2014年数学建模竞赛评分细则(A题)
2014高教社杯全国大学生数学建模竞赛A题
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):07033001 所属学校(请填写完整的全名):吉林师范大学博达学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈密尔顿函数为理论基础进行了完整的建模工作。
2014数学建模国赛A题教程
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下 载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
在模型优化中,我们考虑了在桌面上均匀分布的力的情况,通过建立空间力系的平
衡模型,在临界条件下(桌子支撑腿受到指向桌内的摩擦力取最大值),由理论力学知
识推导出桌面上均匀分布的力 F 与 角、钢筋位置之间的函数式。计算得出桌子的稳定
性与钢筋位置无关,桌子在这种受力情况下的稳定性只与支撑腿与竖直方向的夹角有
2. 提出问题
(1). 给定长方形平板尺寸为 120 cm × 50 cm × 3 cm,每根木条宽 2.5 cm, 连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为 53 cm。 试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数 (例如,桌腿木条开槽的长度等)和桌脚边缘线的数学描述。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
B
我们的报名参赛队号为(8 位数字组成的编号):
27006025
所属学校(请填写完整的全名):
长安大学
二、 问题分析
(1).折叠桌以铰链连接,外形由直纹曲面构成。通过反复研究折叠桌的动态视频, 分析出折叠桌的运动特性,我们采用几何投影法,化三维运动为二维运动,简化模型。 同时,为了便于分析几何关系,我们仅对单组木条中最长与最短两根木条进行探究。并 通过 Solidwoks 软件绘画其几何关系图。根据各木条之间的连动原理推导出所有木条间 的关系,建立曲线参数方程表示折叠桌整体的动态变化过程。最后计算出折叠桌的设计 加工参数,并通过函数式和三维曲线图描述桌角边缘线。
2014高教社杯全国大学生数学建模竞赛(A)题目
2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
2014年全国数学建模a题解析
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。
要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。
问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出。
所求速度33⨯⨯(=1.692210m/s,=1.613910m/s)v v远近采用轨道六根数[2]来建立近月点,远月点位置的模型。
轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。
通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM)E。
2014全国大学生数学建模竞赛A题论文
全国大学生数学建模竞赛论文格式规●本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每题论文数的比例分配。
)●论文用白色A4纸打印(单面、双面打印均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。
●论文第一页为承诺书,具体容和格式见本规第二页。
●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体容和格式见本规第三页。
●论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。
●从第四页开始是论文正文(不要目录)。
论文不能有页眉或任何可能显示答题人身份和所在学校等的信息。
●论文应该思路清晰,表达简洁(正文尽量控制在20页以,附录页数不限)。
●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
●在论文纸质版附录中,应提供参赛者实际使用的软件名称、命令和编写的全部计算机源程序(若有的话)。
同时,所有源程序文件必须放入论文电子版中备查。
论文及源程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。
(如果发现程序不能运行,或者运行结果与论文中报告的不一致,该论文可能会被认定为弄虚作假而被取消评奖资格。
2014全国大学生数学建模竞赛A题题目及参考答案_
2014全国大学生数学建模竞赛A题题目及参考答案_ 2011高教社杯全国大学生数学建模竞赛题目,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息,有了这些信息,如何建立模型解决问题,DJHFSJKDHFKDSJKFHSJKDFHJKDSHFDJKSFHJKDSHFJKDSHFJK题目 A题城市表层土壤重金属污染分析摘要,本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
2014高教社杯全国大学生数学建模竞赛A题_共26页
2014 高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
嫦娥三号软着陆轨道设计与控制策略 摘要
本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信 息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈 密尔顿函数为理论基础进行了完整的建模工作。首先,通过建立坐标系结合物 理学运动公式求解出了近月点与远月点的位置及相应的速度;在此基础上,利 用 B 样条函数逼近的方法确定了嫦娥三号的着陆轨;最后通过分解着陆过程并 利用非线性规划问题及哈密尔顿函数确定着陆阶段的最优控制策。
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上
内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖
资格。)
日期: 2014 年 9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号):
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
A
我们的报名参赛队号为(8 位数字组成的编号):
07033001
所属学校(请填写完整的全名):吉林师范大学博达学院
针对问题二,采用 B 样条函数逼近的运动学统计定位方法确定了在着陆弧 段上任意时刻的位置方程,从而刻画出了嫦娥三号的着陆轨道,并用 matlab 对轨 迹进行了模拟。在 6 个阶段的最优控制策略上,先通过直角坐标系得出质心的运 动方程,再通过对 6 个阶段初始条件和终端状态的分解,利用非线性规划问题 求解哈密尔顿函数,得出性能指标(耗燃量)的最小值为:382.6531kg,从而确 定了最优控制策略。
2014年全国数学建模a题解析
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。
要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。
问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出。
所求速度33⨯⨯(=1.692210m/s,=1.613910m/s)v v远近采用轨道六根数[2]来建立近月点,远月点位置的模型。
轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。
通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM)E。
2014年全国大学生数学建模竞赛A题论文
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线方m s,2程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
2014全国大学生数学建模竞赛A题论文解析
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s,2方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
2014数模国赛A题
一个质点。
3.2 符号说明
G
万有引力常数
嫦娥三号质量
月球质量
d
嫦娥三号在近月点距月心的距离
v
嫦娥三号在近月点的速度
角速度
水平速度
径向速度 径向加速度 水平加速度
β
推力 F 的径向夹角
比冲
4.模型建立
嫦娥三号是我国首次地外天体软着落任务。所谓软着陆,是指着陆器在制动系统作 用下以很小的速度准确降落到月球指定区域,以保证实验设备的安全。
圆的卫星轨道。 2) 自由下降段,也称霍曼转移段[2]。嫦娥三号脱离原来的停泊轨道,转入过渡轨
道。过渡轨道是一条近月点在所选着陆点附近的椭圆轨道。 3) 动力下降段,也称主动制段。嫦娥三号沿着过渡轨道下降到距离月面一定高度
时,制动发动机点火工作,开始动力下降。 4) 避障阶段(包括姿态调整段),也称最终着陆段。嫦娥三号水平方向为 0,为在
2
3.问题假设和符号说明
3.1 问题假设
1) 着陆准备轨道的选取不考虑太空漂浮物的影响;
2) 软着陆阶段忽略辐射,粒子撞击对嫦娥三号运动速度与方向的影响;
3) 忽略地球等其他星体引力对嫦娥三号的影响;
4) 假设嫦娥三号在轨道运行中不存在内在故障或在外在事故;
5) 考虑嫦娥三号在姿态调整时,对其主减速过程的轨道不产生影响,将嫦娥三号看做
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或 其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文 引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有 违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
2014年全国数学建模大赛A题
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
2014年全国大学生数学建模竞赛浙江赛区评审结果(A题)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
2014年全国大学生数学建模竞赛浙江赛区评审结果(A题)
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 队号 A11102012 A11168020 A11168004 A11141007 A11143010 A11136024 A11102028 A11141001 A11168047 A11117001 A11140022 A11122029 A11102032 A11136023 A11136021 A11102029 A11140021 A11117011 A11136025 A11122011 A11168049 A11168001 A11168014 A11168031 A11149010 A11102026 A11141013 A11154005 A11102001 A11102035 A11102008 A11141023 A11165002 A11136002 A11140040 A11141003 A11141018 A11136003 A11122016 A11140008 A11168041 A11168030 A11168013 A11168033 A11168035 A11168037 A11168008 A11122010 A11102023 A11102021 A11105010 A11117007 A11136007 A11155035 A11104022 A11107009 队员1 宋楠 郑建国 沈启超 华亦昂 潘辉 刘昕 赵雨山 陈超 祝雄飞 孟安妮 孙邦达 王高松 徐川石 吴声豪 王颜 王宇晨 何青青 高迪 吴蓬威 胡安 何林 张雨琦 杨斌彬 郑先斐 蔡鹏盛 周梦薇 杨凯 许艇 奚国儒 魏千景 陈海强 孙青松 陈道鸿 金斌华 陈正樟 储翔 黄鹂 倪土 施芳杰 罗婷婷 周凯琪 王彩艳 赵佳颖 陈约 李正 李甍娜 李雯 朱菁菁 黄鹤谦 胡文杰 许滢 李潇 胡潇尹 武惠 余佳 胡娌娌 队员2 钟珏 陶禹诺 朱慧慧 张凌霄 何瑶 韩绍文 张羽翀 唐梦珏 钟明洁 王奕挺 韩斌 褚惠娜 张乾 李启章 康炳易 李欣宁 鲁南南 骆嘉晨 李楠涛 陈炜红 王亚倩 张晓敏 艾兆亮 杨哲 任霄 华郁秀 吴凯达 林田雯 王忠玉 朱尊杰 赵朋磊 蔡盈梅 陈亚琳 熊华清 叶帆帆 张梦露 马明宇 钱冬磊 周益华 王婷婷 王微 许庆全 韩雨彤 李梦斐 沈烨平 牟起航 崔玲丽 杨玲巧 吴亚彬 周洋 张倩 蒋周渠 谢城飞 杨金泰 朱挥毫 范浩燕 队员3 章烨辉 严洒洒 沈炳杰 周婷婷 李崇益 张润洲 方正庭 杨克宇 钱文杰 陈莎莎 高原 胡梦姣 陆圣灵 徐漫燕 张瑞祥 许宇迪 叶潇潇 樊亚男 郑柘炀 曾文坤 牛良涛 黄瑜可 傅卫强 尹茹梦 林少洪 娄江峰 沈霞 余梦娜 汪丹 胡智慧 李园芳 祝桂琳 周将威 程伟 李恒 施皓天 周家伟 卢荻 洪东峰 姚晓鹏 阮悦 李迎娇 田富鹏 程子文 徐瑞霞 毛益文 赵钧钧 邹鹏 何岸 徐佳倩 丁祎祯 孙妍 李元丙 王佩旭 方莹 王缘 指导教师 数模组 数模组 数模组 宋军全 卢军 数模组 数模组 宋军全 数模组 王立洪 李银飞 左兰 数模组 数模组 数模组 数模组 李银飞 罗文昌 数模组 缪春芳 数模组 数模组 数模组 数模组 李亚辉 数模组 宋军全 数模组 数模组 数模组 数模组 宋军全 数模组 数模组 数模组 宋军全 周凯 数模组 孙跃方 华就昆 数模组 数模组 数模组 数模组 数模组 数模组 数模组 缪春芳 数模组 数模组 裘良华 张晓敏 数模组 数模组 潘家志 孟庆欣 院校 杭州电子科技大学 中国计量学院 中国计量学院 浙江工业大学 浙江工业大学之江学院 浙江大学 杭州电子科技大学 浙江工业大学 中国计量学院 宁波大学 浙江工商大学 绍兴文理学院 杭州电子科技大学 浙江大学 浙江大学 杭州电子科技大学 浙江工商大学 宁波大学 浙江大学 绍兴文理学院 中国计量学院 中国计量学院 中国计量学院 中国计量学院 浙江外国语学院 杭州电子科技大学 浙江工业大学 浙江科技学院 杭州电子科技大学 杭州电子科技大学 杭州电子科技大学 浙江工业大学 浙江万里学院 浙江大学 浙江工商大学 浙江工业大学 浙江工业大学 浙江大学 绍兴文理学院 浙江工商大学 中国计量学院 中国计量学院 中国计量学院 中国计量学院 中国计量学院 中国计量学院 中国计量学院 绍兴文理学院 杭州电子科技大学 杭州电子科技大学 杭州师范大学钱江学院 宁波大学 浙江大学 浙江理工大学 杭州师范大学 湖州师范学院 奖项 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐全国一等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 推荐国家二等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖 省一等奖
2014全国大学生数学建模a题
2014高教社杯全国大学生数学建模竞赛a题摘要2013年嫦娥三号成功发射,标志着我国航天事业上的又一个里程碑,针对嫦娥三号软着陆问题,分别建立着陆前轨道准备模型和软着陆轨道模型,建立动力学方程,以燃料最省为目标进行求解。
问题一:在软着陆前准备轨道上利用开普勒定律、能量守恒定律以及卫星轨道的相关知识,利用牛顿迭代法分别确定了近月点和远月点的速度分别为 1.6925km/s、1.6142km/s,位置分别为(19.91W,20.96N),(160.49E,69.31S)。
问题二:在较为复杂的软着陆阶段,因为相对于月球的半径,嫦娥三号到月球的表面的距离太小,如果以月球中心建立坐标系会造成比较大的误差,因此选择在月球表面建立直角坐标系,在主减速阶段的类平抛面上建立相应的动力学模型,求出关键点的状态和并设计出相应的轨道,接下来通过利用灰度值阀值分割方法和螺旋搜索法对粗避障阶段和精避障阶段的地面地形进行相应的分析,找出安全点,然后调整嫦娥三号的方向以便安全降落,最后在落地时通过姿态发动机调整探测器的姿态,使之可以平稳的落到安全点上,在以上的各个阶段都可以以燃料最省为最优指标,从而建立非线性的最优规划的动力学模型,并基于该动力学模型可以对各个阶段的制导率进行优化设计由此就可以得到各个阶段的最优控制策略,问题三:最后针对所设计的轨道和各个阶段的控制策略进行了误差分析和灵敏度分析。
对系统误差和偶然误差都做了解释;通过灵敏度分析发现,嫦娥三号在近月点的位置对结果的影响最大。
关键字牛顿迭代法,灰度值阀值分割,螺旋搜索法,灵敏度分析一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
2014年数学建模题目
2014年数学建模题目
2014年全国研究生数学建模竞赛A题是关于小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究。
题目要求探究数十亿个神经元的信息,以期对知觉、行动以及意识等有更进一步的了解,并可能为各种精神疾病研究出新的治疗方法。
具体而言,需要解决的问题包括:
1. 脑电波介绍:脑是支配人和高级动物活动的司令部和信息中心,神经系统承担着感受外界刺激,产生、处理、传导和整合信号,实现各种认知活动(如知觉、学习、记忆、情绪、语言、意思和思维等),以及运动控制等众多功能。
2. 脑电波的应用:脑电波可以用来研究大脑的活动和功能,包括神经元的信息传递和整合。
脑电波的应用范围广泛,包括神经科学、心理学、生理学、医学等领域。
对于这个题目,需要运用数学建模的方法,结合脑电波数据和视觉刺激数据,分析小鼠视觉感受区的电位信号与视觉刺激之间的关系,探究大脑的信息处理机制。
具体而言,需要解决的问题包括:
1. 数据预处理:对脑电波数据进行预处理,包括滤波、去噪、归一化等操作,以提高数据的质量和可靠性。
2. 特征提取:从脑电波数据中提取出与视觉刺激相关的特征,包括时域和频域特征。
3. 模型建立与优化:根据提取的特征,建立数学模型,并不断优化模型参数和结构,以提高预测准确率和稳定性。
4. 结果解释与讨论:对模型的结果进行解释和讨论,探究小鼠视觉感受区的电位信号与视觉刺激之间的关系,以及大脑的信息处理机制。
总之,2014年全国研究生数学建模竞赛A题是一个具有挑战性和重要意义的题目,需要运用数学建模的方法,结合脑电波数据和视觉刺激数据,分析小鼠视觉感受区的电位信号与视觉刺激之间的关系,探究大脑的信息处理机制。
2014全国大学生数学建模比赛A题国一优秀论文
r ' dr d , r '' d 2 r d 2 dr h ' r dr dt 2r d r d r h2 2 1 r d r dt 2 ( 3 r ' 2 2 r '' ) d r r r
利用 2.10 式得
u '' u
h2
该方程给
r
1 h2 u 1 e cos( )
e 和 即两个新积分常数。 这是一圆锥曲线, 在一定条件下它表示椭圆, 中心 M (即坐标原点 O )在其一个焦点上。考虑实际应用的需要,这里首先讨论椭圆运 动的情况。既然是椭圆,可令 p a 1 e 2 h 2
2.38 km s
18.28 ~ 28.58
318.15
27.32 天
2
建立模型 一、问题一分析 1.1 嫦娥三号近月点与远月点状态分析
月球探测器轨道运动按近似分析方法分为两个阶段:一个是以地球引力为主 的阶段; 另一个是以月球引力为主的阶段。两者以月球相对于地球的作用球半径 为 6.6 万公里的球面为分界。当航天器与月球的距离大于 6.6 万公里时,认为航 天器受到的力主要是地球引力, 并近似地认为航天器相对地球的轨道是开普勒轨 道。当航天器进入月球作用球时,认为航天器是相对于月球运动。如果将进入月 球作用球的速度换算成相对月球的速度,这个速度往往超过月球的脱离速度, 因 而航天器相对月球的轨道是双曲线。 两个阶段轨道连接起来就是月球探测器的轨 道。这种近似方法称为双二体问题。如果两个阶段的轨道都用航天器轨道摄动的 方法解出, 可以得到比较精确的轨道。月球探测器轨道依顺序可以分为停泊轨道 和过渡轨道,过渡轨道一直延伸到月球附近。 此后,不作机动飞行时便分为击中月 球轨道和绕飞轨道;作机动飞行时,可成为月球卫星轨道或在月球表面软着陆。
2014年“高教杯”数学建模竞赛A题解答
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):25018007所属学校(请填写完整的全名):红河学院参赛队员(打印并签名) :1. 郭聪聪2. 建晶晶3. 丁柱花指导教师或指导教师组负责人(打印并签名):张德飞(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题嫦娥三号软着陆轨道设计与控制策略摘要本文以月心为圆心建立空间直角坐标系,通过能量守恒定律并假设轨道方程为椭圆方程确定嫦娥三号着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
接着利用三阶样条逼近函数确定轨道方程,并从动力学的角度建立动力学质心运动方程,在这个方程的基础上选择推力F和 作为控制策略,建立燃料消耗最小的目标函数,通过选取一些样本获得了最优控制策略。