椭圆的几何性质(1)1

合集下载

椭圆的简单几何性质(一)

椭圆的简单几何性质(一)

椭圆的简单几何性质(一)【内容分析】1、本节教材的地位和作用本课是在学生学习了椭圆的定义、标准方程的基础上,遵循学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。

对于学生来说,是首次利用曲线方程研究曲线的性质,因此教学中教师要注意引导、点拨。

根据教学大纲的安排,本节内容分4个课时进行教学,本节内容的课时分配作如下设计:第一课时,椭圆的范围、对称性、顶点坐标、离心率、椭圆的画法;第二课时,椭圆的第二定义、椭圆的准线方程;第三课时,焦半径公式与椭圆的标准方程;第四课时,椭圆的参数方程及应用2、教学重点:椭圆的简单几何性质及其探究过程;3、教学难点:利用曲线方程研究曲线几何性质的基本方法.【教学目标】(1)知识和技能目标:通过椭圆标准方程的讨论,使学生掌握椭圆的范围、对称性、顶点、离心率等几何性质,掌握标准方程中的几何意义,并能正确作出图形。

(2)能力和方法目标:培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决实际问题的能力(3)情感和价值目标:通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对椭圆对称美的感受,激发学生对美好事物的追求。

【教学方法】借助多媒体辅助手段,创设问题情境,引导学生观察、分析、猜测、论证,组织讨论,合作交流,启发学生积极思维,不断探索后汇报研究成果,得到结论后总结,及时进行反馈应用和反思式总结。

【学法指导】本课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。

按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。

对于学生来说,利用曲线方程研究曲线性质这是第一次,因此教学中教师要注意引导、点拨。

【教学过程】y 变B教学反思:1、将教学科研融入教学中,改变学生的学习方式研究体验式创新教学法是我校的一个科研课题。

本节课就是以这一理论为指导,借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习(兴趣是前提)。

高二数学椭圆的几何性质1

高二数学椭圆的几何性质1

e越接近1,椭圆越扁;e越接近 于0,椭圆越接近于圆。
2 2 例1:椭圆25x +16y =400
的长轴长为____,短轴长 为____,焦点坐标为___, 顶点坐标为____,离心率 为 ______。
x y 练习:若椭圆 1的离心率 a8 9 1 为 ,求a的值。 2
2
2
x y (2)若 2 2 1( a b 0 ) 的左焦 a b
x y 2 1 2 a b ( a b 0)
y B2(0,b) o x A2(a,0) B1(0,-b)
2
2
A1(-a,0)
a、b分别叫做椭圆的 长半轴长和短半轴长。
四、椭圆的离心率
离心率:椭圆的焦距与长轴长的比, 2c c 叫做椭圆的离心率。 e y 2a a
0<e<1
o x
变式: (08江西)已知F1,F2椭圆的两 个焦点,满足 MF1 MF2 0 ,点 M总在椭圆的内部,则椭圆的离心率 的取值范围是___________。
2
2
练习:
2 2
x y 1 ( a b 0 ) 已知 2 2 a b 的长轴两端点为A,B,如果椭圆 上存在一点Q,使∠F1QF2=120°, 求离心率e的取值范围。
一、椭圆的范围 二、椭圆的对称性 三、椭圆的顶点
变量x,y的取 值范围 方程的对称性 x=0或y=0时 方程的解
四、椭圆2 2 2 2 x y x y 由 2 1 2 1和 2 1 2 a b a b

x a和 y b
o
y
说明:椭圆位于矩 形之中。
x
二、椭圆的对称性 2 2
椭圆关于x轴对称; 椭圆关于y轴对称; 椭圆关于原点对称;

2.2.2椭圆的几何性质1(高二数学精品课件)

2.2.2椭圆的几何性质1(高二数学精品课件)
(心3对)称把。x换成-x,同时把y换成-yy方程不变,图象关于原点成中
B2
A1
F1
b
oc
a
A2
F2
B1
结论 :通过上面的分析,我们得到判断曲线 是否对称的方法:
以-x代换x,若方程不变,则曲线关于y轴对称;若以
-y代换y,方程不变,曲线关于x轴对称;
同时以- x代换x,以- y代换y,方程不变,则方 程关于坐标原点对称.
二、椭圆
简单的几何性质
1 b2

1得:
-b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中 y
B2
A1
F1
b
oc
a
A2
F2
B1
椭圆的对称性
Y
P1(-x,y)
P(x,y)
O
X
P2(-x,-y)
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称;
长半轴长为a,短 半轴长为b. a>b
e c a
a2=b2+c2
x2 b2

y2 a2
1(a
b
0)
|x|≤ b,|y|≤ a
同前 (b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c)
同前
同前
同前
例1已知椭圆方程为9x2+25y2=225,
它的长轴长是: 10 。短轴长是: 6 。
(1) x2 y2 1
32
(2)
x2 y2 1 36 100
(3) 16x2+25y2=400

椭圆及其简单几何性质(1)

椭圆及其简单几何性质(1)

§2.2.2 椭圆及其简单几何性质(1)【使用说明】1、课前完成预习学案,掌握基本题型;2、认真限时规范书写,课上小组合作探讨,答疑解惑。

3、A、B层全部掌握,C层选做。

【学习目标】1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.【问题导学】(预习教材理P43~ P46,文P37~ P40找出疑惑之处)复习1:椭圆2211612x y+=上一点P到左焦点的距离是2,那么它到右焦点的距离是.复习2:方程2215x ym+=表示焦点在y轴上的椭圆,则m的取值范围是.【合作探究】问题1:椭圆的标准方程22221x ya b+=(0)a b>>,它有哪些几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比ca称为离心率,记cea=,且01e<<.试试:椭圆221169y x+=的几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:cea== .反思:ba或cb的大小能刻画椭圆的扁平程度吗?我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。

【深化提高】例1 求椭圆221625400x y+=的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是22981x y+=呢?学案编号:B51 第1 页共2 页成功的秘诀公式是A x y z =++其中A 代表成功,x 代表艰苦的劳动,y 代表正确的方法,z 代表少说空话. ——爱因斯坦第 2 页 共 2 页小结:①先化为标准方程,找出,a b ,求出c ; ②注意焦点所在坐标轴. 例2 点(,)M x y 与定点(4,0)F 的距离和它到直线25:4l x =的距离的比是常数45,求点M 的轨迹.小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆 .※ 动手试试练1.求适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,6a =,13e =;⑵焦点在y 轴上,3c =,35e =;⑶经过点(3,0)P -,(0,2)Q -;⑷长轴长等到于20,离心率等于35.【当堂检测】1.若椭圆2215x y m+=的离心率105e =,则m 的值是( ). A .3 B .3或253C .15D .15或51532.若椭圆经过原点,且焦点分别为1(1,0)F ,2(3,0)F ,则其离心率为( ).A .34B .23C .12D .143.短轴长为5,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为( ).A .3B .6C .12D .244.已知点P 是椭圆22154x y +=上的一点,且以点P 及焦点12,F F 为顶点的三角形的面积等于1,则点P 的坐标是 .5.某椭圆中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是 .【小结】(1)知识与方法方面 。

2020高中数学 10 椭圆的几何性质(一)(含解析)2-1

2020高中数学 10 椭圆的几何性质(一)(含解析)2-1

课时分层作业(十)椭圆的几何性质(一)(建议用时:60分钟)[基础达标练]一、选择题1.已知椭圆错误!+错误!=1(m〉0)的左焦点为F1(-4,0),则m 等于()A.2 B.3 C.4 D.9B [由题意知25-m2=16,解得m2=9,又m〉0,所以m=3.]2.已知椭圆C的短轴长为6,离心率为错误!,则椭圆C的焦点F到长轴的一个端点的距离为()A.9 B.1C.1或9 D.以上都不对C [错误!解得a=5,b=3,c=4。

∴椭圆C的焦点F到长轴的一个端点的距离为a+c=9或a-c =1.]3.如图所示,底面直径为12 cm的圆柱被与底面成30°角的平面所截,截口是一个椭圆,则这个椭圆的离心率为( )A.12 B 。

34C 。

错误!D 。

错误!A [由题意得2a =错误!=8错误!(cm),短轴长即2b 为底面圆直径12 cm ,∴c =错误!=2错误! cm ,∴e =错误!=错误!.故选A 。

]4.曲线错误!+错误!=1与曲线错误!+错误!=1(k 〈9)的( )A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等C [曲线错误!+错误!=1的焦点在x 轴上,长轴长为10,短轴长为6,离心率为45,焦距为8.曲线错误!+错误!=1(k 〈9)的焦点在x 轴上,长轴长为2错误!,短轴长为2错误!,离心率为错误!,焦距为8.则C 正确.]5.已知椭圆C :错误!+错误!=1(a 〉b 〉0)的左,右焦点为F 1,F 2,离心率为错误!,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A 。

错误!+错误!=1B 。

错误!+y 2=1C 。

错误!+错误!=1D 。

错误!+错误!=1A [∵△AF 1B 的周长为4错误!,∴4a =4错误!,∴a=3,∵离心率为错误!,∴c=1,∴b=错误!=错误!,∴椭圆C的方程为错误!+错误!=1。

用椭圆的简单几何性质(1)

用椭圆的简单几何性质(1)

练习2:
x2 y2 1. 若点P(x,y)在椭圆 25 9 1
上,则点P(x,y)横坐标x的取值范围 上的点有 (1)P(-2,4) (2)P(-4,2) (3) P(-2,-4) (4)P(2,-4)

x2 y2 2.若点P(2,4)在椭圆 2 2 1(a b 0) 上,下列是椭圆 a b
已知椭圆方程为6x2+y2=6
2 。短轴是:_____

它的长轴长是:2 6
焦距是:
2 5
焦点坐标是: (0, 5 )
外切矩形的面积等于:
(0, 。顶点坐标是: 6) (1, 0) 。
30 .离心率等于:___________。 6
4 6

x2 y2 其标准方程是 1 1 6
a 6 b 1 则c a2 b2 5
3.椭圆中a,b,c的关系是:
2=b2+c2 a
一、范围:
观察:椭圆
x2 y2 1, 2 1得: -a≤x≤a, 2 a b
-b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中 y
B2
A1
b F1
a F2
A2
o c
B1
x
二、椭圆的对称性
x y 2 1(a b 0) 2 a b
复习:
1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的 动点的轨迹叫做椭圆。
| PF1 | | PF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程是: 2 2
当焦点在X轴上时 当焦点在Y轴上时
x y 2 1(a b 0) 2 a 2 b 2 y x 2 1(a b 0) 2 a b

2.2.2椭圆的简单几何性质(1)

2.2.2椭圆的简单几何性质(1)

研一研· 问题探究、课堂更高效
2.2.2
问题 5 比较下列椭圆的形状, 哪一个更圆, 哪一个更扁? 为什么?
2 2 x y 4x2+9y2=36 与 + =1 25 20 2 2 x y 答案 将椭圆方程 4x2+9y2=36 化为标准方程 9 + 4 =1,
则 a2=9,b2=4,所以 a=3,c= a2-b2= 5,故离心 5 x 2 y2 率 e= 3 ;椭圆25+20=1 中,a2=25,b2=20,则 a=5, 5 2 2 c= a -b = 5,故离心率 e= 5 .

x y 把椭圆的方程化为标准方程 9 + 4 =1.
可知此椭圆的焦点在 x 轴上,且长半轴长 a=3, 短半轴长 b=2;又得半焦距 c= a2-b2= 9-4= 5 因此,椭圆的长轴长 2a=6,短轴长 2b=4;两个焦点 的坐标分别是(- 5,0),( 5,0);四个顶点的坐标分 5 c 别是(-3,0),(3,0),(0,-2),(0,2);离心率 e=a= 3 .
研一研· 问题探究、课堂更高效
b c 问题 4(1)a或b的大小能刻画椭圆的扁平程度吗?为什么? c (2)你能运用三角函数的知识解释,为什么 e=a越大,椭 c 圆越扁?e=a越小,椭圆越圆吗? a2-c2 b 2 答案 (1)都能.由a= 2 = 1-e (0<e<1)可知, a
b 当 e 越趋近于 1 时,a越趋近于 0,椭圆越扁;当 e 越趋 b 近于 0 时,a越趋近于 1,椭圆越接近于圆.当且仅当 a =b 时,c=0,两焦点重合,图形变为圆。 c (2)如图,在 Rt△ BF2O 中,cos∠ BF2O= , a c c 越大,∠BF2O 越小,椭圆越扁; 越小, a a
由于前一个椭圆的离心率较大, 因此前一个椭圆更扁, 后 一个椭圆更圆.

2015.9.15椭圆的几何性质(1)

2015.9.15椭圆的几何性质(1)

焦点坐标、顶点坐标。
x2 y2 例3: 椭 圆 2 2 1(a b 0)的 左 焦 点 为 F ( 0) , A( a ,0), B(0, b) 1 - c, a b b 是两个顶点,如果 F1到 直 线 AB的 距 离 为 , 求 椭 圆 的 离 心 率 . 7
例 4:
x2 y2 1. P 为椭圆 2 2 =1 上一点, F1、 F2 为焦点 ,如果 a b
3 (C) 2
2 (D) 3
60
2 .1,1 则该椭圆的离心率的取 值范围为_______
x2 y2 (6)已知椭圆 2 2 1(a b 0)的左右焦点分别为F1 , F2 , a b a c 若在椭圆上存在一点 P, 使 , sinPF1 F2 sinPF2 F1


例5.已知F是椭圆C的一个焦点,B是短轴的一个端点, 线段BF的延长线交C于点D,且 BF 2 FD .求C的离心率e .
c e (0 e 1) a c e (0 e 1) a
离心率
例1:求椭圆 16 x2 + 25y2 =400的长轴和短轴的长、
离心率、焦点和顶点坐标
能标出图中椭圆焦点的位置吗?依据是什么?
练习: 2.求适合下列条件的椭圆的标准方程: (1)焦点在y轴上,c=3,e=3/5; (2)经过点P(-3,0),Q(0,-2); (3)长轴长等于20,离心率等于3/5. (4)长轴长是短轴长的2倍,且过点(2,-6) (5)在x轴上的一个焦点与短轴两端点的连线互相垂 直,且焦距为6
一、椭圆的范围
x y x 2 1 2 由 2 a a b
即 x a和 y b 说明:椭圆位于直 线X=±a和y=±b所 围成的矩形之中。

1.椭圆的几何性质(简单性质)

1.椭圆的几何性质(简单性质)

e =
c a
a2=b2+c2
已知椭圆方程为16x =400, 例1、已知椭圆方程为16x2+25y2=400,则 它的长轴长是: 10 ;短轴长是 短轴长是: 8 ; 它的长轴长是 短轴长是
焦距是: 焦距是
6
;离心率等于 离心率等于: 离心率等于
焦点坐标是: 焦点坐标是
(±3, 0) ;顶点坐标是 (±5, 0) (0, ±4) ; 顶点坐标是: 顶点坐标是
x2 y2 + = 1 的两个焦点为 1 、F2 ,过左焦点作 的两个焦点为F 椭圆 45 20
直线与椭圆交于A, 两点, 的面积为20, 直线与椭圆交于 ,B 两点,若△ AB F2 的面积为 , 求直线的方程。 求直线的方程。
y
(x1 , y1) A
o
(x2 , y2) B F1 F2
x
作业
1.已知椭圆的中心在原点,焦点在坐标轴上,长 已知椭圆的中心在原点,焦点在坐标轴上, 已知椭圆的中心在原点 轴是短轴的三倍,且椭圆经过点P( , ), ),求 轴是短轴的三倍,且椭圆经过点 (3,0),求 椭圆的方程. 椭圆的方程 2 2 x + 2 y = 4 的左焦点作倾斜角为 30 0 2.过椭圆 过椭圆 的直线AB, 求线段AB的长度 的长度. 的直线 , 求线段 的长度
B2
A1
b F1
a F2
A2
o c
B1
3、椭圆的顶点 、
x a
2 2
y2 + = 1( a > b > 0 ) 2 b
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 长轴、短轴:线段 长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短 轴。 a、b分别叫做椭圆的长半轴长和短半轴长。 a、b分别叫做椭圆的长半轴长和短半轴长。 分别叫做椭圆的长半轴长和短半轴长 y

【新教材教案】3.1.2 椭圆的简单几何性质(1) 教学设计-人教A版高中数学选择性必修第一册

【新教材教案】3.1.2 椭圆的简单几何性质(1) 教学设计-人教A版高中数学选择性必修第一册

3.1.2椭圆的简单几何性质(1)本节课选自《2019人教A 版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用 . 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。

作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。

因此,内容在解析几何中占有非常重要的地位。

重点:由几何条件求出椭圆的方程 难点:由椭圆的方程研究椭圆的几何性质多媒体思考1. 离心率对椭圆扁圆程度的影响提示:如图所示,在Rt△BF2O中∠BF2O越小,椭圆越扁;e越小答案:√3-1变式 1 若例2改为如下F1F2为底边作等腰直角三角形4.已知椭圆x23+y22=1左、右焦点分别为F1,F2,上、下顶点分别为B1,B2,则四边形B1F1B2F2的面积为.解析:根据题意,设四边形B1F1B2F2的面积为S,椭圆的标准方程为x 23+y22=1,其中a=√3,b=√2,则c=√3-2=1,则F1(-1,0),F2(1,0),B1(0,√2),B2(0,-√2),即|OF1|=|OF2|=1,|OB1|=|OB2|=√2,则S=4×S△B1OF1=4×12×|OB1|×|OF1|=2√2.答案:2√25.万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同、扁平程度相同的椭圆.已知大椭圆的长轴长为40 cm,短轴长为20 cm,小椭圆的短轴长为10 cm,则小椭圆的长轴长为cm.解析:因为两个椭圆的扁平程度相同,所以椭圆的离心率相同,c 大a 大=c小a小,即√a大2-b大2a大2=√a小2-b小2a小2.所以2a大2b大=2a小2b小,所以4020=2a小10,所以小椭圆的长轴长为20 cm.五、课时练运用代数方法,让学生体会方程与函数的思想在研究椭圆几何性质中的作用,让学生的思路更加清晰,对学习内容的把握更加容易,同时注意及时让学生进行思维拓展,形成知识网,提升教学效果。

第2章2.2.2 椭圆的简单几何性质(一)

第2章2.2.2 椭圆的简单几何性质(一)
第15页
高考调研 ·新课标 ·数学选修2-1
例 2 根据下列条件,求中心在原点,对称轴在坐标轴上的 椭圆方程.
(1)焦点在 x 轴上,一个焦点与短轴的两端点连线互相垂直, 且半焦距为 6;
(2)与椭圆x92+y42=1 有相同的焦点,且离心率 e= 55; (3)以直线 3x+4y-12=0 与两坐标轴的交点分别作为顶点 和焦点.
第25页
高考调研 ·新课标 ·数学选修2-1
互动 2 (1)ba与bc的大小能刻画椭圆的扁平程度吗?为什 么?
(2)你能运用三角函数的知识解释,为什么 e=ca越大,椭圆 越扁?e=ac越小,椭圆越圆?
第26页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)都能.由ba= a2-a2 c2= 1-e2(0<e<1)可知, 当 e 越趋近于 1 时,ba越趋近于 0,椭圆越扁;当 e 越趋近于 0 时, ba越趋近于 1,椭圆越接近于圆.当且仅当 a=b 时,c=0,两焦 点重合,图形变为圆,方程为 x2+y2=a2.
【解析】 把已知方程化成标准方程为2y52 +x2=1. 这里 a=5,b=1,所以 c= 25-1=2 6. 因此,椭圆的长轴和短轴的长分别是 2a=10 和 2b=2,两个焦 点分别是 F1(0,-2 6),F2(0,2 6),椭圆的四个顶点是 A1(0,- 5),A2(0,5),B1(-1,0)和 B2(1,0).
第29页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)将椭圆方程 4x2+9y2=36 化为标准方程x92+y42
=1,则 a2=9,b2=4,所以 a=3,c= a2-b2= 5,故离心率 e = 35;椭圆2x52+2y02 =1 中,a2=25,b2=20,则 a=5,c= a2-b2

椭圆的几何性质

椭圆的几何性质
椭圆的几何性质(一)
x y 椭圆 2 2 1(a b 0)的几何性质 a b 2 2 x y 1、范围: 1, 2 1得: 2 a b
-a≤x≤a, -b≤y≤b 知 椭圆位于直线x=±a,y= ± b围成的矩形内 y
y=b x=-a

2
2
x=a
F1
o
y=-b
F2

x
x y 从方程 2 2 1(a b 0)上看: 2、对称性: a b (1)把x换成-x方程不变,故如果 M(x,y) 是椭圆上 ' 任意一点,则与点M关于y轴对称的点 M ( x, y ) 也在椭 圆上,即椭圆关于y轴对称; (2)把y换成-y方程不变,椭圆关于x轴对称;
(3)把x换成-x,同时把y换成-y方程不变,椭圆关于原点 y 成中心对称。
结论:
M ' ( x, y) ●

2
2

M ( x, y)
椭圆关于x轴、y轴成轴对称图形,
又是以原点为对称中心的中心对 '' M ( x, y ) 称图形。 椭圆的对称中心叫做椭圆的中心
F1

o

F2
M ' ( x, y )
离心率、焦点和顶点的坐标,并用描点法画出它 的图形。
x2 y2 解:把椭圆的方程化为标准方程 1 25 16 2 2 2 故 c 9 故椭圆的焦点在x轴上.其中 a 25, b 16
它的长轴长是: 10 。 焦距是: 短轴长是: 离心率等于: 8
3 5
。 。
6

焦点坐标是:
(3,0) 。顶点坐标是: (5,0) (0,。 4)
F1 (-a,0)

0046数学课件:椭圆的几何性质(1)

0046数学课件:椭圆的几何性质(1)
一、椭圆的范围
x2 y2 2 1(a b 0) 2 a b

x2 y2 1, 2 1 2 a b
y
B2
x a和 y b
A1
F1
O
B1
F2
A2 X
说明:椭圆位于矩形之中。
二、椭圆的对称性
x y 2 1( a b 0) 2 a b y
椭圆关于x轴对称; 椭圆关于y轴对称; 椭圆关于原点对称; 中心:椭圆的对称中心叫做椭圆的中心. o x
由题意,有 2c=8,c=4;2a=10,a=5.
x2 y2 1(a b 0) a 2 b2

b2=a2-c2=25-16=9.
故所求方程为x2/25+y2/9=1.
(2)设焦点在y轴上,标准方程为
y2 x2 2 1(a b 0) 2 a b
同(1),可得所求方程为y2/25+x2/9=1.
2
2
三、椭圆的顶点
(-a,0)A1y B2(0, Nhomakorabea) o B1(0,-b) A2 (a,0) x
x y 2 1( a b 0) 2 a b
2
2
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
长、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。
半轴长:a、b分别叫做椭圆的长半轴长和短半轴长。
-b ≤x ≤b -a≤y≤a, 关于x,y轴,原点对称 A1(0 ,-a),A2(0 ,a) B1(-b, 0),B2(b ,0)
离心率
e
c (0 e 1) a
小结:基本元素
(1)基本量:a、b、c、e(共四个量)
(2)基本点:顶点、焦点、中心(共七个点) (3)基本线:对称轴(共两条线) y B1(0,b)

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a b y a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为: ∵100)35(0)35(222=+-+++=a ,2c =6. ∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10.又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 题2。

椭圆几何性质知识点总结

椭圆几何性质知识点总结

椭圆几何性质知识点总结1. 椭圆的定义椭圆的定义是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

即PF1+PF2=2a。

其中F1和F2称为焦点,2a称为长轴长度。

椭圆的对称轴是通过两个焦点的连接线,称为长轴。

椭圆的短轴是垂直于长轴,并且过椭圆中心的直线。

2. 椭圆的焦点和离心率椭圆的焦点是椭圆的特殊点,它决定了椭圆的形状和大小。

椭圆的离心率e定义为焦点到椭圆中心的距离与长轴长度a的比值。

离心率的取值范围是0<e<1,当e=0时,椭圆退化为一个圆,当e=1时,椭圆退化为一条直线。

3. 椭圆的参数方程椭圆的参数方程可以通过参数t来表示椭圆上的点的坐标。

一般来说,椭圆的参数方程可以写成x=acos(t),y=bsin(t)。

其中(a,b)是椭圆的长短轴长度,t是参数。

4. 椭圆的直角坐标方程椭圆的直角坐标方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)是椭圆的中心点坐标。

5. 椭圆的几何性质椭圆具有许多重要的几何性质,例如:a. 椭圆的焦点性质:任意点到两个焦点的距离之和等于椭圆的长轴长度。

b. 椭圆的直径定理:椭圆的任意直径的长度都等于椭圆的长轴长度。

c. 椭圆的对称性:椭圆具有关于两个坐标轴的对称性。

d. 椭圆的切线性质:椭圆上的任意一点处的切线与两个焦点到该点的连线的夹角相等。

6. 椭圆的面积和周长椭圆的面积可以表示为S=πab,其中a和b分别是椭圆的长轴和短轴的长度。

椭圆的周长可以表示为C=4aE(e),其中E(e)是椭圆的第二类完全椭圆积分。

7. 椭圆的方程类型椭圆的方程可以分为标准方程和一般方程两种类型。

标准方程是指椭圆的中心点在坐标原点的方程形式,一般方程是指椭圆的中心点不在坐标原点的方程形式。

8. 椭圆的相关问题在实际问题中,椭圆经常出现在各种应用中,例如天体运动、工程设计等。

因此,研究椭圆的相关问题对于理论研究和应用都具有重要意义。

椭圆几何性质

椭圆几何性质

椭圆是平面上的一个几何图形,具有一些特殊的性质。

以下是一些椭圆的几何性质:
1.定义性质:椭圆是一个点到两个焦点距离之和等于常数的点
集合。

这个常数称为椭圆的长轴长度,长轴的中点称为椭圆
的中心。

2.对称性质:椭圆具有两个对称轴,即横轴和纵轴。

横轴和纵
轴互相垂直,并交于椭圆的中心。

3.焦点性质:椭圆的焦点是椭圆的两个特殊点,对于椭圆上的
每一个点,它到两个焦点的距离之和是恒定的,等于椭圆的
长轴长度。

4.直径性质:椭圆的任意一条直径的长度等于椭圆的长轴长度。

5.切线性质:椭圆上的每一条切线与椭圆的两个焦点之间的线
段的长度是相等的。

6.圆锥截面性质:椭圆是一个旋转椭圆曲线,可以通过将一个
圆沿一个不在圆心处的直线截成椭圆来得到。

这些性质为椭圆的研究和应用提供了基础,例如在数学、物理、工程等领域中,椭圆的性质被广泛应用于解决实际问题。

人教版高中数学必修第二册椭圆的几何性质(1)

人教版高中数学必修第二册椭圆的几何性质(1)

椭圆的几何性质(一)教学目标1.熟悉椭圆的几何性质(对称性、范围、顶点、离心率)。

2.能说明离心率的大小对椭圆形状的影响。

3.能利用椭圆的曲线特征、几何性质求椭圆方程。

教学重点椭圆的几何性质教学过程一.引入问题:解析几何研究的两个问题是什么?我们知道椭圆的方程及图形,今天我们就从定义、方程出发研究椭圆的性质。

二.讲授新课1.焦点在x轴上的椭圆的性质(1)对称性:关于x轴、y轴、原点对称口答:下列方程所表示的曲线中,关于x轴、y轴都对称的是()A x2=4yB x2+2xy+y=0C x2-4y2=5xD 9x2+y2=4(2)范围:椭圆上的点的横坐标、纵坐标的范围(3)顶点:椭圆与对称轴的交点长轴长、短轴长、半长轴长、半短轴长2.焦点在y轴上的椭圆的性质学生讨论,在此基础上教师板书有关内容练习:指出下列椭圆的范围、对称性、顶点坐标、长短轴长(1)192522=+y x (2)81922=+y x3.离心率:椭圆的焦距与长轴长的比,即e=a c思考:(1)e 的范围。

(2)e 的大小对椭圆形状的影响?三.例题选讲1求满足下列条件的椭圆的标准方程(1) a=6,e=1/3,焦点在x 轴上;(2) (2)椭圆过点P (-22,0)Q (0,5);(3)一短轴的一个顶点B 与焦点F 1、F 2组成三角形周长为4+23且21BF F ∠=32π;(3) 长轴长为短轴长的2倍,且椭圆过(-2,-4); 2.已知椭圆的对称轴是坐标轴,中心是坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长为6且cos OFA ∠=2/3,求椭圆的方程。

思考;已知椭圆192522=+y x ,F 1、F 2分别是它的焦点,过F 1的弦CD 与x 轴所成角为α(0<α<π)求CD F 2∆的周长。

三.小结:1椭圆的几何性质2.求椭圆方程四.作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

|x|≤ b,|y|≤ a
同前
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c) 同前 同前
对称性
顶点坐标 焦点坐标 半轴长 离心率 a、b、c的关 系
(a,0)、(-a,0)、 (0,b)、(0,-b) (c,0)、(-c,0) 长半轴长为a,短 半轴长为b. a>b
e c a
a2=b2+c2
同前
例1已知椭圆方程为9x2+25y2=225,
它的长轴长是:
10 。短轴长是:
。 离心率等于:
焦距是:
8
4 5
6


焦点坐标是: ( 0 , 4 )
。顶点坐标是: ( 3, 0 ) 。
外切矩形的面积等于:
60

解题的关键:1、将椭圆方程转化为标 2 2 x y 准方程 1 明确a、b
o c
B1 (0,-b)
根据前面所学有关知识画出下列图形
(1)
x
2

y
2
1
(2)
x
2

y
212516254y
4 B2 3 2 1
y
4 3 B 2 2 1
A1
A2 x
A1
A2 x
-5 -4 -3 -2 -1 -1 -2 -3 -4
123 4 5
B1
-5 -4 -3 -2 -1 -1 1 2 3 4 5 -2 -3 B1 -4
25 9
2、确定焦点的位置和长轴的位置
例2 求适合下列条件的椭圆的标准方程
⑴经过点P(-3,0)、Q(0,-2); ⑵长轴长等于20,离心率3/5。
⑶一焦点将长轴分成2:1的两部分,且经过点
P 3 2 , 4


解: ⑴方法一:设方程为mx2+ny2=1(m>0,n>0,m≠n),将点的 坐标方程,求出m=1/9,n=1/4。
A2
o c
B1
3、椭圆的顶点
x a
2 2

y b
2 2
1( a b 0 )
令 x=0,得 y=?,说明椭圆与 y轴的交点? 令 y=0,得 x=?说明椭圆与 x轴的交点? *顶点:椭圆与它的对称轴 的四个交点,叫做椭圆的 顶点。
y
B2 (0,b)
A1
b
a F2
A2 (a,0)
*长轴、短轴:线段A1A2、 (-a,0) F1 B1B2分别叫做椭圆的长轴 和短轴。 a、b分别叫做椭圆的长半 轴长和短半轴长。
P(x,y)
O P2(-x,-y)
X
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称; (3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中 y 心对称。
B2
A1
b F1
a F2
4、椭圆的离心率e(刻画椭圆扁平程度的量)
离心率:椭圆的焦距与长轴长的比:e 叫做椭圆的离心率。 a [1]离心率的取值范围:0<e<1 [2]离心率对椭圆形状的影响: 1)e 越接近 1,c 就越接近 a,从而 b就越小,椭 圆就越扁 2)e 越接近 0,c 就越接近 0,从而 b就越大,椭 圆就越圆
复习:
1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的 动点的轨迹叫做椭圆。
| PF | | PF2 | 2a(2a | F F2 |) 1 1
2.椭圆的标准方程是:
当焦点在X轴上时 当焦点在Y轴上时
x a
2 2

2 2
y b
2 2
1(a b 0)
2 2
36
32
注:待定系数法求椭圆标准方程的步骤: ⑴定位; ⑵定量
小结:
本节课我们学习了椭圆的几个简单几何性质:范围、 对称性、顶点坐标、离心率等概念及其几何意义。 了解了研究椭圆的几个基本量a,b,c,e及顶点、 焦点、对称中心及其相互之间的关系,这对我们解 决椭圆中的相关问题有很大的帮助,给我们以后学 习圆锥曲线其他的两种曲线扎实了基础。在解析几 何的学习中,我们更多的是从方程的形式这个角度 来挖掘题目中的隐含条件,需要我们认识并熟练掌 握数与形的联系。在本节课中,我们运用了几何性 质,待定系数法来求解椭圆方程,在解题过程中, 准确体现了函数与方程以及分类讨论的数学思想。
c
思考:当e=0时,曲线是什么?当e=1时曲 线又是 什么?
[3]e与a,b的关系: e
c a a b
2 2
a
2

1
b a
2
2
标准方程 范围
x a
2 2

y b
2 2
1( a b 0 )
x b
2 2

y a
2 2
1( a b 0 )
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称; 关于原点成中心对称
y a

x b
1(a b 0)
3.椭圆中a,b,c的关系是:
2=b2+c2 a
二、椭圆
1、范围:
x a
2 2
简单的几何性质
1,
y b
2 2
1得:
-a≤x≤a,
-b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中 y
B2
A1
b F1
a F2
A2
o c
B1
椭圆的对称性
Y P1(-x,y)
方法二:利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就是 椭圆的顶点,于是焦点在x轴上,且点P、Q分别是椭圆长轴与短轴的一个端点
,故a=3,b=2,所以椭圆的标准方程为
⑵ ⑶
x
2
x
2

y
2
1
x
2

y
2
y
2
9
1
4
或 或
y
2
2
100

64
1


x
2
1
2
100
y 145 4
64
x 290 9 1
相关文档
最新文档