极化恒等式
向量数量积替代方式--极化恒等式
向量数量积替代方式--极化恒等式在向量运算中,数量积是一种常见的操作,用于计算两个向量之间的数量关系。
然而,当我们处理复杂的运算时,使用极化恒等式可以简化计算过程,提高效率。
本文将介绍向量数量积替代方式--极化恒等式的原理和应用。
1. 极化恒等式的原理极化恒等式是基于向量的线性性质和数量积的定义而推导出来的。
根据极化恒等式,任何一个向量数量积都可以表示为两个向量的线性组合。
具体而言,对于任意向量a和b,其数量积可以表示为a与b的和与差的线性组合。
2. 极化恒等式的应用极化恒等式在向量运算和证明中有广泛的应用。
以下是一些常见的应用场景:2.1 向量的模长计算根据极化恒等式,可以将向量的模长计算转化为数量积的计算。
通过取向量与自身的数量积开根号,即可得到向量的模长。
2.2 向量的垂直判定对于两个向量a和b,如果它们的数量积为零,则可以判断它们是垂直的。
这是因为根据极化恒等式,数量积为零意味着两个向量的和与差相等,即它们的夹角为90度。
2.3 向量的投影计算通过极化恒等式,可以将向量的投影计算转化为数量积的计算。
具体而言,将待投影向量与投影方向的单位向量进行数量积运算,即可得到向量在该方向上的投影长度。
3. 总结极化恒等式是一种简化向量运算的有效方法。
通过将数量积表示为两个向量的线性组合,我们可以利用向量的线性性质进行更加简洁和高效的计算。
在实际应用中,极化恒等式常用于向量的模长计算、垂直判定和投影计算等问题。
希望本文对您理解向量数量积替代方式--极化恒等式有所帮助。
第2讲 极化恒等式
第2讲极化恒等式结论:设a b、是两个平面向量,则有恒等式()()2214a b a b a b ⎡⎤=+--⎢⎥⎣⎦ ,在三角形中,也可以用三角形的中线来表示,22AB AC AM MB =- 。
极化恒等式的作用主要在于,它可以将两个向量的数量积转化为这两个向量之和或之差,因此,当两个向量之和或之差为定值时,常常可以考虑利用极化恒等式进行转化求解。
典型例题1.(2012浙江15)在ABC ∆中,M 是BC 的中点,3AM =,10BC =,则AB AC =.法1解:设AMB θ∠=,则AMC πθ∠=-.又AB MB MA =- ,AC MC MA =- ,∴(AB AC = )(MB MA - 2)MC MA MB MC MB MA MA MC MA -=--+,2553cos 35cos()916θπθ=--⨯-⨯-+=-,故答案为16-.法2:极化恒等式22223516AB AC AM MB =-=-=-2.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA =,1BF CF =- ,则BE CE的值是.法1解:D 是BC 的中点,E ,F 是AD 上的两个三等分点,∴BF BD DF =+ ,CF BD DF =-+ ,3BA BD DF =+ ,3CA BD DF =-+ ,∴221BF CF DF BD =-=- ,2294BA CA DF BD =-= ,∴258DF = ,2138BD = ,又 2BE BD DF =+ ,2CE BD DF =-+,∴22748BE CE DF BD =-= ,故答案为:78法2:极化恒等式FDAD BD FD CF BF BD AD CA BA 3142222=-=-=∙=-=∙分别解出FD ²和BD ²的值,即可求解CMDG O3.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB的取值范围是.法1解:以AB 所在的直线为x 轴,以线段AB 的垂直平分线为y 轴建立平面直角坐标系,如图所示;且圆O 的直径为AB ,设(,)M x y ,则(4,0)A ,(4,0)B -,(4,)MA x y =-- ,(4,)MB x y =--- ,222(4)(4)()16MA MB x x y x y =---+-=+-,又M 是圆O 的弦CD 上一动点,且6CD =,所以2216916x y -+ ,即22716x y + ,其中最小值在CD 的中点时取得,所以MA MB的取值范围是[9-,0].故答案为:[9-,0].法2直接使用极化恒等式22MA MB MO OA=-4MO ≤≤ ,4OA =[]9,0MA MB ∴∈-一课一练1.(2013•浙江二模)如图放置的边长为1的正方形ABCD 的顶点A 、D 分别在x 轴、y 轴正半轴上(含原点)上滑动,则OB OC的最大值是.2.(2018•天津)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE的最小值为()A .2116B .32C .2516D .33、(2017•新课标Ⅱ)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-参考答案1)法1解:如图令OAD θ∠=,由于1AD =故0cos A θ=,sin OD θ=,如图2BAX πθ∠=-,1AB =,故cos cos()cos sin 2Bx πθθθθ=+-=+,sin()cos 2B y πθθ=-=故(cos sin ,cos )OB θθθ=+同理可求得(sin ,cos sin )C θθθ+,即(sin ,cos sin )OC θθθ=+,∴(cos sin OB OC θθ=+,cos )(sin θθ ,cos sin )1sin 2θθθ+=+,OB OC的最大值是2故答案是2法2:极化恒等式如图,取BC ,AD 中点E ,F ,22214OB OC OE EB OE =-=-根据极化恒等式13122OE OF EF ≤+=+=所以有最大值22)法1解:如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥ ,AD CD ⊥,120BAD ∠=︒,1AB AD ==,1cos602AN AB ∴=︒=,3sin 602BN AB =︒=,13122DN ∴=+=,32BM ∴=,3tan 302CM MB ∴=︒=,3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,32,C ,设(0,)E m ,∴(1,)AE m =- ,3(2BE =- ,32m -,0m ,∴22233321(()224216416AE BE m m m =+-=-+-=-+ ,当m =2116.故选:A .法2:极化恒等式22214EA EB EF FA EF =-=-当EF CD ⊥时,15144EF EK KF =+=+=251214416EA EB ⎛⎫=-=⎪⎝⎭最小3)法1解:建立如图所示的坐标系,以BC 中点为坐标原点,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,则()PA x y =-- ,(1,)PB x y =--- ,(1,)PC x y =--,则22223()222[(]4PA PB PC x y x y +=-+=+--∴当0x =,y =时,取得最小值332(42⨯-=-,故选:B .法2:极化恒等式222222()()()2PA PB PC PE EA PF FA PE PF +=-+-=+- 当P 位于EF 中点时,有最小值。
极化恒等式
极化恒等式
1极化恒等式的推导:
(如图,有向量OA与向量OB,两向量之和为OD,其中E为AB,OD的中点) 2使用条件:共起点内积
3适用于:平面向量,空间向量
3使用方法:找斜边中点,再使用公式代入
4
例1:
解析:取BC的中点E,AD的中点为F
=
−→
−
⋅
−→
−
OC
OB
2
2−→
−
-
−→
−
EC
OE
=2
−→
−
OE
-
2
2
1
⎪
⎭
⎫
⎝
⎛
由三角形两边和大于第三边可以得到:
OE ≤OF+EF
OF 为直角三角形OAD 的中线,所以OF=2
1 EF=1
所以:−→−⋅−→−OC OB 的最大值为2
例2:
我们在此题的基础上增加一点难度:求−→−⋅−→−PD
PC 的最小值和最大值 解答:根据“极化恒等式”的方法,我们找到斜边CD 的中点O 点,则 −→−⋅−→−PD PC =22−→−-−→−OD
PO 其中OD=1
故我们只需要判断PO 的最大值与最小值
根据三角形两边和大于第三边,我们得到:
1)PO ≤AP+AO 2)PO+AO ≥AO
(其中AP=1,AO=5)
所以PO 的最大值为(5+1),最小值为(5-1)
故:−→−⋅−→−PD
PC 的最大值为(5+25),最小值为(5+25)。
高考数学复习:向量极化恒等式全
必有DP0⊥AB.因此CE⊥AB,又E为AB的中点,所以AC=BC.
12
2.如图所示,正方形 ABCD 的边长为 1,A,D 分别在 x 轴,y 轴的正半轴
(含原点)上滑动,则O→C·O→B的最大值是____2____.
12
解析 如图,取BC的中点M,AD的中点N,连接MN,ON,
则O→C·O→B=O→M2-14.
因为 OM≤ON+NM=12AD+AB=32, 当且仅当O,N,M三点共线时取等号.
所以O→C·O→B的最大值为 2.
12
解析 由正方体的棱长为2,得内切球的半径为1,
正方体的体对角线长为 2 3.
当弦MN的长度最大时,MN为球的直径.设内切球的球心为O,
则P→M·P→N=P→O2-O→N2=P→O2-1. 由于 P 为正方体表面上的动点,故 OP∈[1, 3],所以P→M·P→N∈[0,2].
能力 提升
利用向量的极化恒等式可以快速对数量积进行转化,体现了 向量的几何属性,特别适合于以三角形为载体,含有线段中 点的向量问题.
极化恒等式:a·b=a+b2-a-b2. 2 2
a+b2 a-b2
|a+b|2 |a-b|2
变式:a·b= 4 - 4 ,a·b= 4 - 4 .
如图,在△ABC 中,设 M 为 BC 的中点,则A→B·A→C=A→M2-M→B2.
例 (1)如图,在△ABC 中,D 是 BC 的中点,E,F 是 AD 上的两个三等
跟踪演练
1.已知在△ABC 中,P0 是边 AB 上一定点,满足 P0B=14AB,且对于边 AB
极化恒等式PDF
极化恒等式补充1极化恒等式:()()2214a b a b a b ⎡⎤⋅=+--⎢⎥⎣⎦极化恒等式的几何意义是:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即222214a b AD BC AM BM ⎡⎤⋅=-=-⎣⎦ 2极化恒等式的应用例1ABC M BC AM=3BC=10AB AC=∆⋅ 在中,是的中点,,,则解析:221925162AB AC AM BC ⋅=-=-=- 00001ABC P AB P B=AB AB P 4PB PC P B P C ∆⋅≥⋅ 例2:设,是边上一定点,满足,且对于边上任意一点,恒有,则0.90A ABC ∠=0.90B BAC ∠=.C AB AC =.D AC BC=22022000000BC D PD P D PBC PB PC=PD BD P BC P B P C=P D ,PD P D P D AB AC=BCBD ∆⋅-∆⋅-≥⊥ 解析:取中点,连接,,在内使用极化恒等式得在内使用极化恒等式得由条件知,即,故3ABCD P AB APB PC PD f⋅ 例:设正方形的边长为4,动点在以为直径的圆弧上,则第三题图第四题图解析:[]24,225016.PC PD PE PE PC PD ⎡⎤⋅=-∈⋅∈⎣⎦由图知,,,故,2min ABC 4ABC E F AB AC P EF S =2PC PB+BC =∆⋅ 例:在中,点,分别是线段,的中点,点在直线上,若,则2222222421322,,,44434+BC 23PD BC BC=.43BCPBC PC PB PD BC PC PB BC PD BC h PD BC BC PC PB BC ⋅=-⋅+=+=≥⋅+≥≥⊥ 解析:因此,当且仅当,时等号成立051AOB AOB=60C AB OC P OP BP ∠⋅ 例:如图,在半径为的扇形中,,为弧上的动点,与交于点,则的最小值为解析:如上图所示,213311,PD ,442162OP BP PD OP BP ⎡⎤⎡⎤⋅=-∈⋅∈-⎢⎥⎢⎥⎣⎦⎣⎦ 易知,,则()6ABCD OB OC ⋅ 例:如图放置的边长为1的正方形顶点分别在x轴,y轴正半轴含原点滑动,则的最大值为22111OB OC=OE 12424⎛⎫⋅-≤+-= ⎪⎝⎭ 解析:。
极化恒等式公式高中
极化恒等式公式高中在高中数学的学习中,有一个不太起眼但却十分实用的工具,那就是极化恒等式公式。
极化恒等式,对于很多同学来说,刚接触时可能会觉得有点陌生和头疼。
但别怕,咱们一起来好好琢磨琢磨它。
先来说说极化恒等式的表达式:对于向量\(\vec{a}\)和\(\vec{b}\),有\(\vec{a}\cdot\vec{b} = \frac{1}{4}\left(|\vec{a} + \vec{b}|^2 - |\vec{a}- \vec{b}|^2\right)\)。
这个公式看起来是不是有点复杂?其实呀,它就是在告诉我们向量内积和向量模长之间的一种巧妙关系。
我记得有一次在课堂上,我给同学们讲解极化恒等式。
当时有个同学一脸困惑地问我:“老师,这个公式到底有啥用啊?感觉好抽象。
”我笑了笑,拿起粉笔在黑板上画了一个简单的几何图形。
我说:“同学们,咱们假设这里有一个平行四边形 ABCD,AC 和BD 是它的两条对角线,\(\vec{AB} = \vec{a}\),\(\vec{AD} = \vec{b}\) 。
那 AC 的长度平方加上 BD 的长度平方等于多少呢?” 同学们都开始思考起来。
我接着引导他们:“我们可以利用极化恒等式来解决这个问题。
AC的长度平方就是\(|\vec{a} + \vec{b}|^2\),BD 的长度平方就是\(|\vec{a}- \vec{b}|^2\) 。
所以,AC 的长度平方加上 BD 的长度平方,就等于 2(\(|\vec{a}|^2 + |\vec{b}|^2\))。
”这时候,同学们的眼睛里开始有了亮光,似乎明白了一些。
再举个例子,假如我们要求一个三角形 ABC 中,边 BC 上中线 AD 的长度。
如果知道了\(\vec{AB}\)和\(\vec{AC}\) ,那我们就可以利用极化恒等式轻松搞定。
极化恒等式在解决一些与向量相关的最值问题、几何问题时,往往能发挥出意想不到的效果。
专题一 平面向量的极化恒等式(含解析)
专题八 平面向量的极化恒等式利用向量的极化恒等式可以快速对共起点(终点)的两向量的数量积问题数量积进行转化,体现了向量的几何属性,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积问题,从而用极化恒等式解决.1.极化恒等式:a ·b =14[(a +b )2-(a -b )2]几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.2.平行四边形模式:如图(1),平行四边形ABCD ,O 是对角线交点.则:(1)AB →·AD →=14[|AC |2-|BD |2].3.三角形模式:如图(2),在△ABC 中,设D 为BC 的中点,则AB →·AC →=|AD |2-|BD |2. 三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决. 记忆:向量的数量积等于第三边的中线长与第三边长的一半的平方差. 考点一 平面向量数量积的定值问题 【方法总结】利用极化恒等式求数量积的定值问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线及第三边的长度,从而求出数量积的值.积化恒等式适用于求对共起点(终点)的两向量的数量积,对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积,从而用极化恒等式解决.在运用极化恒等式求数量积时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线及第三边的长度,通常用平面几何方法或用正余弦定理求解,从而得到数量的值.【例题选讲】[例1] (1)(2014·全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( ) A .1 B .2 C .3 D .5答案 A 解析 通法 由条件可得,(a +b )2=10,(a -b )2=6,两式相减得4a·b =4,所以a ·b =1.极化恒等式 a ·b =14[(a +b )2-(a -b )2]=14(10-6)=1.(2) (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.AABC图(2)答案 -16 解析 因为M 是BC 的中点,由极化恒等式得:AB →·AC →=|AM |2-14|BC |2=9-14×100=-16.(3)如图所示,AB 是圆O 的直径,P 是AB 上的点,M ,N 是直径AB 上关于点O 对称的两点,且AB =6,MN =4,则PM →·PN →=( )A .13B .7C .5D .3答案 C 解析 连接AP ,BP ,则PM →=P A →+AM →,PN →=PB →+BN →=PB →-AM →,所以PM →·PN →=(P A →+AM →)·(PB →-AM →)=P A →·PB →-P A →·AM →+AM →·PB →-|AM →|2=-P A →·AM →+AM →·PB →-|AM →|2=AM →·AB →-|AM →|2=1×6-1=5.(4)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32 解析 连结EG ,FH ,交于点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝⎛⎭⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝⎛⎭⎫122=34,因此EF →·FG →+GH →·HE →=32.(5) (2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值为________.答案 78 解析 极化恒等式法 设BD =DC =m ,AE =EF =FD =n ,则AD =3n .根据向量的极化恒等式,有AB →·AC →=AD →2-DB →2=9n 2-m 2=4, FB →·FC →=FD →2-DB →2=n 2-m 2=-1.联立解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78.即BE →·CE →=78.坐标法 以直线BC 为x 轴,过点D 且垂直于BC 的直线为y 轴,建立如图所示的平面直角坐标系xoy ,如图:设A (3a ,3b ),B (-c ,0),C (-c ,0),则有E (2a ,2b ),F (a ,b ) BA →·CA →=(3a +c ,3b )·(3a -c ,3b )=9a 2-c 2+9b 2=4 BF →·CF →=(a +c ,b )·(a -c ,b )=a 2-c 2+b 2=-1,则a 2+b 2=58,c 2=138BE →·CE →=()2a -c ,2b ·()2a -c ,2b =4a 2-c 2+4b 2=78.基向量 BA →·CA →=(DA →-DB →)(DA →-DC →)=4AD →2-BC →24=36FD →2-BC →24=4,BF →·CF →=(DF →-DB →)(DF →-DC →)=4FD →2-BC →24=-1,因此FD →2=58,BC →=132,BE →·CE →=(DE →-DB →)(DE →-DC →)=4ED →2-BC →24=16FD →2-BC →24=78.(6)在梯形ABCD 中,满足AD ∥BC ,AD =1,BC =3,AB →·DC →=2,则AC →·BD →的值为________.BC答案 4 解析 过A 点作AE 平行于DC ,交BC 于E ,取BE 中点F ,连接AF ,过D 点作DH 平行于AC ,交BC 延长线于H ,E 为BH 中点,连接DE ,22212AB DC AB AE AF BF AF ⋅=⋅=-=-=,AC ⋅ 2224BD DB DH BE DE DE =-⋅=-=-,又1FE BE BF =-=,AD ∥BC ,则四边形ADEF 为平行四边形,AF DE =,1AC BD ∴⋅=.B【对点训练】1.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为________.1.答案 1 解析 取AE 中点O ,设|AE |=x (0≤x ≤1),则|AO |=12x ,∴DE →·DA →=|DO |2-|AO |2=12+⎝⎛⎭⎫12x 2 -14x 2=1. 2.如图,△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,P 为线段OC 的中点,则AP →·OP →= ( )A .1B .116C .14D .-122.答案 B 解析 取AO 中点Q ,连接PQ ,AP →·OP →=P A →·PO →=PQ 2-AQ 2=516-14=116.3.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC →·DC →的值 是________.3.答案 9 解析 因为AB →·AD →=AO →2-OD →2=9-OD →2=-7⇒OD →2=16,所以BC →·DC →=CO →2-OD →2=25 -16=9.4.已知点A ,B 分别在直线x =3,x =1上,|OA →-OB →|=4,当|OA →+OB →|取最小值时,OA →·OB →的值是_____. A .0 B .2 C .3 D .64.答案 C 解析 如图,点A ,B 分别在直线x =1,x =3上,|AB →|=4,当|OA →+OB →|取最小值时,AB 的 中点在x 轴上,OA →·OB →=OM →2-BM →2=4-4=0.5.在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于( ) A .16 B .29 C .1318 D .135.答案 C 解析 解法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos60°=⎝⎛⎭⎫132+12-2×13×1×12=79,即AD =73,同理可得AE =73,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE =79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD →·AE →=|AD →|·|AE →|cos ∠DAE =73×73×1314=1318. 解法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=(-16,-32),AE →=⎝⎛⎭⎫16,-32,所以AD →·AE →=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.极化恒等式法 取DE 中点F ,连接AF ,则AD →·AE →=|AF |2-|DF |2=34-136=1318.6.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A .89B .109C .259D .2696.答案 B 解析 坐标法 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两 条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝⎛⎭⎫23,23,F ⎝⎛⎭⎫13,43,所以AE →=⎝⎛⎭⎫23,23,AF →=⎝⎛⎭⎫13,43,所以AE →·AF →=23×13+23×43=109.极化恒等式法 取EF 中点M ,连接AM ,则AE →·AF →=|AM |2-|EM |2=54-536=109.7.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是( )A .44B .22C .24D .727.答案 B 解析 如图,取AB 中点E ,连接EP 并延长,交AD 延长线于F ,AP →·BP →=EP 2-AE 2=EP 2-16=2,∴EP =32,又∵CP →=3PD →,AE →=EB →,AB →=DC →,∴AE =2DP ,即△F AE 中,DP 为中位线,AF =2AD =10,AE =12AB =4,FE =2PE =62,AP 2=40,AD →·AB →=AF →·AE →=AP 2-EP 2=40-(32)2=22.8.如图,在△ABC 中,已知AB =4,AC =6,∠A =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=2AE →,若F 为DE 的中点,则BF →·DE →的值为________.A BD CE F8.答案 4 解析 取BD 的中点N ,连接NF ,EB ,则BE ⊥AE ,∴BE =23.在△DEB 中.FN ∥12EB .∴FN=3.BF →·DE →=2FB →·FD →=2(FN 2-DN 2)=4.AB DCE FN9.如图,在△ABC 中,已知AB =3,AC =2,∠BAC =120°,D 为边BC 的中点,若CD ⊥AD ,垂足为E , 则EB →·EC →=________.9.答案 -277 解析 由余弦定理得,BC 2=AB 2+AC 2-2 AB ·AC ·cos120°=19,即BC =19,因为AB →·AC →AD 2-CD 2=|AB |·|AC |·cos120°=-3,所以|AD |=72,因为S △ABC =2S △ADC ,则12|AB |·|AC |·sin120°=2·12|AD ||CE |,解得|CE |=3217,在Rt △DEC 中,|DE |=CD 2-CE 2=5714,所以EB →·EC →=|ED |2-|CD |2=-277.B10.在平面四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,且AB =1,EF =2,CD =5,若AD →·BC →=15.则AC →·BD →的值为________.10.答案 解析 极化恒等式 如图,取, , , AB AC CD BD 中点, , , H I J K ,四边形ABCD 中,易知, , EF KI HJ 三线共点于O ,2215154AD BC HK HI HO IO ⋅=⇒⋅==-,又4AC BD HE HF ⋅=⋅=()224HO FO -,在EFI ∆中,12,2EF EI FI ===,由中线长公式知214IO =,从而24HO =,AC BD ⋅=14(4)142-=.基向量法2EF AB DC =+,22242EF AB DC AB DC ∴=++⋅, AB DC EF =又=1,1AB DC ∴⋅=,15 ()()15AD BC AC CD BD DC ⋅=∴+⋅+=,,则2AC BD AC DC CD BD DC ⋅+⋅+⋅-15=,可化为()()515AC BD AB BC DC CD BC CD ⋅++⋅+⋅+-=,15, AC BD AB DC ⋅+⋅= AC BD ⋅故=14.BCADE OF考点二 平面向量数量积的最值(范围)问题 【方法总结】利用极化恒等式求数量积的最值(范围)问题的步骤(1)取第三边的中点,连接向量的起点与中点;(2)利用积化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线长的最值(范围),从而得到数量的最值(范围).积化恒等式适用于求对共起点(终点)的两向量的数量积的最值(范围)问题,利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围.对于不共起点和不共终点的问题可通过平移转化法等价转化为对共起点(终点)的两向量的数量积的最值(范围)问题,从而用极化恒等式解决.在运用极化恒等式求数量积的最值(范围)时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式,难点在于求中线长的最值(范围),通过观察或用点到直线的距离最小或用三角形两边之和大于等于第三边,两边之差小于第三边或用基本不等式等求得中线长的最值(范围),从而得到数量的最值(范围).【例题选讲】[例1](1)若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值为________.答案 -98 解析 a ·b =18[(2a +b )2-(2a -b )2]=18[|2a +b |2-|2a -b |2]≥02-328=-98.当且仅当|2a +b |=0,|2a -b |=3,即|a |=34,|b |=32,< a ,b >=π时,a ·b 取最小值-98.(2)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是________.答案214解析 坐标法 以直线n 为x 轴,过点A 且垂直于n 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图:则A ()0,3,C ()c ,0,B ()b ,2,则AB →=()b ,-1,AC →=()c ,-3,从而()b +c 2+()-42=52,即()b +c 2=9,又AC →·AB →=bc +3≤()b +c 24+3=214,当且仅当b =c 时,等号成立.极化恒等式 连接BC ,取BC 的中点D ,AB →·AC →=AD 2-BD 2,又AD =12||AB →+AC →=52,故AB →·AC →=254-BD 2=254-14BC 2,又因为BC min =3-1=2,所以(AB →·AC →) max =214.(3)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1答案 B 解析 方法一 (解析法) 建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B .方法二 (几何法) 如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B .极化恒等式法 设BC 的中点为D ,AD 的中点为M ,连接DP ,PM ,∴P A →·(PB →+PC →)=2PD →·P A →=2|PM→|2-12|AD →|2=2|PM →|2-32≥-32.当且仅当M 与P 重合时取等号.BC(4)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB →的取值范围是________.答案 [-2,6] 解析 取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:P A →·PB →=|PD |2-14|AB |2=|PD |2-3,因为P 在圆O 上,所以当P 在点C 处时,|PD |max =3,当P 在CO 的延长线与圆O 的交点处时,|PD |min =1,所以P A →·PB →∈[-2,6].(5)如图,已知P 是半径为2,圆心角为π3的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为_____.答案 5-213 解析 通法 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),设P (2cos θ,2sin θ)⎝⎛⎭⎫π3≤θ≤2π3,则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ),其中0<tan φ=36<33,所以0<φ<π6,当θ=π2-φ时,PC →·P A →取得最小值,为5-213. 极化恒等式法 设圆心为O ,由题得AB =2,∴AC =3.取AC 的中点M ,由极化恒等式得PC →·P A →=PM →2-AM →2=PM →2-94,要使PC →·P A →取最小值,则需PM 最小,当圆弧AB ︵的圆心与点P ,M 共线时,PM 最小.易知DM =12,∴OM =⎝⎛⎭⎫122+(3)2=132,所以PM 有最小值为2-132,代入求得PC →·P A →的最小值为5-213.(6)在面积为2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF上,则PC →·PB →+BC →2的最小值是________.答案 23 解析 取BC 的中点为D ,连接PD ,则由极化恒等式得PC →·PB →+BC →2=PD →2-BC →24+BC→2=PD →2+3BC →24≥AD →24+3BC →24,此时当且仅当AD →⊥BC →时取等号,PC →·PB →+BC →2≥AD →24+3BC →24≥2AD →24·3BC →24=23.另解 取BC 边的中点M ,连接PM ,设点P 到BC 边的距离为h .则S △ABC =12·||BC →·2h =2⇒||BC→=2h,PM ≥h ,所以PB →·PC →+BC →2=⎝⎛⎭⎫PM →2-14BC →2+BC →2=PM →2+34BC →2=PM →2+3h 2≥h 2+3h2≥23(当且仅当||PM →=h ,h 2=3时,等号成立)【对点训练】1.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点, 则(P A →+PB →)·PC →的最小值为( )A .-14B .-13C .-12D .-11.答案 C 解析 P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得,PO →·PC →=|PD |2-|CD |2=|PD |2-14,又|PD |2min =0,∴(P A →+PB →)·PC →的最小值为-12.2.如图,设A ,B 是半径为2的圆O 上的两个动点,点C 为AO 中点,则CO →·CB →的取值范围是( )A .[-1,3]B .[1,3]C .[-3,-1]D .[-3,1]2.答案 A 解析 建立平面直角坐标系如图所示,可得O (0,0),A (-2,0),C (-1,0),设B (2cos θ, 2sin θ).θ∈[0,2π).则CO →·CB →=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3].故选A .极化恒等式法 连接OB ,取OB 的中D ,连接CD ,则CO →·CB →=|CD |2-|BD |2=CD 2-1,又|CD |2min =0,∴CO →·CB →的最小值为-1.|CD |2max =2,∴CO →·CB →的最大值为3.3.如图,在半径为1的扇形AOB 中,∠AOB =π3,C 为弧上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值为________.3.答案 -116 解析 取OB 的中点D ,连接PD ,则OP →·BP →=|PD →|2-|OD →|2=|PD →|2-14,于是只要求求PD 的最小值即可,由图可知,当PD ⊥AB ,时,PD =34,即所求最小值为-116.4.(2020·天津)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.4.答案 16 132 解析 第1空 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6,所以AD →=16BC →,即λ=16.第2空 通法 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a ,0),不妨设点N 在点M 右侧,则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN→=a 2-a +274=⎝⎛⎭⎫a -122+132.所以当a =12时,DM →·DN →取得最小值132. 极化恒等式法 如图,取MN 的中点P ,连接PD ,则DM →·DN →=PD →2-MP →2=PD →2-14,当PD →⊥BC →时,|PD→|2取最小值274,所以DM →·DN →的最小值为132.BC5.在△ABC 中,AC =2BC =4,∠ACB 为钝角,M ,N 是边AB 上的两个动点,且MN =1,若CM CN ⋅的最小值为34,则cos ∠ACB =________.5.答案解析 取MN 的中点P ,则由极化恒等式得2221144CM CN CP MN CP ⋅=-=-,∵ CM CN ⋅的最小值为34,∴min 1CP =,由平几知识知:当CP ⊥AB 时,CP 最小,如图,作CH ⊥AB ,H 为垂足,则CH =1,又AC =2BC =4,所以∠B =30o ,sin A =14,所以cos ∠ACB =cos (150o -A ).6.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 6.答案 [-9,0] 解析 如图,MA →·MB →=MO →2-AO →2=MO →2-16,∵|OG →|≤|OM →|≤|OC →|,∴7≤|OM →|≤4,∴MA →·MB →的取值范围是[-9,0].7.如图,设正方形ABCD 的边长为4,动点P 在以AB 为直径的弧APB 上,则PC →·PD →的取值范围为______. 7.答案 [0,16] 解析 如图取CD 的中点E ,连接PE ,PC →·PD →=PE →2-DE →2=OE →2-2,2≤|PE →|≤25, 所以PC →·PD →的取值范围为[0,16].8.已知正△ABC 内接于半径为2的圆O ,AE 交圆O 于点F ,则F A →·FB →的取值范围是________.8.答案 [0,6] 解析 取AB 的中点D 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23.又由极化恒等式得:F A →·FB →=|FD |2-|AD |2=|FD |2-3,因为F 在劣弧BC 上,所以当F 在点C 处时,|FD |max =3,当F 在点B 处时, |PD |min =3,所以P A →·PB →∈[0,6].9.已知AB 是半径为4的圆O 的一条弦,圆心O 到弦AB 的距离为1,P 是圆O 上的动点,则P A →·PB →的取 值范围为_________.9.答案 [-6,10] 解析 极化恒等式法 设AB 的中点为C ,连接CP ,则P A →·PB →=|PC →|2-|AC →|2=|PC →|2-15.|PC →|2-15≥25-15=10,|PC →|2-15≤9-15=-6.10.矩形ABCD 中,AB =3,BC =4,点M ,N 分别为边BC ,CD 上的动点,且MN =2,则AM →·AN →的最小值为________.10.答案 15 解析 取K 为MN 中点,由极化恒等式,AM →·AN →=|AK |2-1,显然K 的轨迹是以点C 为圆心,1为半径的圆周在矩形内部的圆弧,所以|AK |min =5-1=4,所以AM →·AN →的最小值为15.AD11.在△ABC 中,已知AB =3,C =π3,则CA →·CB →的最大值为________.11.答案 32解析 设D 是AB 的中点,连接CD ,点O 是△ABC 的外心,连接DO 并延长交圆O 于C ´,由△ABC ´是等边三角形,∵AD =32,∴C ´D =32,则CA →·CB →=|CD →|2-|DA →|2=|CD →|2-(32)2≤|C ´D →|2-34=(32)2-34=32.∴(CA →·CB →)max =32.12.已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( )A .∠ABC =90°B .∠BAC =90° C .AB =ACD .AC =BC12.答案 D 解析 如图所示,取AB 的中点E ,因为P 0B =14AB ,所以P 0为EB 的中点,取BC 的中点D ,则DP 0为△CEB 的中位线,DP 0∥CE .根据向量的极化恒等式,有PB →·PC →=PD →2-DB →2,P 0B →·P 0C →=P 0D →2-DB →2.又PB →·PC →≥P 0B →·P 0C →,则|PD →|≥|P 0D →|恒成立,必有DP 0⊥AB .因此CE ⊥AB ,又E 为AB 的中点,所以AC =BC .13.在正方形ABCD 中,AB =1,A ,D 分别在x ,y 轴的非负半轴上滑动,则OC →·OB →的最大值为______.13.答案 2 解析 如图取BC 的中点E ,取AD 的中点F ,OC →·OB →=OE →2-BE →2=OE →2-14,而|OE →|≤|OF →|+|FE →|=12||AD →|+|FE →||=12+1=32,当且仅当O ,F ,E 三点共线时取等号.,所以OC →·OB →的最大值为2.14.在三角形ABC 中,D 为AB 中点,∠C =90°,AC =4,BC =3,E ,F 分别为BC ,AC 上的动点,且EF =1,则DE →·DF →最小值为________. 14.答案154 解析 设EF 的中点为M ,连接CM ,则|CM →|=12,即点M 在如图所示的圆弧上,则DE →·DF → =|DM →|2-|EM →|2=|DM →|2-14≥||CD |-12|2-14=154.ABC DE M15.在Rt ABC 中,∠C =90°,AC =3,AB =5,若点A ,B 分别在x ,y 轴的非负半轴上滑动,则OA →·OC →的最大值为________.15.答案 18 解析 如图取AC 的中点M ,取AB 的中点N ,则OA →·OC →=OM →2-AM →2=OM →2-(32)2≤(ON →2-NM →2)-(32)2=(2+52)2-(32)2=18.16.已知正方形ABCD 的边长为2,点F 为AB 的中点,以A 为圆心,AF 为半径作弧交AD 于E ,若P 为劣弧EF 上的动点,则PC →·PD →的最小值为______.16.答案 5-25 解析 如图取CD 的中点M ,PC →·PD →=PM 2-DM 2=PM 2-1,而|PM |+1=|PM |+|AP |≥|AM |=5,当且仅当P ,Q 重合时等号成立,所以PC →·PD →的最小值为(5-1)2-1=5-25.C17.如图,已知B ,D 是直角C 两边上的动点,AD ⊥BD ,|AD →|=3,∠BAD =π6,CM →=12(CA →+CB →),CN →=12(CD →+CA →),则CM →·CN →的最大值为________.ABCDMN17.答案13+44 解析 设MN 的中点为G ,BD 的中点为H ,CM →·CN →=|CG →|2-|GN →|2=|CG →|2-116, ∵|CG →|≤|CH →|+|HG →|=12+134,∴CM →·CN →≤(12+134)2-116=13+44.所以CM →·CN →的最大值为13+44.AB CD MNG H18.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BCD =60°,CB =CD =23.若点M 为边BC上的动点,则AM →·DM →的最小值为________.B C18.答案214解析 设E 是AD 的中点,作EN ⊥BC 于N ,延长CB 交DA 的延长线于F ,由题意可得: FD =3CD =6,FC =2CD =43,∴BF =23,∴AB =2,F A =4,∴AD =2,EN AB =EF F A =54,EN =52.则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.另解 设E 是AD 的中点,作EF ⊥BC 于F ,作AG ⊥EF 于G ,∵AB ⊥BC ,AD ⊥CD ,∴四边形ABCD 共圆,如图,由圆的对称性及∠BCD =60°,CB =CD =23,可知∠BCA =∠DCA =30°,∴AB =2,∵∠GAE =30°,∴GE =12,∴EF =2+12=52,则AM →·DM →=MA →·MD →=|ME →|2-|EA →|2=|ME →|2-1≥EN 2-1=(52)2-1=214.∴AM →·DM →=214.C19.(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则AE →·BE →的最小值为________.19.答案2116解析 通法 如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD =∠CAB =60°,∠ACD =∠ACB =30°,则D (0,0),A (1,0),B ⎝⎛⎭⎫32,32,C (0,3).设E (0,y )(0≤y ≤3),则AE →=(-1,y ),BE →=⎝⎛⎭⎫-32,y -32,所以AE →·BE →=32+y 2-32y =⎝⎛⎭⎫y -342+2116,所以当y =34时,AE →·BE→有最小值2116.极化恒等式法 如图,取AB 的中点P ,连接PE ,则AE →·BE →=PE →2-AP →2=PE →2-14,当PE →⊥CD →时,|PE→|取最小值,由几何关系可知,此时,PE →2=2516,所以DM →·DN →的最小值为2116.20.如图,圆O 为Rt △ABC 的内切圆,已知AC =3,BC =4,C =π2,过圆心O 的直线l 交圆于P ,Q 两点,则BP →·CQ →的取值范围为________.20.答案 [-7,1] 解析 易知,圆的半径为1,BP →·CQ →=(BC →+CP →)·CQ →=BC →·CQ →+CP →·CQ →=CP →·CQ →-CB →·CQ →,CP →·CQ →=CO →2-OP →2=2-1=1.CB →·CQ →=|CB →||CQ →|cos ∠BCQ =2|CQ →|cos ∠BCQ ,(|CQ →|cos ∠BCQ )min =0,(|CQ →|cos ∠BCQ )max =4.所以BP →·CQ →的取值范围为[-7,1].21.在三棱锥S -ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,点M 为三棱锥S -ABC 的外接球面上任意一点,则MA →·MB →的最大值为________.21.答案 23+2 解析 如图,MA →·MB →=MO 1→2-2.当M ,A ,B 在同一个大圆上且MO 1⊥AB ,点M 与线段AB 在球心的异侧时,|MO 1→|最大,又2R =22+22+22=23,所以R =3.|MO 1→|max =3+1,MO 1→2-2的最大值为23+2.A22.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时,PM →·PN →的取值范围是________.22.答案 [0,2] 解析 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为23.当弦MN 的长度最大时,MN 为球的直径.设内切球的球心为O ,则PM →·PN →=PO →2-ON →2=PO →2-1.由于P 为正方体表面上的动点,故OP ∈[1,3],所以PM →·PN →∈[0,2].23.已知线段AB 的长为2,动点C 满足CA →·CB →=λ(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值为________.23.答案 -34解析 如图取AB 的中点为D ,连接CD ,则CA →·CB →=|CD →|2-1=λ,|CD →|=1+λ,()-1≤λ<0, 又由点C 总不在以点B 为圆心,12为半径的圆内,故1+λ≤12,则负数λ的最大值为-34.24.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .824.答案 C 解析 如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得:OP →·FP →=|PE |2-14|OF |2=|PE |2-14,∵|PE |2max =254,∴OP →·FP →的最大值为6.。
极化恒等式公式
极化恒等式公式1、基本极化恒等式基本极化恒等式又称为Stokes方程,它是理解介质中电磁波传播的基本方程。
它由波动磁场场强E和磁场场强H的外场响应组成,可以概括为:E =εHH=-D其中ε表示极化率,D表示电导率。
我们可以从它推导出其他极化恒等式,如:2、垂直极化恒等式垂直极化恒等式又称为Faraday方程,它是介质中电磁波传播的重要方程,可以根据基本极化恒等式推导而来,它包括垂直极化分量的电离度、垂直极化作用的等效度以及垂直极化圆盘的传播常数等因素,可以表示为:Dtanθ=ε+ηV其中,θ表示极化角,η表示磁导率,V表示电位场的垂直极化分量。
3、水平极化恒等式水平极化恒等式由基本极化恒等式推导而来,它表达了水平极化作用的电离度、极化作用的等效度、电位场的水平极化分量以及水平极化圆盘的传播常数等因素,可以表示为:cosθ=ε+ηV其中,θ表示极化角,η表示磁导率,V表示电位场的水平极化分量。
4、反射极化恒等式反射极化恒等式可以由基本极化恒等式推导而来,用来研究电磁波在介质之间沿极化方向传播时所见到的反射现象。
这个公式可以表达用于反射电离度、等效度、反射圆盘传播常数以及反射角等因素,可以表示为:Et/Es=(ncosθ-μsinθ) / (ncosθ+μsinθ)其中,θ表示反射极化角,n为介质的电离度,μ为介质的等效度,Es 为入射波的强度,Et为反射波的强度。
5、传播极化恒等式传播极化恒等式凝结了电磁波在介质中沿一定方向传播时的电离度、等效度,以及传播极化圆盘的传播常数等因素,它可以由基本极化恒等式推出,可以表示为:H/E=ncosθ/μsinθ其中,θ表示传播极化角,n为介质的电离度,μ为介质的等效度,E 为入射波的强度,H为传播波的强度。
极化恒等式证明
极化恒等式证明
极化恒等式公式为:当H是实空间时,(x,y)=(1/4)(‖x+y‖^2-‖x-y‖^2);当H是复空间时,(x,y)=(1/4)(‖x+y‖^2-‖x-y‖^2+i‖x+iy‖^2-i‖x-iy‖^2)。
极化恒等式(polarization identity)是联系内积与范数的一个重要的等式,是用范数表示内积的公式。
设H是内积空间,‖·‖是由内积(·,·)导出的范数。
对于实内积空间上的双线性埃尔米特泛函以及复内积空间上的双线性泛函φ(x,y)也分别有类似于上述的恒等式。
极化恒等式之恒等式简介:
恒等式(identities),数学概念,恒等式是无论其变量如何取值,等式永远成立的算式。
恒等式成立的范围是左右函数定义域的公共部分,两个独立的函数却各自有定义域,与x在非负实数集内是恒等的,而在实数集内是不恒等的。
恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个解析式之间的一种关系。
它来源于e^ix=cosx+isinx(复数的三角表示),令x=π就得e^πi + 1 = 0。
极化恒等式结论
极化恒等式结论极化恒等式是数学中的一种重要工具,它在各个领域中都有广泛的应用。
本文将从不同角度探讨极化恒等式的定义、性质以及应用,以便读者更好地理解和运用这一概念。
我们来明确极化恒等式的定义。
极化恒等式是一种将多变量函数与单变量函数相联系的等式。
它可以将一个多变量函数表示为一组单变量函数的线性组合,从而使我们能够更好地理解多变量函数的性质和行为。
极化恒等式有许多重要的性质。
首先,它是对称的,即无论变量的顺序如何,等式的结果都是相同的。
其次,它是线性的,即满足线性运算的性质。
这使得我们可以通过对单变量函数进行线性组合来表示多变量函数,从而简化了复杂函数的分析和计算。
此外,极化恒等式还具有可逆性,即我们可以通过反向变换将多变量函数表示为单变量函数的线性组合。
极化恒等式在很多数学领域中都有广泛的应用。
在微分几何中,它可以用来表示曲线的切线和曲率的关系。
在概率论和统计学中,它可以用来推导随机变量的特征函数和矩母函数之间的关系。
在信号处理中,它可以用来分析和合成信号的频谱。
在优化理论中,它可以用来推导约束条件下的最优化问题。
这些应用说明了极化恒等式在不同领域中的重要性和实用性。
除了这些基本的性质和应用外,极化恒等式还有一些有趣的推论。
例如,我们可以通过极化恒等式推导出柯西-施瓦茨不等式和霍尔德不等式等重要的数学不等式。
这些不等式在数学分析和应用中都有重要的作用,它们揭示了函数之间的关系和性质,为我们解决实际问题提供了有力的工具。
极化恒等式是一种重要的数学工具,它能够将多变量函数表示为单变量函数的线性组合,从而简化了复杂函数的分析和计算。
它具有对称性、线性性和可逆性等基本性质,并在微分几何、概率论、统计学、信号处理和优化理论等领域中有广泛的应用。
此外,它还能够推导出一些重要的数学不等式,为我们解决实际问题提供了有力的工具。
通过深入理解和运用极化恒等式,我们能够更好地理解和研究函数的性质和行为,为数学和应用科学的发展做出贡献。
极化恒等式
如图,在△ABC中,设D为BC的中点,
则 · =|AD|2-|BD|2.
(1)推导过程:由 .
(2)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决.
(3)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.
二、极化恒等式的作用和使用范围
1、极化恒等式的作用:
极化恒等式
一、极化恒等式及其推论:
1、极化恒等式:a·b= [(a+b)2-(a-b)2]
(1)公式推导:
(2)几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的 .
2、 平行四边形模式:
如图,平行四边形ABCD,O是对角线交点.
则 · = [|AC|2-|BD|2].
第一步:取第三边的中点,连接向量的起点与中点;
第二步:利用极化恒等式公式,将数量积转化为中线长与第三边长的一半的平方差;
第三步:利用平面几何方法或用正余弦定理求中线及第三边的长度,从而求出数量积,
如需进一步求数量积范围,可以用点到直线或用基本不等式等求得中线长的最值(范围)。
建立了向量的数量积与几何长度(数量)之间的桥梁,实现向量与几何、代数之间的互相转化。
2、极化恒等式的适用范围:
(1)共起点或共终点的两向量的数量积问题可直接进行转化;
(2)不共起点和不共终点的数量积问题可通过向量的平移,
等价转化为共起点或共终点的两向量的数量积问题。
三、极化恒等式使用方法
在确定求数量积的两个向量共起点或共终点的情况下,极化恒等式的一般步骤如下:
高中数学课件-向量极化恒等式
答案:(2)2
→
→
→
→
(3)如图,在△ABC 中,D 是 BC 的中点,E,F 是 AD 上的两个三等分点.·=4,·=-1,
→
→
则·的值为
.
→
→
→
解析:(3)设 BD=DC=m,AE=EF=FD=n,则 AD=3n.根据向量的极化恒等式,有·=||2→
→
答案:(1)C
C.
(2)如图所示,正方形 ABCD 的边长为 1,A,D 分别在 x 轴、y 轴的正半轴(含原点)上滑
→
→
动,则·的最大值是
.
解析:(2)如图,取 BC 的中点 M,AD 的中点 N,连接 MN,ON,
→
→
→
→
→
2
则·=|| -.因为 OM≤ON+NM=AD+AB=,当且仅当 O,N,M 三点共线时取等号,所
2
2
2
→
→
→
→
|| =9n -m =4,·=|| -|| =n2-m2=-1.联立解得 n2= ,m2= ,
→
→
→
→
2
2
→
→
因此·=|| -|| =4n -m =,即·=.
答案:(3)
→
→
→
cos ∠BAD=-||=-,得||=1,因此λ=
→
→
依题意得 AD∥BC,∠BAD=120°,由 · =| || |·
→
→
→
→
→
极化恒等式平行四边形
极化恒等式平行四边形
极化恒等式是解析几何中的一个基本概念,它描述了一个点关于一个圆的极坐标与该点到圆心的距离的平方之间的关系。
在平面直角坐标系中,极化恒等式可以表示为:$x^2+y^2=r^2 cdot cos^2 theta$。
平行四边形是几何学中的一个重要概念,它是由两组平行线所夹的四边形。
一个平行四边形的两对相邻边互相平行,且对角线相交于其中心点。
在解析几何中,我们可以利用极化恒等式来推导平行四边形的性质。
具体地,对于一个平行四边形ABCD,我们可以选择其中一个角
点作为圆心O,以该点到不相邻的两条边所在直线的距离作为半径r,再利用极化恒等式可以得到ABCD的对角线相交于圆心O,且对角线
的长度相等,即AC=BD。
此外,我们还可以利用极化恒等式证明平行四边形的两条对角线平分彼此,即AO=CO,BO=DO。
具体来说,我们可以选择其中一条对
角线所在的直线作为极轴,根据极化恒等式可以得到另一条对角线上的点关于该极轴的极坐标相等,从而证明两条对角线平分彼此。
总之,极化恒等式是解析几何中一个非常重要的基本概念,它不仅可以用来描述点和圆之间的关系,还可以应用于证明平行四边形的性质。
- 1 -。
有道数学关旭极化恒等式
关旭:极化恒等式
1极化恒等式的推导:
(如图,有向量OA与向量OB,两向量之和为OD,其中E为AB,OD的中点)
2使用条件:共起点内积
3适用于:平面向量,空间向量
3使用方法:找斜边中点,再使用公式代入
4
例1:
解析:取BC的中点E,AD的中点为F
=
−→
−
⋅
−→
−
OC
OB
2
2−→
−
-
−→
−
EC
OE
=2
−→
−
OE
-
2
2
1
⎪
⎭
⎫
⎝
⎛
由三角形两边和大于第三边可以得到:
OE ≤OF+EF
OF 为直角三角形OAD 的中线,所以OF=2
1 EF=1
所以:−→−⋅−→−OC
OB 的最大值为2
例2:
我们在此题的基础上增加一点难度:求−→−⋅−→−PD
PC 的最小值和最大值 解答:根据“极化恒等式”的方法,我们找到斜边CD 的中点O 点,则
−→−⋅−→−PD
PC =22−→−-−→−OD PO 其中OD=1 故我们只需要判断PO 的最大值与最小值
根据三角形两边和大于第三边,我们得到:
1)PO ≤AP+AO
2)PO+AO ≥AO
(其中AP=1,AO=5)
所以PO 的最大值为(5+1),最小值为(5-1)
故:−→−⋅−→−PD
PC 的最大值为(5+25),最小值为(5+25)。