复变函数与积分变换留数测验题与答案

合集下载

复变函数与积分变换试题及答案19

复变函数与积分变换试题及答案19

复变函数与积分变换试题与答案一、题判断(每题2分,共10分,请在正确的题后打"J",错误的题后打"X")1、/(Z)=SinZ是有界函数。

( )2、函数/(z)=e,是以Lri为周期的周期函数。

( )3、如果ZO是/(Z)的奇点,那么/(Z)在Zo不可导。

( )4、假设函数F(Z)在Z I)处解析,那么尸")(z)也在z“解析。

( )5、、的假设"(x,y)与V(X,y)都是调和函数,那么/(z)=w(x,y)+i∖{x,y)是解析函数。

( )二、填空题(每题4分,共16分)1、设Z=2-那么Iz I=,arg z。

1+Z2、(I+*,(1+0,=o3、Ln(―3i)=,主值In[—3/)=。

4、f(I)=t2+te,+e2'sin6/,那么/(f)的拉氏变换是。

三、解答题(8分+12分=20分)1、求卜/+,.y)/,其中C是沿曲线y=/由点z=0到点z=l+i C2、根据R的取值不同,讨论并计算积分 ------ - .... 的值。

其中C是不经过Z=-IJ z2(z+l)(z-2)和z=2的正向圆周IZl=R(R>0)o四、解答题(每题8分,共16分)1、U(X,y)=V-3『y是调和函数,求其共辆调和函数v(x,y).2、/(Z)=/-)在何处可导?何处解析?并在可导处求/"(z).五、解答题(1、2题每题8分,3题6分,共22分)I I万1、求将单位圆∣Z∣<1内保形映照到单位圆I Wl<1内,且满足/(—)=0,arg/,(一)=-的分式线性映照。

2、将/(z)= .............. ?......... 在l<∣z∣<3上展开成罗朗级数。

(z-l×z-3)3、指出/(z)===在有限复平面上的孤立奇点及类型,并求奇点处的留数六、计算题(每题8分,共16分)1、求正弦函数/(r)=Sino/的傅氏变换。

复变函数考试试题及参考答案

复变函数考试试题及参考答案

复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。

答案:$(1+i)^3=-2+2i$。

2.计算下列复数的幂函数:$z=-2+i$,$n=4$。

答案:$(-2+i)^4=7-24i$。

3.求解方程:$z^2+4z+5=0$。

答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。

4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。

答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。

5.计算下列复数的共轭复数:$z=2-i$。

答案:$z^*=2+i$。

6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。

答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。

7.计算下列复数的实部和虚部:$z=3+2i$。

答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。

答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。

9.求复数的幂函数:$z=-1-i$,$n=2$。

答案:$(-1-i)^2=1-2i-1=-2i$。

10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。

答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

《复变函数》考试试题与答案各种总结.docx

《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。

复变函数与积分变换试题及解答

复变函数与积分变换试题及解答

复变函数与积分变换试题系别班级学号姓名得分评卷人-------------- 一、填空(每题3分,共24分)1.(上£1严的实部是 _______ ,虚部是________ ,辐角主值是______1-V3/2.满足lz + 21 + lz-2K5的点集所形成的平面图形为,该图形是否为区域—.3. 7(z)在福处可展成Taylor级数与/(%)在处解析是否等价? .4. (l + i)i的值为______________________________________________主值为.5.积分,的值为 _____________ ,f '—dz. = ________ .Juw z J izi=2 4)a--)"1 -L6.函数J (z)=——7"-3在Z =。

处Taylor展开式的收敛半径是 ______ .z-l7.设F [<(。

]=Z3), F 则F [/1(0*/2(r)]=,其中力⑺* /2(0定义为.8.函数/(外=任的有限孤立奇点z°=_,Z。

是何种类型的奇点? .Z得分评卷人二、(6分)设/仁)=/一丫3+2//〃问/仁)在何处可导?何处解析?并在可导处求出导数值.三、(8分)设i ,= eXsiny,求p 的值使P 为调和函数,并求出解析函数 f(z) = u + iv.四、(10分)将函数〃z) = "—在有限孤立奇点处展开为 2z~ — 3z+1Laurent 级数.得分评卷人 -------------- 五、计算下列各题(每小题6分,共24分)1. /(z) = f求/(1 + )J 图7 4-z2. 求出/(z) = eV 在所有孤立奇点处的留数3. L(f 32产(”。

)4. 尸——二~<公J 。

1 + sin- x六、(6分)求上半单位圆域{2:1[1<1,11]12>0}在映射卬=22下的象.七、(8分)求一映射’将半带形域-恭,<”,>。

复变函数与积分变换试题及答案9

复变函数与积分变换试题及答案9

∂u ∂v =x= ∂x ∂y
∴ u = xy + g ( x )
∂v ∂u =y= ∂y ∂x
∴ u = xy + c (3 分)
∴ u = xy + g ′( x )
∵ f (0) = u (0,0) + iv (0,0) = c = 0 ∴ f ( z ) = (−
(2 分)
x2 1 2 i + y )i + xy = − z 2 2 2 2
v = 3x 2 y − y 3
∂u ∂u ∂u ∂u = 3x 2 − 3 y 2 = , = −6 xy = − 且四个偏导连续 ∂x ∂y ∂y ∂x
∴f(z)在整个复平面上解析 ∴ f ′( z ) = 3x − 3 y + i 6 xy = 3 z
2 2
2
(4 分) (3 分)
2.解:∵ −
原式(4 分)= 2πi
∑ Re s ⎢ z ( z − i)
k =1
2
⎡ ⎣
1
3
⎤ , zk ⎥ ⎦
z1 = 0, z 2 = i
(3 分)= 2πi⎜ +
⎛1 ⎝i
1 2⎞ ⋅ ⎟ =0 2! i 3 ⎠
7
4.解:∵
1 1 1 = = z i + z −i z −i
1 1+ i z −i
=
1 ∞ 1 (−i) n ∑ z − i m=0 ( z − i) n
4.解: s 3 F ( s ) + 3s 2 F ( s ) + F ( s ) =
1 s
(4 分)
F (S ) =
1 1 1 1 = = ⋅ 2 3 s( s + 3s + 3s + 1) s ( s + 1) s ( s + 1) 3

复变函数与积分变换第五章留数测验题与答案

复变函数与积分变换第五章留数测验题与答案

第五章 留 数一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( )(A )1 (B )2 (C )3 (D )42.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点3.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( )(A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( )(A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )(A ) 21)(z e z f z -= (B )z z z z f 1sin )(-=(C )z z z z f cos sin )(+=(D) ze zf z111)(--= 9.下列命题中,正确的是( ) (A ) 设)()()(0z z z z f mϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若0)(=⎰c dz z f ,则)(z f 在c 内无奇点10. =∞],2cos[Re 3ziz s ( ) (A )32-(B )32 (C )i 32(D )i 32-11.=-],[Re 12i e z s iz ( )(A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞13.设1>n 为正整数,则=-⎰=211z ndz z ( ) (A)0 (B )i π2 (C )niπ2 (D )i n π2 14.积分=-⎰=231091z dz z z ( ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( ) (A )0 (B )61- (C )3i π- (D )i π-二、填空题1.设0=z 为函数33sin z z -的m 级零点,那么=m .2.函数zz f 1cos1)(=在其孤立奇点),2,1,0(21ΛΛ±±=+=k k z k ππ处的留数=]),([Re k z z f s .3.设函数}1exp{)(22z z z f +=,则=]0),([Re z f s 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s . 5.双曲正切函数z tanh 在其孤立奇点处的留数为 . 6.设212)(z zz f +=,则=∞]),([Re z f s . 7.设5cos 1)(zzz f -=,则=]0),([Re z f s . 8.积分=⎰=113z zdz e z.9.积分=⎰=1sin 1z dz z . 10.积分=+⎰∞+∞-dx x xe ix21 . 三、计算积分⎰=--412)1(sin z z dz z e zz .四、利用留数计算积分)0(sin 022>+⎰a a d πθθ五、利用留数计算积分⎰∞+∞-+++-dx x x x x 9102242六、利用留数计算下列积分: 1.⎰∞++0212cos sin dx x xx x 2.⎰∞+∞-+-dx x x 1)1cos(2七、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数.八、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=. 九、设)(z f 以a 为简单极点,且在a 处的留数为A ,证明Az f z f az 1)(1)(lim2=+'→. 十、若函数)(z Φ在1≤z 上解析,当z 为实数时,)(z Φ取实数而且0)0(=Φ,),(y x f 表示)(iy x +Φ的虚部,试证明)()sin ,(cos cos 21sin 202t d f tt t Φ=+-⎰πθθθθθπ)11(<<-t答案第五章 留 数一、1.(D ) 2.(B ) 3.(C ) 4.(D ) 5.(B )6.(C ) 7.(A ) 8.(D ) 9.(C ) 10.(A ) 11.(B ) 12.(D ) 13.(A ) 14.(B ) 15.(C )二、1.9 2.2)2()1(π+π-k k 3.0 4.m - 5.16.2- 7.241-8.12i π 9.i π2 10.e i π 三、i π-316. 四、12+πa a .五、π125.六、1.)(443e e e -π 2.e1cos π。

《复变函数与积分变换》试卷及答案

《复变函数与积分变换》试卷及答案

《复变函数与积分变换》试卷及答案一、填空题(本题共8小题,每小题2分,满分16分) 二、(1))ln(-1i +的虚部是π43 三、(2)映射zw 1=把z 平面上的曲线122=+y x 映成w 平面上的曲线是 122=+v u 四、(3)设)nxy x (i y x my )z (f 23233++-=解析函数,则常数=m 1 ,=n -3 五、(4)沿x y =计算积分()i dz iy xi 6561102+-=+⎰+六、(5)若)2)((cos )(--=z i z z z f 的Taylor 级数为∑∞=+-01n nn )i z (c ,则该级数的收敛半径为2七、(6)设()z f 在10<<z 内解析,且()10=→z zf lim z ,则 ()[]=0,z f s Re i π2八、(7)设⎩⎨⎧≥<=,t ,,t ,)t (f 01001 ⎩⎨⎧≥<=,0,sin ,0,0)(2t t t t f 则=*)()(21t f t f ⎩⎨⎧<≥-0001t t t cos 九、(8)设t cos e )t (f t=,则)t (f 的Laplace 变换为[]=)t (f 2212+--s s s 二、选择题(本题共5小题,每小题2分,满分10分。

) (1)2z )z (f =在0=z 处(B )(A )解析 (B )可导(C )不可导 (D )既不解析也不可导 (2)下列命题中正确的是( D )(A )设y ,x ,iy x z +=都是实数,则()1≤+iy x sin (B )设)z (g )z z ()z (f m--=0,)z (g 在点0z 解析,m 为自然数,则0z 为()z f 的m 级极点(C )解析函数的实部是虚部的共轭调和函数 (D )幂级数的和函数在收敛圆内解析(3)级数∑∞=-+02))1(1(n n n in(A )(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不定(4)设0=z 是zsin z e z421-的 m 级极点,则=m ( C )(A )5 (B )4 (C )3 (D )2(5)设)()(0t t t f -=δ,则的)t (f 的Fourier 变换[]=)(t f ( D )。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换第五章留数测验题与答案

复变函数与积分变换第五章留数测验题与答案

第五章 留 数一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( )(A )1 (B )2 (C )3 (D )42.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( )(A )可去奇点 (B )本性奇点(C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( )(A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )(A ) 21)(z e z f z -= (B )z z z z f 1sin )(-=(C )z z z z f cos sin )(+=(D) ze zf z111)(--= 9.下列命题中,正确的是( ) (A ) 设)()()(0z z z z f mϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若0)(=⎰c dz z f ,则)(z f 在c 内无奇点10. =∞],2cos[Re 3ziz s ( ) (A )32-(B )32 (C )i 32(D )i 32-11.=-],[Re 12i e z s iz ( )(A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞13.设1>n 为正整数,则=-⎰=211z ndz z ( ) (A)0 (B )i π2 (C )niπ2 (D )i n π2 14.积分=-⎰=231091z dz z z ( )(A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( ) (A )0 (B )61- (C )3i π- (D )i π-二、填空题1.设0=z 为函数33sin z z -的m 级零点,那么=m .2.函数zz f 1cos1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s .3.设函数}1exp{)(22z z z f +=,则=]0),([Re z f s4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s . 5.双曲正切函数z tanh 在其孤立奇点处的留数为 . 6.设212)(z zz f +=,则=∞]),([Re z f s . 7.设5cos 1)(z zz f -=,则=]0),([Re z f s . 8.积分=⎰=113z zdz e z.9.积分=⎰=1sin 1z dz z . 10.积分=+⎰∞+∞-dx x xe ix21 . 三、计算积分⎰=--412)1(sin z z dz z e zz .四、利用留数计算积分)0(sin 022>+⎰a a d πθθ五、利用留数计算积分⎰∞+∞-+++-dx x x x x 9102242 六、利用留数计算下列积分: 1.⎰∞++0212cos sin dx x xx x 2.⎰∞+∞-+-dx x x 1)1cos(2 七、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数.八、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=. 九、设)(z f 以a 为简单极点,且在a 处的留数为A ,证明Az f z f az 1)(1)(lim2=+'→. 十、若函数)(z Φ在1≤z 上解析,当z 为实数时,)(z Φ取实数而且0)0(=Φ,),(y x f 表示)(iy x +Φ的虚部,试证明)()sin ,(cos cos 21sin 202t d f t t t Φ=+-⎰πθθθθθπ)11(<<-t答案第五章 留 数一、1.(D ) 2.(B ) 3.(C ) 4.(D ) 5.(B )6.(C ) 7.(A ) 8.(D ) 9.(C ) 10.(A ) 11.(B ) 12.(D ) 13.(A ) 14.(B ) 15.(C )二、1.9 2.2)2()1(π+π-k k3.0 4.m - 5.16.2- 7.241-8.12i π 9.i π2 10.ei π 三、i π-316. 四、12+πa a .五、π125. 六、1.)(443e e e -π 2.e1cos π。

复变函数与积分变换练习题带答案(1)

复变函数与积分变换练习题带答案(1)

f (t) = 1 + F () eitd 建立的 F () 与 f (t) 之间的对应称作傅里叶逆变换。
2π −
22.傅里叶逆变换是指由表达式 f (t) = 1 + F () eitd 建立起来的 F () 到 f (t) 之间
2π −
的对应.
23.若
f
(t)
= 3t2
+ tet
+ sint ,则函数
z2 − 3z + (z − 4)2
2dz
=
10πi
.
8. 设 C 为单位圆周 z = 1,则 d z 2 Cz
9. 设 C 为从 z = 0到 z =1+ i 的直线段,则 z d z = i 。 C
10. 设 C 为从 (0,1) 到 (1,1) 的直线段,则 z Re(z) d z = 1 + 1 i
|z
+i|=
(√)
3. 设 C 是一条简单正向闭曲线, f (z) 在以 C 为边界的有界闭区域 D 上解析, z0 为 D 内任
一点,那么
C
f (z) z − z0
d
z
=
2 if
( z0
)

(√)
4. 设 f (z) 在简单正向闭曲线 C 及其所围区域 D 内处处解析, 那么 f (z) 在 D 内具有 2 阶
解:
C
的方程为
x y
= =
t, t,0
t
1
,即,
z
=
t
+ it,0
t
1
,
dz =(1+i)dt
于是,原式= 1t(1+ i)dt = 1+ i .

复变函数与积分变换试题及答案4

复变函数与积分变换试题及答案4

复变函数与积分变换试题及答案4一、填空题(每空2分,共20分) 1、复数i 31+的主幅角为3π。

2、复数i +3与复数i 32+乘积的主幅角为 23arctan 31arctan +。

3、复数i 31+-的三角表示为:)32sin 32(cos 2ππ+4、函数122+z z的解析区域为:i z ±≠。

5、=+)31(i e πe -6、自原点到i +1的直线上,积分?+=i iydz 10i --17、级数∑∞=+-121])[(n nn i 的收敛性为发散。

8、幂级数∑∞=13n n n z 的收敛半径为319、函数)1(sin 2ze z z-的全部奇点为∞=,2,0i k z π(答对一个给1分)。

10、函数1 +z e z在1-=z 处的留数为 1-e二、计算或证明(每小题10分,共80分)1、证明函数iy x z f +=2)(处处不解析证明:因为y v x u ==,2(3分);1,0,0,2=??=??=??=??y v x v y u x x u (3分);当21=x 时,C —R 条件满足,函数只在直线21=x 可导(3分);于是)(z f 在复平面处处不解析。

(2分) 2、证明 1s i n s i n22=+z z 证明:)(21s i n iz iz e e i z--=(2分);)(21cos iz iz e e z -+=(2分);)2(41)2(41cos sin 222222+++-+-=+--z i z i z i z i e e e e z z (4分)=1(2 分);3、计算积分dz e iz ?+20)2(解:函数2+z ze 的一个原函数为z e z 2+(4分);原式=i z z e 20|)2(+(4分)=)142-+i e i(2分)。

4、在+∞<<="" p="">)1(12-+z z z 成洛朗级数解:)1(1112)1(123-+-=-+z z z z z z =)11(11)11(122zz z z-+-=∑∑∞=∞=+0201112n nn n zz z z (6分) 5.求函数12+z z在有限奇点处的留数解:1)(2+=z zz f 有两个有限远奇点:i z i z =-=21,;且均为一阶极点;)(lim]),([Re i z z i z f s i z -=--→=21;同样可求21]),([Re =i z f s (2 分)。

(完整版)《复变函数》考试试题与答案各种总结

(完整版)《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。

( ) 3。

若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( ) 7。

若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。

若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。

( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6.若函数f (z )在整个平面上处处解析,则称它是__________。

7。

若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。

=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ .10。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

复变函数及积分变换试卷及答案

复变函数及积分变换试卷及答案

«复变函数与积分变换»期末试题〔A〕一.填空题〔每题3分,共计15分〕1.231i-的幅角是〔〕;2.)1(iLn+-的主值是〔〕;3.211)(zzf+=,=)0()5(f〔〕;4.0=z是4sinzzz-的〔〕极点;5.zzf1)(=,=∞]),([Re zf s〔〕;二.选择题〔每题3分,共计15分〕1.解析函数),(),()(yxivyxuzf+=的导函数为〔〕;〔A〕yxiuuzf+=')(;〔B〕yxiuuzf-=')(;〔C〕yxivuzf+=')(;〔D〕xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf〔〕,那么0d)(=⎰C zzf.〔A〕23-z;〔B〕2)1(3--zz;〔C〕2)2()1(3--zz;〔D〕2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,那么级数在〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 〕.(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成以下各题〔每题10分,共计40分〕〔1〕设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a〔2〕.计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;〔3〕计算⎰=++3342215d )2()1(z z z z z〔4〕函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩大复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、〔此题14分〕将函数)1(1)(2-=z z z f 在以下区域展开成罗朗级数; 〔1〕110<-<z ,〔2〕10<<z ,〔3〕∞<<z 1五.〔此题10分〕用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、〔此题6分〕求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题〔A 〕答案及评分标准一.填空题〔每题3分,共计15分〕1.231i -的幅角是〔 2,1,0,23±±=+-k k ππ〕;2.)1(i Ln +-的主值是〔 i 432ln 21π+ 〕; 3.211)(z z f +=,=)0()5(f 〔 0 〕,4.0=z 是4sin z zz -的〔 一级 〕极点;5. zz f 1)(=,=∞]),([Re z f s 〔-1 〕; 二.选择题〔每题4分,共24分〕1.解析函数),(),()(y x iv y x u z f +=的导函数为〔B 〕;〔A 〕 y x iu u z f +=')(; 〔B 〕y x iu u z f -=')(;〔C 〕y x iv u z f +=')(; 〔D 〕x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f 〔 D 〕,那么0d )(=⎰Cz z f .〔A 〕23-z ; 〔B 〕2)1(3--z z ; 〔C 〕2)2()1(3--z z ; 〔D 〕2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,那么级数在〔C 〕〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( B )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 D 〕.的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成以下各题〔每题10分,共40分〕〔1〕.设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

第五章_留数(答案)

第五章_留数(答案)
3 2z z3 4. z 是函数 的 z2
(A)可去奇点 (B)一级极点 (C)二级极点

1 z z (1 3 z sin z 2!
2
)
[B]
(D)本性奇点
3 2z z3 3 2 1 = 2 z 3 2 2 以 =0为一阶极点 2 z z z
2.设 z 0 为函数
z z
3 3
3 5
3!
5!

)
z 9 z15 3! 5!
2
z9 (

1 z6 3! 5!
)
sin z 的 n 级极点,那么 n z3
三、解答题 1.下列函数在有限点处有些什么奇点?如果是极点,指出它的级: (1)
1 z z z 1
ez = z2
2
1+z 2 +
z4 + 2 !
=0为其本性奇点,从而z 为原函数的本性奇点.
注 在本题中,由于级数的收敛域是0 z ,从而可以直接让函数在z 0点展开. 但在上一道题中,必须先做变量替换 1 ,才可进行展开. z
e z e z 3. z 0 是函数 (sin z sh z 2 z ) 的几级极点?( sh z ) 2
3 2
1 1 解:显然,3 2 = 的奇点有z 1, z 1. z z z 1 ( z 1)2 ( z 1) 其中z 1是其二阶极点;z 1是其一阶极点.
1
(2) e z 1
解:e 可能的奇点为z 1. e z 1 1
1
1 z 1
1 1 z 1 2!( z 1) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 留 数
一、选择题: 1.函数
3
2cot -πz z
在2=-i z 内的奇点个数为 ( )
(A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数
)()(z g z f
的( )
(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点
3.设0=z 为函数z
z e x
sin 142
-的m 级极点,那么=m ( )
(A )5 (B )4 (C)3 (D )2 4.1=z 是函数1
1
sin
)1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点
5.∞=z 是函数2
3
23z
z z ++的( ) (A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点
6.设∑∞
==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)
([
Re k z
z f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 7.设a z =为解析函数)(z f 的m 级零点,那么='],)
()
([
Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )
(A ) 2
1)(z e z f z -= (B )z z z z f 1
sin )(-=
(C )z z z z f cos sin )(+=
(D) z
e z
f z
1
11)(--= 9.下列命题中,正确的是( )
(A )
设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.
(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D )
若0)(=⎰c dz z f ,则)(z f 在c 内无奇点
10. =∞],2cos
[Re 3z
i
z s ( ) (A )3
2- (B )3
2 (C )i 3
2 (D )i 3
2- 11.=-],[Re 1
2
i e
z s i
z ( )
(A )i +-
61 (B )i +-65 (C )i +61 (D )i +6
5 12.下列命题中,不正确的是( )
(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s
(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则
)
()(],)()
([
Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则
)]()[(lim !1]),([Re 1000z f z z dz
d n z z f s n n n
x x +→-=
(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(z
f 的一级极点,并
且)1(lim ]),([Re 0
z
zf z f s z →=∞
13.设1>n 为正整数,则
=-⎰=21
1
z n
dz z ( ) (A)0 (B )i π2 (C )
n
i
π2 (D )i n π2
14.积分
=-⎰
=
2
310
9
1
z dz z z ( ) (A )0 (B )i π2 (C )10 (D )
5
i π
15.积分
=⎰=1
2
1sin z dz z z ( ) (A )0 (B )6
1
- (C )3
i
π-
(D )
i π-
二、填空题
1.设0=z 为函数33sin z z -的m 级零点,那么=m . 2.函数z
z f 1cos
1)(=
在其孤立奇点),2,1,0(2
1 ±±=+
=
k k z k ππ处的留数
=]),([Re k z z f s .
3.设函数}1
exp{)(22z
z z f +=,则=]0),([Re z f s 4.设
a
z =为函数)(z f 的m 级极点,那么
='],)
()
([
Re a z f z f s . 5.双曲正切函数z tanh 在其孤立奇点处的留数为 . 6.设2
12)(z z
z f +=
,则=∞]),([Re z f s . 7.设5
cos 1)(z
z
z f -=,则=]0),([Re z f s . 8.积分
=⎰=1
13
z z
dz e z

9.积分
=⎰=1
sin 1
z dz z . 10.积分=+⎰∞
+∞
-dx x xe ix
2
1 . 三、计算积分
⎰=
--4
12)1(sin z z dz z e z
z .
四、利用留数计算积分)0(sin 0
22>+⎰a a d π
θ
θ
五、利用留数计算积分⎰∞
+∞
-+++-dx x x x x 9
102
2
42 六、利用留数计算下列积分: 1.⎰∞
++0
212cos sin dx x x
x x 2.⎰∞+∞-+-dx x x 1
)1cos(2 七、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m a
z =-→)()(lim ,其中0≠b 为有限数.
八、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则
]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.
九、设)(z f 以a 为简单极点,且在a 处的留数为A ,证明A
z f z f a
z 1
)
(1)(lim
2
=
+'→. 十、若函数)(z Φ在1≤z 上解析,当z 为实数时,)(z Φ取实数而且0)0(=Φ,
),(y x f 表示)(iy x +Φ的虚部,试证明)()sin ,(cos cos 21sin 20
2
t d f t t t Φ=+-⎰
πθθθθθ
π
)11(<<-t
答案
第五章留数
一、1.(D) 2.(B) 3.(C) 4.(D)5.(B)
6.(C)7.(A)8.(D)9.(C)10.(A)
11.(B ) 12.(D ) 13.(A ) 14.(B ) 15.(C )
二、1.9 2.2
)
2
()1(π+π-k k
3.0 4.m -
5.1
6.2- 7.241-
8.12
i π 9.i π2 10.
e i π 三、i π-3
16
. 四、
1
2
+πa a .
五、
π12
5
. 六、1.)(443e e e -π 2.e
1
cos π。

相关文档
最新文档