第三章《杆件的基本变形》

合集下载

第三章 杆件的承载能力分析

第三章 杆件的承载能力分析

F1 F2 FN2 0
二、轴扭转时的内力
第二节 截面法求内力
沿杆件长度作用的平衡力偶系(非共面力偶系)称为外加 转矩。
杆件产生转变形时其横截面的内力称为扭矩。
1.外力偶矩计算
作用于轴的外力偶矩通常是根据轴传递的功率和轴的转速算出。 功率、转速和外力偶矩之间的换算关系为:
Me
9550
P n
式中n为轴的转速,单位是r/min,P轴所传递的功率,单位是kW; Me为外力偶矩的大小,单位是N•m。
解 (1)求约束反力
取整个杆件为研究对象,画出如图 (b)所示受力图。设约束反力 为FA,列平衡方程
例题
Fx 0
F1 F2 F3 FA 0
得 FA F1 F2 F3 20 30 50 40 KN
(2)分段计算轴力,由于外力分别作用于B、 C、D三处,以三个作用点为分界线,将杆分 为AB、BC、CD段,分别计算轴力 ①AB段:在AB间任选一横截面1-1截开,取 其左段为研究对象,如图 (c)。由平衡方程得:
汽车机械基础
第三章 杆件的承载能力分析
化学工业出版社
第二章 构件受力分析
第一节 杆件的基本变形和内力 第二节 截面法求内力 第三节 杆件的应力及强度计算
汽车机械基础
第二章 构件受力分析
汽车机械基础
第一节 杆件的基本变形和内力
一、杆件的基本变形
第一节 杆件的基本变形
和内力
构件的基本形状:
杆件、板件、块件。
FN F 0 即 FN F
同理,如果以部分Ⅱ为示力 对象,求同一截面上的内力 时,可以得到相同的结果,
FN F
三、截面法
第一节 杆件的基本变形
和内力
截面法:

材料力学力S03扭转

材料力学力S03扭转

4M
2M
第三章
扭转
8
受扭杆件内力计算的例题
例1: : 解: T1=M T2=2M T3=-2M 绘出扭矩图 最后总结规律: 最后总结规律: 左上右下” “左上右下” 自己证明。 自己证明。
M M 4M 2M
M
1 T1 1 M
M
2 T2
2
T3 3
2M
M
2M
3
T
第三章 扭转
−2 M
9
受扭杆件内力计算的例题
1.1 变形几何关系
通过实验知,圆截面杆发生扭转变形后: 通过实验知,圆截面杆发生扭转变形后:横截面仍 为平面,仍垂直于轴线,绕圆心刚体旋转; 为平面,仍垂直于轴线,绕圆心刚体旋转;横截面绕圆 心的角位移为扭转角;半径仍为直线段且长度不变。 心的角位移为扭转角;半径仍为直线段且长度不变。 这一规律称为圆截面杆扭转变形的平面假设。 这一规律称为圆截面杆扭转变形的平面假设。 平面假设
例2: : 如图杆件,已知m,试绘制扭矩图。 如图杆件,已知 ,试绘制扭矩图。
Me
m
Me
l
第三章
扭转
10
受扭杆件内力计算的例题
例2: : 解: 轴所受力系是连续分布的, 轴所受力系是连续分布的, 无须分段。默认坐标x轴起 无须分段。默认坐标 轴起 点左端,沿轴线向右。 点左端,沿轴线向右。 Me=ml/2 T=Me-mx=m(l/2-x) 该杆上的载荷力系关于杆中 截面对称 可以发现, 的 对称。 截面对称。可以发现,T的 分布关于杆中截面是反对称 分布关于杆中截面是反对称 的。
第三章
扭转
21
习题
• P84, 3-2 • P85, 3-5
第三章

机械基础3第三章 直杆的基本变形

机械基础3第三章  直杆的基本变形

2017/10/3
第三章 直杆的基本变形
直杆的基本变形
在机器或结构物体中,存在多种多样的构件。如果构件 的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大 得多,这样的构件称为杆件。直杆件是机械中最基本的构件。 外力在直杆件上的作用方式有很多种,直杆件由此产生 的变形形式也不同。归纳起来,直杆件变形的基本形式有四 种:拉伸与压缩、剪切、扭转、弯曲。
图3-11 剪切变形
第二节 剪切与挤压
2.剪切变形的特点 以铆钉(图3-12)为例,分析剪切变形的特点。 (1)受力特点:构件受两组大小相等、方向相反、作用线相距很 近(差一个几何平面)的平行力系作用。 (2)变形特点:构件沿两组平行力系的交界面发生相对错动。 (3)剪切面:构件将发生相互的错动面,如n-n。
(3)构件特点:等截面直杆。
第一节 直杆件轴向拉伸与压缩
三、直杆应力与应变 1.直杆应力
想一想
如图3-5所示,两根材料一样,但横截面面积不同的杆件,它们所 受外力相同,随着外力的增大,哪一根杆件先发生变形?
图3-5 不同横截面杆件受力图
第一节 直杆件轴向拉伸与压缩
工程上常用应力来衡量构件受力的强弱程度。构件在外力作用下, 单位面积上的内力称为应力。某个截面上,与该截面垂直的应力称为 正应力(图3-6),与该截面相切的应力称为切应力。
生破坏。
内力有正负规定: 当内力与截面外法线同向,为正内力(拉力)。 当内力与截面外法线反向,为负内力(压力)。
第一节 直杆件轴向拉伸与压缩
2.直杆变形
想一想
观察图3-2,单层厂房结构中的屋架杆受到了什么变形? 在轴向力的作用下,直杆件产生伸长变形称为直杆轴向拉伸,简 称直杆拉伸。 在轴向力的作用下,直杆件产生缩短变形称为直杆轴向压缩,简 称直杆压缩。

直杆的基本变形

直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。

公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。

受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。

3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。

受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。

4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计资料

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计资料

《杆件的四种基本变形及组合变形、直杆轴向拉、压横截面上的内力》教学设计剪切变形的受力特点是作用在构件上的横向外力大小相等、方向相反、作用线平行且距离很近。

剪切变形的变形特点是介于两横向力之间的各截面沿外力作用方向发生相对错动。

剪切面是指两横向力之间的横截面,破坏常在剪切面上发生。

扭转变形的受力特点:在垂直于杆轴线的平面内,作用有大小相等、转向相反的一对力偶。

扭转变形的变形特点:各横截面绕杆轴线发生2.剪切【工程实例】如图a所示为一个铆钉连接的简图。

钢板在拉力F的作用下使铆钉的左上侧和右下侧受力(图b),这时,铆钉的上、下两部分将发生水平方向的相互错动(图c)。

当拉力很大时,铆钉将沿水平截面被剪断,这种破坏形式称为剪切破坏。

3. 扭转用改锥拧螺钉时,在改锥柄上手指的作用力构成了一个力偶,螺钉的阻力在改锥的刀口上构成了一个方向相反的力偶,这两个力偶都作用在垂直于杆轴的平面内,就使改锥产生了扭转变形,如图a所示。

例如汽车的转向轴(图b)。

当驾驶员转动方向盘时,相当于在转向轴A端施加了一个力偶,与此同时,转向轴的B端受到了来自转向器的阻抗力偶。

于是在轴AB的两端受到了一对大小相等、转向相反的力偶作用,使转向轴发生了扭转变形。

扭转角的概念,如图3.2直杆轴向拉、压横截面上的内力内力的概念 轴力的计算 )轴力为了显示并计算杆件的内力,通常采用截面法。

假设用一个截面m-m (图a )将杆件“切”成左右两部分,取左边部分为研究对象(图b ),要保持这部分与原来杆件一样处于平衡状态,就必须在被切开处加上,这个内力F N 就是右部分对左部分的作用力。

在轴向拉(压)杆中横截面中的内力称为由于直杆整体是平衡的,左部分也是平衡的,对这部分建立平衡方程: =0 0=-N F F若取右部分为研究对象,则可得0='-N F F 可以看出,取任一部分为研究对象,都可以得到相同的结果,其实F N 与F ′N 是一对作用力与反作用力,其数值必然相等。

第三章 直杆的基本变形 复习资料(学生)

第三章  直杆的基本变形  复习资料(学生)

第三章直杆的基本变形复习资料机械和工程结构中的零部件在载荷的作用下,其形状和尺寸发生变化,为了了保证机械零部件正常安全工作,必须具有足够的、和。

零件抵抗破坏的能力,称为。

零件抵抗破坏的能力,称为。

受压的细长杆和薄壁构件,当所受载荷增加时,可能失去平衡状态,这种现象称为丧失稳定。

是零件保持原有平衡状态的能力。

基本的受力和变形有、、,以及由两种或两种以上基本变形形式叠加而成的组合变形。

一、轴向拉伸与压缩(一)拉伸与压缩1、在轴向力作用下,杆件产生伸长变形称为轴向拉伸,简称,在轴向力作用下,杆件产生缩短变形称为轴向压缩,简称.2、轴向拉伸和压缩变形具有以下特点:(1)受力特点——。

(2)变形特点——。

(二)内力与应力1、杆件所受其他物体的作用力都称为外力,包括和。

2、在外力作用下,构件产生变形,杆件材料内部产生变形的抗力,这种抗力称为。

3、外力越大,构件的变形越大,所产生的内力也越大。

内力是由于外力的作用而引起的,内力随外力。

当内力超过一定限度时,杆件就会被破坏。

4、轴向拉、压变形时的内力称为,用F N表示。

剪切变形时的内力称为,用F Q表示。

扭转变形时的内力称为,用M T表示。

弯曲变形时的内力称为(M)与F Q)5、内力的计算——截面法将受外力作用的杆件假想地切开,用以显示内力的大小,用以显示内力的大小,并以平衡条件确定其合力的方法,称为截面法。

F N=F6、应力1)同样的内力,作用在材料相同、横截面不同的构件上,会产生不同的效果。

2)构件在外力作用下,单位面积上的内力称为。

轴向拉伸和压缩时应力垂直于截面,称为,记作σ。

3)轴向拉伸和压缩时横截面上的应力是均匀分布的,其计算公式为A F N =σ,其中σ为横截面上的正应力,MPa ;F N 为横截面上的内力,N ;A 为横截面面积,mm 2。

4)正应力的正负号规定为:拉伸压力为 ,压缩应力为 。

7、强度计算1)、材料丧失正常工作能力的应力,称为 。

塑性材料的极限应力是其 应力σs ,脆性材料的极限应力是其 应力σb 。

第三章材料力学的基本概念第六节杆件变形的基本形式分析

第三章材料力学的基本概念第六节杆件变形的基本形式分析

第三章材料力学的基本概念第六节杆件变形的基本形式有下列说法,________是错误的。

A.杆件的几何特征是长度远大于横截面的尺寸B.杆件的轴线是各横截面形心的连线C.杆件的轴线必是直线D.A+B+C下列说法________是正确的。

A.与杆件轴线相正交的截面称为横截面B.对于同一杆件,各横截面的形状必定相同C.对于同一杆件,各横截面的尺寸必定相同D.对于同一杆件,各横截面必相互平行下列说法________是正确的。

A.与杆件轴线相平行的截面称为横截面B.对于同一杆件,各横截面的形状必定相同C.对于同一杆件,各横截面的尺寸不一定相同D.对同一杆件,各横截面必相互平行不管构件变形怎样复杂,它们常常是由________种基本变形形式所组成。

A.3B.4C.5D.6不管构件变形怎样复杂,它们常常是轴向拉压、________、扭转和弯曲等基本变形形式所组成。

A.位移B.错位C.膨胀D.剪切不管构件变形怎样复杂,它们常常是轴向拉压、剪切、________和________等基本变形形式所组成。

A.错位/膨胀B.膨胀/弯曲C.弯曲/扭转D.扭转/位移在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生伸长变化的变形,称为________。

A.弯曲变形B.扭转变形C.轴向拉伸变形D.剪切变形在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生缩短变化的变形,称为________。

A.弯曲变形B.扭转变形C.轴向压缩变形D.剪切变形受拉压变形的杆件,各截面上的内力为________。

A.剪力B.扭矩C.弯矩D.轴力轴力的单位是________。

A.牛顿B.牛顿/米C.牛顿·米D.牛顿/米2关于轴力,下列说法中________是正确的。

①轴力是轴向拉压杆横截面上唯一的内力;②轴力必垂直于杆件的横截面;③非轴向拉压的杆件,横截面上不可能有轴向力;④轴力作用线不一定通过杆件横截面的形心。

A.①②B.③④C.①③D.②④受拉压变形的杆件,各截面上的应力为________。

《工程力学》第三章 杆件基本变形时的内力分析

《工程力学》第三章 杆件基本变形时的内力分析

CD段 FN3 4kN
(2)绘制轴力图。
2
3
2
3
思考题:作用于杆件上的外力(载荷)沿其作用线移动时,其 轴力图有否改变?支座约束力有否改变?
练习: 由一高度为H的正方形截面石柱,顶部作用有轴心压
力FP。已知材料的容重为g,作柱的轴力图。
FP
FP
FN
FP
x
n
n
H
G(x) rAx
-
FN x
FP rAx
m
根据平衡条件,其任
一截面上分布内力系的合 F
力也必与杆的轴线重合,
这种与杆件轴线重合的内
力称为轴力,用FN表示。
轴力的大小由平衡方程求解,若取左段 FN
为研究对象,由
Fx 0 , FN F 0 可得 FN F
FN 观看动画
F F
2. 轴力的正负号规定: 拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
构件承载能力分析研究的内容和方法:
内容
1.外力
内力
2.材料的力学性质
破坏(失效)的规律 变形的规律
方法
3.截面形状和尺寸与承载关系
1.实验手段 几何方面 2.理论分析 物理方面
静力方面
第三章 杆件基本变形时的内力分析
内力的大小及其分布规律与杆件的变形与失效密切相关,因此 内力分析是解决构件承载能力的基础。本章主要研究杆件的内力及 其沿杆件轴线的变化规律,以便为杆件的强度、刚度和稳定性计算 提供基础。
§3-1 内力与截面法 §3-2 拉压杆的内力与内力图 §3-3 平面弯曲梁的内力与内力图 习题课 §3-4 受扭圆轴的内力与内力图
一、外力及其分类 §3-1 内力与截面法

第三章 杆件的基本变形

第三章 杆件的基本变形

第三章 杆件的基本变形这一章主要研究材料力学的有关内容,主要研究各种构件在外力作用下的内力和变形。

在保证满足强度、刚度和稳定性的前提下,为构件选用适宜的材料、确定合理的截面形状和尺寸,以达到即安全又经济的目的。

材料力学的研究对象主要是“杆件”,所谓杆件是指纵向(长度方向)尺寸远比横向(垂直于长度方向)尺寸大的多的构件,例如柱、梁和传动轴等。

杆有两个主要的几何因素,即横截面和轴线。

横截面指的是垂直于轴线方向的截面,后者即为所有横截面形心的连线。

杆件在外力作用下产生的变形,因外力作用的方式不同而有下列四种基本形式:(1) 轴向拉压变形;(2) 剪切变形;(3) 扭转变形,(4) 弯曲变形。

在工程实际中,有些构件的变形虽然复杂,但总可以看作是由以上几种基本变形组合而成,称为组合变形。

第1节 拉伸和压缩在工程结构和机器中,有许多构件是轴向拉伸和压缩作用。

本节主要讨论轴向拉伸的压缩时杆的内力和变形,并对材料在受拉、压时的力学性能进行研究,从而得出轴向拉、压杆的强度计算方法。

1、 内力与截面法1、内力的概念杆件在外力作用下产生变形,其内部的一部分对另一部分的作用称为内力。

显然,若外力消失,则内力也消失,外力增大,内力也增大。

但是对一定的材料来说,内力的增加只能在材料所特有的限度之内,超过这个限度,物体就会破坏。

所以,内力与强度是密切相关的。

2、截面法设一直杆,两端受轴向拉力F作用。

为了求出此杆任一截面m-m上的内力,,我们可以假想用一个平面,沿截面m_m将杆截断,把它分成Ⅰ、Ⅱ两部分,取Ⅰ段作为研究对象。

在Ⅰ段的截面m_m上到处都作用着内力,其合力为F N。

F N是Ⅱ段对Ⅰ段的作用力,并与外力F相平衡。

由于外力F的作用线沿杆件轴线,显然,截面m_m上的内力的合力也必然沿杆件轴线。

对Ⅰ段建立平衡方程:F N-F=0 得 F N=F将受外力作用的杆件假想地切开用以显示内力,并以平衡条件来确定其合力的方法,称为截面法。

第三章 杆件受力变形及其应力分析挂图

第三章 杆件受力变形及其应力分析挂图

图3 -11 低碳钢Q235的σ-ε曲线
图3 -12 滑移线
图3 -13 颈缩3 -15 灰口铸铁、玻璃钢拉伸时的σ-ε曲线
图3 -16 低碳钢压缩σ-ε曲线
图3 -17 铸铁压缩的σ-ε曲线
图3 -18 发动机连杆
图3 -19 起重吊环
图3 -20 支架受力分析
图3 -41 车轴的弯曲
图3 -42 梁的常见截面形状
图3 -43 平面弯曲
图3 -44 用截面法求梁的内力
图3 -45 弯矩的符号规定
图3 -46 简支梁受力分析
图3 -47 简支梁受均布载荷作用时的弯矩图
图3 -48 简支梁受集中力作用时的弯矩图
图3 -49 简支梁受力偶作用时的弯矩图
图3 -31 丝锥受力情况
图3 -32 扭转变形
图3 -33 截面法求扭矩
图3 -34 扭矩的符号规定
图3 -35 传动轴受力分析
图3 -36 圆轴扭转时横截面上切应力分布
图3 -37 圆截面极惯性矩的计算
图3 -38 阶梯圆轴受力分析
§3 -5 弯 曲
图3 -39 吊车梁的弯曲
图3 -40 摇臂的弯曲
图3 -50 梁弯曲时的变形
图3 -51 中性层和中性轴
图3 -52 弯曲时的正应力分布
图3 -53 车轴受力分析
图3 -54 螺旋压板装置受力分析
图3 -55 挠度和转角
§3 -6 构件强度计算中的几个问题
图3 -56 弯曲和扭转组合变形实例
图3 -57 交变应力
图3 -58 对称循环、脉动循环交变应力
图3 -21 拉伸变形
图3 -22 杆件受力分析
§3 -3 剪 切
图3 -23 销的受力情况

直杆的基本变形

直杆的基本变形
、 分别为脆性材料、塑性材料对应的安全因数。
§3-3 直杆轴向拉伸和压缩时的强度计算
三、拉伸与压缩时的强度计算
为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即拉压杆的强度条件为
式中:[]—许用应力,max—最大工作应力,FNmax—危险截面的轴力 。
低碳钢Q235的拉伸图(F—△l 曲线 )
一.低碳钢拉伸时的力学性能(观看动画)
低碳钢Q235的拉伸时的应力–应变曲线图(- 曲线 )
§3-2 拉伸和压缩时材料的力学性质
3-2 拉伸和压缩时材料的力学性质
3-2 拉伸和压缩时材料的力学性质
低碳钢Q235的拉伸时的应力–应变曲线图(- 曲线 )
安全因数的确定除了要考虑载荷变化,构件加工精度不够,计算不准确,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性等。
安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下:
脆性材料
塑性材料
§3-2 拉伸和压缩时材料的力学性质
低碳钢压缩时的弹性模量E、屈服极限s都与拉伸时大致相同。 屈服阶段后,试件越压越扁,横截面面积不断增大,试件不可能被压断,因此得不到压缩时的强度极限。
三、 材料在压缩时的力学性质
1.低碳钢的压缩实验(观看动画)
3-2 拉伸和压缩时材料的力学性质
其它脆性材料压缩时的力学性质大致同铸铁,工程上一般作为抗压材料。 破坏面大约为45°的斜面。 铸铁的压缩实验(观看动画)
例3-5 已知简单构架:杆1、2截面积 A1=A2=100 mm2,材料的许用拉应力 [st ]=200 MPa,许用压应力 [sc ]=150 MPa ,试求载荷F的许可值 [F ]

杆件的基本变形

杆件的基本变形

名词术语 材料力学研究的对象多为等直杆
形心 轴线 横截面
1)拉伸和压缩变形
作用力特点:杆件受到大小相等、方向相反、作用 线与轴线重合的一对力的作用。 变形特点:沿轴向的伸长或缩短。
2)剪切变形
作用力特点:杆件受到大小相等、方向相反且作用 线靠近的一对力的作用。 变形特点:杆件两部分沿外力方向发生相对错动。
杆件的基本变形
材料力学研究的对象为杆件



杆 轴 纵向尺寸远大于横向尺寸 轴
件柱

构件所受到的外力作用称为载荷
集中力 载荷 分布力
FM
q
集中力偶
名词术语
杆件轴线: 各横截面形心的连线称为该杆的轴线 横截面: 与轴线垂直的截面称为杆的横截面。
杆件的两个特征
直杆: 轴线为直线的杆称为直杆 等直杆: 横截面的形状和大小不变的直杆称为等直杆 曲杆: 轴线为曲线的杆称为曲杆
实际构件的变形经常是几种基本变 形的组合,称为组合变形。
例如车床主轴工作时就是弯曲、扭 转和压缩变形的组合。
3)扭转变形
作用力特点:在垂直于杆件轴线的两个平面内,分 别作用大小相等、转向相反的两个力偶。 变形特点:任意两个横截面发生绕轴线的相对转动, 变形前杆的母线变形后成为斜的纵向平面内,作用 大小相等、方向相反的一对力偶,或作用与轴线垂 直的横向力。 变形特点:杆件轴线由直线变为曲线。

4.2_杆件变形的基本形式1

4.2_杆件变形的基本形式1
变形特点:杆件沿轴线方向伸长 或缩短。
四、内力
• 外力:杆件所受其他物体的作用力都称为外力;包括 载荷和约束反力。 • 内力:构件受外力作用时,在产生变形的同时,在其 内部相邻部分之间产生的相互作用力称为内力。 • 轴力:轴向拉、压杆产生的内力称为轴力。用字母 FN表示。 • 注意:内力随外力的增加而增加,当达到某一限度时, 就会引起构件的破坏。
杆件变形-扭转
杆件变形-扭转
薄壁圆管的扭转
变形现象:
(1)圆周线绕轴线相对转 动 (2)圆周线的大小和间距 不变 (3)各纵线倾斜同一角度 (4)矩形网格变为平行四 边形 近似认为管内变形 与管表面变形相同
杆件变形-弯曲
1、概念
杆件承受垂直于其轴线方向的外力,或 在其轴线平面内作用有外力偶时, 杆的轴 线变为曲线.以轴线变弯为主要特征的变形 称为弯曲。 作用于这些杆件上的外力垂直于杆件的轴 线,使原为直线的轴线变形后成为曲线, 这种方式的变形称为弯曲变形。
材料拉伸与压缩时的力学性能
金属材料的力学性能:指金属材 料在外力的作用下所表现出来的性 能。一般是通过实验来测定的。
一、拉伸实验:
1、拉伸试件和实验条件 1)标准试件: l=10 d 和 l=5 d (对圆截面试样) l为标距 A为横截面面积 d为横截面直径 2)实验条件:常温、静载
拉伸
压缩
许用应力和安全系数
1)极限应力:材料丧失正常工作能力时的应力,称为极限 应力。 塑性材料的极限应力为屈服极限σs;脆性材料的极限应力为 强度极限σb。 2)许用应力:将极限应力除以一个大于1的系数n作为工作 时的允许的最大应力,这个应力称为许用应力。用[σ]表示。 塑性材料:[σ]=σs/n ; 脆性材料:[σ]=σb/n; 安全系数:反映了材料的强度储备情况;安全系数一定大于 1。n过大,造成学浪费;n过小安全得不到保证,甚至造 成事故。

《谢奇之-工程力学》杆件基本变形横截面上的应力

《谢奇之-工程力学》杆件基本变形横截面上的应力
桥梁结构应力分析
在桥梁设计中,需要分析不同工况下的应力分布,以确保桥梁的安 全性和稳定性。
机械零件的疲劳强度
在机械运转过程中,某些关键零件会受到周期性载荷,导致疲劳断 裂。对零件进行疲劳强度分析,可以预测其使用寿命。
建筑结构的稳定性
建筑结构在风、地震等外力作用下会发生变形,分析结构的应力分布 有助于评估其稳定性。
有限元法
有限元法是一种数值计算方法,通过将杆件横截面离散成有限个小的单元,并对每 个单元进行应力分析来计算横截面上的应力。
有限元法适用于各种形状和材料的杆件,且可以模拟复杂的边界条件和载荷情况。
有限元法的优点是适用范围广、精度高、可以处理复杂的非线性问题,但计算量大、 需要较高的计算机技术和软件支持。
04
应力的计算方法
截面法
截面法是工程中常用的应力计算方法之一,通过在杆 件横截面上选择一个或多个代表性点,并分析这些点
的应力状态来计算横截面上的应力。
截面法适用于各种形状和材料的杆件,只需要知道杆 件横截面的几何尺寸和材料属性即可。
截面法可以通过实验测量和数值计算两种方式进行, 实验测量需要制作专门的试件进行测试,数值计算则
可以通过计算机软件实现。
解析法
01
解析法是通过数学公式和定理来计算应力的方法,适用于简单 形状和材料的杆件。
02
解析法需要建立杆件横截面的力学模型,并利用弹性力学、材
料力学等理论公式进行计算。
解析法的优点是计算精度高,适用于理论分析和设计计算,但
03
适用范围较窄,对于复杂形状和材料的杆件难以应用。
05
应力的影响与控制
应力的影响
变形与开裂
应力会导致材料发生变形,当 应力超过材料的屈服极限时,

第三章材料力学的基本概念第六节杆件变形的基本形式

第三章材料力学的基本概念第六节杆件变形的基本形式

第三章材料力学的基本概念第六节杆件变形的基本形式有下列说法,________是错误的。

a.杆件的几何特征是长度远大于横截面的尺寸b.杆件的轴线是各横截面形心的连线c.杆件的轴线必是直线d.a+b+c以下观点________就是恰当的。

a.与杆件轴线相正交的截面称为横截面b.对于同一杆件,各横截面的形状必定相同c.对于同一杆件,各横截面的尺寸必定相同d.对于同一杆件,各横截面必相互平行下列说法________是正确的。

a.与杆件轴线二者平行的横截面称作横截面b.对于同一杆件,各横截面的形状必定相同c.对于同一杆件,各横截面的尺寸不一定相同d.对同一杆件,各横截面必相互平行不管构件变形怎样繁杂,它们常常就是由________种基本变形形式所共同组成。

a.3b.4c.5d.6不管构件变形怎样复杂,它们常常是轴向拉压、________、扭转和弯曲等基本变形形式所组成。

a.位移b.错位c.膨胀d.剪切不管构件变形怎样繁杂,它们常常就是轴向拉压、剪切、________和________等基本变形形式所共同组成。

a.错位/收缩b.收缩/伸展c.伸展/改变d.改变/加速度在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生伸长变化的变形,称为________。

a.弯曲变形b.扭转变形c.轴向弯曲变形d.剪切变形在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生缩短变化的变形,称为________。

a.弯曲变形b.扭转变形c.轴向压缩变形d.剪切变形受到拉压变形的杆件,各横截面上的内力为________。

a.剪力b.扭矩c.弯矩d.轴力轴力的单位是________。

a.牛顿b.牛顿/米c.牛顿米d.牛顿/米2关于轴力,以下观点中________就是恰当的。

①轴力是轴向拉压杆横截面上唯一的内力;②轴力必垂直于杆件的横截面;③非轴向拉压的杆件,横截面上不可能有轴向力;④轴力作用线不一定通过杆件横截面的形心。

第三章 杆件的基本变形

第三章   杆件的基本变形

第三章杆件的基本变形一、选择题1、低碳钢拉伸试验中,塑性度形发生在:A、弹性阶段B、弹化阶段C、屈服阶段D、局部度形阶段2、极限应力除以一个系数所得商为材料的许用应力。

该系数应()A.>1B.<1C.=1D.<03.纯弯曲梁的横截面上()存在A.只有正应力B.只有剪应力C.既有剪应力又有正应力D.可能为正应力,也可能为剪应力4、若矩形截面梁的高度h和宽度b分别增大一倍,其抗弯截面系数将增大()A.2倍B.4倍C.8倍D.16倍5、如图所示,拉杆的剪切面形状为()A.圆形B.矩形C.外方内圆形D.圆柱面6、梁纯弯曲时,梁产生的内力是()A .弯矩B .扭矩C .剪力D .剪力和弯矩7、图示受拉直杆,其中AB 段与BC 段内的轴力及应力关系为__________。

A :BC AB N N = BC AB σσ= B :BC AB N N = BC AB σσ> C :BC AB N N = BC AB σσ<8、图示结构,其中AD 杆发生的变形为______。

A 、弯曲变形 B 、压缩变形 C 、弯曲与压缩的组合变形 D 、弯曲与拉伸的组合变形9、三根试件的尺寸相同,材料不同,其应力应变关系如图所示,则_________强度高,___________ 刚度大,___________塑性好。

10、图示圆截面悬臂梁,若其它条件 不变,而直径增加一倍,则其最 大正应力是原来的________倍。

A81 B 8C 2 D2111、圆轴扭转变形时,横截面上的应力分布规律正确的是______________。

12、截面C处扭矩的突变值为___________________________。

AAm B C mCcAmm+ D )(21cAmm+13、轴向拉伸杆,正应力最大的截面和剪应力最大的截面()A.分别是横截面、45°斜截面B.都是横截面C.分别是45°斜截面、横截面D.都是45°斜截面14、实心圆形截面轴,当横截面的直径增大一倍时,该轴的扭刚度增()A 4倍B 8倍C 16倍D 32倍二、填空题1、杆件度形的强度公式常可以解决构件设计尺寸、________和强度校核三类工程问题。

第三章 杆件的基本变形复习题

第三章 杆件的基本变形复习题

第三章杆件的基本变形复习题一.填空题1.强度条件可以解决如下三个问题:①_________、②____________、③______________。

2.内力随外力的增加而_________,当内力增大到一定限度时,杆件就会发生________.拉压杆上的内力称为_________.3低碳钢拉伸包括________,_____________,_________________,_______________四个阶段.4.杆件变形可简化为____________,______________,____________,_____________四种基本变形。

5.应力描述了内力在截面上的________和___________,它才是判断杆件强度是否足够的根据。

6.杆件受压时,当压应力大于其抗压强度极限时,杆件将沿斜截面相对错动而断裂,其断口与轴线约成_____角。

7.脆性材料取________为极限应力,塑性材料取________为极限应力。

8.安全系数反映了_______和______之间的矛盾关系,它反映了杆件必要的__________.9.受拉压的杆件称为直杆,以剪切变形为主要特点的杆件称为_______,以扭转变形为主要特点的杆件称为________,弯曲变形的杆件称为_________.10.在圆柱表面上,挤压应力并不均匀分布,通常取_________代替挤压面计算。

11.圆轴横截面上任一点的切应力与该点所在圆周的_______成正比,方向与过该点的半径________.切应力最大处发生在_______________.12.圆轴扭转时横截面上的内力称为________,弯曲变形时梁截面上的内力是___________和________________。

二.判断题1.销联接在受到剪切的同时还要受到挤压。

()2.合金钢是塑性材料。

()3.若在构件上作用有两个大小相等、方向相反、相互平行的外力,则此构件一定产生剪切变形。

杆件的基本变形

杆件的基本变形
弹性体内力的特征: (1)连续分布力系 (2)与外力组成平衡力系
应力:内力在一点的分布集度。即单位面 积上的内力
P1
y
lim DFN
DA0 DA
ΔFQy
DFR 垂直于截面的应力称为“正
ΔFQz
P2
z
ΔA
ΔFN
应力”
x
lim
DA0
DFQ DA
位于截面内的应力称为
“剪应力”或“切应力”
集中力: 若外力作用面积远小于物体表面的尺寸,可 作为作用于一点的集中力。如火车轮对钢轨 的压力等
目录
外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
内力:弹性体受力后,由于变形,其内部 各点均会发生相对位移,因而产生 相互作用力。
目录
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面。
目录
构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆 目录
目录
三、变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围
A
如右图,δ远小于构件的最小尺寸,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青 神 中 等 职 业 学 校
- 学年上期 月考试试卷
课程名称:《机械基础——第三章》 试卷类型: 闭卷 考试方式: 考试
适用专业班级: 升 份数 考试时间:100分钟
一、填空题 (每空4分,共计20分)
1、杆件内部由于外力作用而产生的相互作用力称为( )。

在某一范围内,它随着外力的增大( )。

2、工程上一般把( )作为塑性材料的极限应力;对于脆性材料,则把( )作为极限应力。

3、构件发生剪切变形的同时,往往在其互相接触的作用面间发生( )。

二、判断题 (每小题4分,共计12分)
1、切应力与拉压应力都是内力除以面积,所以切应力与拉应力一样,实际上也是均匀分布的。

( )
2、在低碳钢的应力—应变曲线中,直线段的斜率表示的是材料的屈服极限。

( )
3、若两个轴向拉压杆的材料不同,但横截面积相同,受相同的轴向力,则这两个拉压杆截面上的应力也不相同。

( ) 三、单项选择题 (每小题4分,共计16分)
1、工程上常把延伸率大于5%的材料称为( )。

A 、弹性材料
B 、脆性材料
C 、塑性材料
D 、刚性材料 2、如图3—4所示,AB 和CD 两杆均有低碳钢和铸铁两种材料可供选择,正确的选择是( )。

A 、A
B 、CD 杆均为铸铁 B 、AB 杆为铸铁,CD 杆为低碳钢
C 、AB 杆为低碳钢,C
D 杆为铸铁 D 、AB 、CD 杆均为低碳钢
3、如图3-5所示,有材料、横截面积相同但长度不同的两根直杆,承受相同的拉力F ,a 、b 分别是两根直杆中间的一点,下面有关应力和应变的说法中正确的是( )。

A a 、b 两点的应力相等,应变也相等
B a 、b 两点的应力不相等,应变也不相等
C a 、b 两点的应力不相等,应变相等
D a 、b 两点的应力相等,应变不相等
4、如图3-7所示的铆接件,钢板的厚度为t ,铆钉的直径为d ,铆钉的切应力和挤压应力为( )。

A
τ=2F /(πd2) σjy =F /(2dt) B τ=F /(πd2) σjy =F /(dt) C τ=4F /(πd2) σjy =F /(dt) D τ=4F /(πd2) σjy =2F /(dt)
四、计算题 (每小题6分,计12分)
1、如下图所示的冲床冲制钢板上的圆孔,如果钢板的厚度是4mm,冲孔的直径是25mm,钢板的剪切极限强度τb=320MPa,试求冲床所需压的剪切冲压力F Q。

2、如图所示,汽车牵引用的挂钩,牵引力F=200kN,如果挂钩连接部分的厚度t=15mm,销钉的直径d=40mm,销钉材料的许用切应力[τ]=60MPa,试校核销钉的强度。

如果销钉的强度不够,应当选用多大的销钉直径?
五、综合分析计算题(共计15分)
1、如图所示的简支梁受载荷F=20kN的作用,求截面1-1和2-2上的弯矩,并绘出该简支梁受力状态下的剪力图和弯矩图。

相关文档
最新文档