2017年高考数学理模拟试题5(带答案)

合集下载

2017年浙江省温州市瑞安七中高考数学模拟试卷(理科)

2017年浙江省温州市瑞安七中高考数学模拟试卷(理科)

2017年浙江省温州市瑞安七中高考数学模拟试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}【答案】B【解析】解:∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.故选:B.进行补集、交集的运算即可.考查全集、补集,及交集的概念,以及补集、交集的运算,列举法表示集合.2.设a=(),b=(),c=(),则a,b,c的大小关系是()A.a>c>bB.a>b>cC.c>a>bD.b>c>a【答案】A【解析】解:∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A根据幂函数与指数函数的单调性直接可以判断出来.本题主要考查幂函数与指数的关系.要充分利用函数图象、函数的单调性来解决问题.3.函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为()A. B. C.0 D.【答案】B【解析】解:令y=f(x)=sin(2x+φ),则f(x+)=sin[2(x+)+φ]=sin(2x++φ),∵f(x+)为偶函数,∴+φ=kπ+,∴φ=kπ+,k∈Z,∴当k=0时,φ=.故φ的一个可能的值为.故选B.利用函数y=A sin(ωx+φ)的图象变换可得函数y=sin(2x+φ)的图象沿x轴向左平移个单位后的解析式,利用其为偶函数即可求得答案.本题考查函数y=A sin(ωx+φ)的图象变换,考查三角函数的奇偶性,属于中档题.4.已知,,则tan2α=()A. B. C. D.【答案】C【解析】解:由sinα+2cosα=,则(sinα+2cosα)2=,即sin2α+4sinαcosα+4cos2α=,可得,解得tanα=3.那么tan2α==.故选:C.根据同角三角函数关系式和万能公式化简后求出tanα,利用二倍角公式求出tan2α的值.本题主要考察了同角三角函数关系式和万能公式的应用,属于基本知识的考查.5.向量,,在正方形网络中的位置如图所示,若=λ+μ(λ,μ∈R),则=()A.-8B.-4C.4D.2【答案】C【解析】解:设正方形的边长为1,则易知=(-1,-3),=(-1,1),=(6,2);∵=λ+μ,∴(-1,-3)=λ(-1,1)+μ(6,2),解得,λ=-2,μ=-;故=4;故选:C.设正方形的边长为1,则易知=(-1,-3),=(-1,1),=(6,2);从而可得(-1,-3)=λ(-1,1)+μ(6,2),从而求得.本题考查了平面向量的坐标表示的应用及学生的转化思想的应用.6.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1C.44D.44+1【答案】A【解析】解:由a n+1=3S n,得到a n=3S n-1(n≥2),两式相减得:a n+1-a n=3(S n-S n-1)=3a n,则a n+1=4a n(n≥2),又a1=1,a2=3S1=3a1=3,得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以a n=a2q n-2=3×4n-2(n≥2)则a6=3×44.故选A根据已知的a n+1=3S n,当n大于等于2时得到a n=3S n-1,两者相减,根据S n-S n-1=a n,得到数列的第n+1项等于第n项的4倍(n大于等于2),所以得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a1=1,a n+1=3S n,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题.7.设函数f(x)=2x-cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则=()A.0B.C.D.【答案】D【解析】解:∵f(x)=2x-cosx,∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)-(cosa1+cosa2+…+cosa5),∵{a n}是公差为的等差数列,∴a1+a2+…+a5=5a3,由和差化积公式可得,cosa1+cosa2+…+cosa5=(cosa1+cosa5)+(cosa2+cosa4)+cosa3=[cos(a3-×2)+cos(a3+×2)]+[cos(a3-)+cos(a3+)]+cosa3=2cos cos+2cos cos+cosa3=2cosa3•+2cosa3•cos(-)+cosa3=cosa3(1++),∵f(a1)+f(a2)+…+f(a5)=5π,∴10a3-cosa3(1++)=5π,∴cosa3=0,10a3=5π,故a3=,∴=π2-(-)•=π2-=.故选D.由f(x)=2x-cosx,又{a n}是公差为的等差数列,可求得f(a1)+f(a2)+…+f(a5)=10a3-cosa3(1++),由题意可求得a3=,从而可求得答案.本题考查数列与三角函数的综合,求得cosa3=0,继而求得a3=是关键,也是难点,考查分析,推理与计算能力,属于难题.8.在△ABC,内角A,B,C所对的边长分别为a,b,c.asin B cos C+csin B cos A=b,且a >b,则∠B=()A. B. C. D.【答案】A【解析】解:利用正弦定理化简已知等式得:sin A sin B cos C+sin C sin B cos A=sin B,∵sin B≠0,∴sin A cos C+sin C cos A=sin(A+C)=sin B=,∵a>b,∴∠A>∠B,即∠B为锐角,则∠B=.故选A利用正弦定理化简已知的等式,根据sin B不为0,两边除以sin B,再利用两角和与差的正弦函数公式化简求出sin B的值,即可确定出B的度数.此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式,熟练掌握正弦定理是解本题的关键.9.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线【答案】D【解析】解:A、如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,故A错误;B、如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥,故B错误;C、若六棱锥的所有棱长都相等,则底面多边形是正六边形.由过中心和定点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C错误;D、根据圆锥母线的定义知,故D正确.故选D.通过简单几何体和直观图说明A和B错误,根据正六棱锥的过中心和定点的截面知C 错误,由圆锥的母线进行判断知D正确.本题考查了简单几何体的结构特征的应用,结合柱体、椎体和台体的结构特征,以及几何体的直观图进行判断,考查了空间想象能力.10.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以z O x平面为投影面,则得到正视图可以为()A. B. C. D.【答案】A【解析】解:因为一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以z O x平面为投影面,则得到正视图为:故选A.由题意画出几何体的直观图,然后判断以z O x平面为投影面,则得到正视图即可.本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.11.设x,y满足约束条件,当且仅当x=y=4时,z=ax-y取得最小值,则实数a的取值范围是()A.[-1,1]B.(-∞,1)C.(0,1)D.(-∞,1)∪(1,+∞)【答案】B【解析】解:作出约束条件所对应的可行域(如图阴影),变形目标函数可得y=ax+z,其中直线斜率为a,截距为-z,∵z=ax-y取得最小值的最优解仅为点A(4,4),∴直线的斜率a<1,即实数a的取值范围为(-∞,1)故选:B.作出约束条件所对应的可行域,变形目标函数可得y=ax-z,其中直线斜率为a,截距为-z,由题意可得a的范围.本题考查简单线性规划,准确作图是解决问题的关键,属中档题.12.已知函数f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=e x-e-x,且函数f (x)的两个极值点为α,β(α<β).设λ=,μ=,则()A.g(α)<g(λ)<g(β)<g(μ)B.g(λ)<g(α)<g(β)<g(μ)C.g(λ)<g(α)<g(μ)<g(β)D.g(α)<g(λ)<g(μ)<g(β)【答案】D【解析】解:由题意,f′(x)=(x-x1)(x-x2)+(x-x2)(x-x3)+(x-x1)(x-x3),∵f′()=-<0,f′()=-<0,∵f(x)在(-∞,α),(β,+∞)上递增,(α,β)上递减,∴α<λ<μ<β,∵g(x)=e x-e-x单调递增,∴g(α)<g(λ)<g(μ)<g(β)故选:D.结合一元二次函数的性质判断α<λ<μ<β,判断函数g(x)的单调性进行判断即可.本题主要考查函数值的大小比较,根据条件判断函数的单调性,以及a<λ<μ<β是解决本题的关键.综合性较强,难度较大.二、填空题(本大题共5小题,共32.0分)13.命题“∃x0∈∁R Q,x03∈Q”的否定是______ .【答案】∀x0∈C R Q,x03∉Q【解析】解:因为特称命题的否定是全称命题,所以“∃x0∈C R Q,”的否定是“∀x0∈C R Q,”.故答案为:∀x0∈C R Q,.利用特称命题的否定是全称命题,写出结果即可.本题考查特称命题与全称命题的否定关系的应用,考查基本知识的应用.14.已知,,,,若向量与夹角为锐角,则实数λ取值范围是______ .【答案】>或<且【解析】解:∵,,,,∴=(3λ+2,2λ-1),=(3+2λ,2-λ)∵向量与夹角为锐角∴()=(3λ+2)×(3+2λ)+(2λ-1)×(2-λ)>0且(3λ+2)(2-λ)-(2λ-1)(3+2λ)≠0整理可得,4λ2+18λ+4>0且λ≠1解不等式可得,>或<且λ≠1故答案为:>或<且λ≠1由已知可得,()=(3λ+2)×(3+2λ)+(2λ-1)×(2-λ)>0且两向量不共线,解不等式可求本题主要考查了向量夹角公式的简单应用,要注意向量共线情况的考虑15.若x>0,y>0,则的最小值为______ .【答案】【解析】解:设=t>0,则=+t=+-≥-=-,当且仅当=时取等号.故答案为:-.设=t>0,变形=+t=+-,再利用基本不等式的性质即可得出.本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是______ .【答案】(-,+)【解析】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m-x=+-x,∴AB的取值范围是(-,+).故答案为:(-,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为-;②直线接近点E时,AB趋近最大值,为+;故答案为:(-,+).如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.17.如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【答案】解:(Ⅰ)在△ABC中,由于AB=,BC=1,P为△ABC内一点,∠BPC=90°,直角三角形PBC中,若PB=,∵cos∠PBC===,∴∠PBC=60°.∴∠PBA=∠ABC-∠PBC=90°-60°=30°.在△PBA中,由余弦定理得PA2==,∴PA=.(Ⅱ)设∠PBA=α,由已知得,PB=sinα,在△PBA中,由正弦定理得,,化简得,,∴tanα=,即tan∠PBA=.【解析】(Ⅰ)由题意利用直角三角形中的边角关系求得∠PBC=60°,∠PBA=∠ABC-∠PBC=30°.在△PBA中,由余弦定理求得PA的值.(Ⅱ)设∠PBA=α,由已知得,PB=sinα,在△PBA中,由正弦定理求得tanα的值.本题主要考查正弦定理和余弦定理的应用,三角形的内角和公式,属于基础题.三、解答题(本大题共5小题,共58.0分)18.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【答案】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30-x),0<x<30.(1)S=4ah=8x(30-x)=-8(x-15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(-x3+30x2),V′=6x(20-x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.【解析】(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.考查函数模型的选择与应用,考查函数、导数等基础知识,考查运算求解能力、空间想象能力、数学建模能力.属于基础题.19.设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n-1.(1)求a4的值;(2)证明:{a n+1-a n}为等比数列;(3)求数列{a n}的通项公式.【答案】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;(2)证明:∵4S n+2+5S n=8S n+1+S n-1(n≥2),∴4S n+2-4S n+1+S n-S n-1=4S n+1-4S n(n≥2),即4a n+2+a n=4a n+1(n≥2),∵,∴4a n+2+a n=4a n+1.∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.【解析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+2+5S n=8S n+1+S n-1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式.(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.【答案】解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,∴B(n)-A(n)=C(n)-B(n),即a n+1-a1=a n+2-a2,亦即a n+2-a n+1=a2-a1=4.故数列{a n}是首项为1,公差为4的等差数列,于是a n=1+(n-1)×4=4n-3.(2)证明:(必要性):若数列{a n}是公比为q的等比数列,对任意n∈N*,有a n+1=a n q.由a n>0知,A(n),B(n),C(n)均大于0,于是===q,===q,即==q,∴三个数A(n),B(n),C(n)组成公比为q的等比数列;(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则B(n)=q A(n),C(n)=q B(n),于是C(n)-B(n)=q[B(n)-A(n)],即a n+2-a2=q(a n+1-a1),亦即a n+2-qa n+1=a2-qa1.由n=1时,B(1)=q A(1),即a2=qa1,从而a n+2-qa n+1=0.∵a n>0,∴==q.故数列{a n}是首项为a1,公比为q的等比数列.综上所述,数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A (n),B(n),C(n)组成公比为q的等比数列.【解析】(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)-A(n)=C(n)-B(n),即a n+1-a1=a n+2-a2,整理即可得数列{a n}是首项为1,公差为4的等差数列,从而可得a n.(2)必要性:由数列{a n}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得a n+2-qa n+1=a2-qa1.由n=1时,B(1)=q A(1),即a2=qa1,从而a n+2-qa n+1=0,即充分性成立,于是结论得证.本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.21.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【答案】解:(I)函数f(x)=ln(x+1)+a(x2-x),其中a∈R,x∈(-1,+∞).′=.令g(x)=2ax2+ax-a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2-8a(1-a)=a(9a-8).①当<时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(-1,+∞)上单调递增,无极值点.②当a>时,△>0,设方程2ax2+ax-a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴<,>.由g(-1)>0,可得-1<x1<.∴当x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(-1)=1>0,可得x1<-1<x2.∴当x∈(-1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a>时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x-ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2-x)=ax2+(1-a)x,当x>时,ax2+(1-a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].【解析】(I)函数f(x)=ln(x+1)+a(x2-x),其中a∈R,x∈(-1,+∞).′=.令g(x)=2ax2+ax-a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a-8).①当<时,△≤0,②当a>时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x-ln(x+1),x∈(0,+∞),研究其单调性,即可判断出本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.22.已知函数f(x)=|ax+1|,a∈R.(Ⅰ)若∀x∈R,f(x)+f(x-2)≥1恒成立,求实数a的取值范围;(Ⅱ)若f()+f()+f()=4,求f()+f()+f()的最小值.【答案】解:(Ⅰ)由题意可得f(x)+f(x-2)=|ax+1|+|a(x-2)+1|=|ax+1|+|2a-ax-1|≥|ax+1+2a-ax-1|=|2a|,可见,|2a|≥1,即或;(Ⅱ)由知|a|+|b|+|c|=4,而=a2+b2+c2,因为16=(|a|+|b|+|c|)2=a2+b2+c2+2|ab|+2|ac|+2|bc|,又2|ab|≤a2+b2,2|ac|≤a2+c2,2|cb|≤c2+b2,所以,16≤3(a2+b2+c2),即,等号成立当且仅当a=b=c.因此,的最小值是.【解析】(Ⅰ)化简f(x)+f(x-2)=|ax+1|+|2a-ax-1|,由绝对值不等式可得f(x)+f(x-2)的最小值为2a,可得|2a|≥1,解得a的范围;(Ⅱ)化简条件可得|a|+|b|+|c|=4,化简要求的式子为a2+b2+c2,由基本不等式可得所求最小值.本题考查绝对值不等式的性质,基本不等式的运用,考查化简整理的运算能力,属于中档题.。

【山东省】2017年高考数学(理科)-排列组合、二项式定理-专题练习-答案

【山东省】2017年高考数学(理科)-排列组合、二项式定理-专题练习-答案

排列组合、二项式定理解析1.[从E到G需要分两步完成:先从E到F,再从F到G。

从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条。

如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F。

因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条)。

所以小明到老年公寓的最短路径条数为6×3=18.]2.D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择。

由分步乘法计数原理,知有C13·A44=72(个)。

]3.C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种。

综上,不同的“规范01数列”共有20-6=14(种)。

故共有14个。

故选C.]4.A[分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法。

由分步乘法计数原理得,不同的选派方案共有2×6=12(种)。

]5.B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种。

根据分类计数原理,得208+264=472,故选B.]6.A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,13·!m!m!=7·+!+!m!=6.]D·。

【高考真题】2017年山东省高考数学试卷(理科) 含答案解析

【高考真题】2017年山东省高考数学试卷(理科) 含答案解析

2017年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成(x n+1的区域的面积T n.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.2017年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=x i=22.5,=y i=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.=(3x)r=3r x r.【解答】解:(1+3x)n的展开式中通项公式:T r+1∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X01234PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna),(0,+∞)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a ﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【点评】本题考查了利用导数研究函数的单调性极值、方程的解法、不等式的解法、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于难题.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC 的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin=.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.【解答】解:(Ⅰ)由题意知,,解得a=,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△=>0.,.∴|AB|=.由题意可知圆M的半径r为r=.由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|=.由题意可知,sin=.而=.令t=,则t>1,∈(0,1),因此,=≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【点评】本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.。

2017年上海市虹口区高考数学一模试卷(解析版)

2017年上海市虹口区高考数学一模试卷(解析版)

2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x ,y 满足x 2+y 2=1时,|x +2y +a |+|3﹣x ﹣2y |的取值与x ,y 均无关,则实数a 的取范围是 .二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m ,n 表示二条直线,则下列命题中错误的是( )A .若m ∥α,m 、n 不平行,则n 与α不平行B .若m ∥α,m 、n 不垂直,则n 与α不垂直C .若m ⊥α,m 、n 不平行,则n 与α不垂直D .若m ⊥α,m 、n 不垂直,则n 与α不平行14.已知函数在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( )A .B .C .D .15.如图,在圆C 中,点A 、B 在圆上,则的值( )A .只与圆C 的半径有关B .既与圆C 的半径有关,又与弦AB 的长度有关 C .只与弦AB 的长度有关D .是与圆C 的半径和弦AB 的长度均无关的定值16.定义f (x )={x }(其中{x }表示不小于x 的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是( ) ①f (2x )=2f (x ); ②若f (x 1)=f (x 2),则x 1﹣x 2<1;③任意x 1,x 2∈R ,f (x 1+x 2)≤f (x 1)+f (x 2);④.A .①②B .①③C .②③D .②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】解:∵函数在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。

2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)及答案

2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)及答案

2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设复数z满足z•(1+i)=2i(i是虚数单位),则|z|=()A.B.2C.1D.2.(5分)A={x|y=lg(x2+3x﹣4)},,则A∩B=()A.(0,2]B.(1,2]C.[2,4)D.(﹣4,0)3.(5分)下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A.y=﹣x3B.y=ln|x|C.y=cosx D.y=2﹣|x|4.(5分)等比数列{a n},若a12=4,a18=8,则a36为()A.32B.64C.128D.2565.(5分)已知,且,则sin2α的值为()A.B.C.D.6.(5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图时,若输入a,b分别为18,27,则输出的a=()A.0B.9C.18D.547.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8.(5分)3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为()A.B.C.D.9.(5分)已知AB⊥AC,AB=AC,点M满足,若,则t的值为()A.B.C.D.10.(5分)中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(﹣c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率,则双曲线的离心率e2的范围是()A.B.C.(2,3)D.11.(5分)三棱锥P﹣ABC中,底面△ABC满足BA=BC,,P在面ABC 的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到面ABC的距离为()A.2B.3C.D.12.(5分)设函数,若曲线上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为()A.[0,e2﹣e+1]B.[0,e2+e﹣1]C.[0,e2+e+1]D.[0,e2﹣e﹣1]二、填空题(本大题共4小题,每小题5分).13.(5分)某校有男教师80人,女教师100人现按男、女比例采用分层抽样的方法从该校教师中抽取x 人参加教师代表大会,若抽到男教师12人,则x= .14.(5分)平面上,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,则有(其中S △PAB 、S △PCD 分别为△PAB 、△PCD 的面积);空间中,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,点E 、F 为射线PL 上的两点,则有= (其中V P ﹣ABE 、V P ﹣CDF 分别为四面体P﹣ABE 、P ﹣CDF 的体积).15.(5分)已知数列{a n }满足,则{a n }的前50项的和为 .16.(5分)已知圆C :x 2+y 2=25,过点M (﹣2,3)作直线l 交圆C 于A ,B 两点,分别过A ,B 两点作圆的切线,当两条切线相交于点N 时,则点N 的轨迹方程为 .三、解答题(解答应写出文字说明,证明过程或演算步骤.) 17.(12分)已知是函数f (x )=msinωx ﹣cosωx (m >0)的一条对称轴,且f (x )的最小正周期为π(Ⅰ)求m 值和f (x )的单调递增区间;(Ⅱ)设角A ,B ,C 为△ABC 的三个内角,对应边分别为a ,b ,c ,若f (B )=2,,求的取值范围.18.(12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值(精确到0.01),并说明理由.19.(12分)如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,.(Ⅰ)λ为何值时,MN∥平面ABC?(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.20.(12分)已知椭圆的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求的最大值.21.(12分)已知f(x)=e2x+ln(x+a).(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f (x)≥(x+1)2+x.(2)若存在x0∈[0,+∞),使得成立,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.(10分)已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1,(t为参数).(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线.设P(﹣1,1),曲线C2与交于A,B两点,求|PA|+|PB|.[选修4-5:不等式选讲]23.已知x,y∈R.(Ⅰ)若x,y满足,,求证:;(Ⅱ)求证:x4+16y4≥2x3y+8xy3.2017年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设复数z满足z•(1+i)=2i(i是虚数单位),则|z|=()A.B.2C.1D.【解答】解:由z•(1+i)=2i,得,则|z|=.故选:A.2.(5分)A={x|y=lg(x2+3x﹣4)},,则A∩B=()A.(0,2]B.(1,2]C.[2,4)D.(﹣4,0)【解答】解:A={x|y=lg(x2+3x﹣4)}={x|x2+3x﹣4>0}={x|x>1或x<﹣4},={y|0<y≤2},则A∩B=(1,2],故选:B.3.(5分)下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A.y=﹣x3B.y=ln|x|C.y=cosx D.y=2﹣|x|【解答】解:A.y=﹣x3是奇函数,不是偶函数,∴该选项错误;B.x∈(0,+∞)时,y=ln|x|=lnx单调递增,∴该选项错误;C.y=cosx在(0,+∞)上没有单调性,∴该选项错误;D.y=2﹣|x|是偶函数;x∈(0,+∞)时,单调递减,∴该选项正确.故选:D.4.(5分)等比数列{a n},若a12=4,a18=8,则a36为()A.32B.64C.128D.256【解答】解:∵数列{a n}为等比数列,∴a182=a12a24,∵a12=4,a18=8,a12,a18,a24同号∴a24=16.∴由a242=a12a36,得:a36=64,故选:B.5.(5分)已知,且,则sin2α的值为()A.B.C.D.【解答】解:∵,且,∴2(cos2α﹣sin2α)=(cosα+sinα),∴cosα﹣sinα=,或cosα+sinα=0.当cosα﹣sinα=,则有1﹣sin2α=,sin2α=;∵α∈(0,),∴cosα+sinα=0不成立,故选:C.6.(5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图时,若输入a,b分别为18,27,则输出的a=()A.0B.9C.18D.54【解答】解:由a=18,b=27,不满足a>b,则b变为27﹣18=9,由b<a,则a变为18﹣9=9,由a=b=9,则输出的a=9.故选:B.7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图可知,该几何体是底面为边长为2的正方形,一条侧棱垂直底面的四棱锥,高为2,故其体积V=,故选:A.8.(5分)3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为()A.B.C.D.【解答】解:从3名男生中任取2人“捆”在一起记作A,(A共有C32A22=6种不同排法),剩下一名男生记作B,将A,B插入到3名女生全排列后所成的4个空中的2个空中,故有C32A22A42A33=432种,3位男生和3位女生共6位同学站成一排,有A66=720种,∴3位男生中有且只有2位男生相邻的概率为,故选:C.9.(5分)已知AB⊥AC,AB=AC,点M满足,若,则t的值为()A.B.C.D.【解答】解:如图所示,建立直角坐标系.A(0,0).不妨设C(3,0),B(0,3),∵点M满足,∴点M在BC上.设|AM|=a,则acos+a=3,解得a=3﹣3.∴M.∵点M满足,∴=0+(1﹣t)×3,解得t=.故选:C.10.(5分)中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(﹣c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率,则双曲线的离心率e2的范围是()A.B.C.(2,3)D.【解答】解:设椭圆的方程为+=1(a>b>0),其离心率为e1,双曲线的方程为﹣=1(m>0,n>0),其离心率为e2,|F1F2|=2c,∵有公共焦点的椭圆与双曲线在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形,∴在椭圆中,|PF1|+|PF2|=2a,而|PF1|=|F1F2|=2c,∴|PF2|=2a﹣2c,①同理,在该双曲线中,|PF2|=2c﹣2m;②由①②可得m=2c﹣a.∵e1=∈(,),∴<<,又e2====∈(2,3).故选:C.11.(5分)三棱锥P﹣ABC中,底面△ABC满足BA=BC,,P在面ABC 的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到面ABC的距离为()A.2B.3C.D.【解答】解:设AC的中点为D,连接BD,PD,则PD⊥平面ABC,∵△ABC是等腰直角三角形,∴外接球的球心O在PD上,设AB=BC=a,PD=h,外接球半径OC=OP=R,则OD=h﹣R,CD=AC=a,===,∴a2=,∵V P﹣ABC∵CD2+OD2=OC2,即(h﹣R)2+a2=R2,∴R===≥3=,当且仅当即h=3时取等号,∴当外接球半径取得最小值时,h=3.故选:B.12.(5分)设函数,若曲线上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为()A.[0,e2﹣e+1]B.[0,e2+e﹣1]C.[0,e2+e+1]D.[0,e2﹣e﹣1]【解答】解:∵﹣1≤cosx≤1,∴的最大值为e,最小值为1,∴1≤y 0≤e ,显然f (x )=是增函数,(1)若f (y 0)>y 0,则f (f (y 0))>f (y 0)>y 0,与f (f (y 0))=y 0矛盾; (2)若f (y 0)<y 0,则f (f (y 0))<f (y 0)<y 0,与f (f (y 0))=y 0矛盾; ∴f (y 0)=y 0,∴y 0为方程f (x )=x 的解,即方程f (x )=x 在[1,e ]上有解, 由f (x )=x 得m=x 2﹣x ﹣lnx , 令g (x )=x 2﹣x ﹣lnx ,x ∈[1,e ], 则g′(x )=2x ﹣1﹣==,∴当x ∈[1,e ]时,g′(x )≥0, ∴g (x )在[1,e ]上单调递增,∴g min (x )=g (1)=0,g max (x )=g (e )=e 2﹣e ﹣1, ∴0≤m ≤e 2﹣e ﹣1. 故选:D .二、填空题(本大题共4小题,每小题5分).13.(5分)某校有男教师80人,女教师100人现按男、女比例采用分层抽样的方法从该校教师中抽取x 人参加教师代表大会,若抽到男教师12人,则x= 27 .【解答】解:由题意可得=,即x=27, 故答案为:2714.(5分)平面上,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,则有(其中S △PAB 、S △PCD 分别为△PAB 、△PCD 的面积);空间中,点A 、C 为射线PM 上的两点,点B 、D 为射线PN 上的两点,点E 、F 为射线PL 上的两点,则有=(其中V P ﹣ABE 、V P ﹣CDF 分别为四面体P ﹣ABE 、P ﹣CDF 的体积).【解答】解:设PM与平面PDF所成的角为α,则A到平面PDF的距离h1=PAsinα,C到平面PDF的距离h2=PCsinα,=V A﹣PBE==,∴V P﹣ABEV P﹣CDF=V C﹣PDF==,∴=.故答案为:.15.(5分)已知数列{a n}满足,则{a n}的前50项的和为1375.【解答】解:当n是奇数时,cosnπ=﹣1;当n是偶数时,cosnπ=1.则a n=(﹣1)n(n2+4n)=(﹣1)n n2+(﹣1)n×4n,{a n}的前50项的和S50=a1+a2+a3+…+a50,=(﹣12+22﹣32+42﹣…+502)+4(﹣1+2﹣3+4﹣…+50),=(1+2+3+4+…+50)+4×25,=1275+100,=1375,故答案为:137516.(5分)已知圆C:x2+y2=25,过点M(﹣2,3)作直线l交圆C于A,B两点,分别过A,B两点作圆的切线,当两条切线相交于点N时,则点N的轨迹方程为2x﹣3y﹣25=0.【解答】解:设A(m,n),N(x,y),根据圆的对称性可得N点是经过C点垂直于AB的直线与A点切线的交点∵圆x2+y2=25的圆心为C(0,0)∴切线AN的斜率为k1=﹣=﹣,得得AN方程为y﹣n=﹣(x﹣m),化简得y=﹣x+…①又∵直线MA的斜率k MA=,∴直线CN的斜率k2=﹣=,得直线CN方程为y=x…②①②联解,消去m、n得2x﹣3y+25=0,即为点N轨迹所在直线方程.故答案为:2x﹣3y+25=0.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(12分)已知是函数f(x)=msinωx﹣cosωx(m>0)的一条对称轴,且f(x)的最小正周期为π(Ⅰ)求m值和f(x)的单调递增区间;(Ⅱ)设角A,B,C为△ABC的三个内角,对应边分别为a,b,c,若f(B)=2,,求的取值范围.【解答】解:函数f(x)=msinωx﹣cosωx(m>0)化简可得:f(x)=sin(ωx+θ),其中tanθ=﹣.∵f(x)的最小正周期为π,即T=π=,∴ω=2.又∵是其中一条对称轴,∴2×+θ=k,k∈Z.可得:θ=,则tan(kπ﹣)=﹣.m>0,当k=0时,tan=∴m=.可是f(x)的解析式为f(x)=2sin(2x﹣),令2x﹣,k∈Z,得:≤x≤,所以f(x)的单调递增区间为[,],k∈Z.(2)由f(B)=2sin(2B﹣)=2,可得2B﹣=,k∈Z,∵0<B<π,∴B=由正弦定理得:=2sinA﹣sin(A+)=sinA﹣cosA=sin(A﹣)∵0∴A﹣∈(,)∴的取值范围是(,),18.(12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值(精确到0.01),并说明理由.【解答】解:(Ⅰ)根据频率和为1,得(0.06+0.18+2a+0.42+0.52+0.11+0.06+0.03)×0.5=1,解得a=0.30;(Ⅱ)月均用水量不低于3吨的频率为(0.11+0.06+0.03)×0.5=0.1,则p=0.1,抽取的人数为X,则X的可能取值为0,1,2,3;∴P(X=0)=•0.93=0.729,P(X=1)=•0.1•0.92=0.243,P(X=2)=•0.12•0.9=0.027,P(X=3)=•0.13=0.001;∴X的分布列为数学期望为EX=0×0.729+1×0.243+2×0.027+3×0.001=0.3;(Ⅲ)由图可知,月均用水量小于2.5吨的居民人数所占的百分比为0.5×(0.06+0.18+0.3+0.42+0.52)=0.73,即73%的居民月均用水量小于2.5吨;同理,88%的居民月均用水量小于3吨;故2.5<x<3,假设月均用水量平均分布,则x=2.5+0.5×=2.9(吨),即85%的居民每月用水量不超过标准为2.9吨.19.(12分)如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,.(Ⅰ)λ为何值时,MN∥平面ABC?(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.【解答】解:(Ⅰ)当,即M为AF中点时MN∥平面ABC.事实上,取CD中点P,连接PM,PN,∵AM=MF,CP=PD,∴MP∥AC,∵AC⊂平面ABC,MP⊄平面ABC,∴MP∥平面ABC.由CP∥PD,CN∥NE,得NP∥DE,又DE∥BC,∴NP∥BC,∵BC⊂平面ABC,NP⊄平面ABC,∴NP∥平面ABC.∴平面MNP∥平面ABC,则MN∥平面ABC;(Ⅱ)取BC中点O,连OA,OE,∵AB=AC,OB=OC,∴AO⊥BC,∵平面ABC⊥平面BCDE,且AO⊂平面ABC,∴AO⊥平面BCDE,∵OC=,BC∥ED,∴OE∥CD,又CD⊥BC,∴OE⊥BC.分别以OE,OC,OA所在直线为x轴,y轴,z轴,建立空间直角坐标系.则A(0,0,),C(0,1,0),E(1,0,0),,∴F(1,,),M(,,),N().设为平面BMN的法向量,则,取z=1,得.cos<>=.∴直线AN与平面MNB所成角的正弦值为.20.(12分)已知椭圆的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求的最大值.【解答】解:(Ⅰ)弦PQ过椭圆中心,且∠PFQ=90°,则c=丨OF丨=丨PQ丨=1,﹣﹣﹣﹣﹣﹣﹣﹣(2分)不妨设P(x0,y0)(x0,y0>0),∴,△PQF的面积=×丨OF丨×2y0=y0=1,则x0=1,b=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)a2=b2+c2=2,∴椭圆方程为+y2=1;﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)设S(2,t),直线A1S:x=y﹣,则,整理(+2)y2﹣y=0,解得y1=,﹣﹣﹣﹣﹣﹣﹣﹣(7分)同理,设直线A2S:x=y+,得(+2)y2+y=0,解得y2=﹣,﹣﹣﹣﹣﹣﹣﹣﹣(8分)则==丨×丨﹣﹣﹣﹣﹣﹣﹣﹣(10分)≤×=,﹣﹣﹣﹣﹣﹣﹣﹣(11分)当且仅当t2+9=3t2+3,即t=±时取“=”﹣﹣﹣﹣﹣﹣﹣﹣(12分)21.(12分)已知f(x)=e2x+ln(x+a).(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f (x)≥(x+1)2+x.(2)若存在x0∈[0,+∞),使得成立,求实数a的取值范围.【解答】解:(1)a=1时,f(x)=e2x+ln(x+1),f′(x)=2e2x+,①可得f(0)=1,f′(0)=2+1=3,所以f(x)在(0,1)处的切线方程为y=3x+1;②证明:设F(x)=e2x+ln(x+1)﹣(x+1)2﹣x(x≥0),F′(x)=2e2x+﹣2(x+1)﹣1F″(x)=4e2x﹣﹣2=[e2x﹣﹣]+2(e2x﹣1)+e2x>0,(x≥0),所以,F′(x)在[0,+∞)上递增,所以F′(x)≥F′(0)=0,所以,F(x)在[0,+∞)上递增,所以F(x)≥F(0)=0,即有当x≥0时,f(x)≥(x+1)2+x;(2)存在x0∈[0,+∞),使得成立⇔存在x0∈[0,+∞),使得e﹣ln(x0+a)﹣x02<0,设u(x)=e2x﹣ln(x+a)﹣x2,u′(x)=2e2x﹣﹣2x,u″(x)=4e2x+﹣2>0,可得u′(x)在[0,+∞)单调增,即有u′(x)≥u′(0)=2﹣①当a≥时,u′(0)=2﹣≥0,可得u(x)在[0,+∞)单调增,则u(x)min=u(0)=1﹣lna<0,解得a>e;②当a<时,ln(x+a)<ln(x+),设h(x)=x﹣﹣ln(x+),(x>0),h′(x)=1﹣=,另h′(x)>0可得x>,h′(x)<0可得0<x<,则h(x)在(0,)单调递减,在(,+∞)单调递增.则h(x)≥h()=0.设g(x)=e2x﹣x2﹣(x﹣),(x>0),g′(x)=2e2x﹣2x﹣1,g″(x)=4e2x﹣2>4﹣2>0,可得g′(x)在(0,+∞)单调递增,即有g′(x)>g′(0)=1>0,则g(x)在(0,+∞)单调递增,则g(x)>g(0)>0,则e2x﹣x2>x﹣>ln(x+)>ln(x+a),则当a<时,f(x)>2ln(x+a)+x2恒成立,不合题意.综上可得,a的取值范围为(e,+∞).[选修4-4:坐标系与参数方程]22.(10分)已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1,(t为参数).(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线.设P(﹣1,1),曲线C2与交于A,B两点,求|PA|+|PB|.【解答】解:(Ⅰ)∵曲线C1:ρ=1,∴曲线C1的直角坐标方程为:x2+y2=1,∴圆心为(0,0),半径为r=1,(t为参数)消去参数t的C2:y=x+2,(2分)∴圆心到直线距离d=,(3分)∴曲线C1上的点到曲线C2距离的最小值为.(5分)(Ⅱ)∵把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线.∴伸缩变换为,∴曲线:=1,(7分)(t为参数)代入曲线,整理得.∵t1t2<0,(8分)∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|=.(10分)[选修4-5:不等式选讲]23.已知x,y∈R.(Ⅰ)若x,y满足,,求证:;(Ⅱ)求证:x4+16y4≥2x3y+8xy3.【解答】证明:(Ⅰ)利用绝对值不等式的性质得:|x|=[|2(x﹣3y)+3(x+2y)|]≤[|2(x﹣3y)|+|3(x+2y)|]<(2×+3×)=;(Ⅱ)因为x4+16y4﹣(2x3y+8xy3)=x4﹣2x3y+16y4﹣8xy3=x3(x﹣2y)+8y3(2y﹣x)=(x﹣2y)(x3﹣8y3)=(x﹣2y)(x﹣2y)(x2+2xy+4y2)=(x﹣2y)2[(x+y)2+3y2]≥0,∴x4+16y4≥2x3y+8xy3。

2017年上海市静安区高考数学一模试卷(解析版)

2017年上海市静安区高考数学一模试卷(解析版)

2017年上海市静安区高考数学一模试卷一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每一个空格填对得5分,不然一概得零分.1.“x<0”是“x<a”的充分非必要条件,那么a的取值范围是.2.函数的最小正周期为.3.假设复数z为纯虚数,且知足(2﹣i)z=a+i(i为虚数单位),那么实数a的值为.4.二项式展开式中x的系数为.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.已知α为锐角,且,那么sinα=.7.依照有关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,通过x个小时,酒精含量降为p 毫克/100毫升,且知足关系式(r为常数).假设某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,那么这人饮酒后需通过小时方可驾车.(精准到小时)8.已知奇函数f(x)是概念在R上的增函数,数列{x n}是一个公差为2的等差数列,知足f(x7)+f(x8)=0,那么x2017的值为.9.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,那么的最大值为.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,假设对任意实数x均有f(x)•g(x)≤0,那么的最小值为.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必需把答题纸上相应题序内的正确结论代号涂黑,选对得5分,不然一概得零分.11.假设空间三条直线a、b、c知足a⊥b,b⊥c,那么直线a与c()A.必然平行B.必然相交C.必然是异面直线D.平行、相交、是异面直线都有可能12.在无穷等比数列{a n}中,,那么a1的取值范围是()A.B. C.(0,1) D.13.某班班会预备从含甲、乙的6名学生当选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.已知椭圆C1,抛物线C2核心均在x轴上,C1的中心和C2极点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,那么C1的左核心到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.215.已知y=g(x)与y=h(x)都是概念在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),假设y=g(x)﹣h(x)恰有4个零点,那么正实数k的取值范围是()A.B. C.D.三、解答题(此题总分值75分)本大题共有5题,解答以下各题必需在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F别离是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.17.设双曲线C:,F1,F2为其左右两个核心.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)假设动点P与双曲线C的两个核心F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.18.在某海边城市周围海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是不是开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时刻为多久?19.设集合M a={f(x)|存在正实数a,使得概念域内任意x都有f(x+a)>f(x)}.(1)假设f(x)=2x﹣x2,试判定f(x)是不是为M1中的元素,并说明理由;(2)假设,且g(x)∈M a,求a的取值范围;(3)假设(k∈R),且h(x)∈M2,求h(x)的最小值.20.由n(n≥2)个不同的数组成的数列a1,a2,…a n中,假设1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),那么称a i与a j组成一个逆序,一个有穷数列的全数逆序的总数称为该数列的逆序数.如关于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1,…a1的逆序数.2017年上海市静安区高考数学一模试卷参考答案与试题解析一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每一个空格填对得5分,不然一概得零分.1.“x<0”是“x<a”的充分非必要条件,那么a的取值范围是(0,+∞).【考点】必要条件、充分条件与充要条件的判定.【分析】依照充分必要条件的概念求出a的范围即可.【解答】解:假设“x<0”是“x<a”的充分非必要条件,那么a的取值范围是(0,+∞),故答案为:(0,+∞).2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得f(x)的最小正周期.【解答】解:函数=1﹣3•=1﹣•(1+sin2x)=﹣﹣sin2x 的最小正周期为=π,故答案为:π.3.假设复数z为纯虚数,且知足(2﹣i)z=a+i(i为虚数单位),那么实数a的值为.【考点】复数代数形式的乘除运算.【分析】由(2﹣i)z=a+i,得,然后利用复数代数形式的乘除运算化简复数z,由复数z 为纯虚数,列出方程组,求解即可得答案.【解答】解:由(2﹣i)z=a+i,得==,∵复数z为纯虚数,∴,解得a=.那么实数a的值为:.故答案为:.4.二项式展开式中x的系数为10.【考点】二项式定理.【分析】利用二项式展开式的通项公式即可求得答案.,【解答】解:设二项式展开式的通项为T r+1=x2(5﹣r)•x﹣r=•x10﹣3r,那么T r+1令10﹣3r=1得r=3,∴二项式展开式中x的系数为=10.故答案为:10.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【考点】棱柱、棱锥、棱台的体积.【分析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为1米的半圆的周长为=π,那么制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,那么2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.6.已知α为锐角,且,那么sinα=.【考点】两角和与差的余弦函数.【分析】由α为锐角求出α+的范围,利用同角三角函数间的大体关系求出sin(α+)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,那么sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:7.依照有关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,通过x个小时,酒精含量降为p毫克/100毫升,且知足关系式(r为常数).假设某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,那么这人饮酒后需通过8小时方可驾车.(精准到小时)【考点】函数模型的选择与应用.【分析】先求出e r=,再利用89•e xr<20,即可得出结论.【解答】解:由题意,61=89•e2r,∴e r=,∵89•e xr<20,∴x≥8,故答案为8.8.已知奇函数f(x)是概念在R上的增函数,数列{x n}是一个公差为2的等差数列,知足f(x7)+f(x8)=0,那么x2017的值为4019.【考点】数列与函数的综合.【分析】设设x7=x,那么x8=x+2,那么f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,f (x+1)=0=f(0),x7=﹣1.设数列{x n}通项x n=x7+2(n﹣7).取得通项x n=2n﹣15.由此能求出x2020的值.【解答】解:设x7=x,那么x8=x+2,∵f(x7)+f(x8)=0,∴f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,∴f(x+1)=0=f(0),即x+1=0.∴x=﹣1,设数列{x n}通项x n=x7+2(n﹣7)=2n﹣15∴x2017=2×2017﹣15=4019.故答案为:40199.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,那么的最大值为12.【考点】向量在几何中的应用.【分析】成立坐标系,设M (),那么=(),,【解答】解:如图成立平面直角坐标系,A(0,0),B(3,0),C(0.4),三角形ABC外接圆(x﹣)2+(y﹣2)2=,设M (),那么=(),,,故答案为:12.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,假设对任意实数x均有f(x)•g (x)≤0,那么的最小值为4.【考点】大体不等式.【分析】依照对任意实数x均有f(x)•g(x)≤0,求出a,b的关系,可求的最小值.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当x=y=时取等号.故的最小值为4.故答案为:4.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必需把答题纸上相应题序内的正确结论代号涂黑,选对得5分,不然一概得零分.11.假设空间三条直线a、b、c知足a⊥b,b⊥c,那么直线a与c()A.必然平行B.必然相交C.必然是异面直线D.平行、相交、是异面直线都有可能【考点】空间中直线与直线之间的位置关系.【分析】利用正方体的棱与棱的位置关系及异面直线所成的角的概念即可得出,假设直线a、b、c 知足a⊥b、b⊥c,那么a∥c,或a与c相交,或a与c异面.【解答】解:如下图:a⊥b,b⊥c,a与c能够相交,异面直线,也可能平行.从而假设直线a、b、c知足a⊥b、b⊥c,那么a∥c,或a与c相交,或a与c异面.应选D.12.在无穷等比数列{a n}中,,那么a1的取值范围是()A.B. C.(0,1) D.【考点】数列的极限.【分析】利用无穷等比数列和的极限,列出方程,推出a1的取值范围.【解答】解:在无穷等比数列{a n}中,,可知|q|<1,那么=,a1=∈(0,)∪(,1).应选:D.13.某班班会预备从含甲、乙的6名学生当选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【考点】排列、组合的实际应用.【分析】依照题意,分2种情形讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情形数量,由加法原理计算可得答案.【解答】解:依照题意,分2种情形讨论,假设只有甲乙其中一人参加,有C21•C43•A44=192种情形;假设甲乙两人都参加,有C22•C42•A44=144种情形,那么不同的发言顺序种数192+144=336种,应选:A.14.已知椭圆C1,抛物线C2核心均在x轴上,C1的中心和C2极点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,那么C1的左核心到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.2【考点】抛物线的简单性质;椭圆的简单性质.【分析】由表可知:抛物线C2核心在x轴的正半轴,设抛物线C2:y2=2px(p>0),那么有=2p (x≠0),将(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,即可求得抛物线方程,求得准线方程,设椭圆C1:(a>b>0),把点(﹣2,0),(,),即可求得椭圆方程,求得核心坐标,即可求得C1的左核心到C2的准线之间的距离.【解答】解:由表可知:抛物线C2核心在x轴的正半轴,设抛物线C2:y2=2px(p>0),那么有=2p (x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.那么核心坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,,解得:,∴C1的标准方程为+y2=1;由c==,左核心(,0),C1的左核心到C2的准线之间的距离﹣1,应选B.15.已知y=g(x)与y=h(x)都是概念在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),假设y=g(x)﹣h(x)恰有4个零点,那么正实数k的取值范围是()A.B. C.D.【考点】根的存在性及根的个数判定.【分析】问题转化为g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,结合图象取得关于k的不等式组,解出即可.【解答】解:假设y=g(x)﹣h(x)恰有4个零点,即g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,如图示:,结合图象得:,解得:<k<log32,应选:C.三、解答题(此题总分值75分)本大题共有5题,解答以下各题必需在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F别离是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)连接A1C1,由E,F别离是棱AD,CD的中点,可得EF∥AC,进一步取得EF∥A1C1,可知∠A1C1B为异面直线BC1与EF所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体CA1EF的体积转化为三棱锥A1﹣EFC的体积求解.【解答】解:(1)连接A1C1,∵E,F别离是棱AD,CD的中点,∴EF∥AC,那么EF∥A1C1,∴∠A1C1B为异面直线BC1与EF所成角.在△A1C1B中,由AB=a,AA1=2a,得,,∴cos∠A1C1B=,∴异面直线BC1与EF所成角的大小为;(2).17.设双曲线C:,F1,F2为其左右两个核心.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)假设动点P与双曲线C的两个核心F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【考点】直线与双曲线的位置关系.【分析】(1)设M(x,y),,左核心,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出P点轨迹为椭圆,利用,|PF1|+|PF2|=2a,结合余弦定理,和大体不等式求解椭圆方程即可.【解答】解:(1)设M(x,y),,左核心,=…=()对称轴,…(2)由椭圆概念得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…由大体不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…18.在某海边城市周围海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是不是开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时刻为多久?【考点】圆方程的综合应用.【分析】(1)成立直角坐标系,…,那么城市A(0,0),当前台风中心,设t 小时后台风中心P的坐标为(x,y),由题意成立方程组,能求出10小时后,该台风尚未开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图成立直角坐标系,…那么城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),则,现在台风的半径为60+10t,10小时后,|PA|≈184.4km,台风的半径为r=160km,∵r<|PA|,…∴10小时后,该台风尚未开始侵袭城市A.…(2)由(1)知t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,假设城市A受到台风侵袭,则,∴300t2﹣10800t+86400≤0,即t2﹣36t+288≤0,…解得12≤t≤24…∴该城市受台风侵袭的持续时刻为12小时.…19.设集合M a={f(x)|存在正实数a,使得概念域内任意x都有f(x+a)>f(x)}.(1)假设f(x)=2x﹣x2,试判定f(x)是不是为M1中的元素,并说明理由;(2)假设,且g(x)∈M a,求a的取值范围;(3)假设(k∈R),且h(x)∈M2,求h(x)的最小值.【考点】函数与方程的综合运用.【分析】(1)利用f(1)=f(0)=1,判定f(x)∉M1.(2)f(x+a)﹣f(x)>0,化简,通过判别式小于0,求出a的范围即可.(3)由f(x+a)﹣f(x)>0,推出,取得对任意x∈[1,+∞)都成立,然后分离变量,通过当﹣1<k≤0时,当0<k<1时,别离求解最小值即可.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(2)由…∴,…故a>1.…(3)由,…即:∴对任意x∈[1,+∞)都成立∴…当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…当0<k<1时,h(x)min=h(1)=log3(1+k);…当1≤k<3时,.…综上:…20.由n(n≥2)个不同的数组成的数列a1,a2,…a n中,假设1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),那么称a i与a j组成一个逆序,一个有穷数列的全数逆序的总数称为该数列的逆序数.如关于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1,…a1的逆序数.【考点】数列的求和.【分析】(1)由{a n}为单调递减数列,可得逆序数为99+98+ (1)(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:0>a2>a4>…>a2n.可得逆序数.(3)在数列a1,a2,…a n中,假设a1与后面n﹣1个数组成p1个逆序对,那么有(n﹣1)﹣p1不组成逆序对,可得在数列a n,a n﹣1,…a1中,逆序数为(n﹣1)﹣p1+(n﹣2)﹣p2+…+(n﹣n)﹣p n.【解答】解:(1)∵{a n}为单调递减数列,∴逆序数为.(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:∴0>a2>a4>…>a2n.当k为奇数时,逆序数为;当k为偶数时,逆序数为.(3)在数列a1,a2,…a n中,假设a1与后面n﹣1个数组成p1个逆序对,那么有(n﹣1)﹣p1不组成逆序对,因此在数列a n,a n﹣1,…a1中,逆序数为.。

【重庆】2017学年普通高等学年校高考预测数学年(理科)试题(二)

【重庆】2017学年普通高等学年校高考预测数学年(理科)试题(二)

(0,1)(1,4)三、解答题17.解:(Ⅰ)∵等差数列{}n a 中,公差0d >,∴23232323144545544391414n a a a a a d a n a a a a a ===⎧⎧⎧⇒⇒⇒=⇒=-⎨⎨⎨=+=+=⎩⎩⎩; (Ⅱ)∵43n a n =-, ∴221525()(4317)5()424f n n n n n n =--=-=--, ∴当23n =或时,()6f n 取到最小值-.18.解:(1)设事件A 为“两手所取的球不同色”,则2333432()1993P A ⨯+⨯+⨯=-=⨯,(2)依题意,X 的可能取值为0,1,2.左手所取的两球颜色相同的概率为22223429518C C C C ++=,右手所取的两球颜色相同的概率为2223332914C C C C ++=, 5113313(0)(1)(1)18418424P X ==--=⨯=, 51517(1)(1)(1)18418418P X ==⨯-+-⨯=,515(2)18472P X ==⨯=,所以X 的分布列为:1375()01223187236E X =⨯+⨯+⨯=. 19.解:(1)证明:由题意得,,,AD DC AD DF DC DF D ⊥⊥=且,∴AD CDEF ⊥平面,∴AD FC ⊥,∵四边形CDEF 为正方形.∴DC FC ⊥, 由DCAD D =∴FC ABCD ⊥平面, ∴FC AC ⊥又∵四边形ABCD 为直角梯形,,,2,4AB CD AD DC AD AB ⊥==∥∴AC =,BC =222AC BC AB += ∴AC BC ⊥ 由BCFC C =,∴AC FCB ⊥平面, ∴AC FB ⊥.(2)解:由(1)知,,AD DC DE 所在直线相互垂直, 故以D 为原点,,,DA DC DE 所在直线分别为,,x y z 轴, 建立如图所示的空间直角坐标系,…可得(0,0,0),(0,2,2),(2,4,0)D F B ,(0,0,2),(0,2,0),(2,0,0)E C A , 由(1)知平面FCB 的法向量为(2,2,0)AC =-, ∴(0,2,0),(2,2,2)EF FB ==-, 设平面EFB 的法向量为(,,)n x y z =,则有:0200222000n EF y y x y z x y z n FB ⎧===⎧⎧⎪⇒⇒⎨⎨⎨+-=+-==⎩⎩⎪⎩令1(1,0,1)z n =则,设二面角E FB C θ--的大小为,1cos 2||||222n AC n AC θ===-,∵(0,π)θ∈,∴π3θ=.20.解:(1)由题意得:c=1F ,2(0,F ,设00(),P x y 则100()PF x y =-,200,()PF x y =-,由121PF PF =,得:22220000213x y x y +=⇔+=- 又220024x y +=,00,0x y >,∴001x y =⎧⎪⎨=⎪⎩,即所求P(2)设AB 方程为:y m=+,由22124y mx y ⎧=+⎪⎨+=⎪⎩,可得22440x m -++=,22818640m m ∆=+>-,解得m -<1122(),,,()A x y B x y,12x x+=,21244m x x -=, 12||()AB x x=+P AB 到的距离为d = 则1831|AB|d 2ABCS====△ 当且仅当2(m =±∈-时取得最大值.PAB ∠面积的最大值为21.解:(1)0a =时,()e (sin cos )x f x x x =+,()e (sin cos )e (cos sin )2e cos x x x f x x x x x x '=++-=,∴(0)2f '=,(0)1f =,∴切线方程为:12(0)y x -=-,即210x y --=为所求的切线方程; (2)由()2e cos 0x f x x '=≥,得π02x ≤≤,()2e cos 0x f x x '=≤,得ππ2x ≤≤.∴()y f x =在[π0,2]上单调递增,在π[,2π]上单调递减. ∴π2maxπ()e 2y f a ==+.(0)1f a =+,π()e (0)f a f π=-+<,πmin (π)e y f a ==-+,∴ππ2()e ,[]e f x a a ++-的值域为;(3)∵2100a a +>-, ∴()g x 在[0,π]上是增函数,2(0)10g a a -=+,2π(π)(10)e g a a -=+,∴22π()10,(10)e []g x a a a a +-+-的值域为.∵ππ222210(e )(1)(9e )0a a a a -+-+=-+->, 依题意,ππ22210(e )13e a a a ++<---, 即2230a a -<-,解得:13a -<<.22.解:(1)∵曲线C 的参数方程为22cos 2sin x y θθ-=⎧⎨=⎩(θ为参数),∴曲线C 的普通方程为22(2)4x y -+=,∵直线l 的方程为πsin()4ρθ+=即ππsin cos cos sin sin cos )442ρθρθρθρθ+=+=∴直线l 的直角坐标方程为40x y +-=.(2)联立22(2)440x y x y ⎧-+=⎨+-=⎩,得22x y =⎧⎨=⎩或40x y =⎧⎨=⎩,∴直线l C 与曲线的交点坐标为(2,2),(4,0),∴直线l C 被曲线23.解:(1)问题等价于2445x x ⎧<⎨-≤⎩或132225x ⎧≤≤⎪⎨⎪≤⎩或32445x x ⎧>⎪⎨⎪-≤⎩,故不等式的解集是19[,]44-; (2)若()0f x m +≠恒成立, 即()0f x m +=R 在上无解,又||()21232123||2f x x x x x =-+-≥--+=, 故()2f x 的最小值是, 故2m >-.重庆市2017年普通高等学校高考预测数学(理科)试卷(二)解析1.【考点】1E:交集及其运算.【分析】分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={﹣1,0,1,2,3},∴集合B={x|x=ab,a,b∈A,且a≠b)={﹣3,﹣2,﹣1,0,2,3,6},∴A∩B={﹣1,0,2,3}.故选:A.2.【考点】A2:复数的基本概念.【分析】利用共轭复数的定义可得关于x,y的方程,即可得出.【解答】解:∵x﹣1+yi与i﹣3x是共轭复数(x,y是实数),∴x﹣1=﹣3x,y=﹣1,解得x=,y=﹣1.则x+y=﹣.故选:D.3.【考点】9R:平面向量数量积的运算.【分析】由题意画出图形,由向量等式可得BD,在△ABC中,由余弦定理求得角B,则△ABD的面积可求.【解答】解:如图,∵BC=2,=3,∴BD=,DC=.在△ABC中,由AB=3,BC=2,CA=,利用余弦定理得:cosB=,∴∠B=120°,则sinB=.∴.故选:A.4.【考点】KC:双曲线的简单性质.【分析】由题意,根据中位线定理及双曲线的定义即可求得丨MF2丨=6,则丨ON丨=3.【解答】解:设椭圆的左焦点F2,由题意可知:丨ON丨∥丨MF2丨,则丨MF1丨﹣丨MF2丨=2a=10,丨MF2丨=6,则丨ON丨=3,故选B.5.【考点】D9:排列、组合及简单计数问题.【分析】由修路的方式可以分为两类:从一个村庄出发向其他三个村庄各修一条,一个村最多修两条路,利用排列的计算公式即可得出.【解答】解:分为以下两类:第一类,从一个村庄出发向其他三个村庄各修一条路,共有4种方法;第二类,一个村最多修两条路,但是象下面这样的两个排列对应一种修路方法,A﹣B﹣C﹣D,D﹣C﹣B﹣A,要去掉重复的这样,因此共有有A44=12种方法.根据分类计数原理,知道共有4+12=16种,故选:C.6.【考点】L!:由三视图求面积、体积.【分析】几何体为半圆锥,底面半径为1,高为,代入体积公式计算.【解答】解:由三视图可知几何体为半圆锥,圆锥的底面半径r=1,高为,∴几何体的体积V==.故选A.7.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】由已知先求得ω的值,从而确定解析式,根据图象变换规律求出平移后的解析式,由已知可解得:φ=,k∈Z,从而得解.【解答】解:∵函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,∴=π,解得ω=2,∴f(x)=sin(2x+)∴将y=f(x)的图象向左平移|φ|个单位长度,得到的函数解析式为:y=sin[2(x+φ)+]=sin(2x+2φ+)∵所得函数y=f(x)为偶函数,∴2φ+=kπ,k∈Z可解得:φ=,k∈Z∴当k=0时,φ=.故选:D.8.【考点】EF:程序框图.【分析】根据程序框图的运行过程,列出关于x的不等式组,求出解集即可.【解答】解:根据程序框图的运行过程知,,解得10<x≤28,所以输入x的取值范围是(10,28].故选:A.9.【考点】H1:三角函数的周期性及其求法;3E:函数单调性的判断与证明.【分析】分别求出四个选项中函数的周期,排除选项后,再通过函数的单调减区间找出正确选项即可.【解答】解:由题意考察选项,C的周期不是π,所以C不正确;由于Ay=cos2x在区间(,π)上为增函数,选项A不正确;y=2|sinx|以π为最小正周期,且在区间(,π)上为减函数,正确;y=﹣cotx且在区间(,π)上为增函数,D错误;故选B.10.【考点】J5:点与圆的位置关系.【分析】本题是两个古典概型的问题,试验发生包含的事件是一颗骰子投掷两次,共有36种结果,使得两条直线平行的a,b的值可以通过列举做出,还有一种就是使得两条直线重合,除此之外剩下的是相交的情况,求出概率,从而得到P(2,33),由圆心到点P的距离能判断点P与圆C的位置关系.【解答】解:由题意知本题是两个古典概型的问题,试验发生包含的事件是一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,共有36种结果,要使的两条直线ℓ1:ax+by=2,ℓ2:x+2y=2平行,则a=2,b=4;a=3;b=6,共有2种结果,当A=1,B=2时,两条直线平行,其他33种结果,都使的两条直线相交,∴两条直线平行的概率p1==,两条直线相交的概率=,∴点P(36P1,36P2)为P(2,33),点P到圆C:x2+y2=1098的圆心C(0,0)的距离d==<,∴点P在圆内.故选:C.11.【考点】K8:抛物线的简单性质.【分析】由题意画出图形,把问题转化为在抛物线y2=4x上找一点P,使得P到F的距离和到直线l1:2x﹣y+2=0的距离和最小,再用点到直线的距离公式求解.【解答】解:由抛物线y2=4x,得焦点坐标为F(1,0),准线方程为l2:x=﹣1,由抛物线定义知,P到直线l2的距离等于P到抛物线焦点F得距离.故问题化为在抛物线y2=4x上找一点P,使得P到F的距离和到直线l1:2x﹣y+2=0的距离和最小.最小值为F到l1:2x﹣y+2=0的距离,等于.故选:B.12.【考点】6C:函数在某点取得极值的条件.【分析】根据函数在x=1处有极值时说明函数在x=1处的导数为0,又因为f′(x)=3x2+2ax+b,所以得到:f′(1)=3+2a+b=0,又因为f(1)=10,所以可求出a与b的值确定解析式,最终将x=2代入求出答案.【解答】解:f′(x)=3x2+2ax+b,∴或①当时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;②当时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)∴x∈(,1),f′(x)<0,x∈(1,+∞),f′(x)>0,符合题意.∴,∴f(2)=8+16﹣22+16=18.故选C.13.【考点】H2:正弦函数的图象.【分析】将x=代入化简计算即可得答案.【解答】解:函数f(x)=Asin(x+),∵f(π)=,即Asin(+)=.∴Asin=∴A=.故答案为:14.【考点】2K:命题的真假判断与应用;LO:空间中直线与直线之间的位置关系.【分析】①直线平行的传递性;②垂直没有传递性;③a,b还可以相交和异面;④垂直于同一平面的两直线平行.【解答】解:①若a∥b,b∥c,则a∥c,是真命题,因为平行于同一直线的两条直线平行;②若a⊥b,b⊥c,则a⊥c,是假命题,因为垂直于同一直线的两条件直线平行、垂直或异面;③若a∥γ,b∥γ,则a∥b,是假命题,因为平行于同一平面的两条直线可以平行、相交或异面;④若a⊥γ,b⊥γ,则a∥b,正确,因为垂直于同一平面的两直线平行.故答案为:①④.15.【考点】7C:简单线性规划.【分析】由目标函数z=x﹣y的最小值为﹣2,我们可以画出满足条件的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数m的方程组,消参后即可得到m 的取值.【解答】解:画出x,y满足的可行域如下图:可得直线y=2x﹣1与直线x+y=m的交点使目标函数z=x﹣y取得最小值,故,解得x=,y=,代入x﹣y=﹣2得﹣=﹣2⇒m=8故答案为:8.【考点】54:根的存在性及根的个数判断.【分析】先化简函数的解析式,在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象,结合图象,可得实数k的取值范围.【解答】解:y===函数y=kx﹣2的图象恒过点(0,﹣2)在同一个坐标系下画出函数y=的图象与函数y=kx﹣2的图象结合图象可实数k的取值范围是(0,1)∪(1,4)故答案为:(0,1)∪(1,4)17.【考点】84:等差数列的通项公式;82:数列的函数特性.【分析】(Ⅰ)由等差数列的性质,结合a2•a3=45,a1+a4=14求解a2,a3的值,则公差d可求,由a n=a2+(n ﹣2)d得通项公式;(Ⅱ)把a n代入,利用配方法求函数的最小值..18.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)设事件A为“两手所取的球不同色”,由此能求出P(A).(2)依题意,X的可能取值为0,1,2,求出左手和右手所取的两球颜色相同的概率,分别求出P(X=0),P(X=1),P(X=2),由此能求出X的分布列和EX.19.【考点】MT:二面角的平面角及求法;LO:空间中直线与直线之间的位置关系.【分析】(1)由题意得,AD⊥DC,AD⊥DF,从而AD⊥FC,DC⊥FC,由此能证明AC⊥FB.(2)以D为原点,DA,DC,DE所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角E﹣FB﹣C的大小.20.【考点】K4:椭圆的简单性质.【分析】(1)设出P的坐标,则可分别表示出向量,通过向量的数量积,求得x0和y0的关系,同时根据椭圆的方程,求得x0和y0即P的坐标.(2)设出直线的方程联立椭圆方程,可求出AB的距离,得到直线AB的距离,利用三角形的面积公式,通过基本不等式求解最值即可.21.【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)求出原函数的导函数,得到函数在x=0时的导数,再求出f(0),然后利用直线方程的点斜式得答案;(2)由原函数的导函数的符号确定原函数的单调区间,从而求得原函数的极大值点,得到函数的最大值,再求出端点值得答案;(3)由a2﹣a+10>0,得g(x)在[0,π]上是增函数,从而求得g(x)的值域.由题意得到a2﹣a+10﹣(+a)<13﹣,求解关于a的不等式得答案.22.【考点】QH:参数方程化成普通方程.【分析】(1)由曲线C的参数方程消去参数,能求出曲线C的普通方程;线l的方程的极坐标方程转化为(ρsinθ+ρcosθ)=2,由此能求出直线l的直角坐标方程.(2)联立,得直线l与曲线C的交点坐标为(2,2),(4,0),由此利用两点间距离公式能求出直线l被曲线C截得的弦长.23.【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值的性质求出f(x)的最小值,从而求出m的范围即可.。

2017届高考押题金卷(全国卷Ⅰ)数学(理)试卷(含答案)

2017届高考押题金卷(全国卷Ⅰ)数学(理)试卷(含答案)

绝密★启封前2017高考押题金卷(全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分.考试时间为120分钟 注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.若集合2{|0},{|(0,1)},xM x x x N y y a a a R =-<==>≠表示实数集,则下列选项错误的是 A .M N M =I B .M N R =U C .R M C N ϕ=I D .R C M N R =U 2.复数12,z z 在复平面内对应的点关于直线y x =对称,且132z i =+,则12z z =() A .1251313i + B .1251313i -+ C .1251313i -- D .1251313i - 3.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P (A|B )是( )A. B. C. D.4.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .⎠⎜⎛0π2 (sin x -cos x )d x B .2⎠⎜⎛0π4 (sin x -cos x )d xC .⎠⎜⎛0π2 (cos x -sin x)d x D .2⎠⎜⎛0π4 (cos x -sin x)d x5.按右图所示的程序框图,若输入110011a =,则输出的b =( )A. 45B. 47C. 49D. 516.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该锲体的三视图如图所示,则该锲体的体积为 A .10000立方尺 B .1 1000立方尺 C .12000立方尺D .13000立方尺7.设n S 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于A.91B.103 C.31 D.81 8.已知O 是ABC △所在平面内一点,D 为BC 边中点,且02=++OC OB OA ,那么(A ) AO OD =u u u r u u u r (B ) 2AO OD =u u u r u u u r (C ) 3AO OD =u u u r u u u r D 2AO OD =u u u r u u u r把a 的右数第i 位数字赋给t是 否输入6?i >1i i =+输出b0b =1i =12i b b t -=+⋅9.已知点P (x,y)满足41x y y xx +≤⎧⎪≥⎨⎪≥⎩,过点P 的直线与圆2214x y +=相交于A 、B 两点,则||AB 的最小值为( )A .2B .26C .25D .410.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若212||||8PF PF a ⋅=,且12PF F ∆的最小内角为30o ,则双曲线C 的离心率是A.2B.2C.3D. 311数列{a n }的通项公式为an=11(1)n n++,关于{a n }有如下命题:P1:{a n }为先减后增数列;P2:{a n }为递减数列; P3:*,n n N a e ∀∈>P4:*,n n N a e ∃∈<其中正确的是A. P1,P3B. P1,P4C. P2,P3D. P2,P412.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥. 已知同底的两个正三棱锥内接于同一个球. 已知两个正三棱锥的底面边长为a ,球的半径为R . 设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是()AB.C.D.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—23题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上) 13. (4y x的展开式中33x y 的系数为。

2017年上海市徐汇区高考数学一模试卷

2017年上海市徐汇区高考数学一模试卷

2017年上海市徐汇区高考数学一模试卷一、填空题(共12小题,第1题至第6题每小题4分,第7题至第12题每小题4分,满分54分)1.(4分)=.2.(4分)已知抛物线C的顶点在平面直角坐标系原点,焦点在x轴上,若C经过点M(1,3),则其焦点到准线的距离为.3.(4分)若线性方程组的增广矩阵为,解为,则a+b=.4.(4分)若复数z满足:i•z=+i(i是虚数单位),则|z|=.5.(4分)在(x+)6的二项展开式中第四项的系数是.(结果用数值表示)6.(4分)在长方体ABCD﹣A1B1C1D1中,若AB=BC=1,AA1=,则异面直线BD1与CC1所成角的大小为.7.(5分)若函数f(x)=的值域为(﹣∞,1],则实数m的取值范围是.8.(5分)如图,在△ABC中,若AB=AC=3,cos∠BAC=,=2,则=.9.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=lg(x2﹣3x+3),则f(x)在R上的零点个数为个.10.(5分)将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,那么不同的停车位置安排共有种?(结果用数值表示)11.(5分)已知数列{a n}是首项为1,公差为2m的等差数列,前n项和为S n,设b n=(n∈N*),若数列{b n}是递减数列,则实数m的取值范围是.12.(5分)若使集合A={x|(kx﹣k2﹣6)(x﹣4)>0,x∈Z}中的元素个数最少,则实数k的取值范围是.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x=kπ+(k∈Z)“是“tanx=1”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(5分)若1﹣i(i是虚数单位)是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣2,c=315.(5分)已知函数f(x)为R上的单调函数,f﹣1(x)是它的反函数,点A(﹣1,3)和点B(1,1)均在函数f(x)的图象上,则不等式|f﹣1(2x)|<1的解集为()A.(﹣1,1)B.(1,3) C.(0,log23)D.(1,log23)16.(5分)如图,两个椭圆+=1,+=1内部重叠区域的边界记为曲线C,P是曲线C上任意一点,给出下列三个判断:①P到F1(﹣4,0)、F2(4,0)、E1(0,﹣4)、E2(0,4)四点的距离之和为定值;②曲线C关于直线y=x、y=﹣x均对称;③曲线C所围区域面积必小于36.上述判断中正确命题的个数为()A.0个 B.1个 C.2个 D.3个三、解答题(共5小题,满分76分)17.(14分)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.(1)求PD与平面PAC所成的角的大小;(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.18.(14分)已知函数f(x)=.(1)当x∈[0,]时,求f(x)的值域;(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f()=,a=4,b+c=5,求△ABC的面积.19.(14分)某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1),B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2)该团队已筹到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润,最大利润为多少?20.(16分)如图,双曲线Γ:﹣y2=1的左、右焦点分别为F1,F2,过F2作直线l交y轴于点Q.(1)当直线l平行于Γ的一条渐近线时,求点F1到直线l的距离;(2)当直线l的斜率为1时,在Γ的右支上是否存在点P,满足=0?若存在,求出P点的坐标;若不存在,说明理由;(3)若直线l与Γ交于不同两点A、B,且Γ上存在一点M,满足++4=(其中O为坐标原点),求直线l的方程.21.(18分)正整数列{a n},{b n}满足:a1≥b1,且对一切k≥2,k∈N*,a k是a k﹣1与b k﹣1的等差中项,b k是a k﹣1与b k﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{a n}是等差数列的充要条件是{a n}为常数数列;(3)记c n=|a n﹣b n|,当n≥2(n∈N*)时,指出c2+…+c n与c1的大小关系并说明理由.2017年上海市徐汇区高考数学一模试卷参考答案与试题解析一、填空题(共12小题,第1题至第6题每小题4分,第7题至第12题每小题4分,满分54分)1.(4分)=2.【分析】分式分子、分母同除以n,运用常见数列的极限为0,计算即可得到所求值.【解答】解:===2.故答案为:2.【点评】本题考查数列极限的求法,注意运用常见数列的极限公式,考查运算能力,属于基础题.2.(4分)已知抛物线C的顶点在平面直角坐标系原点,焦点在x轴上,若C经过点M(1,3),则其焦点到准线的距离为.【分析】由题意可知:设抛物线的方程:y2=2px,将M(1,3)代入9=2p,解得:p=,求得抛物线方程,则焦点到准线的距离d=p=9.【解答】解:由题意可知:由焦点在x轴上,若C经过点M(1,3),则图象经过第一象限,∴设抛物线的方程:y2=2px,将M(1,3)代入9=2p,解得:p=,∴抛物线的标准方程为:y2=9x,由焦点到准线的距离d=p=,故答案为:.【点评】本题考查抛物线的简单几何性质,考查抛物线方程的应用,属于基础题.3.(4分)若线性方程组的增广矩阵为,解为,则a+b=2.【分析】根据增广矩阵的定义得到是方程组的解,解方程组即可.【解答】解:由题意知是方程组的解,即,则a+b=1+1=2,故答案为:2.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)若复数z满足:i•z=+i(i是虚数单位),则|z|=2.【分析】求出z,根据复数求模公式求出z的模即可.【解答】解:由iz=+i,得z==1﹣i,故|z|==2,故答案为:2.【点评】本题考查了复数求模公式,复数的化简,是一道基础题.5.(4分)在(x+)6的二项展开式中第四项的系数是160.(结果用数值表示)【分析】利用二项式定义的通项公式求解.【解答】解:在(x+)6的二项展开式中第四项:=8C x﹣3=160x﹣3.∴在(x+)6的二项展开式中第四项的系数是160.故答案为:160.【点评】本题考查二项展开式中第四项的求法,是基础题,解题时要认真审题,注意二项式定理的性质的合理运用.6.(4分)在长方体ABCD﹣A1B1C1D1中,若AB=BC=1,AA1=,则异面直线BD1与CC1所成角的大小为.【分析】根据条件画出图形,并连接D1B1,可以判断出∠B1BD1为异面直线BD1与CC1所成的角,从而在Rt△BB1D1中可求出cos∠B1BD1,进而便可得出∠B1BD1的大小.【解答】解:如图,连接D1B1;∵CC1∥BB1;∴BD1与CC1所成角等于BD1与BB1所成角;∴∠B1BD1为异面直线BD1与CC1所成角;∴在Rt△BB1D1中,cos∠B1BD1=;∴异面直线BD1与CC1所成角的大小为.故答案为:.【点评】考查异面直线及异面直线所成角的概念,三角函数的定义,已知三角函数值求角.7.(5分)若函数f(x)=的值域为(﹣∞,1],则实数m的取值范围是(0,1] .【分析】根据指数函数的最值以及二次函数的性质求出f(x)的值域(﹣∞,1],从而判断出a的范围即可.【解答】解:x≤0时:f(x)=2x∈(0,1].x>0时,f(x)=﹣x2+m,函数的对称轴x=0,f(x)在(﹣∞,0)递增,∴f(x)=﹣x2+m<m,函数f(x)=的值域为(﹣∞,1],故0<m≤1,故答案为:(0,1].【点评】本题考查了分段函数问题,考查二次函数以及对数函数的性质,是一道中档题.8.(5分)如图,在△ABC中,若AB=AC=3,cos∠BAC=,=2,则=.【分析】由条件可先得出,且,从而带入进行数量积的运算即可求出该数量积的值.【解答】解:根据条件:===;∴===.故答案为:.【点评】考查向量加法和数乘的几何意义,以及向量的数乘运算,向量数量积的运算及计算公式.9.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=lg(x2﹣3x+3),则f(x)在R上的零点个数为4个.【分析】利用函数是偶函数求出xx≥0时,函数的零点个数,即可得到结果.【解答】解:当x≥0时,f(x)=lg(x2﹣3x+3),函数的零点由:lg(x2﹣3x+3)=0,即x2﹣3x+3=1,解得x=1或x=2.因为函数是定义在R上的偶函数y=f(x),所以函数的零点个数为:4个.故答案为:4.【点评】本题考查函数的零点的个数的求法,函数的奇偶性的应用,考查计算能力.10.(5分)将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,那么不同的停车位置安排共有40320种?(结果用数值表示)【分析】根据将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,利用排列知识可得结论.【解答】解:由题意,不同的停车位置安排共有A22A86=40320种.故答案为40320.【点评】本题考查排列知识的运用,考查学生的计算能力,比较基础.11.(5分)已知数列{a n}是首项为1,公差为2m的等差数列,前n项和为S n,设b n=(n∈N*),若数列{b n}是递减数列,则实数m的取值范围是[0,1).【分析】利用求和公式可得S n=n+×2m.可得b n==,由数列{b n}是递减数列,可得b n<b n,即可得出.+1【解答】解:S n=n+×2m=mn2+(1﹣m)n.∴b n==,∵数列{b n}是递减数列,<b n,∴<,∴b n+1化为:m(n﹣2)+1>0,对于∀n∈N*都成立.n=1时,m<1;n=2时,m∈R;n>2时,m,解得m≥0.综上可得:m∈[0,1).故答案为:[0,1).【点评】本题考查了等差数列的求和公式、不等式的解法、数列的单调性,考查了推理能力与计算能力,属于中档题.12.(5分)若使集合A={x|(kx﹣k2﹣6)(x﹣4)>0,x∈Z}中的元素个数最少,则实数k的取值范围是[﹣3,﹣2] .【分析】化简集合A,对k讨论即可.求解x的范围,可得答案.【解答】解:集合A={x|(kx﹣k2﹣6)(x﹣4)>0,x∈Z},∵方程(kx﹣k2﹣6)(x﹣4)=0,解得:,x2=4,∴(kx﹣k2﹣6)(x﹣4)>0,x∈Z当k=0时,A=(﹣∞,4);当k>0时,4<k+,A=(﹣∞,4)∪(k+,+∞);当k<0时,k+<4,A=(k+,4).∴当k≥0时,集合A的元素的个数无限;当k<0时,k+<4,A=(k+,4).集合A的元素的个数有限,令函数g(k)=k+,(k<0)则有:g(k)≤﹣2,∵题意要求x∈Z,故得:k+≥﹣5,且k+<﹣4,解得:﹣3≤k≤﹣2故答案为:[﹣3,﹣2].【点评】本题考查的是集合元素的分布以及运算问题,方程的思想以及问题转化的思想在题目当中的应用.此题属于集运算与方程、不等式于一体的综合问题,值得同学们认真反思和归纳.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x=kπ+(k∈Z)“是“tanx=1”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据三角函数,充分必要条件的定义判断.【解答】解:∵tanx=1,∴x=kπ+(k∈Z)∵x=kπ+(k∈Z)则tanx=1,∴根据充分必要条件定义可判断:“x=kπ+(k∈Z)“是“tanx=1”成立的充分必要条件故选:C.【点评】本题考察了充分必要条件的定义,属于容易题.14.(5分)若1﹣i(i是虚数单位)是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣2,c=3【分析】利用实系数一元二次的虚根成对原理、根与系数的关系即可得出.【解答】解:∵1﹣i是关于x的实系数方程x2+bx+c=0的一个复数根,∴1+i是关于x的实系数方程x2+bx+c=0的一个复数根,∴,解得b=﹣2,c=3.故选:D.【点评】本题考查了实系数一元二次的虚根成对原理、根与系数的关系,属于基础题.15.(5分)已知函数f(x)为R上的单调函数,f﹣1(x)是它的反函数,点A(﹣1,3)和点B(1,1)均在函数f(x)的图象上,则不等式|f﹣1(2x)|<1的解集为()A.(﹣1,1)B.(1,3) C.(0,log23)D.(1,log23)【分析】由已知结合互为反函数的两个函数图象间的关系可得f﹣1(3)=﹣1,f﹣1(1)=1,再由|f﹣1(2x)|<1,得﹣1<f﹣1(2x)<1,即f﹣1(3)<f﹣1(2x)<f﹣1(1),再由函数的单调性转化为指数不等式求解.【解答】解:∵点A(﹣1,3)和点B(1,1)在图象上,∴f(﹣1)=3,f(1)=1,又f﹣1(x)是f(x)的反函数,∴f﹣1(3)=﹣1,f﹣1(1)=1,由|f﹣1(2x)|<1,得﹣1<f﹣1(2x)<1,即f﹣1(3)<f﹣1(2x)<f﹣1(1),函数f(x)为R的减函数,∴f﹣1(x)是定义域上的减函数,则1<2x<3,解得:0<x<log23.∴不等式|f﹣1(2x)|<1的解集为(0,log23).故选:C.【点评】本题考查函数单调性的性质,考查了互为反函数的两个函数图象间的关系,体现了数学转化思想方法,是基础题.16.(5分)如图,两个椭圆+=1,+=1内部重叠区域的边界记为曲线C,P是曲线C上任意一点,给出下列三个判断:①P到F1(﹣4,0)、F2(4,0)、E1(0,﹣4)、E2(0,4)四点的距离之和为定值;②曲线C关于直线y=x、y=﹣x均对称;③曲线C所围区域面积必小于36.上述判断中正确命题的个数为()A.0个 B.1个 C.2个 D.3个【分析】①,若点P在椭圆+=1上,P到F1(﹣4,0)、F2(4,0)两点的距离之和为定值、到E1(0,﹣4)、E2(0,4)两点的距离之和不为定值;②,两个椭圆+=1,+=1关于直线y=x、y=﹣x均对称,曲线C关于直线y=x、y=﹣x均对称;③,曲线C所围区域在边长为6的正方形内部.【解答】解:对于①,若点P在椭圆+=1上,P到F1(﹣4,0)、F2(4,0)两点的距离之和为定值、到E1(0,﹣4)、E2(0,4)两点的距离之和不为定值,故错;对于②,两个椭圆+=1,+=1关于直线y=x、y=﹣x均对称,曲线C关于直线y=x、y=﹣x均对称,故正确;对于③,曲线C所围区域在边长为6的正方形内部,所以面积必小于36,故正确.故选:C.【点评】本题考查了椭圆的定义及对称性,属于基础题.三、解答题(共5小题,满分76分)17.(14分)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.(1)求PD与平面PAC所成的角的大小;(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.【分析】(1)先判断∠DPA就是PD与平面PAC所成的角,再在Rt△PAD中,即可求得结论;(2)△PDB绕直线PA旋转一周所构成的旋转体,是以AB为底面半径、AP为高的圆锥中挖去一个以AD为底面半径、AP为高的小圆锥,从而可求体积.【解答】解:(1)∵PA⊥平面ABC,∴PA⊥AB,又∵AC⊥AB,PA∩AC=A∴AB⊥平面PAC,∴∠DPA就是PD与平面PAC所成的角.…(2分)在Rt△PAD中,PA=2,AD=,…(4分)∴tan∠DPA=∴∠DPA=arctan,…(5分)即PD与平面PAC所成的角的大小为arctan.…(6分)(2)△PDB绕直线PA旋转一周所构成的旋转体,是以AB为底面半径、AP为高的圆锥中挖去一个以AD为底面半径、AP为高的小圆锥,∴﹣=.…(12分).【点评】本题考查线面角,考查几何体的体积,确定线面角,明确几何体的形状是解题的关键.18.(14分)已知函数f(x)=.(1)当x∈[0,]时,求f(x)的值域;(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f()=,a=4,b+c=5,求△ABC的面积.【分析】(1)由已知利用行列式的计算,三角函数恒等变换的应用化简可得函数解析式f(x)=sin(2x+)+,结合范围2x+∈[,],利用正弦函数的性质即可得解值域.(2)由已知可求sin(A+)=,结合范围A+∈(,),可得A=,由余弦定理解得:bc=3,利用三角形面积公式即可计算得解.【解答】(本题满分为14分,第1小题满分为6分,第2小题满分为8分)解:(1)∵f(x)==cos2x+sinxcosx=sin(2x+)+,∵x∈[0,],2x+∈[,],∴sin(2x+)∈[﹣,1],可得:f(x)=sin(2x+)+∈[0,1+].(2)∵f()=sin(A+)+=,可得:sin(A+)=,∵A∈(0,π),A+∈(,),可得:A+=,解得:A=.∵a=4,b+c=5,∴由余弦定理a2=b2+c2﹣2bccosA,可得:16=b2+c2﹣bc=(b+c)2﹣3bc=25﹣3bc,解得:bc=3,=bcsinA=3×=.∴S△ABC【点评】本题主要考查了行列式的计算,三角函数恒等变换的应用,正弦函数的图象和性质,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(14分)某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1),B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2)该团队已筹到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润,最大利润为多少?【分析】(1)由A产品的利润与投资额成正比,B产品的利润与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(2)由(1)的结论,我们设B产品的投资额为x万元,则A产品的投资额为10﹣x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.【解答】解:(1)f(x)=k1x,g(x)=k2,f(1)=0.25=k1,g(4)=2k2=2.5,∴f(x)=0.25x(x≥0),g(x)=1.25(x≥0),(2)设B产品的投资额为x万元,则A产品的投资额为10﹣x万元.y=f(10﹣x)+g(x)=0.25(10﹣x)+1.25(0≤x≤10),令t=,则y=﹣0.25t2+1.25t+2.5,所以当t=2.5,即x=6.25万元时,收益最大,y max=万元.【点评】函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.20.(16分)如图,双曲线Γ:﹣y2=1的左、右焦点分别为F1,F2,过F2作直线l交y轴于点Q.(1)当直线l平行于Γ的一条渐近线时,求点F1到直线l的距离;(2)当直线l的斜率为1时,在Γ的右支上是否存在点P,满足=0?若存在,求出P点的坐标;若不存在,说明理由;(3)若直线l与Γ交于不同两点A、B,且Γ上存在一点M,满足++4=(其中O为坐标原点),求直线l的方程.【分析】(1)由双曲线Γ:﹣y2=1,焦点在x轴上,a=,b=1,c==2,则令k=,直线l的方程为:y=(x﹣2),即x﹣y﹣2=0,则点F1到直线l 的距离为d==2;(2)直线l的方程为y=x﹣2,点Q(0,﹣2),假设在Γ的右支上存在点P(x0,y0),则x0>0,=0,代入求得y0=x0+2,代入双曲线方程求得2+12x0+15=0,由△<0,所以不存在点P在右支上;(3)设直线l的方程为y=kx+b,联立方程组,由韦达定理则=(x3,y3),=﹣(+),M为双曲线上一点,即x32﹣3y32=3,则x1x2﹣3y1y2=21①由x1x2﹣3y1y2=x1x2﹣3(x1+b)(x2+b),=﹣2x1x2﹣3b(x1+x2)﹣3b2=﹣2•﹣3b•﹣3b2=21,即可求得k与b的值,求得直线l的方程;方法二:设直线l的方程为y=my+2,代入椭圆方程,由韦达定理及向量数量积的坐标运算,求得M点坐标,代入双曲线的方程,即可求得m的值.【解答】解:(1)双曲线Γ:﹣y2=1,焦点在x轴上,a=,b=1,c==2,则双曲线左、右焦点分别为F1(﹣2,0),F2(2,0),过F2作直线l,设直线l的斜率为k,l交y轴于点Q.当直线l平行于Γ的一条渐近线时,不妨令k=,则直线l的方程为:y=(x﹣2),即x﹣y﹣2=0,则点F1到直线l的距离为d==2;(2)当直线l的斜率为1时,直线l的方程为y=x﹣2,则点Q(0,﹣2);假设在Γ的右支上存在点P(x0,y0),则x0>0;∵=0,∴(x0+2)(0+2)+(y0﹣0)(﹣2﹣0)=0,整理得y0=x0+2,与双曲线方程﹣=1联立,消去y0,得2+12x0+15=0,△=24>0,方程有实根,解得:x=<,所以不存在点P在右支上;(3)当k=0时,直线l的方程x=2,则A(2,),B(2,﹣),由=﹣(+),∴M(1,0),则M不椭圆上,显然不存在,当直线l的斜率存在且不为0时,设直线l的方程为y=kx+b,联立方程组,消去y,得(1﹣3k2)x2﹣6kbx﹣3b2﹣3=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1•x2=,设=(x3,y3),++4=,=﹣(+),即,又M为双曲线上一点,即x32﹣3y32=3,由(x1+x2)2﹣3(y1+y2)2=48,化简得:(x12﹣3y12)+(x22﹣3y22)+2(x1x2﹣3y1y2)=48,又A(x1,y1),B(x2,y2)在双曲线上,所以x12﹣3y12=3,x22﹣3y22=3,∴x1x2﹣3y1y2=21,由直线l过椭圆的右焦点F(2,0),则k=﹣,①而x1x2﹣3y1y2=x1x2﹣3(kx1+b)(kx2+b),=x1x2﹣3k2x1x2﹣3kb(x1+x2)﹣3b2=﹣2•﹣3b•﹣3b2=21,②由①②解得:,或,∴直线l的方程x=±y+2.方法二:设直线l的方程为x=my+2,设A(x1,y1),B(x2,y2),M(x0,y0),整理得:(m2﹣3)y2+4my+1=0,则y1+y2=﹣,y1•y2=,x1+x2=m(y1+y2)+4=﹣,x1•x2=(my1+2)(my2+2)=m2y1•y2+2m(y1+y2)+4=﹣,+=﹣4,则(x1+x2,y1+y2)=﹣4,∴,求得:x0=,y0=,由M在椭圆方程,代入,求得m2=2,解得:m=±,直线l的方程x=±y+2.【点评】本题考查双曲线的标准方程及简单几何性质,考查直线与双曲线的位置关系,考查直线与双曲线的交点与△的关系,考查计算能力,属于难题.21.(18分)正整数列{a n},{b n}满足:a1≥b1,且对一切k≥2,k∈N*,a k是a k﹣1与b k﹣1的等差中项,b k是a k﹣1与b k﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{a n}是等差数列的充要条件是{a n}为常数数列;(3)记c n=|a n﹣b n|,当n≥2(n∈N*)时,指出c2+…+c n与c1的大小关系并说明理由.【分析】(1)正整数列{a n},{b n}满足:a1≥b1,且对一切k≥2,k∈N*,a k是a k﹣1与b k﹣1的等差中项,b k是a k﹣1与b k﹣1的等比中项.可得2a k=a k﹣1+b k﹣1,b k2=a k ﹣1b k﹣1,对k取值即可得出.(2){a n}是等差数列,2a k=a k﹣1+b k﹣1,2a k=a k﹣1+a k+1,可得b k﹣1=a k+1,b k=a k+2,b k2=a k ﹣1b k﹣1,a k+22=a k﹣1a k+1,k=2时,a42=a1a3,(a1+3d)2=a1(a1+2d),可得d=0.即可证明.(3)对一切k ≥2,k ∈N *,a k 是a k ﹣1与b k ﹣1的等差中项,b k 是a k ﹣1与b k ﹣1的等比中项.2a n =a n ﹣1+b n ﹣1,b n 2=a n ﹣1b n ﹣1,利用基本不等式的性质可得a n ===bn ,c n =|a n ﹣b n |=a n ﹣b n .可得a n +1﹣b n +1=﹣=≤(a n +b n ﹣2b n )=,即.利用等比数列的求和公式即可得出.【解答】解:(1)正整数列{a n },{b n }满足:a 1≥b 1,且对一切k ≥2,k ∈N *, a k 是a k ﹣1与b k ﹣1的等差中项,b k 是a k ﹣1与b k ﹣1的等比中项.∴2a k =a k ﹣1+b k ﹣1,b k 2=a k ﹣1b k ﹣1,a 2=2,b 2=1,可得4=a 1+b 1,1=a 1b 1,解得a 1=2+,b 1=2﹣. (2)证明:{a n }是等差数列,2a k =a k ﹣1+b k ﹣1,2a k =a k ﹣1+a k +1,可得b k ﹣1=a k +1, 则b k =a k +2,∵b k 2=a k ﹣1b k ﹣1,∴a k +22=a k ﹣1a k +1,k=2时,a 42=a 1a 3,(a 1+3d )2=a 1(a 1+2d ),6a 1d +9d 2=2a 1d ,即d (4a 1+9d )=0,正整数列{a n },可知d ≥0,4a 1+9d >0,∴d=0.∴数列{a n }为常数数列.反之也成立.{a n }是等差数列的充要条件是{a n }为常数数列.(3)对一切k ≥2,k ∈N *,a k 是a k ﹣1与b k ﹣1的等差中项,b k 是a k ﹣1与b k ﹣1的等比中项.2a n =a n ﹣1+b n ﹣1,b n 2=a n ﹣1b n ﹣1,∴an ===b n ,又已知a 1≥b 1,∴c n =|a n ﹣b n |=a n ﹣b n .∴an +1﹣b n +1=﹣=≤(a n +b n ﹣2b n )=,即.∴≤…≤,∴c2+…+c n≤+…+=≤c1.∴当n≥2(n∈N*)时,c2+…+c n≤c1.【点评】本题考查了等差数列与等比数列的通项公式、基本不等式的性质、数列的单调性,考查了推理能力与计算能力,属于难题.。

新课标高考理科数学模拟试题含答案

新课标高考理科数学模拟试题含答案

新课标高考理科数学模拟试题含答案The following text is amended on 12 November 2020.2017年普通高等学校招生全国统一考试理科数学模拟试卷(一)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题:p x ∀∈R ,sin x ≤1,则( )A .:p x ⌝∃∈R ,sin x ≥1B .:p x ⌝∀∈R ,sin x ≥1C .:p x ⌝∃∈R ,sin x >1 不能D .:p x ⌝∀∈R ,sin x >12.已知平面向量a =(1,1),b (1,-1),则向量1322-=a b ( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .23-B .13-C .13D .235.如果执行右面的程序框图,那么输出的S=( )A .2450B .2500 y x11-2π-3π-O6ππyx11-2π-3π-O 6ππy x11-2π-3πO 6π-πy xπ2π-6π-1O1-3π A.B.C .D .6.已知抛物线22(0)y px p =>的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3, 则有( )A .123FP FP FP +=B .222123FP FP FP += C .2132FP FP FP =+ D .2213FPFP FP =· 7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd+的最小值是( )A .0B .1C .2D .48.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3 B .38000cm 3C .2000cm 3D .4000cm 3 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A .7.12- C .12D 7 10.曲线12e x y =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .29e 2年B .4e 2, C .2e 2 D .e 2s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩 环数7 8 9 10 频数 5 5 5 5 乙的成绩 环数7 8 9 1频数 6 4 4 6 丙的成绩 环数7 8 9 1频数4 6 6 412.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。

2017年高考山东理科数学试题及答案(word解析版)

2017年高考山东理科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一(tǒngyī)考试(山东(shān dōnɡ)卷)数学(shùxué)(理科(lǐkē))第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的.(1)【2017年山东,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D)【答案】D【解析】由得,由得,,故选D.(2)【2017年山东,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D)【答案】A【解析】由得,所以,故选A.(3)【2017年山东,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是()(A)(B)(C)(D)【答案】B【解析】由时有意义,知p是真命题,由可知q是假命题,即p,均是真命题,故选B.(4)【2017年山东,理4,5分】已知、满足约束条件,则的最大值是()(A)0 (B)2 (C)5 (D)6【答案】C【解析】由画出可行域及直线如图所示,平移20x y+=发现,当其经过直线与的交点时,2=+最大为z x y,故选C.(5)【2017年山东,理5,5分】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为()(A)160 (B)163 (C)166 (D)170【答案】C【解析】,故选C.(6)【2017年山东(shān dōnɡ),理6,5分】执行(zhíxíng)两次如图所示的程序框图,若第一次输入的x值为7,第二次输入(shūrù)的x值为9,则第一次、第二次输出(shūchū)的值分别(fēnbié)为()(A)0,0 (B)1,1 (C)0,1 (D)1,0【答案】D【解析】第一次;第二次,故选D.(7)【2017年山东,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D)【答案】B【解析】,故选B.(8)【2017年山东,理8,5分】从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()(A)(B)(C)(D)【答案】C【解析】,故选C.(9)【2017年山东,理9,5分】在中,角A、B、的对边分别为a、、,若ABC∆为锐角三角形,且满足,则下列等式成立的是()(A)(B)(C)(D)【答案】A【解析】所以,故选A.(10)【2017年山东,理10,5分】已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是()(A)(B)(C)(D)【答案】B【解析】当时,,2=+单调递=-单调递减,且,y x m(1)y mx增,且,此时有且仅有一个交点;当时,,2=-在y mx(1)上单调递增,所以要有且仅有一个交点,需,故选B.第II卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2017年山东,理11,5分】已知的展开式中含有的系数是54,则.【答案】4【解析】,令得:,解得.(12)【2017年山东,理12,5分】已知、是互相垂直的单位向量,若与的夹角为,则实数的值是 . 【答案(dá àn)】【解析(jiě xī)】,,,,解得:.(13)【2017年山东(shān dōnɡ),理13,5分】由一个(yī ɡè)长方体和两个圆柱体构成(gòuchéng)的几何体的三视图如图,则该几何体的体积为 . 【答案】【解析】该几何体的体积为.(14)【2017年山东,理14,5分】在平面直角坐标系中,双曲线(,)的右支与焦点为的抛物线()交于A 、B 两点,若,则该双曲线的渐近线方程为 .【答案】【解析】,因为,所以渐近线方程为22y x =±. (15)【2017年山东,理15,5分】若函数(是自然对数的底数)在的定义域上单调递增,则称函数()f x 具有M 性质。

北京市海淀区2017届高三一模数学(理)试题【含答案】

北京市海淀区2017届高三一模数学(理)试题【含答案】

北京海淀区高三年级2016-2017学年度第一次综合练习数学试卷(理科)2017.3一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合(){}10A x x x =+≤,集合{}0B x x =>,则A B =( )A .{}1x x ≥-B .{}1x >-C .{}0x x ≥D .{}0x x >2.已知复数()()z i a bi a b R =+∈,),则“z 为纯虚数”的充分必要条件为( ) A .220a b +≠B .0ab =C .00a b =≠,D .00a b ≠=,3.执行如图所示的程序框图,输出的x 值为( ) A .0B .3C .6D .84.设a b R ∈,若a b >,则( ) A .11a b> B .22a b> C .lg lg a b >D .sin sin a b >5.已知1a xdx =⎰,12b x dx =⎰,0c =⎰,则a b c 、、的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知曲线2:2x C y a ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),()()1010A B -,、,,若曲线C 上存在点P 满足0AP BP ⋅=,则实数a 的取值范围为( )A.22⎡-⎢⎣⎦,B .[]11-,C.⎡⎣D .[]22-,7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③ B .②③④C .②④⑤D .③④⑤二、填空题(每题5分,满分30分,将答案填在答题纸上)9.若等比数列{}n a 满足24548a a a a ==,,则公比q =________,前n 项和n S =________. 10.已知()()122020F F -,、,,满足122PF PF -=的动点P 的轨迹方程为________. 11.在ABC ∆中,cos c a B =.①A =________;②若1sin 3C =,则()cos B π+=________. 12.若非零向量a ,b 满足()0a a b ⋅+=,2a b =,则向量a ,b 夹角的大小为________.13.已知函数()210cos 0x x f x x x π⎧-≥=⎨<⎩,,,若关于x 的方程()0f x a +=在()0+∞,内有唯一实根,则实数a 的最小值是________.14.已知实数u v x y ,,,满足221u v +=,102202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则z ux vy =+的最大值是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分13分)已知3π是函数()22cos sin 21f x x a x =++的一个零点. (Ⅰ)求实数a 的值;(Ⅱ)求()f x 的单调递增区间.据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,90BAC ∠=,1AB =,12BC BB ==,1C D CD ==1CC D ⊥平面11ACC A .(Ⅰ)求证:1AC DC ⊥;(Ⅱ)若M 为1DC 的中点,求证://AM 平面1DBB ;(Ⅲ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC 的值,若不存在,说明理由.已知函数()()()2241ln 1f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]01,上恒成立,求a 的取值范围.已知椭圆22:12x G y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A B 、两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C D 、两点.(Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.已知含有n 个元素的正整数集{}()12123n n A a a a a a a n =<<<≥,,,,具有性质P :对任意不大于()S A (其中()12n S A a a a =+++)的正整数k ,存在数集A 的一个子集,使得该子集所有元素的和等于k .(Ⅰ)写出12a a ,的值;(Ⅱ)证明:“12n a a a ,,,成等差数列”的充要条件是“()()12n n S A +=”; (Ⅲ)若()2017S A =,求当n 取最小值时n a 的最大值.2017年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x(x+1)≤0},集合B={x|x>0},则A∪B=()A.{x|x≥﹣1} B.{x|x>﹣1} C.{x|x≥0} D.{x|x>0}【解答】解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|x>0},∴A∪B={x|x≥﹣1}.故选:A.2.(5分)已知复数z=i(a+bi)(a,b∈R),则“z为纯虚数”的充分必要条件为()A.a2+b2≠0 B.ab=0 C.a=0,b≠0 D.a≠0,b=0【解答】解:复数z=i(a+bi)=ai﹣b(a,b∈R),则“z为纯虚数”的充分必要条件为﹣b=0,a≠0.故选:D.3.(5分)执行如图所示的程序框图,输出的x值为()A.0 B.3 C.6 D.8【解答】解:x=0,y=9,≠,x=1,y=8,≠,x=2,y=6,=4≠,x=3,y=3,3=,输出x=3,故选:B.4.(5分)设a,b∈R,若a>b,则()A.<B.2a>2b C.lga>lgb D.sina>sinb【解答】解:a,b∈R,a>b,当a>0,b<0时,A不成立,根据指数函数的单调性可知,B正确,根据对数函数的定义,可知真数必需大于零,故C不成立,由于正弦函数具有周期性和再某个区间上为单调函数,故不能比较,故D不成立,故选:B.5.(5分)已知a=xdx,b=x2dx,c=dx,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【解答】解:a=xdx=|=,b=x2dx=|=,c=dx=|=,则b<a<c,故选:C6.(5分)已知曲线C:(t为参数),A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,则实数a的取值范围为()A.,B.[﹣1,1] C.,D.[﹣2,2]【解答】解:∵A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,∴P的轨迹方程是x2+y2=1.曲线C:(t为参数),普通方程为x﹣y+a=0,由题意,圆心到直线的距离d=≤1,∴,故选C.7.(5分)甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为()A.12 B.40 C.60 D.80【解答】解:根据题意,分2种情况讨论:①、甲和乙都排在丙的左侧,将甲乙安排在丙的左侧,考虑甲乙之间的顺序,有2种情况,排好后有4个空位,在4个空位中选一个安排丁,有4种情况,排好后有5个空位,在5个空位中选一个安排戊,有5种情况,则甲和乙都排在丙的左侧的情况有2×4×5=40种,②、甲和乙都排在丙的右侧,同理有40种不同的排法;故甲和乙都排在丙的同一侧的排法种数为40+40=80种;故选:D.8.(5分)某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查OM=ON=O'M'=O'N';项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L';项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°;项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”()A.①②③B.②③④C.②④⑤D.③④⑤【解答】解:项目①:折叠状态下(如图1),四条桌腿长相等时,桌面与地面不一定平行;项目②:打开过程中(如图2),若OM=ON=O'M'=O'N',可以得到线线平行,从而得到面面平行;项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L',可以得到线线平行,从而得到面面平行;项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°,可以得到线线平行,从而得到面面平行项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.桌面与地面不一定平行;故选:B.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)若等比数列{a n}满足a2a4=a5,a4=8,则公比q=2,前n项和S n=2n﹣1.【解答】解:∵等比数列{a n}满足a2a4=a5,a4=8,∴,解得a1=1,q=2,∴前n项和S n==2n﹣1.故答案为:2,2n﹣1.10.(5分)已知F1(﹣2,0),F2(2,0),满足||PF1|﹣|PF2||=2的动点P的轨迹方程为.【解答】解:根据题意,F1(﹣2,0),F2(2,0),则|F1F2|=4,动点P满足||PF1|﹣|PF2||=2,即2<4,则P的轨迹是以F1、F2为焦点的双曲线,其中c=2,2a=2,即a=1,则b2=c2﹣a2=3,双曲线的方程为:;故答案为:.11.(5分)在△ABC中,c=acosB.①A=90°;②若sinC=,则cos(π+B)=﹣.【解答】解:①∵c=acosB.∴cosB==,整理可得:a2=b2+c2,∴A=90°;②∵sinC=,A=90°,∴B=90°﹣C,∴cos(π+B)=﹣cosB=﹣sinC=﹣故答案为:90°,.12.(5分)若非零向量,满足•(+)=0,2||=||,则向量,夹角的大小为120°.【解答】解:设向量,的夹角为θ,则θ∈[0°,180°];又•(+)=0,2||=||,∴+•=0,即+||×2||cosθ=0,解得cosθ=﹣,∴θ=120°,即向量,夹角为120°.故答案为:120°.13.(5分)已知函数f(x)=,,<若关于x的方程f(x+a)=0在(0,+∞)内有唯一实根,则实数a的最小值是﹣.【解答】解:作出f(x)的函数图象如图所示:∵f(x+a)在(0,+∞)上有唯一实根,∴f(x)在(a,+∞)上有唯一实根,∴﹣≤a<1.故答案为.14.(5分)已知实数u,v,x,y满足u2+v2=1,,则z=ux+vy的最大值是2.【解答】解:约束条件的可行域如图三角形区域:A(2,1),B(2,﹣1),C(0,1),u2+v2=1 设u=sinθ,v=cosθ,目标函数经过A时,z=2sinθ+2cosθ=2sin().目标函数经过B时,z=2sinθ﹣cosθ=(θ+β)(其中tanβ=).目标函数经过C时,z=sinθ≤1.所以目标函数的最大值为:2.故答案为:.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.【解答】解:(Ⅰ)由题意可知,即,即,解得.(Ⅱ)由(Ⅰ)可得==,函数y=sinx的递增区间为,,k∈Z.由<<,k∈Z,得<<,k∈Z,所以,f(x)的单调递增区间为,,k∈Z.16.(13分)据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).【解答】解:(Ⅰ)本次协议的投资重点为能源,因为能源投资为340亿,占总投资460亿的50%以上,所占比重大.(Ⅱ)设事件A:从12个月中任选一个月,该月超过55百万吨.根据提供的数据信息,可以得到天津、上海两港口的月吞吐量之和分别是:56,49,58,54,54,57,59,58,58,56,54,56,其中超过55百万吨的月份有8个,所以,.(Ⅲ)X的数学期望EX=8.17.(13分)如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.(Ⅰ)求证:AC⊥DC1;(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1,由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1,所以AC⊥平面CC1D,又C1D⊂平面CC1D,所以AC⊥DC1.(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,所以AA1⊥AB,AA1⊥AC,又∠BAC=90°,所以,如图建立空间直角坐标系A﹣xyz,依据已知条件可得A(0,0,0),,,,,,,B(0,0,1),B1(2,0,1),,,,所以,,,,,,设平面DBB1的法向量为,,,由即令y=1,则,x=0,于是,,,因为M为DC1中点,所以,,,所以,,,由,,,,,可得,所以AM与平面DBB1所成角为0,即AM∥平面DBB1.(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为,,.设,λ∈[0,1],则,,,,,.若直线DP与平面DBB1成角为,则<,>,解得,,故不存在这样的点.18.(13分)已知函数f(x)=x2﹣2ax+4(a﹣1)ln(x+1),其中实数a<3.(Ⅰ)判断x=1是否为函数f(x)的极值点,并说明理由;(Ⅱ)若f(x)≤0在区间[0,1]上恒成立,求a的取值范围.【解答】解:(Ⅰ)由f(x)=x2﹣2ax+4(a﹣1)ln(x+1)可得函数f(x)定义域为(﹣1,+∞),=,令g(x)=x2+(1﹣a)x+(a﹣2),经验证g(1)=0,因为a<3,所以g(x)=0的判别式△=(1﹣a)2﹣4(a﹣2)=a2﹣6a+9=(a﹣3)2>0,由二次函数性质可得,1是函数g(x)的异号零点,所以1是f'(x)的异号零点,所以x=1是函数f(x)的极值点.(Ⅱ)已知f(0)=0,因为,又因为a<3,所以a﹣2<1,所以当a≤2时,在区间[0,1]上f'(x)<0,所以函数f(x)单调递减,所以有f(x)≤0恒成立;当2<a<3时,在区间[0,a﹣2]上f'(x)>0,所以函数f(x)单调递增,所以f(a﹣2)>f(0)=0,所以不等式不能恒成立;所以a≤2时,有f(x)≤0在区间[0,1]恒成立.19.(14分)已知椭圆G:+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.(1)若直线l的斜率为1,求直线OM的斜率;(2)是否存在直线l,使得|AM|2=|CM|•|DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(1)由已知可知F1(﹣1,0),又直线l的斜率为1,所以直线l的方程为y=x+1,设A(x1,y1),B(x2,y2),由解得或,所以AB中点,,于是直线OM的斜率为.(2)假设存在直线l,使得|AM|2=|CM|•|DM|成立.当直线l的斜率不存在时,AB的中点M(﹣1,0),所以,,矛盾;故直线的斜率存在,可设直线l的方程为y=k(x+1)(k≠0),联立椭圆G的方程,得(2k2+1)x2+4k2x+2(k2﹣1)=0,设A(x1,y1),B(x2,y2),则,,于是,点M的坐标为,,.直线CD的方程为,联立椭圆G的方程,得,设C(x0,y0),则,由题知,|AB|2=4|CM|•|DM|=4(|CO|+|OM|)(|CO|﹣|OM|)=4(|CO|2﹣|OM|2),即,化简,得,故,所以直线l的方程为,.20.(14分)已知含有n个元素的正整数集A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)具有性质P:对任意不大于S(A)(其中S(A)=a1+a2+…+a n)的正整数k,存在数集A的一个子集,使得该子集所有元素的和等于k.(Ⅰ)写出a1,a2的值;(Ⅱ)证明:“a1,a2,…,a n成等差数列”的充要条件是“S(A)=”;(Ⅲ)若S(A)=2017,求当n取最小值时a n的最大值.【解答】解:(Ⅰ)由集合A={a1,a2,…,a n},}(a1<a2<…<a n,n≥3),由a n为正整数,则a1=1,a2=2.(Ⅱ)先证必要性:因为a1=1,a2=2,又a1,a2,…,a n成等差数列,故a n=n,所以;再证充分性:因为a1<a2<…<a n,a1,a2,…,a n为正整数数列,故有a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,所以,又,故a m=m(m=1,2,…,n),故a1,a2,…,a n为等差数列.(Ⅲ)先证明(m=1,2,…,n).假设存在>,且p为最小的正整数.依题意p≥3,则a1+a2+…+a p﹣1≤1+2+…+2p﹣2=2p﹣1﹣1,又因为a1<a2<…<a n,故当k∈(2p﹣1﹣1,a p)时,k不能等于集合A的任何一个子集所有元素的和.故假设不成立,即(m=1,2,…,n)成立.因此,即2n≥2018,所以n≥11.因为S=2017,则a1+a2+…+a n﹣1=2017﹣a n,若2017﹣a n<a n﹣1时,则当k∈(2017﹣a n,a n)时,集合A中不可能存在若干不同元素的和为k,故2017﹣a n≥a n﹣1,即a n≤1009.此时可构造集合A={1,2,4,8,16,32,64,128,256,497,1009}.因为当k∈{2,2+1}时,k可以等于集合{1,2}中若干个元素的和;故当k∈{22,22+1,22+2,22+3}时,k可以等于集合{1,2,22}中若干不同元素的和;…故当k∈{28,28+1,28+2,…,28+255}时,k可以等于集合{1,2,…,28}中若干不同元素的和;故当k∈{497+3,497+4,…,497+511}时,k可以等于集合{1,2,…,28,497}中若干不同元素的和;故当k∈{1009,1009+1,1009+2,…,1009+1008}时,k可以等于集合{1,2,…,28,497,1009}中若干不同元素的和,所以集合A={1,2,4,8,16,32,64,128,256,497,1009}满足题设,所以当n取最小值11时,a n的最大值为1009.。

2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)(解析版)

2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)(解析版)

2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)一、选择题:每小题5分,共60分1.(5分)已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},则(∁R A)∩B的元素的个数为()A.3 B.4 C.5 D.62.(5分)若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知z=+bi (a,b∈R)为“理想复数”,则()A.a﹣5b=0 B.3a﹣5b=0 C.a+5b=0 D.3a+5b=03.(5分)已知角α的终边经过点(,),若α=,则m的值为()A.27 B.C.9 D.4.(5分)已知f(x)为奇函数,当x<0时,f(x)=a+x+log2(﹣x),其中a∈(﹣4,5),则f(4)>0的概率为()A.B.C.D.5.(5分)若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则|AB|等于()A.5p B.10p C.11p D.12p6.(5分)《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::(+1),试用以上给出的公式求得△ABC的面积为()A.B.C.D.7.(5分)某程序框图如图所示,其中t∈Z,该程序运行后输出的k=2,则t的最大值为()A.11 B.2057 C.2058 D.20598.(5分)已知函数f(x)=的图象与g(x)的图象关于直线x=对称,则g(x)的图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(,0)9.(5分)设a>0,若关于x,y的不等式组,表示的可行域与圆(x﹣2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为()A.[8,10] B.(6,+∞)C.(6,8]D.[8,+∞)10.(5分)过双曲线C:﹣=1(a>0,b>0)的右焦点F作x轴的垂线,交双曲线C 于M,N两点,A为左顶点,设∠MAN=θ,双曲线C的离心率为f(θ),则f()﹣f()等于()A.B.C.D.11.(5分)某几何体的三视图如图所示,已知三视图中的圆的半径均为2,则该几何体的体积为()A.B.12πC.D.16π12.(5分)若函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,则a的取值范围为()A.(﹣∞,﹣)B.(﹣,)∪(1,+∞)C.(﹣∞,﹣)D.(﹣∞,﹣)∪(﹣﹣,﹣)二、填空题:每小题5分,共20分13.(5分)在(4﹣x﹣1)(2x﹣3)5的展开式中,常数项为.14.(5分)某设备的使用年数x与所支出的维修总费用y的统计数据如下表:根据上标可得回归直线方程为=1.3x+,若该设备维修总费用超过12万元,据此模型预测该设备最多可使用年.15.(5分)设向量,满足|+|=3,|﹣|=2,则的取值范围为.16.(5分)在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB 的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD 的距离为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,数列{}的公差为1的等差数列,且a2=3,a3=5.(1)求数列{a n}的通项公式;(2)设b n=a n•3n,求数列{b n}的前n项和T n.18.(12分)以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:(1)计算该炮兵连这8周中总的命中频率p0,并确定第几周的命中频率最高;(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=﹣0.398)19.(12分)如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.(1)确定点G的位置,使得FG∥平面PCD;(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.20.(12分)已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.(1)求椭圆W的标准方程;(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x 轴上,且AC与x轴垂直,求证:B,C,D三点共线.21.(12分)已知函数f()=﹣x3+x2﹣m,g(x)=﹣x3+mx2+(a+1)x+2xcosx﹣m.(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x1,f(x2))处的切线都经过点(2,t),求证:t=3m﹣8,或t=﹣m3+m2﹣m.(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.四、选做题:4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy中,曲线C的方程为y=3+.(1)写出曲线C的一个参数方程;(2)在曲线C上取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的周长的取值范围.五、选修4-5:不等式选讲23.已知函数f(x)=x2+|x|﹣|x﹣5|+2.(1)求不等式f(x)<0的解集;(2)若关于x的不等式|f(x)|≤m的整数解仅有11个,求m的取值范围.2017年江西省百校联盟高考数学模拟试卷(理科)(2月份)参考答案与试题解析一、选择题:每小题5分,共60分1.(5分)(2017•江西模拟)已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},则(∁A)∩B的元素的个数为()RA.3 B.4 C.5 D.6【分析】先分别求出集合A,B,从而求出C R A,进而求出(∁R A)∩B,由此能求出(∁R A)∩B的元素的个数.【解答】解:∵集合A={x|﹣5+21x﹣4x2<0}={x|x<或x>5},B={x∈Z|﹣3<x<6}={﹣2,﹣1,0,1,2,3,4,5},∴C R A={x|},∴(∁R A)∩B={1,2,3,4,5},∴(∁R A)∩B的元素的个数为5.故选:C.【点评】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.2.(5分)(2017•江西模拟)若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知z=+bi(a,b∈R)为“理想复数”,则()A.a﹣5b=0 B.3a﹣5b=0 C.a+5b=0 D.3a+5b=0【分析】利用复数代数形式的乘除运算化简,结合已知得答案.【解答】解:∵z=+bi=.由题意,,则3a+5b=0.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5分)(2017•江西模拟)已知角α的终边经过点(,),若α=,则m的值为()A.27 B.C.9 D.【分析】利用任意角的三角函数的定义,诱导公式,求得m的值.【解答】解:角α的终边经过点(,),若α=,则tan=tan===,则m=,故选:B.【点评】本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题.4.(5分)(2017•江西模拟)已知f(x)为奇函数,当x<0时,f(x)=a+x+log2(﹣x),其中a∈(﹣4,5),则f(4)>0的概率为()A.B.C.D.【分析】求出f(4)>0时a的范围,以长度为测度,即可求出概率.【解答】解:由题意,f(4)=﹣f(﹣4)=﹣(a﹣4+log24)>0,∴a<2,∵a∈(﹣4,5),∴a∈(﹣4,2),∴所求概率为=,故选D.【点评】本题考查几何概型,考查概率的计算,比较基础.5.(5分)(2017•江西模拟)若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则|AB|等于()A.5p B.10p C.11p D.12p【分析】直线方程代入抛物线方程,可得x2﹣4px﹣p2=0,利用韦达定理及抛物线的定义,即可得出结论.【解答】解:直线方程代入抛物线方程,可得x2﹣4px﹣p2=0,设A(x1,y1),B(x2,y2),则x1+x2=4p,∴y1+y2=9p∵直线过抛物线的焦点,∴|AB|=y1+y2+p=10p,故选:B.【点评】本题考查直线与抛物线位置关系的运用,考查抛物线的定义与性质,考查学生分析解决问题的能力,属于中档题.6.(5分)(2017•江西模拟)《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::(+1),试用以上给出的公式求得△ABC的面积为()A.B.C.D.【分析】由题意和正弦定理求出a:b:c,结合条件求出a、b、c的值,代入公式求出△ABC 的面积.【解答】解:因为sinA:sinB:sinC=(﹣1)::(+1),所以由正弦定理得,a:b:c=(﹣1)::(+1),又△ABC的周长为2+,则a=(﹣1)、b=、c=(+1),所以△ABC的面积S====,故选:A.【点评】本题考查正弦定理,以及新定义的应用,属于基础题.7.(5分)(2017•江西模拟)某程序框图如图所示,其中t∈Z,该程序运行后输出的k=2,则t的最大值为()A.11 B.2057 C.2058 D.2059【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,可得11≤t<2059,即可求得t的最大值.【解答】解:模拟程序的运行,可得k=10,S=0满足条件S≤t,执行循环体,S=1,k=8满足条件S≤t,执行循环体,S=3,k=6满足条件S≤t,执行循环体,S=11,k=4满足条件S≤t,执行循环体,S=2059,k=2由题意,此时不满足条件S≤t,退出循环,输出S的值为2059.可得:11≤t<2059,则t的最大值为2058.故选:C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)(2017•江西模拟)已知函数f(x)=的图象与g(x)的图象关于直线x=对称,则g(x)的图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(,0)【分析】由已知利用函数的对称性可求g(x),进而利用余弦函数的图象和性质即可得解.【解答】解:∵函数f(x)=的图象与g(x)的图象关于直线x=对称,设P(x,y)为函数g(x)图象上的任意一点,则P关于直线x=的对称点P′(﹣x,y)在f(x)图象上,∴满足y=f(﹣x)==2cos2x,可得:g(x)=2cos2x,∴由2x=kπ+,k∈Z,解得x=+,k∈Z,∴当k=0时,则g(x)的图象的对称中心为(,0).故选:C.【点评】本题主要考查了函数的对称性,余弦函数的图象和性质,考查了转化思想,属于基础题.9.(5分)(2017•江西模拟)设a>0,若关于x,y的不等式组,表示的可行域与圆(x﹣2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为()A.[8,10] B.(6,+∞)C.(6,8]D.[8,+∞)【分析】由题意画出图形,化目标函数为直线方程的斜截式,由图得到使目标函数取得最大值的最优解的点的位置得答案.【解答】解:如图,圆(x﹣2)2+y2=9是以(2,0)为圆心,以3为半径的圆,而直线ax﹣y+2=0恒过定点B(0,2),化目标函数z=x+2y为y=,由图可知,使目标函数取得最大值的点在x=2(y>2)上,∴z=x+2y的最大值的取值范围为(6,+∞).故选:B.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,正确画出可行域是关键,属中档题.10.(5分)(2017•江西模拟)过双曲线C:﹣=1(a>0,b>0)的右焦点F作x轴的垂线,交双曲线C于M,N两点,A为左顶点,设∠MAN=θ,双曲线C的离心率为f(θ),则f()﹣f()等于()A.B.C.D.【分析】利用离心率的定义,分别求出f()、f().即可求出f()﹣f().【解答】解:由题意,M(c,),θ=,tan=,∴e=+1,即f()=+1;θ=,tan=,∴e=+1,即f()=+1,∴f()﹣f()=,故选A.【点评】本题考查离心率的定义,考查双曲线的性质,属于中档题.11.(5分)(2017•江西模拟)某几何体的三视图如图所示,已知三视图中的圆的半径均为2,则该几何体的体积为()A.B.12πC.D.16π【分析】由已知中的三视图,可知该几何体是一个球有两处挖去球的八分之一后,在上面放两个半径为2的四分之一的圆柱,所以几何体的体积是即得.【解答】解:由已知中的三视图,可知该几何体是一个球有两处挖去球的八分之一后,在上面放两个半径为2的四分之一的圆柱,那么:,两处挖去球的八分之一,即挖去了.放两个半径为2的四分之一的圆柱,所以几何体的体积是=8π+4π=12π.故选B.【点评】本题考查的知识点是由三视图求体积,解决本题的关键是得到该几何体的形状.属于中档题.12.(5分)(2017•江西模拟)若函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,则a的取值范围为()A.(﹣∞,﹣)B.(﹣,)∪(1,+∞)C.(﹣∞,﹣)D.(﹣∞,﹣)∪(﹣﹣,﹣)【分析】函数f(x)在(0,2)上存在两个极值点,等价于f′(x)在(0,2)上有两个零点,令f′(x)=0,求出x=1和ae x+=0,且x≠1,x∈(0,2);求出a=﹣,x∈(0,1)∪(1,2);设t(x)=e x•x2,x∈(0,1)∪(1,2),求出t(x)的取值范围,即得a的取值范围.【解答】解:函数f(x)=a(x﹣2)e x+lnx+在(0,2)上存在两个极值点,等价于f′(x)=a(x﹣1)e x+﹣在(0,2)上有两个零点,令f′(x)=0,则a(x﹣1)e x+=0,即(x﹣1)(ae x+)=0,∴x﹣1=0或ae x+=0,∴x=1满足条件,且ae x+=0(其中x≠1且x∈(0,2));∴a=﹣,其中x∈(0,1)∪(1,2);设t(x)=e x•x2,其中x∈(0,1)∪(1,2);则t′(x)=(x2+2x)e x>0,∴函数t(x)是单调增函数,∴t(x)∈(0,e)∪(e,4e2),∴a∈(﹣∞,﹣)∪(﹣,﹣).故选:D.【点评】本题考查了函数导数的综合应用问题,也考查了函数极值与零点的应用问题,考查转化思想与计算能力,是综合性题目.二、填空题:每小题5分,共20分13.(5分)(2017•江西模拟)在(4﹣x﹣1)(2x﹣3)5的展开式中,常数项为﹣27.【分析】化(4﹣x﹣1)(2x﹣3)5=(2﹣2x﹣1)(﹣35+•34•2x﹣•33•22x﹣…),写出展开式中的常数项构成是常数项与常数项的积再加上含2﹣2x与22x的积.【解答】解:∵(4﹣x﹣1)(2x﹣3)5=(2﹣2x﹣1)(﹣35+•34•2x﹣•33•22x﹣…)∴在其展开式中,常数项为:﹣1×(﹣35)+2﹣2x•(﹣•33•22x)=35﹣•33=﹣27.故答案为:﹣27.【点评】本题考查了二项展开式通项的记忆与应用问题,是基础题.14.(5分)(2017•江西模拟)某设备的使用年数x与所支出的维修总费用y的统计数据如下表:根据上标可得回归直线方程为=1.3x+,若该设备维修总费用超过12万元,据此模型预测该设备最多可使用9年.【分析】计算、,根据回归直线方程过样本中心点求出的值,写出回归直线方程,利用回归方程求≥12时x的取值即可.【解答】解:计算=×(2+3+4+5+6)=4,=×(1.5+4.5+5.5+6.5+7.0)=5,又回归直线方程=1.3x+过样本中心点,∴=﹣1.3=5﹣1.3×4=﹣0.2,∴回归直线方程为=1.3x﹣0.2;令=1.3x﹣0.2≥12,解得x≥9.4≈9,∴据此模型预测该设备最多可使用9年.故答案为:9.【点评】本题考查了样本中心点满足回归直线的方程的应用问题,是基础题目.15.(5分)(2017•江西模拟)设向量,满足|+|=3,|﹣|=2,则的取值范围为(0,).【分析】根据模长公式,把|+|=3,|﹣|=2两边平方,求出•与||的取值范围,再求的取值范围.【解答】解:向量,满足|+|=3,|﹣|=2,∴=+2•+=9①,=﹣2•+=4②,①﹣②得,4•=5,∴•=;∴=||;①+②得,2+2=13,∴=﹣<,∴0<||<,∴0<||<;∴的取值范围是(0,).故答案为:(0,).【点评】本题考查了平面向量的数量积与模长公式的应用问题,是基础题目.16.(5分)(2017•江西模拟)在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为.【分析】如图所示,以AP为z轴,AD为y轴,取BC的中点M,以AM为x轴,建立空间直角坐标系.设K(0,0,m),则=+b,可得K坐标.设平面PBD的法向量为=(x,y,z),则,利用点K到平面PBD的距离d=即可得出.【解答】解:如图所示,以AP为z轴,AD为y轴,取BC的中点M,以AM为x轴,建立空间直角坐标系.则A(0,0,0),P(0,0,3),D(0,3,0),F(0,2,0),B(,﹣,0),C(,,0),E(,﹣,),设K(0,0,m),则=+b,∴(0,0,m)=,∴a﹣b=0,=0,a=m,解得m=,a=,b=.=,=(0,3,﹣3).设平面PBD的法向量为=(x,y,z),则,,取=(,1,1).=.∴点K到平面PBD的距离d===.故答案为:.【点评】本题考查了空间位置关系、平面向量基本定理、法向量的应用、点到平面的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题17.(12分)(2017•江西模拟)已知数列{a n}的前n项和为S n,数列{}的公差为1的等差数列,且a2=3,a3=5.(1)求数列{a n}的通项公式;(2)设b n=a n•3n,求数列{b n}的前n项和T n.【分析】(1)数列{}的公差为1的等差数列,可得=a1+n﹣1,S n=n(a1+n﹣1),分别取n=2,3,及其a2=3,a3=5.解得a1=1.可得S n=n2.利用递推关系即可得出.(2)b n=a n•3n=(2n﹣1)•3n,利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)数列{}的公差为1的等差数列,∴=a1+n﹣1,可得S n=n(a1+n﹣1),∴a1+a2=2(a1+1),a1+a2+a3=3(a1+2),且a2=3,a3=5.解得a1=1.∴S n=n2.∴n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1(n=1时也成立).∴a n=2n﹣1.(2)b n=a n•3n=(2n﹣1)•3n,∴数列{b n}的前n项和T n=3+3×32+5×33+…+(2n﹣1)•3n,∴3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1,∴﹣2T n=3+2×(32+33+…+3n)﹣(2n﹣1)•3n+1=3+2×﹣(2n﹣1)•3n+1,可得T n=3+(n﹣1)•3n+1.【点评】本题考查了数列递推关系、“错位相减法”与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•江西模拟)以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:(1)计算该炮兵连这8周中总的命中频率p0,并确定第几周的命中频率最高;(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=﹣0.398)【分析】(1)先求出这8周总总命中炮数和总未命中炮数,由此能求出该炮兵连这8周中总的命中频率,从而根据表中数据能求出第8周的命中率最高.(2)由题意知X~B(3,0.6),由此能求出X的数学期望.(3)由1﹣(1﹣P0)n>0.99,得0.4n<0.01,由此能求出至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99.【解答】解:(1)这8周总总命中炮数为:40+45+46+49+47+49+53+52=381,总未命中炮数为32+34+30+32+35+33+30+28=254,∴该炮兵连这8周中总的命中频率p0=,∵,∴根据表中数据知第8周的命中率最高.(2)由题意知X~B(3,0.6),则X的数学期望为E(X)=3×0.6=1.8.(3)由1﹣(1﹣P0)n>0.99,解得0.4n<0.01,∴n>log0.40.01==﹣=≈5.025,∴至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99.【点评】本题考查频率的求法及应用,考查概率的求法及应用,是中档题,解题时要认真审题,注意二项分布的合理运用.19.(12分)(2017•江西模拟)如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB 为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE 上一点,且AB=AD=2,PF=2FA.(1)确定点G的位置,使得FG∥平面PCD;(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.【分析】(1)在AD上取AN=AD,过N作NG∥DC,交AE于G,连结FG,FN,利用平面与平面平行的判定定理证明平面FNG∥平面PCD,推出FG∥平面PCD.(2)作PO⊥AB于O,BA所在直线为x轴,OP所在直线为z轴,在平面ABCD内作AB的垂线为y轴,求出平面PAB的法向量,平面PMQ的法向量,利用平面PAB与平面PMQ所成锐二面角的大小为30°,求解得λ推出CD的大小.【解答】解:(1)在AD上取AN=AD,过N作NG∥DC,交AE于G,连结FG,FN,∵PF=2FA.可得FA=PA,所以FN∥PD,又NG∥DC,FN∩NG=N,PD∩DC=D,可得平面FNG∥平面PCD,FG⊂平面FNG,所以FG∥平面PCD.(2)作PO⊥AB于O,BA所在直线为x轴,OP所在直线为z轴,在平面ABCD内作AB的垂线为y轴,如图:平面PAB的法向量为:=(0,1,0),A(1,0,0),Q(λ,2,0),M(1,1,0),P(0,0,),则=(﹣1,﹣1,),=(λ﹣1,1,0),设平面PMQ的法向量为:=(x,y,z),由,可得:,令x=1,则y=1﹣λ,z=,平面PAB与平面PMQ所成锐二面角的大小为30°,可得:cos30°===,解得λ=3或.此时DQ=2在CD的延长线上,或DQ=在CD线段上.【点评】本题考查直线与平面平行的判定定理以及二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•江西模拟)已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.(1)求椭圆W的标准方程;(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x 轴上,且AC与x轴垂直,求证:B,C,D三点共线.【分析】(1)由c=1,a2﹣b2=1,求得四条直线的斜率,由斜率乘积为,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;(2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由k AD•k AB=﹣1,代入求得=,由k BD﹣k BC=0,即可求证k BD=k BC,即可求证B,C,D三点共线.【解答】解:(1)由题意可知:2c=2,c=1,a2﹣b2=1,∵M(x0,y0)为椭圆W上不在坐标轴上的任意一点,∴,=(a2﹣),=(b2﹣),•••=•••=•,=•=()2=,则a2=2b2,∴a2=2,b2=1,∴椭圆W的标准方程;(2)证明:不妨设点A(x1,y1),D(x2,y2),B的坐标(﹣x1,﹣y1),C(x1,0),∵A,D在椭圆上,,=0,即(x1﹣x2)(x1+x2)+2(y1﹣y2)(y1+y2)=0,∴=﹣,由AD⊥AB,∴k AD•k AB=﹣1,•=﹣1,•(﹣,)=﹣1,∴=,∴k BD﹣k BC=﹣=﹣=0,k BD=k BC,∴B,C,D三点共线.【点评】本题考查椭圆的简单几何性质,直线的斜率公式,考查计算能力,考查分析问题及解决问题的能力,属于中档题.21.(12分)(2017•江西模拟)已知函数f()=﹣x3+x2﹣m,g(x)=﹣x3+mx2+(a+1)x+2xcosx﹣m.(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x1,f(x2))处的切线都经过点(2,t),求证:t=3m﹣8,或t=﹣m3+m2﹣m.(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.【分析】(1)求出f(x)的导数,可得A,B处的切线方程,代入点(2,t),可得x1,x2为方程t﹣(﹣x3+mx2﹣m)=(﹣3x2+2mx)(2﹣x)的两个不等实根,化简整理可得,2x3﹣(m+6)x2+4mx﹣m﹣t=0,令g(x)=2x3﹣(m+6)x2+4mx﹣m﹣t,求出导数,由题意可得g(x)必有一个极值为0,计算即可得到证明;(2)由题意可得﹣x3+mx2﹣m≥﹣x3+mx2+(a+1)x+2xcosx﹣m,即有x3+(a+1)x+2xcosx ≤0,讨论x=0,显然成立;当0<x≤1时,运用参数分离和构造函数法,求出导数,判断单调性,求出最值,即可得到所求a的范围.【解答】解:(1)证明:由f()=﹣x3+x2﹣m,可得f(x)=﹣x3+mx2﹣m,f′(x)=﹣3x2+2mx,可得A处的切线方程:y﹣(﹣x13+mx12﹣m)=(﹣3x12+2mx)(x﹣x1),同理可得B处的切线方程:y﹣(﹣x23+mx22﹣m)=(﹣3x22+2mx)(x﹣x2),代入点(2,t),可得x1,x2为方程t﹣(﹣x3+mx2﹣m)=(﹣3x2+2mx)(2﹣x)的两个不等实根,化简整理可得,2x3﹣(m+6)x2+4mx﹣m﹣t=0,令g(x)=2x3﹣(m+6)x2+4mx﹣m﹣t,g′(x)=6x2﹣2(m+6)x+4m=2(3x﹣m)(x﹣2),由g′(x)=0,可得x=2或x=.g(2)=3m﹣8﹣t,g()=﹣m3+m2﹣m﹣t,由题意可得g(x)必有一个极值为0,则t=3m﹣8,或t=﹣m3+m2﹣m;(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,即为﹣x3+mx2﹣m≥﹣x3+mx2+(a+1)x+2xcosx﹣m,即有x3+(a+1)x+2xcosx≤0,当x=0时,上式显然成立;当0<x≤1时,即有﹣a﹣1≥x2+2cosx恒成立,令m(x)=x2+2cosx,m′(x)=x﹣2sinx,m′′(x)=1﹣2cosx,由0<x≤1时,1<2cos1≤2cosx<2,则1﹣2cosx<0,y=x﹣2sinx在(0,1]递减,可得x﹣2sinx<0,则m(x)在(0,1]递减,可得m(x)<m(0)=2,则﹣a﹣1≥2,解得a≤﹣3.a的取值范围是(﹣∞,﹣3].【点评】本题考查导数的运用:求切线的方程和不等式恒成立问题解法,注意运用分类讨论的思想方法和转化思想,构造函数法,运用单调性,考查化简整理的运算能力,属于中档题.四、选做题:4-4:坐标系与参数方程22.(10分)(2017•江西模拟)在平面直角坐标系xOy中,曲线C的方程为y=3+.(1)写出曲线C的一个参数方程;(2)在曲线C上取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的周长的取值范围.【分析】(1)采用平方法,化简曲线C,根据x=ρcosθ,y=ρsinθ即可得曲线C的一个参数方程;(2)由(1)可知曲线C,曲线C上取一点P的参数坐标,利用三角函数的有界限求解矩形OAPB的周长的取值范围【解答】解:(1)曲线C的方程为y=3+.化简可得:(y﹣3)2=﹣x2+8x﹣15,(y≥3,3≤x≤5)即:x2+y2﹣8x﹣6y+24=0,可知圆心为(4,3),半径r=1,曲线C的一个参数方程为:(θ为参数)(2)由(1)可知曲线C圆心为(4,3),半径r=1,(y≥3,3≤x≤5)的半圆.设一点P的参数坐标为(4+cosθ,3+sinθ)(0≤θ≤π),过点P作x轴,y轴的垂线,垂足分别为A,B,∴|PA|=3+sinθ,|PB|=4+cosθ∴矩形OAPB的周长l=2|PA|+2|PB|=2|3+sinθ+4+cosθ|=2[7+sin()],(0≤θ≤π)当θ=时,周长l最大为14+2.当θ=π时,周长l最小为12.故得矩形OAPB的周长的取值范围是[12,]【点评】本题考查了普通方程化参数方程和利用参数坐标转化为三角函数的有界限问题求解范围问题,属于中档题.五、选修4-5:不等式选讲23.(2017•江西模拟)已知函数f(x)=x2+|x|﹣|x﹣5|+2.(1)求不等式f(x)<0的解集;(2)若关于x的不等式|f(x)|≤m的整数解仅有11个,求m的取值范围.【分析】(1)讨论x的取值,去掉绝对值,化简f(x),求出不等式f(x)<0的解集;(2)由(1)写出f(x)解析式,画出f(x)的图象,结合图象,求出不等式|f(x)|≤m的整数解仅有11个时,求出m的取值范围.【解答】解:(1)当x≤0时,f(x)=x2﹣x+x﹣5+2=x2﹣3,由x2﹣3<0解得﹣<x<,取﹣<x≤0;当0<x<5时,f(x)=x2+x+x﹣5+2=x2+2x﹣3,由x2+2x﹣3<0解得﹣3<x<1,取0<x<1;当x≥5时,f(x)=x2+x﹣x+5+2=x2+7,由x2+7<0无解;综上,不等式f(x)<0的解集为(﹣,1);(2)由(1)知,f(x)=,画出f(x)的图象如图所示;若关于x的不等式|f(x)|≤m的整数解仅有11个,当m=32时,由x2+7≤32,解得x≤5;由x2﹣3≤32,解得﹣≤x,满足不等式|f(x)|≤m的整数解仅有11个;当m=33时,由x2+7≤33,解得x≤;由x2﹣3≤33,解得﹣6≤x,满足不等式|f(x)|≤m的整数解仅有12个;不满足题意;当m=31时,由x2+7≤31,解得x≤;由x2﹣3≤31,解得﹣≤x,满足不等式|f(x)|≤m的整数解仅有10个;不满足题意;综上,m的取值范围是[32,33).【点评】本题考查了绝对值不等式的解法与应用问题,也考查了分类讨论思想与数形结合思想的应用问题,是综合性题目.。

2017年江西省百所重点高中高考数学模拟试卷(理科)有答案

2017年江西省百所重点高中高考数学模拟试卷(理科)有答案

2017年江西省百所重点高中高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣6≥0},B={x|﹣3≤x≤3},则A∩B等于()A. B. C.∪{3} D.∪{﹣3}2.设复数z=a+bi(a,b∈R,b>0),且,则z的虚部为()A.B.C.D.3.若sin(α+β)=2sin(α﹣β)=,则sinαcosβ的值为()A.B.C.D.4.在△ABC中,D,E分别为BC,AB的中点,F为AD的中点,若,AB=2AC=2,则的值为()A.B.C.D.5.如图是函数y=f(x)求值的程序框图,若输出函数y=f(x)的值域为,则输入函数y=f(x)的定义域不可能为()A. B. D.∪{2}6.函数f(x)=sin(πx+θ)(|θ|<)的部分图象如图,且f(0)=﹣,则图中m的值为()A.1 B.C.2 D.或27.在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A .21B .﹣21C .441D .﹣4418.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为( )A .3795000立方尺B .2024000立方尺C .632500立方尺D .1897500立方尺9.已知k ≥﹣1,实数x ,y 满足约束条件,且的最小值为k ,则k 的值为( )A .B .C .D .10.设F 1,F 2分别是双曲线(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得∠F 1PF 2=60°,|OP|=3b (O 为坐标原点),则该双曲线的离心率为( )A .B .C .D .11.体积为的正三棱锥A ﹣BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且R :BC=2:3,点E 为线段BD 上一点,且DE=2EB ,过点E 作球O 的截面,则所得截面圆面积的取值范围是( )A .B .C .D .12.定义在(0,+∞)上的函数f (x )的导函数f′(x )满足,则下列不等式中,一定成立的是( )A .f (9)﹣1<f (4)<f (1)+1B .f (1)+1<f (4)<f (9)﹣1C .f (5)+2<f (4)<f (1)﹣1D .f (1)﹣1<f (4)<f (5)+2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若公比为2的等比数列{a n }满足a 7=127a,则{a n }的前7项和为 .14.(x ﹣2)3(x+1)4的展开式中x 2的系数为 .15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+y ﹣3=0相切,则圆C的半径为.16.已知函数f(x)=,若函数g(x)=f(x)﹣ax﹣1有4个零点,则实数a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知atanB=2bsinA.(1)求B;(2)若b=,A=,求△ABC的面积.18.某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?19.如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.(1)求证:AB=BC;(2)若∠ABC=90°,求A1B与平面BCC1B1所成角的正弦值.20.已知椭圆C: +=1(a>b>0)的短轴长为2,且函数y=x2﹣的图象与椭圆C仅有两个公共点,过原点的直线l与椭圆C交于M,N两点.(1)求椭圆C的标准方程;(2)点P为线段MN的中垂线与椭圆C的一个公共点,求△PMN面积的最小值,并求此时直线l的方程.21.已知函数f(x)=e x﹣1+ax,a∈R.(1)讨论函数f(x)的单调区间;(2)若∀x∈22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O 为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.23.已知函数f(x)=|x|+|x﹣3|.(1)求不等式f()<6的解集;(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.2017年江西省百所重点高中高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣6≥0},B={x|﹣3≤x≤3},则A∩B等于()A. B. C.∪{3} D.∪{﹣3}【考点】1E:交集及其运算.【分析】根据题意,解不等式|x2﹣x﹣6≥0求出集合A,进而由交集的意义计算可得答案.【解答】解:根据题意,x2﹣x﹣6≥0⇒x≤﹣2或x≥3,即A={x|x2﹣x﹣6≥0}=(﹣∞,﹣2]∪;A∩B=∪{3};故选:C.2.设复数z=a+bi(a,b∈R,b>0),且,则z的虚部为()A.B.C.D.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:复数z=a+bi(a,b∈R,b>0),且,∴a﹣bi=a2﹣b2+2abi.∴a=a2﹣b2,﹣b=2ab.解得a=﹣,b=.则z的虚部为.故选:C.3.若sin(α+β)=2sin(α﹣β)=,则sinαcosβ的值为()A.B.C.D.【考点】GI:三角函数的化简求值.【分析】利用两角和与差公式打开化简,即可得答案.【解答】解:由sin(α+β)=2sin(α﹣β)=,可得sinαcosβ+cosαsinβ=…①sinαcosβ﹣cosαsinβ=…②由①②解得:sin αcos β=, 故选:A .4.在△ABC 中,D ,E 分别为BC ,AB 的中点,F 为AD 的中点,若,AB=2AC=2,则的值为( )A .B .C .D .【考点】9R :平面向量数量积的运算.【分析】根据题意画出图形,结合图形根据平面向量的线性运算与数量积运算性质,计算即可. 【解答】解:如图所示,△ABC 中,D ,E 分别为BC ,AB 的中点,F 为AD 的中点,,且AB=2AC=2,∴=(+)•=(﹣+)•(+)=﹣﹣•+=﹣×12﹣×(﹣1)+×22=. 故选:B .5.如图是函数y=f (x )求值的程序框图,若输出函数y=f (x )的值域为,则输入函数y=f (x )的定义域不可能为( )A .B . D .∪{2} 【考点】EF :程序框图.【分析】模拟程序的运行过程知该程序的功能是求分段函数y=在某一区间上的值域问题;对题目中的选项分析即可.【解答】解:模拟程序的运行过程知,该程序的功能是求分段函数y=在某一区间上的值域问题;x∈时,y=2﹣x∈=,满足题意,A正确;x∈=(4,8],x=2时,y=x2=4,∴x∈,满足题意,B正确;x∈时,若x∈,则y=x2∈,不满足题意,C错误;同理x∈∪{2}时,y∈,满足题意,D正确.故选:C.6.函数f(x)=sin(πx+θ)(|θ|<)的部分图象如图,且f(0)=﹣,则图中m的值为()A.1 B.C.2 D.或2【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】f(0)=﹣,则sinθ=﹣,求出θ,利用正弦函数的对称性,即可得出结论.【解答】解:f(0)=﹣,则sinθ=﹣,∵|θ|<,∴θ=﹣,∴πx﹣=2kπ+,∴x=2k+,∴=,∴m=,故选B.7.在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A.21 B.﹣21 C.441 D.﹣441【考点】8E:数列的求和.【分析】设公差为d(d>0),运用等差数列的通项公式,可得首项为1,再由等比数列的中项的性质,解方程可得公差d,进而得到等差数列{a n}的通项,再由并项求和即可得到所求和.【解答】解:公差d大于0的等差数列{a n}中,2a7﹣a13=1,可得2a1+12d﹣(a1+12d)=1,即a1=1,a1,a3﹣1,a6+5成等比数列,可得(a3﹣1)2=a1(a6+5),即为(1+2d﹣1)2=1+5d+5,解得d=2(负值舍去)则a n=1+2(n﹣1)=2n﹣1,n∈N*,数列{(﹣1)n﹣1a n}的前21项和为a1﹣a2+a3﹣a4+…+a19﹣a20+a21=1﹣3+5﹣7+…+37﹣39+41=﹣2×10+41=21.故选:A.8.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为()A.3795000立方尺B.2024000立方尺C.632500立方尺D.1897500立方尺【考点】L!:由三视图求面积、体积.【分析】由三视图可得,直观图为底面为侧视图是直棱柱,利用图中数据求出体积.【解答】解:由三视图可得,直观图为底面为侧视图,是直棱柱,体积为=1897500立方尺,故选D.9.已知k≥﹣1,实数x,y满足约束条件,且的最小值为k,则k的值为()A.B.C.D.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用直线斜率公式,结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:的几何意义是区域内的点到定点D(0,﹣1)的斜率,由图象知AD的斜率最小,由得,得A(4﹣k,k),则AD的斜率k=,整理得k2﹣3k+1=0,得k=或(舍),故选:C10.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=3b(O为坐标原点),则该双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的简单性质.【分析】利用双曲线的定义与余弦定理可得到a2与c2的关系,从而可求得该双曲线的离心率.【解答】解:设该双曲线的离心率为e,依题意,||PF1|﹣|PF2||=2a,∴|PF1|2+|PF2|2﹣2|PF1|•|PF2|=4a2,不妨设|PF1|2+|PF2|2=x,|PF1|•|PF2|=y,上式为:x﹣2y=4a2,①∵∠F1PF2=60°,∴在△F1PF2中,由余弦定理得,|F1F2|2=|PF1|2+|PF2|2﹣2|PF1|•|PF2|•cos60°=4c2,②即x﹣y=4c2,②又|OP|=3b, +=2,∴2+2+2||•||•cos60°=4||2=36b2,即|PF1|2+|PF2|2+|PF1|•|PF2|=36b2,即x+y=36b2,③由②+③得:2x=4c2+36b2,①+③×2得:3x=4a2+72b2,于是有12c2+108b2=8a2+144b2,∴=,∴e==.故选:D.11.体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是()A. B. C. D.【考点】LR:球内接多面体.【分析】先求出BC与R,再求出OE,即可求出所得截面圆面积的取值范围.【解答】解:设BC=3a,则R=2a,∵体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,∴=,∴h=,∵R2=(h﹣R)2+(a)2,∴4a2=(﹣2a)2+3a2,∴a=2,∴BC=6,R=4,∵点E为线段BD上一点,且DE=2EB,∴△ODB中,OD=OB=4,DB=6,cos∠ODB=,∴OE==2,截面垂直于OE时,截面圆的半径为=2,截面圆面积为8π,以OE所在直线为直径时,截面圆的半径为4,截面圆面积为16π,∴所得截面圆面积的取值范围是.故选:B.12.定义在(0,+∞)上的函数f(x)的导函数f′(x)满足,则下列不等式中,一定成立的是()A.f(9)﹣1<f(4)<f(1)+1 B.f(1)+1<f(4)<f(9)﹣1 C.f(5)+2<f(4)<f(1)﹣1 D.f(1)﹣1<f(4)<f(5)+2【考点】6B:利用导数研究函数的单调性.【分析】构造函数g(x)=f(x)﹣,则根据导数可判断g(x)单调递减,于是g(9)<g(4)<g(1),化简即可得出结论.【解答】解:∵,∴f′(x)<,令g(x)=f(x)﹣,则g′(x)=f′(x)﹣<0,∴g(x)在(0,+∞)上是减函数,∴g(9)<g(4)<g(1),即f(9)﹣3<f(4)﹣2<f(1)﹣1,∴f(9)﹣1<f(4)<f(1)+1.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若公比为2的等比数列{a n}满足a7=127a,则{a n}的前7项和为 1 .【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式列出方程,求出首项,再由等比数列的前n项和公式能求出数列的前7项和.【解答】解:∵公比为2的等比数列{a n}满足a7=127a,∴,解得,∴{a n}的前7项和为S7=•=1.故答案为:1.14.(x﹣2)3(x+1)4的展开式中x2的系数为﹣6 .【考点】DB:二项式系数的性质.【分析】利用二项式定理展开即可得出.【解答】解:(x﹣2)3(x+1)4=(x3﹣6x2+12x﹣8)(x4+4x3+6x2+4x+1),展开式中x2的系数为:﹣6﹣48+48=﹣6.故答案为:﹣6.15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+y ﹣3=0相切,则圆C的半径为14 .【考点】K8:抛物线的简单性质.【分析】求出抛物线的准线方程x=﹣1,设圆心坐标(﹣1,h),根据切线的性质列方程解出h,从而可求得圆的半径.【解答】解:抛物线y2=4x的焦点为F(1,0),准线方程为x=﹣1,设圆C的圆心为C(﹣1,h),则圆C的半径r=,∵直线x+y﹣3=0与圆C相切,∴圆心C到直线的距离d=r,即=,解得h=0(舍)或h=﹣8.∴r==14.故答案为:14.16.已知函数f(x)=,若函数g(x)=f(x)﹣ax﹣1有4个零点,则实数a的取值范围为(0,1).【考点】52:函数零点的判定定理.【分析】由题意,a>0,a+1>1,h(x)=ax+1与y=f(x)有两个不同的交点,x≤0,f(x)=e x与h(x)=ax+1有1个交点(0,1),函数g(x)=f(x)﹣ax﹣1有4个零点,只需要x≤0,f(x)=e x与h(x)=ax+1有另1个交点,求出函数在(0,1)处切线的斜率,即可得出结论.【解答】解:由题意,a>0,a+1>1,h(x)=ax+1与y=f(x)有两个不同的交点,x≤0,f(x)=e x与h(x)=ax+1有1个交点(0,1),∵函数g(x)=f(x)﹣ax﹣1有4个零点,∴只需要x≤0,f(x)=e x与h(x)=ax+1有另1个交点x≤0,f′(x)=e x,f′(0)=1,∴a<1,综上所述,0<a<1,故答案为(0,1).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知atanB=2bsinA.(1)求B;(2)若b=,A=,求△ABC的面积.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)根据题意,将atanB=2bsinA变形可得asinB=2bsinAcosB,由正弦定理可得sinAsinB=2sinBsinAcosB,分析可得cosB=,由B的范围可得答案;(2)由三角形内角和定理可得C的大小,进而由正弦定理可得c=×sinC=,由三角形面积公式S△=bcsinA计算可得答案.ABC【解答】解:(1)根据题意,atanB=2bsinA⇒a=2bsinA⇒asinB=2bsinAcosB,由正弦定理可得sinAsinB=2sinBsinAcosB,变形可得2cosB=1,即cosB=,又由0<B<π,故B=,(2)由(1)可得:B=,则C=π﹣﹣=,由正弦定理=,可得c=×sinC=,S△ABC=bcsinA=×××=.18.某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)利用独立重复试验的概率公式求解甲、乙两家公司共答对2道题目的概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.求出概率,得到X的分布列求解期望;【解答】解:(1)由题意可知,所求概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.,,.则X的分布列为:∴.设乙公司正确完成面试的题为Y,则Y取值分别为0,1,2,3.,,,则Y的分布列为:∴.(或∵,∴).()由E(X)=D(Y),D(X)<D(Y)可得,甲公司竞标成功的可能性更大.19.如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.(1)求证:AB=BC;(2)若∠ABC=90°,求A1B与平面BCC1B1所成角的正弦值.【考点】MI:直线与平面所成的角.【分析】(1)取AC的中点O,连接OA1,OB,推导出AC⊥OA1,AC⊥A1B,从而AC⊥平面OA1B,进而AC⊥OB,由点O为AC的中点,能证明AB=BC.求出A1B与平面BCC1B1所成角的正弦值.【解答】解:(1)证明:取AC的中点O,连接OA1,OB,∵点O为等边△A1AC中边AC的中点,∴AC⊥OA1,∵AC⊥A1B,OA1∩A1B=A1,∴AC⊥平面OA1B,又OB⊂平面OA1B,∴AC⊥OB,∵点O为AC的中点,∴AB=BC.(2)由(1)知,AB=BC,又∠ABC=90°,故△ABC是以AC为斜边的等腰直角三角形,∵A1O⊥AC,侧面ACC1A1O⊥底面上ABC,A1⊥底面ABC以线段OB,OC,OA1所在的直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系O﹣xyz,设AC=2,则A(0,﹣1,0),,B(1,0,0),C(0,1,0),∴,,,设平面BCC1B1的一个法向量,则有,即,令,则,z0=﹣1,∴,设A1B与平面BCC1B1所成角为θ,则.∴A1B与平面BCC1B1所成角的正弦值为.20.已知椭圆C: +=1(a>b>0)的短轴长为2,且函数y=x2﹣的图象与椭圆C仅有两个公共点,过原点的直线l与椭圆C交于M,N两点.(1)求椭圆C的标准方程;(2)点P为线段MN的中垂线与椭圆C的一个公共点,求△PMN面积的最小值,并求此时直线l的方程.【考点】KL:直线与椭圆的位置关系.【分析】(1)由题意可得:2b=2,解得b=1.联立+y2=1(a>1)与y=x2﹣,可得:x4+x2+=0,根据椭圆C与抛物线y=x2﹣的对称性,可得:△=0,a>1,解得a.(2)①当直线l的斜率不存在时,S△PMN=;当直线l的斜率为0时,S△PMN=.②当直线l的斜率存在且不为0时,设直线l的方程为:y=kx,与椭圆方程联立解得x2,y2.|MN|=2.由题意可得:线段MN的中垂线方程为:y=﹣x,与椭圆方程联立可得|OP|=.利用S△PMN=|MN|×|OP|,与基本不等式的性质即可得出.【解答】解:(1)由题意可得:2b=2,解得b=1.联立+y2=1(a>1)与y=x2﹣,可得:x4+x2+=0,根据椭圆C与抛物线y=x2﹣的对称性,可得:△=﹣4×=0,a>1,解得a=2.∴椭圆C的标准方程为: +y2=1.(2)①当直线l的斜率不存在时,S△PMN==2;当直线l的斜率为0时,S△PMN==2;②当直线l的斜率存在且不为0时.设直线l的方程为:y=kx,由,解得x2=,y2=.∴|MN|=2=4.由题意可得:线段MN的中垂线方程为:y=﹣x,联立,可得x2=,y2=.∴|OP|==2.S△PMN=|MN|×|OP|=≥=,当且仅当k=±1时取等号,此时△PMN的面积的最小值为.∵,∴△PMN的面积的最小值为,直线l的方程为:y=±x.21.已知函数f(x)=e x﹣1+ax,a∈R.(1)讨论函数f(x)的单调区间;(2)若∀x∈22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O 为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用三种方程的转化方法,即可得出结论;(2)利用极坐标方程,结合韦达定理,即可求+.【解答】解:(1)曲线C1的参数方程为(α为参数),直角坐标方程为(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0直线C2的方程为y=,极坐标方程为tanθ=;(2)直线C2与曲线C1联立,可得ρ2﹣(2+2)ρ+7=0,设A,B两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+2,ρ1ρ2=7,∴+==.23.已知函数f(x)=|x|+|x﹣3|.(1)求不等式f()<6的解集;(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.【考点】R5:绝对值不等式的解法.【分析】(Ⅰ)分类讨论以去掉绝对值号,即可解关于x的不等式f()<6;(Ⅱ)作出函数的图象,结合图象求解.【解答】解:(1)x≤0,不等式可化为﹣x﹣x+3<6,∴x>﹣3,∴﹣3<x≤0;0<x<6,不等式可化为x﹣x+3<6,成立;x≥6,不等式可化为x+x﹣3<6,∴x<9,∴6≤x<9;综上所述,不等式的解集为{x|﹣3<x<9};(2)f(x)=|x|+|x﹣3|.由题意作图如下,k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,由直线过(0,3)可得k=,由直线过(3,3)可得k=,∴.2017年5月23日。

2017年上海市宝山区高考数学一模试卷含详解

2017年上海市宝山区高考数学一模试卷含详解

2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=.2.(4分)设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B=.3.(4分)不等式的解集为.4.(4分)椭圆(θ为参数)的焦距为.5.(4分)设复数z满足(i为虚数单位),则z=.6.(4分)若函数的最小正周期为aπ,则实数a的值为.7.(5分)若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.(5分)已知向量,,则在的方向上的投影为.9.(5分)已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.(5分)某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.(5分)设常数a>0,若的二项展开式中x5的系数为144,则a=.12.(5分)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(5分)某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80B.96C.108D.11015.(5分)设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1B.2C.3D.416.(5分)在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.(14分)已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.(14分)设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.(16分)设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.21.(18分)设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=2.【考点】6F:极限及其运算.【专题】35:转化思想;4R:转化法;52:导数的概念及应用.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.【点评】本题考查了极限的求值运算,是一道基础题.2.(4分)设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B= {﹣1,0,1} .【考点】1H:交、并、补集的混合运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以∁U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩∁U B={﹣1,0,1}故答案为:{﹣1,0,1}.【点评】本题考查了集合的定义与计算问题,是基础题目.3.(4分)不等式的解集为(﹣2,﹣1).【考点】7E:其他不等式的解法.【专题】35:转化思想;4R:转化法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】本题考查分式不等式的解法,基本知识的考查.4.(4分)椭圆(θ为参数)的焦距为6.【考点】QL:椭圆的参数方程.【专题】17:选作题;34:方程思想;4G:演绎法;5S:坐标系和参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.【点评】本题考查椭圆的参数方程,考查椭圆的性质,正确转化为普通方程是关键.5.(4分)设复数z满足(i为虚数单位),则z=1+i.【考点】A5:复数的运算.【专题】11:计算题;35:转化思想;4A:数学模型法;5N:数系的扩充和复数.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的充要条件,是基础题.6.(4分)若函数的最小正周期为aπ,则实数a的值为1.【考点】H1:三角函数的周期性.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.【点评】本题主要考查行列式的计算,二倍角公式,余弦函数的周期性,属于基础题.7.(5分)若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f ﹣1(x)=2x﹣1..【考点】4R:反函数.【专题】33:函数思想;4O:定义法.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.【点评】本题考查了反函数的求法,属于基础题.8.(5分)已知向量,,则在的方向上的投影为.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;38:对应思想;41:向量法;5A:平面向量及应用.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:【点评】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.9.(5分)已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】15:综合题;34:方程思想;4G:演绎法;5F:空间位置关系与距离.【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.【点评】本题考查该圆锥的侧面积,考查学生的计算能力,比较基础.10.(5分)某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;35:转化思想;4O:定义法;5I:概率与统计.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.11.(5分)设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】DA:二项式定理.【专题】34:方程思想;35:转化思想;5O:排列组合;5P:二项式定理.【分析】利用通项公式T r=(r=0,1,2,…,9).令9﹣2r=5,解得+1r,即可得出.【解答】解:T r==(r=0,1,2,…,9).+1令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.【点评】本题考查了二项式定理的应用、组合数的计算公式,考查了推理能力与计算能力,属于基础题.12.(5分)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】D9:排列、组合及简单计数问题.【专题】12:应用题;32:分类讨论;4G:演绎法;5O:排列组合.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.【点评】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4R:转化法;5L:简易逻辑.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.【点评】本题考查了充分必要条件,考查纯虚数的定义,是一道基础题.14.(5分)某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80B.96C.108D.110【考点】B3:分层抽样方法.【专题】15:综合题;34:方程思想;4G:演绎法;5I:概率与统计.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选:C.【点评】本题主要考查分层抽样的应用,根据比例关系是解决本题的关键.15.(5分)设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1B.2C.3D.4【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题;35:转化思想;4O:定义法;5I:概率与统计.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.【点评】本题考查命题真假判断,是基础题,解题时要认真审题,注意对立事件概率计算公式、互斥事件概率加法公式、相互独立事件概率乘法公式的合理运用.16.(5分)在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3C.D.2【考点】3H:函数的最值及其几何意义.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═﹣(|t|﹣1)2+≤,故选:C.【点评】本题考查了求函数的解析式问题,考查二次函数的性质以及不等式的性质,求函数最值问题,是一道中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;35:转化思想;4O:定义法;5F:空间位置关系与距离.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC•h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.【点评】本题考查正三棱柱的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.18.(14分)已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】K4:椭圆的性质.【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=•=•=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,弦长公式的应用,考查计算能力,属于中档题.19.(14分)设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】8K:数列与不等式的综合.【专题】34:方程思想;35:转化思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n (2)y n+1)与等比数列的求和公式即可得出y n.代入不等式,化简即可﹣y n﹣1得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n﹣y n=x n=,且y1=2,+1∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.【点评】本题考查了数列递推关系、等比数列的通项公式与求和公式、“累加求和”方法、不等式的解法,考查了推理能力与计算能力,属于中档题.20.(16分)设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.【考点】4N:对数函数的图象与性质.【专题】33:函数思想;35:转化思想;4R:转化法.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即cos(2n x)<0对n∈N均成立,若x是满足条件的实数,则有cosx≤﹣,因为,若﹣<cosx<0,则cos2x=2cos2x﹣1<﹣,则cos4x=2cos22x﹣1>0,所以必有cos(2n x)≤﹣;得|cos(2n x)﹣|≥,又|cos2x+|=2|cosx+||cosx﹣|≥|cosx+|,得|cosx+|≤|cos2x+|,重复运用得到|cosx+|≤…≤|cos(2n x)+|<n为自然数,∴cosx+=0,级x=2kπ±,k∈Z.验证,当x=2kπ±,k∈Z时,有cos(2n x)=﹣,满足题意.所以,x的取值范围为{x|x=2kπ±,k∈Z}【点评】本题考查了对数的性质及其运算以及不等式恒成立的问题在对数与三角函数中的运用.有点难度.21.(18分)设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】KC:双曲线的性质.【专题】11:计算题;23:新定义;35:转化思想;37:集合思想;4R:转化法;5D:圆锥曲线的定义、性质与方程;5J:集合.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λS k >0恒成立,⇔>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3•﹣m=n2,∴S m+S n﹣λS k>0恒成立,⇔>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n•F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n•F n=(﹣1)n+2•F n+2+(﹣1)n+1•F n+1,故A是自生集;②对于任意n≥2,对于任一正整数t∈[1,F2n﹣1],存在集合Ar一个有限子集+1{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,,F2k+3]讨论,则n=k+1时,只须对任何整数m∈[F2k+1,则m=F2k+2+,∈(﹣F2k+1,0),若m<F2k+2+m′,m′∈[1,F2k+1),故=﹣F2k+1由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k的元素的和.+1﹣F2k+1+m′=(﹣1)2k+2•F2k+2+(﹣1)2k+1•F2k+1+m′,因为m=F2k+2的元素的和.所以m可以表示为集合A中有限个绝对值小于F2k+3,则结论显然成立.若m=F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),若F2k+2的元素的和.由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.【点评】本题考查的知识点是新定义“自生集”和“N*的基底集”,双曲线的性质,数列求和,集合的元素,本题综合性强,转化困难,属于难题.。

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。

2017年湖北省高考理科数学试题与答案

2017年湖北省高考理科数学试题与答案

2017年湖北省高考理科数学试题与答案1.选择题1.已知集合 $A=\{x|x<1\}$,$B=\{x|3x<1\}$,则A。

$A\cap B=\{x|x<0\}$B。

$A\cup B=\mathbb{R}$C。

$A\cup B=\{x|x>1\}$XXX2.如图,正方形 $ABCD$ 内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是A。

$\dfrac{1}{4}$B。

$\dfrac{\pi}{8}$C。

$\dfrac{1}{2}$D。

$\dfrac{\pi}{4}$3.设有下面四个命题p_1$:若复数 $z$ 满足$\operatorname{Re}(z)\in\mathbb{R}$,则 $z\in\mathbb{R}$;p_2$:若复数 $z$ 满足 $z^2\in\mathbb{R}$,则$z\in\mathbb{R}$;p_3$:若复数 $z_1,z_2$ 满足 $z_1z_2\in\mathbb{R}$,则$z_1=z_2$;p_4$:若复数 $z\in\mathbb{R}$,则 $z\in\mathbb{R}$。

其中的真命题为A。

$p_1,p_3$B。

$p_1,p_4$C。

$p_2,p_3$D。

$p_2,p_4$4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和。

若$a_4+a_5=24$,$S_6=48$,则 $\{a_n\}$ 的公差为A。

1B。

2C。

4D。

85.函数$f(x)$ 在$(-\infty,+\infty)$ 单调递减,且为奇函数。

若 $f(1)=-1$,则满足 $-1\leq f(x-2)\leq 1$ 的 $x$ 的取值范围是A。

$[-2,2]$B。

$[-1,1]$C。

$[0,4]$D。

$[1,3]$6.$(1+x)^6$ 展开式中 $x^2$ 的系数为A。

2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)

2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)

2017年全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考数学理模拟试题5(带答案)
核心八模
2017年普通高等学校招生全国统一考试模拟试题
数学(理科)(五)
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题分,共60分在每个小题给出的四个选项中,有且只有一项符合题目要求
1已知集合,则
A B D
2复数,则
A 1
B 2 3 D 4
3设都是不等于1的正数,则“ ”是“ ”的
A 充要条B充分不必要条
必要不充分条D既不充分也不必要条
4在验证吸烟与是否患肺炎有关的统计中,根据计算结果,认为这两事情无关的可能性不足1%,则的一个可能值是A B D
如图是一个由两个版圆锥和一个长方体组合而成的几何体的三视图,则该几何体的体积为
A B D
6已知A,B,是直线上不同的三点,点直线,实数满足关系式,有下列结论:①;②;③的值有且只有一个;④的值有两个;⑤点B 是线段A的中点其中正确的个数为
A 1
B 2 3 D4
7
A B 1 D0
8已知函数在区间上单调,则
A 2
B 3 1 D
9在中,内角A,B,的对边分别为,若,则
A B D
10设满足,若的最小值为-12,则实数的取值范围是
A B D
11在棱长为1的长方体中,E,F分别是的中点,平面交棱于点,则
A B D
12已知双曲线的左焦点为F,过点F作双曲线的一条渐近线的垂线,垂足为H,点P在双曲线上,且,则双曲线的离心率为
A B D
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题分,共20分
13已知展开式的常数项为1,则
14设是一个各位数字都不是0且没有重复数字的三位数,将组成的3个数字按从小到大的排成的三位数记为,按从大到小排成的三位数记为,(例如,则)阅读如图所示的程序框图,运行相应的程序,任意输入一个,则输出的结果
1已知实数满足,则的最大值为为
16若正数满足(为自然对数的底数),则实数的取值范围为
三、解答题:本大题共6小题,共70分解答应写出必要的字说明或推理、验算过程
17(本题满分12分)
已知数列的前项和为,若,且,其中
(1)求实数的值和数列的通项公式;
(2)若数列满足,求数列的前项和
18(本题满分12分)如图,在三棱锥中,是等边三角形,是的中点,二面角的大小为
(1)求证:平面平面;
(2)求与平面所成角的正弦值
19(本题满分12分)
为评估设备生产某种零的性能,从设备生产零的流水线上随机抽取100零作为样本,测量其直径后,整理得到下表:经过计算,样本的平均值为,标准差为,以频率值作为概率的估计值
(1)为评判一台设备的性能,从该设备加工的零中任意抽取一,记其直径为X,并根据以下不等式进行评判(P表示相应事的概率);



评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁试判断设备的性能等级
(2)将直径小于等于或直径大于等于的零认为是次品
(ⅰ)从设备的生产流水线上随机抽取2零,计算其中次品个数的数学期望E();
(ⅱ)从样本中随意抽取2个零,计算其中次品个数的数学期望E (Z)
20(本题满分12分)
平面直角坐标系中,过椭圆的右焦点的直线交于两点,为的中点,且的斜率为
(1)求的方程;
(2)是是的两点,若四边形的对角线,求四边形面积的最大值
21(本题满分12分)
(1)讨论函数的单调性,并证明当时,;
(2)证明:当时,函数有最小值,设的最小值为,求函数的值域
请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑。

22(本题满分10分)选修4-4:参数方程与极坐标系
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为(1)说明是哪一种曲线,并将的方程化成极坐标方程;
(2)直线的极坐标方程为,其中满足,若曲线与曲线的公共点都在上,求
23(本题满分10分)选修4-:不等式选讲
已知函数
(1)当时,求不等式的解集;
(2)设函数,当时,,求实数的取值范围。

相关文档
最新文档