+|x﹣|+|2x﹣7|+|3x﹣9|取最小值?最小值为多少?7.(2021秋•姜堰区校级月考)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,则在数轴上A、B两点之间的距离AB=|b﹣a|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.借助于数轴回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.(2)如果|x+1|=3,那么x=.(3)若|a﹣3|=2,|b+2|=1,且数a,b在数轴上表示的数分别是点A,点B,则A,B两点间的最大距离是,最小距离是.(4)①若数轴上表示x的点位于﹣3与1之间,则|x﹣1|+|x+3|=.②若|x﹣3|+|x+1|=8,则x =.8.(2021秋•沛县校级月考)在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5﹣3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离,一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上表示数a的点与表示﹣2的点之间的距离表示为;(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是;(3)数轴上有一个点表示数a,则|a+1|+|a﹣3|+|a+8|的最小值为;(4)a、b、c、d在数轴上的位置如图所示,若|a﹣d|=12,|b﹣d|=7,|a﹣c|=9,则|b﹣c|等于.9.(2021秋•如东县月考)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)利用数轴,找出所有符合条件的整数x,使|x+2|+|x−5|=7.则所有符合条件的整数x有个.10.(2021秋•镇江期末)如图,线段AB=28厘米,点D和点C在线段AB上,且AC:BC=5:2,DC:AB=1:4.点P从点A出发以4厘米/秒的速度沿射线AD向点C运动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC 的方向运动,点Q到达点D所在的位置后停止运动.点P和点Q同时出发,点Q运动的时间为t秒.(1)求线段AD的长度;(2)当点C恰好为PQ的中点时,求t的值;(3)当PQ=7厘米时,求t的值.11.(2021秋•射阳县校级月考)认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a﹣b|.因此我们可以用绝对值的几何意义按如下方法求|x﹣1|+|x﹣2|的最小值;|x﹣1|即数轴上x与1对应的点之间的距离,|x﹣2|即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是.(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.12.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.13.(2021秋•鼓楼区校级月考)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是,数轴上表示1和﹣4的两点之间的距离是.②数轴上表示x和﹣3的两点之间的距离表示为.数轴上表示x和6的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+4|的最小值=.④若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣4|有最小值为.14.(2021秋•金坛区月考)先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x 为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.。
绝对值知识点及练习
绝对值知识点及练习1、定义:1几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|,读作“绝对值a”;2代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.实数a的绝对值是:|a|①a为正数时,|a|=a不变②a为0时, |a|=0③a为负数时,|a|= -a为a的绝对值任何数的绝对值都大于或等于0,因为距离没有负的;2、实数的绝对值具有以下性质:1|a|大于等于0实数的绝对值是非负实数;2|-a|=|a|互为相反数的两实数绝对值相等;3-|a|小于等于a小于等于|a|;4|a|>b可以推出a<-b或a>b,a<-b或a>b可以推出|a|>b;5|a·b|=|a|·|b|;6|a|/|b|=|a/b|b≠0;7|a+b|小于等于|a|+|b|,当且仅当a、b同号时,等式成立;8|a-b|大于等于||a|-|b||,当且仅当a、b同号时,等式成立;9a属于R时,|a|的平方等于|a|的平方;特别提醒:1绝对值具有非负性,即|a|≥0;2绝对值相等的两个数,它们相等或互为相反数;30是绝对值最小的有理数;3、利用绝对值比较大小1利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.2几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.4、利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:1判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.2利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.5、去绝对值符号的几种常用方法:1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c c >0来解,如|ax b +|>c c >0可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集;对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法;3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数式时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点;4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集;零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化; 5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解;数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于||||x a x b m -+->或||||x a x b m -+-<m 为正常数类型不等式;对+++>或<m,当|a|≠|c|时一般不用;ax b cx d m||||1、对于形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号;当a>0时,︱a︱=a 性质1,正数的绝对值是它本身;当a=0 时︱a︱=0 性质2,0的绝对值是0 ;当a<0 时;︱a︱=–a 性质3,负数的绝对值是它的相反数;2、对于形如︱a+b︱的一类问题我们只要把a+b看作是一个整体,判断出a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号,正确进行化简;当a+b>0时,︱a+b︱=a +b性质1,正数的绝对值是它本身;当a+b=0 时,︱a+b︱=0 性质2,0的绝对值是0 ;当a+b<0 时,︱a+b︱=–a+b=–a-b 性质3,负数的绝对值是它的相反数3、对于形如︱a-b︱的一类问题同样,按上面的方法,我们仍然把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号;但在去括号时最容易出现错误;如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可;因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=a-b,︱b-a︱=a-b.请记住口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小;4、对于数轴型的一类问题,根据3的口诀来化简,更快捷有效;如︱a-b︱的一类问题,只要判断出a在b的右边,便可得到︱a-b︱=a-b,︱b-a︱=a-b;5、对于绝对值号里有三个数或者三个以上数的运算万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比较,大于0直接去绝对值号,小于0的整体前面加负号;练习一、选择1、绝对值为4的有理数是A. ±4 B. 4 C. -4 D. 22、两个数的绝对值相等,那么A.这两个数一定是互为相反数;B.这两个数一定相等;C.这两个数一定是互为相反数或相等;D.这两个数没有一定的关系3、绝对值小于4的整数有个个个个4、绝对值与相反数都是它的本身个个个 D.不存在5、若m为有理数,且那么m是 A.非整数 B.非负数 C.负数 D.不为零的数6、下列说法中,错误的是A、一个数的绝对值一定是正数B、互为相反数的两个数的绝对值相等C、绝对值最小的数是0D、绝对值等于它本身的数是非负数7、下列结论中,正确的有①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数.A、2个B、3个C、4个D、5个8、一个数的绝对值是它本身,那么这个数是A正数 B正数或零 C零 D有理数9、如果一个数的绝对值是,那么这个数是A B- C或- D以上都不对10、任何有理数的绝对值都是A正数 B负数 C有理数 D正数或零11、在--8,|-1|,-|0|,-0 .0001这四个有理数中,负数共有A4个 B3个 C2个 D1个12、在数轴上和表示-3的点的距离等于5的点所表示的数是A-8 B2 C-8和2 D113、9与-1 3的绝对值的和是A22 B-4 C4 D-2214、数-|-3 |的相反数是A-3 B C3 D315、设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c 等于 A -1 B 0 C 1 D 2二、填空1正数的绝对值是____,负数的绝对值是_____,零的绝对值是_____,绝对值等于1 的有理数是____________.2从数轴上看,一个数的绝对值就是表示这个数离开原点的_______.349是___ ___的相反数,它是______的绝对值.4|-5|的相反数是________.5如果一个数的绝对值等于那么这个数是___________.6绝对值小于的所有整数是________.7-3的绝对值是_______,绝对值是3的数是________.8一个数a在数轴上的对应点在原点的左侧,且,则︱a︱=__________.9绝对值最小的数是_____;最大的负整数是_____.10绝对值小于3的所有自然数是____.11一个有理数的相反数小于原数,这个数是____.12已知︱x︱-︱y︱=2,且y =-4,则x = ____;13已知︱x︱=2 ,︱y︱=3,则x +y = ____;14已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= ____;15式子︱x +1 ︱的最小值是,这时,x值为____;三、拓展提高:1.如果a , b互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a+b+ m-cd 的值;2、.某司机在东西路上开车接送乘客,他早晨从A地出发,去向东的方向正方向,到晚上送走最后一位客人为止,他一天行驶的的里程记录如下单位:㎞+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 141 若该车每百公里耗油3 L ,则这车今天共耗油多少升2 据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向距A地多远。
专题01 绝对值化简的四种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)
专题01绝对值化简的四种考法
【知识点精讲】
1.绝对值的意义
绝对值:数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作a 2.绝对值的性质
绝对值表示的是点到原点的距离,故有非负性a
≥0,即:,00,0
,0a a a a a a >⎧⎪
==⎨⎪-<⎩
互为相反数的两个数绝对值相等3.绝对值与数的大小1)正数大于0,0大于负数。
2)理解:绝对值是指距离原点的距离
所以:两个负数,绝对值大的反而小;两个正数,绝对值大的大。
类型一、利用数轴化简绝对值
【答案】22b c
+
(1)用“<”连接:a ,a -,b ,b -,c ,c -;a b c c b a ∴<<-<<-<-;
(1)填空:A ,B 之间的距离为______,B ,(2)化简:22a b c b c a +--+-.
利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是
【答案】4b
(1)在如图所示的数轴上将a ,b ,c 三个数表示出来;
(2)解:根据数轴位置关系,可得:0a >、0b c +<、
(1)a=______;c=______;
(2)若将数轴折叠,使得A点与B点重合,则点C与数
(3)若点P为数轴上一动点,其对应的数为x,当代数式
【点睛】本题主要考查了非负性的性质,绝对值的几何意义,数轴上两点的距离,用数轴表示有理数等等,熟知相关知识是解题的关键.。
1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册
课堂练习
4. 化简下列各数。
+| -3.5 |,- | + 56 | ,- | -11 | , |+(-15) | , | -(-7) | ,| -(+9) |.
解:3.5,- 5 ,-11,15,7,9
6
【点睛】绝对值里边直接去掉符号,保留正数即可,再根据外边的符号进
行化简。
随堂检测
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
ห้องสมุดไป่ตู้负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
| -0.5 | =0.5
一个负数的绝对值等于它的相反数;
7
||= 7
4
4
典例解析
(2)如图,数轴上的点A、B、C、D分别表示有理数a、b、c、d这
四个数,绝对值最小的是哪个数?
A
-4
B
-3
-2
-1
C
0
D
1
2
3
分析:一个数的绝对值越小,数轴上表示它的点离原点越近;
反过来,数轴上的点离原点越近,它所表示的数的绝对值越小。
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(
√
)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
有理数(数轴、相反数、绝对值)
知识点:一、有理数:注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.例题:【例1】 ⑴如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 .⑶某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-, 4.7-,那么这5项记录表示的实际温度是 .⑷向南走200-米,表示 .【例2】 ⑴在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.⑵①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号).练习题:1、下列说法正确的是( )A .a -一定是负数B .一个数不是正数就是负数C .0-是负数D .在正数前面加“-”号,就成了负数2、下列说法正确的是( )A 、一个数不是正数就是负数B 、整数又叫自然数C 、正整数又叫自然数D 、整数与分数统称为有理数 3、下列说法正确的是()A 、0是正整数B 、0是正数C 、0是整数D 、0既不是奇数又不是偶数 4、下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数C .两个数的和一定大于每个加数D .绝对值相等的两个有理数相等二、数轴:规定了原点、正方向和单位长度的直线.⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:错例原因无原点没有正方向单位长度不统一无原点没有单位长度有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表有理数,如 .例题:m 0 nM ND C B A0DC BA 【例3】如右图所示,数轴上的点M 和N 分别对应有理数m 、n , 那么以下结论正确的是( )A .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <【例4】数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( )A.a c b d +<+B.a c b d +=+C.a c b d +>+D.不确定的【例5】在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 练习题:1、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A B C D ,,,对应的数分别为整数a b c d ,,,,并且29b a -=,那么数轴的原点对应点为( ) A .A 点 B .B 点 C .C 点 D .D 点2、数轴上有一点到原点的距离是5.5,那么这个点表示的数_________3、已知数轴上有A B ,两点,A B ,之间的距离为1,点A 与原点O 的距离为3,那么点B 所对应的数为4、轴上表示整数的点称为整点。
有理数、数轴动点、绝对值、求值化简问题(解析版)-初中数学
有理数、数轴动点、绝对值、求值化简问题【题型归纳】题型一:正数与负数1.(2024七年级上·浙江)小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元【答案】B 【分析】根据 5.20+表示收入5.20元,可以得出“收入”用正数表示,从而“支出”就用负数表示,得出答案.【详解】解:∵ 5.20+表示收入5.20元,“收入”用正数表示,∴“支出”就用负数表示,∴ 1.00-表示支出1.00元,故选:B .2.(2024七年级上·江苏·专题练习)在下列选项中,具有相反意义的量是( )A .上升了6米和后退了7米B .卖出10斤米和盈利10元C .收入20元与支出30元D .向东行30米和向北行30米【答案】C【分析】本题考查了对正负数概念的理解,关键明确正负数是表示一对意义相反的量.根据相反意义的量的概念,逐项判断分析即可解题.【详解】解:A.不是一对具有相反意义的量,不符合题意;B.不是一对具有相反意义的量,不符合题意;C.是一对具有相反意义的量,符合题意;D.不是一对具有相反意义的量,不符合题意.故本题选:C .3.(2024七年级上·江苏·专题练习)机床厂工人加工一种直径为30mm 的机器零件,要求误差不大于0.05mm ,质检员现抽取10个进行检测(超出部分记为正,不足部分记为负,单位:mm )得到数据如下:0.050.040.020.070.030.040.010.010.030.06+--+-+--+-,,,,,,,,,.其中不合格的零件有( )A .1个B .2个C .3个D .4个【答案】B 【分析】本题主要考查了正负数的实际应用,首先审清题意,明确“正”和“负”所表示的意义,找到数值大于0.05的零件数即可得到答案.【详解】解:∵要求误差不大于0.05mm ,∴只有0.07+和0.06-误差大于0.05,∴不合格的零件有2个,故选:B .题型二:有理数的分类4.(2024七年级上·全国·专题练习)下列说法正确的是( )A .正整数、负整数、正分数和负分数统称为有理数B .整数和分数统称有理数C .正数和负数统称有理数D .正整数和负整数统称整数5.(2024七年级上·江苏·专题练习)关于4-,227,0.41,116-,0,3.14这六个数,下列说法错误的是( )A .4-,0是整数B .227,0.41,0,3.14是正数C .4-,227,0.41,116-,0,3.14是有理数D .4-,116-是负数6.(23-24七年级上·贵州黔东南·阶段练习)对于有理数,有下列说法:(1)正整数和负整数的总和就是整数;(2)分数包括了正分数和负分数和0;(3)有理数是整数和分数的统称;(4)0是整数;(5)分数包含有限小数、循环小数,其中说法全正确的有( )A .(1)(2)(3)B .(2)(3)(4)C .(3)(4)(5)D .(1)(4)(5)题型三:利用数轴比较有理数大小7.(23-24七年级上·河南郑州·期末)已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0a b->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C 【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.\故①0a b <<正确;a b >,②错误;由8.(23-24七年级上·四川达州·期末)如图,若A 是有理数a 在数轴上对应的点,则关于a ,a -,1的大小关系表示正确的是( )A .1a a <<-B .1a a <-<C .1a a <-<D .1a a -<<9.(2024·广东广州·二模)有理数a ,b 在数轴上的对应点的位置如图所示,把a ,a -,b 按照从小到大的顺序排列,正确的是( )A .a a b<-<B .a b a -<<C .a a b -<<D .b a a<-<【答案】A 【分析】本题考查了数轴与有理数大小的比较,正确理解数轴与有理数大小的比较的方法是解题的关键.在数轴上标出有理数a 的相反数a -所表示的点,再根据“在数轴上表示的两个数,右边的数总比左边的数大”,即可判断答案.【详解】在数轴上标出有理数a 的相反数a -所表示的点,则a ,a -,b 按照从小到大的顺序排列为a a b <-<.故选:A .题型四:数轴的距离问题10.(2024·福建福州·三模)如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是3-,则点B 表示的数是()A.1-B.0C.1D.2【答案】C【分析】本题考查了数轴,熟练掌握数轴上两点之间的距离公式是解题的关键.根据数轴上两点之间的距离公式计算即可.【详解】解:Q点A表示的数是3-,点B距离点A有4个单位,\点B表示的数是341-+=,故选:C.11.(2024·北京·二模)在数轴上,点A,B在原点O的两侧,分别表示数a,3,将点A向左平移1个单位长度,=,则a的值为()得到点C.若CO BOA.2-B.1-C.1D.212.(23-24七年级上·河南新乡·期末)如图,在数轴上点A在原点右侧,距离原点5个单位长度,表示的数是5,点B距离点A是6个单位长度,则点B表示的数是()A.6B.6或6-C.11或6-D.11或1-【答案】D【分析】本题考查了数轴上两点之间的距离,根据题意可列的式子,进而求解,求解数轴上两点之间的距离是解题的关键.【详解】解:∵点B 距离点A 是6个单位长度,则5611+=,或561-=-,∴点B 表示的数是11或1-,故选:D .题型五:数轴的动点问题13.(23-24九年级下·河北保定·期中)如图,一个点在数轴上从原点开始先向右移动1个单位长度,再向左移动a 个单位长度后,该点所表示的数为3-,则a 的值是( )A .4-B .4C .3-D .3【答案】B【分析】本题以数轴为背景考查了两点之间距离公式、解一元一次方程等知识,根据题意,数形结合,由数轴上两点之间距离的表示方法列式求解即可得到答案,熟记数轴上两点之间距离的表示方法是解决问题的关键.【详解】解:根据题意可知,13a -=-,∴4a =,故选:B .14.(23-24七年级上·湖南衡阳·期末)一个动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,已知点P 每秒前进或后退1个单位.设n x 表示第n 秒点P 在数轴上的位置所对应的数,如22x =,44x =,53x =,则2023x 为( )A .673B .674C .675D .676【答案】C 【分析】本题主要考查了数轴上的动点问题,数字类的规律探索,根据题意可知每6秒点P 完成一次前进和一次后退运动,且每6秒内点P 向数轴正方形运动2个单位,再由202363371¸=K 即可得到答案.【详解】解:∵动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,∴每6秒点P 完成一次前进和一次后退运动,且每6秒内点P 向数轴正方形运动2个单位,∵202363371¸=K ,∴2023x 为33721675´+=,故选:C .15.(23-24七年级上·江苏苏州·阶段练习)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数1-的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数2124-的点与圆周上表示数字( )的点重合.A .0B .1C .2D .3【答案】B 【分析】本题主要考查数轴,熟练掌握数轴的特点和围绕圆周对应的数之间的关系的相互关系是解题的关键.根据题意发现规律,即可解得答案.【详解】解:依题意,4次为一个周期,依次为0,3,2,1,21244531¸=,故数轴上表示数2124-的点与圆周上表示数字1的点重合.故选B .题型六:绝对值非负数的应用16.(23-24七年级下·山东潍坊·阶段练习)若5x -与7y +互为相反数,则3x y -的值是( )A .22B .8C .8-D .22-17.(23-24七年级上·河南新乡·阶段练习)若230a b -++=,则a b +的值是( )A .0B .1C .1-D .202118.(23-24七年级上·广东韶关·期末)若320x y -++=,则x y +的值是( ).A .5B .1C .2D .0题型七:化简绝对值问题19.(2024七年级上·全国·专题练习)若0ab ¹,那么a ab b +的取值不可能是( )A .2-B .0C .1D .220.(23-24七年级下·海南省直辖县级单位·期末)实数m 、n 在数轴上的位置如图所示,化简||n m n -+的结果为( )A .mB .m -C .2m n -D .2n m-21.(2024七年级上·江苏·专题练习)若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为( )A .1B .2C .3D .4题型八:有理数的综合问题22.(2024七年级上·浙江·专题练习)把下列各数分别填在表示它所属的横线上:① 3.14-;②(9)++;③425-;④0;⑤(7)+-;⑥13.14;⑦2000;⑧80%-.(填写序号)(1)正数:___________;(2)负数:___________;(3)整数:___________;(4)分数___________.【答案】(1)②⑥⑦(2)①③⑤⑧(3)②④⑤⑦(4)①③⑥⑧【分析】本题考查有理数的分类及定义,掌握有理数的分类及相关定义是解题的关键;(1)根据正数定义进行分类即可;(2)根据负数定义进行分类即可;(3)根据整数定义进行分类即可(4)根据分数定义进行分类即可.【详解】(1)正数:②⑥⑦;故答案为:②⑥⑦;(2)负数:①③⑤⑧;故答案为:①③⑤⑧;(3)整数:②④⑤⑦;故答案为:②④⑤⑦;(4)分数:①③⑥⑧.故答案为:①③⑥⑧.23.(23-24七年级上·广东·单元测试)如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c .(1)填空:a b -______0,a c +______0,b c -______0.(用<或>或=号填空)(2)化简:a b a c b c ---+-.24.(23-24七年级下·甘肃陇南·阶段练习)阅读材料:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离可表示为AB a b =-.例如:7与1-两数在数轴上所对应的两点之间的距离表示为()718--=,6x -的几何意义是数轴上表示有理数x 的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数轴上两点A 、B 对应的数分别为1-和2,数轴上另有一个点P 对应的数为有理数x .(1)请根据阅读材料填空:点P 、A 之间的距离PA =________(用含x 的式子表示);若该距离为4,则x =________.(2)根据几何意义,解决下列问题:①若点P 在线段AB 上,则12x x ++-=________.②若125x x ++-=,求点P 表示的有理数x .值等知识.熟练掌握在数轴上表示有理数是,数轴上两点之间的距离,绝对值的几何意义,绝对值方程,化简绝对值是解题的关键.【专题训练】一、单选题25.(23-24七年级上·四川南充)在π223.141500.333 2.010********--¼-¼,,,中,非负数的个数( )A .2个B .3个C .4个D .5个【答案】B【分析】本题考查了非负数的定义,解题的关键是掌握非负数的定义.根据“零和正数统称为非负数”,即可求解.【详解】解:非负数有:3.141502.010010001¼,,,共3个,故选:B .26.(2024七年级上·全国·专题练习)下列各对数中,互为相反数的有( )()1-与1+;()2--与()2+-;12æö--ç÷èø与12æö++ç÷èø;()1-+与()1+-;()2-+与()2--A .1对B .2对C .3对D .4对即互为相反数的有3对.故选:C .27.(2024七年级上·山东青岛·专题练习)下列关于零的说法中,正确的是( )A .零是正数B .零是负数C .零既不是正数,也不是负数D .零仅表示没有【答案】C【分析】本题考查了对数的理解与运用,注意:负数都小于零,正数都大于零,零既不是正数也不是负数,整数包括正整数、零、负整数;零不仅表示没有,还表示一个介于负数与正数之间的一个数.依据题意,零大于负数,小于正数,零既不是正数也不是负数,整数包括正整数、零、负整数,从而即可根据以上内容判断求解.【详解】解:A 、零不是正数,说法错误;B 、零不是负数,说法错误;C 、零既不是正数,也不是负数,说法正确;D 、零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故选:C .28.(23-24七年级上·安徽合肥·期末)在()5--,0.8-,0,|6|-四个数中,最小的数是( )A .()5--B .0.8-C .0D .|6|-【答案】B【分析】本题考查了有理数比较大小,正数大于0,0大于负数,两个负数其绝对值大的反而小,负数都小于0是解题关键.根据正数大于0,0大于负数,两个负数其绝对值大的反而小,可得答案.【详解】解:()50.80|6|--<-<<-,故最小的数是5-.故选:B29.(2024七年级上·江苏·专题练习)下列说法正确的是( )A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来【答案】C【分析】本题考查了数轴的应用,根据数轴上的点与有理数的对应关系进行解答.【详解】解:A .数轴上一个点只能表示一个数,不能表示两个不同的数,故选项错误;B .数轴上两个不同的点表示两个不同的数,故选项错误;C .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点,正确;D .所有的有理数都可以用数轴上的点表示,故选项错误.故本题选:C .30.(23-24七年级上·江苏常州·期末)有理数a ,b 在数轴上的对应点的位置如图所示.把a -,b ,0按照从小到大的顺序排列,正确的是( )A .0a b<-<B .0a b -<<C .0b a <<-D .0b a <-<按照从小到大的顺序排列为0a <-31.(2024七年级上·全国·专题练习)下列有关相反数的说法:①符号相反的数叫相反数;②数轴上原点两旁的数是相反数;③()3--的相反数是3-;④a -一定是负数;⑤若两个数之和为0,则这两个数互为相反数; ⑥若两个数互为相反数,则这两个数一定是一个正数一个负数.其中正确的个数有( )A .2个B .3个C .4个D .5个【答案】A【分析】本题考查相反数的定义,依据相反数的定义进行判断即可.【详解】解:①符号相反的两个数不一定互为相反数,如2-与3,故①错误;②数轴上原点两旁的数不一定互为相反数,如2-和3,故②错误;③()33--=,3的相反数是3-,故③正确;④a -不一定是负数,如0a =时,0a -=,故④错误;⑤若两个数之和为0,则这两个数互为相反数,故⑤正确;⑥0的相反数是0,故⑥错误.故选:A .32.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是( )A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数二、填空题33.(24-25七年级上·河南安阳·开学考试)乒乓球被誉为我国的“国球”,在正规比赛中,乒乓球的标准质量为2.7克.0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作.【答案】0.03-【分析】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.【详解】解:把一个超出标准质量0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作0.03-,故答案为:0.03-.34.(2024七年级上·北京·专题练习)把下列各数填入它所属的集合内3-,30%,215-,0, 5.32-(1)整数集合{____________________……};(2)分数集合{____________________……};(3)非负数集合{____________________……}.【答案】(1)3-,035.(24-25七年级上·河南南阳·开学考试)在56-,2-,0.35,2.4,25%,0,6,1-,97,24,100.2这些数中,( )是自然数,()是整数,( )最大,( )最小.36.(24-25七年级上·全国·随堂练习)已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)337.(2024七年级上·浙江·专题练习)已知m 是有理数,则|2||4||6||8|m m m m -+-+-+-的最小值是.三、解答题38.(2024七年级上·江苏·专题练习)在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-比较原数的大小为:1443 1.50325-<-<-<<-<.39.(2024七年级上·全国·专题练习)化简下列各式的符号,并回答问题:(1)()2--;(2)15æö+-ç÷èø;(3)()4éù---ëû(4)()3.5éù--+ëû;(5)(){}5éù----ëû(6)(){}5éù---+ëû问:①当5+前面有2012个负号,化简后结果是多少?②当5-前面有2013个负号,化简后结果是多少?你能总结出什么规律?(3)()44éù---=-ëû;(4)()3.5 3.5éù--+=ëû;(5)(){}55éù----=ëû;(6)(){}55éù---+=-ëû;①当5+前面有2012个负号,化简后结果是5+;②当5-前面有2013个负号,化简后结果5-,总结规律:一个数的前面有奇数个负号,化简的结果等于它的相反数,有偶数个负号,化简的结果等于它本身.40.(2024七年级上·全国·专题练习)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段()101AB ==--;线段220BC ==-;线段()321AC ==--问题:(1)数轴上点M N 、代表的数分别为9-和1,则线段MN =___________;(2)数轴上点E F 、代表的数分别为6-和3-,则线段EF =___________;(2)解:∵点E F 、代表的数分别为6-和3-,∴线段()363EF =---=;故答案为:3;(3)解:由题可得|2|5m -=,则25m -=或25m -=-,解得7m =或3m =-,∴m 值为7或3-.41.(2024七年级上·江苏·专题练习)同学们都知道,()42--表示4与2-的差的绝对值,实际上也可理解为4与2-两数在数轴上所对应的两点之间的距离;同理3x -也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)求()42--= ;(2)若25x -=,则x = ;(3)请你找出所有符合条件的整数x ,使得123x x -++=.。
第一讲-数轴与绝对值
课 题第一讲:数轴与绝对值复习教学目标1、理解数轴的概念,掌握数轴的三要素,会画数轴;、理解数轴的概念,掌握数轴的三要素,会画数轴;2、会用数轴上的点表示、会用数轴上的点表示有理数有理数,能说出数轴上的点表示的有理数;,能说出数轴上的点表示的有理数;3、利用数轴理解相反数的意义,会求一个数的相反数。
、利用数轴理解相反数的意义,会求一个数的相反数。
4、理解绝对值的意义,会求一个数的绝对值;、理解绝对值的意义,会求一个数的绝对值;5、能熟练运用法则结、能熟练运用法则结合数合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序个负数的大小,能利用数轴对多个有理数进行有序排列排列 重点、难点重点重点:1:1:1、理解、理解数轴上的点与有理数之间的关系 2、绝对值的概念和求一个数的绝对值;难点难点:1:1:1、、从数形结合的观点出发认识相反数。
从数形结合的观点出发认识相反数。
2、绝对值的、绝对值的几何意义几何意义及求绝对值等于某一个正数的有理数;及求绝对值等于某一个正数的有理数; 考点及考试要求1、用数轴上的点表示有理数以及有理数的相反数、用数轴上的点表示有理数以及有理数的相反数2、求一个数的绝对值、求一个数的绝对值3、利用数轴比较有理数的大小、利用数轴比较有理数的大小教学内容 知识框架1、数轴的概念及画法2、数轴上的点与有理数之间的关系3、绝对值的几何意义4、 绝对值的代数意义5、 绝对值的性质知识点一: 数的分类1、正数和负数的概念的概念比比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数既不是正数,也不是负数. . 为了突出数的符号,为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略号不能省略. .对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数. .2、有理数的概念及分类及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和正分数;负整数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限,因为有限小数小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为以看作是分母为 1 1的分数,但本章中的分数是指不包括分母是1的分数的分数. .通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为,即为自然数自然数;负整数和零统称为非正整数.【题型一】例1.把下列各数分别填入相应的把下列各数分别填入相应的集合集合:-3.5 -3.5,,-12,3.23.2,,8.18.1,,0,.1.3,-20%-20%,,5,14,-7-7.. 整整数集:{ { ……};分数集:分数集:分数集:{ { { ……}; 自然数集:自然数集:自然数集:{ { { ……}; 非负数集:非负数集:非负数集:{ { { ……}; 非正数集:非正数集:非正数集:{ { { ……}.变式1:把下列各数填入相应的数集圈:把下列各数填入相应的数集圈:-2.1 -2.1,,0,-2-2,,15,1010,,-52,+5.8+5.8,,.6.2,50%50%..变式2:下列既不是正数又不是负数的是(下列既不是正数又不是负数的是( )A 、-、-11B 、+、+33C 、0.12 D 、0 例2. 下列各数-5,31,71_,0,-212,314,-m(m 是有理数)中,一定是负数的有()。
七年级数学上册第一单元《有理数》-解答题专项经典题(2)
一、解答题1.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.2.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.3.(1)在图所示的数轴上标出以下各数:52- ,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.计算 (1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦;(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.7.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.9.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.10.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.11.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭;(2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.14.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--.解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】 先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 15.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.18.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg ),故答案为:296;(2)(+21)-(-8)=29(kg ),故答案为:29;(3)4-3-5+14-8+21-6=17(kg ),17+100×7=717(kg ),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.19.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.20.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④;(3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 21.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭ =-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-.解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.23.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯=7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 25.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.计算下列各题:(1)(14﹣13﹣1)×(﹣12);(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12)=(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.27.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 28.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.29.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.30.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =;∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数及其运算(1)A
一、填空题.
1.在-3和2之间的整数有.
2.)10(--的相反数是.
3.数轴上的A 点与表示-2的点距离3个单位长度,则A 点表示的数为.
4.比较大小:71-61-;332133
8. 5.常熟市某天上午的温度是5
了96.绝对值大于1而不大于37.有理数-3,0,20,-1.25,1数是,非负数是。
8-11;
2
1;-31;41;;9.321-的倒数是 ,321-10.已知|a|=4,那么a =。
11绝对值等于本身的数是
12. 数轴上-1所对应的点为A ,将距离为_____.
二、选择题.
1.温度从C 05下降C 0
8后为()
A .C 03
B .
C 013 C .C 03-
D .C 013- 2.对-1的叙述正确的是()
A .是最小的负数
B .是最大的负数
C .是最小的整数
D .是最大的负整数
3.下列说法中:(1)0是最小的自然数;(2)0是最小的正数;(3)0是最大的负整数;(4)
0属于整数集合;(5)0既非正数也非负数.正确的是()
A .(1)(2)(4)
B .(4)(5)
C .(1)(4)(5)
D .(1)(2)(5)
4.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()
A.在家
B.在学校
C.在书店
D.不在上述地方
5.下列判断中,正确的是( )
(A)正整数和负整数统称为整数 (B)正数和负数统称为有理数
(C)整数和分数统称为有理数 (D)自然数和负数统称为有理数
6.零是( )
(A)奇数 (B)偶数 (C)质数 (D)正数
三、解答题:
1.把下列各数填在相应的大括号内:
1.2-,3,1,4
1,0,-14.3,101-,6.20,25-,1056,-7. 正分数集合:{ …}; 非负数集合:{ …};
正整数集合:{ …};负整数集合:{ …}.
2.一条笔直的公路旁边建有3个公路养护站,已知A 距C 站10千米,B 站距C 站4千米,请你用数轴的知识分析一下A 站和B 站的距离可能是多少?
3.画出数轴,在数轴上表示下列各数,并用“<”连接:
5+,5.3-,
21,2
11-,4,0,5.2
4.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):
+5,-3,+10,-8,-6,+12,-10.
(1)守门员是否回到了原来的位置?
(2)守门员离开球门的位置最远是多少?
(3)守门员一共走了多少路程?
5.写出大于-4.1小于2.5的所有整数,并把它们在数轴上表示出来.
6.已知a 是最小的正整数,b 的相反数还是它本身,c 比最大的负整数大3,计算(2a+3c)·b 的值.。