2019-2020年最新广西钦州市中考数学仿真模拟试题及答案解析

合集下载

广西省钦州市2019-2020学年中考数学模拟试题含解析

广西省钦州市2019-2020学年中考数学模拟试题含解析

广西省钦州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .2.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -=B .2890x x ++=化为()2425x +=C .22740t t --=化为2781416t ⎛⎫-=⎪⎝⎭ D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 3.若点A(1,a)和点B(4,b)在直线y =-2x +m 上,则a 与b 的大小关系是( ) A .a >b B .a <bC .a =bD .与m 的值有关4.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根6.若△÷2111a a a -=-,则“△”可能是( ) A .1a a+ B .1a a - C .+1a a D .1a a- 7.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A.0.7×10﹣8B.7×10﹣8C.7×10﹣9D.7×10﹣10 8.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.9.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)10.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N 两点.若AM=2,则线段ON的长为( )A.22B.3C.1 D.611.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④12.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.34二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy中,直线l:y=3x-3与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.14.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,c os34°≈0.83,tan34°≈0.67)15.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.163a-_____.17.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为____.18.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.20.(6分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x+与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.21.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?22.(8分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)23.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.24.(10分)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求ADAB的值.25.(10分)计算:(﹣1)2018+(﹣12)﹣2﹣|212 |+4sin60°; 26.(12分)如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .判断直线CD 和⊙O 的位置关系,并说明理由.过点B 作⊙O 的切线BE 交直线CD 于点E ,若AC=2,⊙O 的半径是3,求BE 的长.27.(12分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.2.B【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:A 、22990x x --=Q ,2299x x ∴-=,221991x x ∴-+=+,2(1)100x ∴-=,故A 选项正确.B 、2890x x ++=Q ,289x x ∴+=-,2816916x x ∴++=-+,2(4)7x ∴+=,故B 选项错误.C 、22740t t --=Q ,2274t t ∴-=,2722t t ∴-=,274949221616t t ∴-+=+,2781()416t ∴-=,故C 选项正确.D 、23420x x --=Q ,2342x x ∴-=,24233x x ∴-=,244243939x x ∴-+=+,2210()39x ∴-=.故D 选项正确.故选:B . 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.A 【解析】【分析】根据一次函数性质:y kx b =+中,当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小.由-2<0得,当x 12时,y 1>y 2.【详解】因为,点A(1,a)和点B(4,b)在直线y =-2x +m 上,-2<0, 所以,y 随x 的增大而减小. 因为,1<4, 所以,a>b. 故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数y kx b =+中y 与x 的大小关系,关键看k 的符号. 4.A 【解析】分析:根据中心对称的定义,结合所给图形即可作出判断. 详解:A 、是中心对称图形,故本选项正确; B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误; D 、不是中心对称图形,故本选项错误; 故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合. 5.C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.6.A 【解析】 【分析】直接利用分式的乘除运算法则计算得出答案. 【详解】211,1a a a -÷=-Q V21111a a A a a a-+∴=⨯=-。

广西省钦州市2019-2020学年中考数学考前模拟卷(2)含解析

广西省钦州市2019-2020学年中考数学考前模拟卷(2)含解析

广西省钦州市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt △ABC 中,∠C=90°,BC=2,∠B=60°,⊙A 的半径为3,那么下列说法正确的是( )A .点B 、点C 都在⊙A 内B .点C 在⊙A 内,点B 在⊙A 外 C .点B 在⊙A 内,点C 在⊙A 外D .点B 、点C 都在⊙A 外 2.下列运算正确的是( )A .5a+2b=5(a+b )B .a+a 2=a 3C .2a 3•3a 2=6a 5D .(a 3)2=a 5 3.计算3()a a •- 的结果是( )A .a 2B .-a 2C .a 4D .-a 44.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )A .25和30B .25和29C .28和30D .28和295.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A .22B .9220C .32D .4256.已知点A (1﹣2x ,x ﹣1)在第二象限,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .7.如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(﹣2,3),先把△ABC 向右平移6个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( )A .(4,﹣3)B .(﹣4,3)C .(5,﹣3)D .(﹣3,4)8.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .12B .25C .35D .7189.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DD .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人11.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A 5B .35C 22D .2312.如图,立体图形的俯视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:mx 2﹣4m =_____.14.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.15.如图,在O e 中,AB 为直径,点C 在O e 上,ACB ∠的平分线交O e 于D ,则ABD ∠=______.o16.如图,O e 的半径为3,点A ,B ,C ,D 都在O e 上,30AOB ∠=︒,将扇形AOB 绕点O 顺时针旋转120︒后恰好与扇形COD 重合,则»AD 的长为_____.(结果保留π)17.小华到商场购买贺卡,他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡.若小华先买了3张3D 立体贺卡,则剩下的钱恰好还能买______张普通贺卡.18.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读与应用:阅读1:a 、b 为实数,且a >0,b >0,因为()20a b -≥,所以20a ab b -+≥,从而2a b ab +≥(当a =b 时取等号).阅读2:函数m y x x=+(常数m >0,x >0),由阅读1结论可知: 2m m x x x x +≥⋅ 2m =,所以当m x x =即x m =时,函数m y x x=+的最小值为2m . 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x =__________时,周长的最小值为__________.问题2:已知函数y 1=x +1(x >-1)与函数y 2=x 2+2x +17(x >-1),当x =__________时, 21y y 的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)20.(6分)如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE求证:(1)△ABF ≌△DCE ;四边形ABCD 是矩形.21.(6分)对于方程=1,某同学解法如下:解:方程两边同乘6,得3x ﹣2(x ﹣1)=1 ①去括号,得3x ﹣2x ﹣2=1 ②合并同类项,得x ﹣2=1 ③解得x =3 ④∴原方程的解为x =3 ⑤上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程. 22.(8分)如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF .(1)求证:四边形ADEF 是平行四边形;(2)若∠ABC =60°,BD =6,求DE 的长.23.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O 于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.24.(10分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.25.(10分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,连接OD,PD,得△OPD。

广西省钦州市2019-2020学年中考第三次模拟数学试题含解析

广西省钦州市2019-2020学年中考第三次模拟数学试题含解析

广西省钦州市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×108 2.下列图形不是正方体展开图的是( ) A .B .C .D .3.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b --4.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1m £C .1m >D .1m <5.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( ) A .三条高的交点B .重心C .内心D .外心6.下列二次根式,最简二次根式是( ) A 8B .12C 13D 0.17.|﹣3|的值是( ) A .3B .13C .﹣3D .﹣138.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对9.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) 中位数 众数 平均数 方差 9.2 9.39.1 0.3A .中位数B .众数C .平均数D .方差10.如图,在平面直角坐标系中,以A (-1,0),B (2,0),C (0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )A .(3,1)B .(-4,1)C .(1,-1)D .(-3,1)11.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-12.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,24二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E ,连接OC ,若OC =5,CD =8,则AE =______.14.如图,已知反比例函数y=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB的面积为1,则k=________________.15.如图,已知点A 是反比例函数2y x=-的图象上的一个动点,连接OA ,若将线段O A 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为______.16.如图,AB 为⊙O 的弦,C 为弦AB 上一点,设AC =m ,BC =n(m >n),将弦AB 绕圆心O 旋转一周,若线段BC 扫过的面积为(m 2﹣n 2)π,则mn=______17.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.18.如图,在▱ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE=4:3,且BF=2,则DF=_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值.20.(6分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.21.(6分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________;(2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.22.(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D 为1.5米,求小巷有多宽.23.(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?24.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.25.(10分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.26.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.27.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B正确2.B 【解析】 【分析】由平面图形的折叠及正方体的展开图解题. 【详解】A 、C 、D 经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体. 故选B . 【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题. 3.C 【解析】 解:A .22233a a b ab=,故本选项错误; B .2133a a a a =--,故本选项错误;C .22a ba b++,不能约分,故本选项正确; D .222()()()a ab a a b aa b a b a b a b--==-+-+,故本选项错误.故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键. 4.D 【解析】 【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 5.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.6.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A=B=,不是最简二次根式,故本选项不符合题意;CD=,不是最简二次根式,故本选项不符合题意.故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.7.A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.8.B 【解析】 【详解】解方程212350x x -+=得:x=5或x=1. 当x=1时,3+4=1,不能组成三角形; 当x=5时,3+4>5,三边能够组成三角形. ∴该三角形的周长为3+4+5=12, 故选B . 9.A 【解析】 【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案. 【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数. 故选A .点睛:本题主要考查了中位数,关键是掌握中位数定义. 10.B 【解析】 【分析】作出图形,结合图形进行分析可得. 【详解】 如图所示:①以AC 为对角线,可以画出▱AFCB ,F (-3,1); ②以AB 为对角线,可以画出▱ACBE ,E (1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.11.D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.12.A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2试题解析:∵AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E. 1 4.2CE CD ∴== 在直角△OCE 中, 222254 3.OE OC CE =-=-=则AE=OA−OE=5−3=2.故答案为2.14.-1【解析】试题解析:设点A 的坐标为(m ,n),因为点A 在y=的图象上,所以,有mn =k ,△ABO 的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k 的几何意义.15.2y x= 【解析】 ∵点A 是反比例函数2y x =-的图象上的一个动点,设A (m ,n ),过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∴AC=n ,OC=﹣m ,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD ,在△ACO 与△ODB 中,∵∠ACO=∠ODB ,∠CAO=∠BOD ,AO=BO ,∴△ACO ≌△ODB ,∴AC=OD=n ,CO=BD=﹣m ,∴B (n ,﹣m ),∵mn=﹣2,∴n (﹣m )=2,∴点B 所在图象的函数表达式为2y x =, 故答案为:2y x=.16.152【解析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=52n n ±,∵m>0,n>0,∴5 n n +∴15 mn+=故答案为15+.【点睛】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.17.1【解析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分. 18.143. 【解析】【详解】解:令AE=4x ,BE=3x ,∴AB=7x.∵四边形ABCD 为平行四边形,∴CD=AB=7x ,CD ∥AB ,∴△BEF ∽△DCF. ∴3377BF BE x DF CD x ===, ∴DF=143 【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2.【解析】【分析】将原式化简整理,整体代入即可解题.解:(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)=x 1﹣1x+1+x 1﹣4x+x 1﹣4=3x 1﹣2x ﹣3,∵x 1﹣1x ﹣1=1∴原式=3x 1﹣2x ﹣3=3(x 1﹣1x ﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.20.(1)①点C 坐标为()1,5C 或()3,5C ';②y =x +2或y =-x +3;(2)217r ≤≤或517r ≤≤【解析】【分析】(1)①根据“和谐点”的定义即可解决问题;②首先求出点C 坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C 坐标为C (1,5)或C'(3,5);②如图2.由图可知,B (5,3).∵A (1,3),∴AB=3.∵△ABC 为等腰直角三角形,∴BC=3,∴C 1(5,7)或C 2(5,﹣1).设直线AC 的表达式为y=kx+b (k≠0),当C 1(5,7)时,357k b k b +=⎧⎨+=⎩,∴12k b =⎧⎨=⎩,∴y=x+2,当C 2(5,﹣1)时,351k b k b +=⎧⎨+=-⎩,∴14k b =-⎧⎨=⎩,∴y=﹣x+3. 综上所述:直线AC 的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F 在点E 左侧时:连接OD .则OD=221417+=,∴217r ≤≤.②当点F 在点E 右侧时:连接OE ,OD .∵E (1,2),D (1,3),∴22125+221417+=517r ≤≤综上所述:217r ≤≤517r ≤≤【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题. 21.(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,172l =.【解析】【分析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长.【详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得:(3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称,∴1(3,3)A -,1(4,1)B -,1(0,2)C -(2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C , ∴22(40)(12)17=--+-=BC∴2扇形CBC S 22901734604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积: 222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:901802π==l . 【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.22.2.7米.【解析】【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】在Rt △ACB 中,∵∠ACB =90°,BC =0.7米,AC =2.2米,∴AB 2=0.72+2.22=6.1.在Rt △A′BD 中,∵∠A′DB =90°,A′D =1.5米,BD 2+A′D 2=A′B′2,∴BD 2+1.52=6.1,∴BD 2=2.∵BD >0,∴BD =2米.∴CD =BC+BD =0.7+2=2.7米.答:小巷的宽度CD 为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.23.(1)详见解析;(2)40%;(3)105;(4)516. 【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151******** +++==.答:正好抽到参加“器乐”活动项目的女生的概率为5 16.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B 组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A 组所占的百分比,求出A 组的扇形圆心角的度数,再用总人数减去A 、B 、D 组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C 组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61122=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键. 25.(1)m=2;y=12x+52;(2)P 点坐标是(﹣52,54). 【解析】【分析】(1)利用待定系数法求一次函数和反比例函数的解析式; (2)设点P 的坐标为15,22P x x ⎛⎫+ ⎪⎝⎭,根据面积公式和已知条件列式可求得x 的值,并根据条件取舍,得出点P 的坐标.【详解】解:(1)∵反比例函数n y x =的图象过点14,,2⎛⎫- ⎪⎝⎭ ∴1422n =-⨯=-, ∵点B (﹣1,m )也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2; 设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A 14,,2⎛⎫- ⎪⎝⎭,B (﹣1,2),则 1422,k b k b ⎧-+=⎪⎨⎪-+=⎩ 解得:125,2k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, ∵△PCA 和△PDB 面积相等,∴()1111541222222x x ⎛⎫⨯⨯+=⨯-⨯-- ⎪⎝⎭, 解得: 5155,,2224x y x =-=+= ∴P 点坐标是55,.24⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.26.(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD=90°.∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD 的面积为:12AC •BD=12×1×2=1, 故答案为1. 【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.27.(1)21542y x x =-+;(2)当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)抛物线向右平移的距离是1个单位.【解析】【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,1)代入计算可得;(2)由抛物线的对称性得BE=OA=t ,据此知AB=10-2t ,再由x=t 时AD=21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【详解】(1)设抛物线解析式为()10y ax x =-, Q 当2t =时,4AD =,∴点D 的坐标为()2,4,∴将点D 坐标代入解析式得164a -=, 解得:14a =-, 抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE OA t ==,102AB t ∴=-,当x t =时,21542AD t t =-+, ∴矩形ABCD 的周长()2AB AD =+()215210242t t t ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦, 21202t t =-++, ()2141122t =--+,102-<Q , ∴当1t =时,矩形ABCD 的周长有最大值,最大值为412; (3)如图,当2t =时,点A 、B 、C 、D 的坐标分别为()2,0、()8,0、()8,4、()2,4,∴矩形ABCD 对角线的交点P 的坐标为()5,2,Q 直线GH 平分矩形的面积,∴点P 是GH 和BD 的中点,DP PB ∴=,由平移知,//PQ OBPQ ∴是ODB ∆的中位线,142PQ OB ∴==, 所以抛物线向右平移的距离是1个单位.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.。

广西省钦州市2019-2020学年中考数学模拟试题(3)含解析

广西省钦州市2019-2020学年中考数学模拟试题(3)含解析

广西省钦州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D . 2.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A .B .C .D .3.如图,直角坐标平面内有一点(2,4)P ,那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12C 5D 54.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )5.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--6.如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 的坐标为(0,4),将△ABO 绕点B 逆时针旋转60°后得到△A'BO',若函数y=k x (x >0)的图象经过点O',则k 的值为( )A .23B .4C .43D .87.如下图所示,该几何体的俯视图是 ( )A .B .C .D .8.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有( )A .1种B .2种C .3种D .4种9.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为A .75B .89C .103D .13910.下列各式计算正确的是( )A .a 2+2a 3=3a 5B .a•a 2=a 3C .a 6÷a 2=a 3D .(a 2)3=a 5 11.若分式方程1x a a x -=+无解,则a 的值为( ) A .0 B .-1 C .0或-1 D .1或-112.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 14.正十二边形每个内角的度数为 .15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)y x x=> 与此正方形的边有交点,则a 的取值范围是________.16.因式分解:a 3b ﹣ab 3=_____.17.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。

广西省钦州市2019-2020学年中考三诊数学试题含解析

广西省钦州市2019-2020学年中考三诊数学试题含解析

广西省钦州市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x+1x=3,则x2+21x=()A.7 B.9 C.11 D.82.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm3.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补4.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A 533B.536C.1 D1725.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小6.在下列条件中,能够判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线7.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)8.如图,已知点A,B分别是反比例函数y=kx(x<0),y=1x(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=12,则k的值为()A.2 B.﹣2 C.4 D.﹣4 9.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.10.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )A.AD DEDB BC=B.BF EFBC AD=C.AE BFEC FC=D.EF DEAB BC=11.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.12.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A.16B.13C.12D.23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:2m2﹣8n2= .14.计算:(﹣12)﹣2﹣2cos60°=_____.15.在平面直角坐标系xOy中,点A、B为反比例函数4yx=(x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将4yx=(x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.16.把多项式a3-2a2+a分解因式的结果是17.如图,某水库大坝的横断面是梯形ABCD,坝顶宽6AD=米,坝高是20米,背水坡AB的坡角为30°,迎水坡CD的坡度为1∶2,那么坝底BC的长度等于________米(结果保留根号)18.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知函数kyx=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.20.(6分)如图,在Y ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.21.(6分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.22.(8分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.23.(8分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?24.(10分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10销售员人数(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?25.(10分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.26.(12分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.27.(12分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ 为半径的⊙O的方程;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【分析】根据完全平方公式即可求出答案. 【详解】∵(x+1x )2=x 2+2+21x ∴9=2+x 2+21x ,∴x 2+21x=7,故选A . 【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式. 2.B 【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 3.C 【解析】 【分析】分清截线和被截线,根据平行线的性质进行解答即可. 【详解】 解:∵AB ∥CD ,∴∠BAD 与∠D 互补,即C 选项符合题意;当AD ∥BC 时,∠BAD 与∠B 互补,∠1=∠2,∠BCD 与∠D 互补, 故选项A 、B 、D 都不合题意, 故选:C .本题考查了平行线的性质,熟记性质并准确识图是解题的关键. 4.B 【解析】 【分析】由平行四边形性质得出AB=CD ,AB ∥CD ,证出四边形ABDE 是平行四边形,得出DE=DC=AB ,再由平行线得出∠ECF=∠ABC ,由三角函数求出CF 长,再用勾股定理CE ,即可得出AB 的长. 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=CD , ∵AE ∥BD ,∴四边形ABDE 是平行四边形, ∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点, ∵EF ⊥BC , ∴∠EFC=90°, ∵AB ∥CD , ∴∠ECF=∠ABC , ∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF 34,∴CF=3,根据勾股定理得,3,∴AB=12CE=6, 故选B . 【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 5.D 【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,故选:D.【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.6.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.7.C【解析】【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.8.D【解析】【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=k x(x<0),y=1x(x>0)的图象上,即可得S△OBD=12,S△AOC=12|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,又∵∠AOB=90°,tan∠BAO=12,∴OBAO=12,∴BODOACSSVV=14,即112142k,解得k=±4,又∵k<0,∴k=-4,故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。

广西省钦州市2019-2020学年中考数学三月模拟试卷含解析

广西省钦州市2019-2020学年中考数学三月模拟试卷含解析

广西省钦州市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是()A.B.C.D.2.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.3.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒B.40cm的木棒C.50cm的木棒D.60cm的木棒4.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35°B.60°C.70°D.70°或120°5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B. C.D .6.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x = 7.实数4的倒数是( )A .4B .14C .﹣4D .﹣148.计算327-的值为( )A .26-B .-4C .23-D .-29.如图,AB ∥CD,FE ⊥DB,垂足为E ,∠1=50°,则∠2的度数是( )A .60°B .50°C .40°D .30°10.如图,反比例函数k y x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )A .1B .2C .3D .411.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A .20B .24C .28D .3012.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知Rt △ABC 中,∠C=90°,AC=3,BC=7,CD ⊥AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内.设⊙D 的半径为r ,那么r 的取值范围是_________.14.某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.15.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为______.16.若a 是方程2320x x --=的根,则2526a a +-=_____.17.若代数式x 2﹣6x+b 可化为(x+a )2﹣5,则a+b 的值为____.18.如图,△ABC ≌△ADE ,∠EAC =40°,则∠B =_______°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.20.(6分)如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D点,且俯角α为45°,从楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度(结果保留根号).21.(6分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)22.(8分)已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.23.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.24.(10分)如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AB=DF.25.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.26.(12分)某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?27.(12分)先化简:224424242x x xxx x-+-⎛⎫÷-+⎪-+⎝⎭,然后从67x<<数作为x的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图.2.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.3.B【解析】【分析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.4.D【解析】【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°, ,∴,∴,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论. 5.A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.C【解析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.7.B【解析】【分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14. 故选:B .【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.8.C【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】原式故选C .【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型. 9.C【解析】试题分析:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°.故选C .考点:平行线的性质.10.C【解析】【分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值.【详解】由题意得:E 、M 、D 位于反比例函数图象上,则OCE OAD kkS S 22∆∆==,,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k|.又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S □ONMG =4|k|,∵函数图象在第一象限,k >0, ∴k k 94k 22++=. 解得:k=1.故选C .【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.11.D【解析】【分析】【详解】 试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .考点:利用频率估计概率.12.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.79 44xp p.【解析】【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,,∴.∵CD⊥AB,∴CD=4.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=94,∴点A在圆外,点B在圆内,r的范围是79 44x<<,故答案为79 44x<<.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.14.143549【解析】【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.15.1【解析】试题解析:∵正方体的展开图中对面不存在公共部分,∴B 与-1所在的面为对面.∴B 内的数为1.故答案为1.16.1【解析】【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1.故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.1【解析】【分析】根据题意找到等量关系x 2﹣6x+b=(x+a )2﹣5,根据系数相等求出a,b,即可解题.【详解】解:由题可知x 2﹣6x+b=(x+a )2﹣5,整理得:x 2﹣6x+b= x 2+2ax+a 2-5,即-6=2a,b= a 2-5,解得:a=-3,b=4,∴a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b 是解题关键.18.1°【解析】【分析】根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE ,AB=AD ,根据等腰三角形的性质和三角形内角和定理计算即可.【详解】∵△ABC ≌△ADE ,∴∠BAC=∠DAE ,AB=AD ,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案为1.【点睛】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】根据∠ABD=∠DCA ,∠ACB=∠DBC ,求证∠ABC=∠DCB ,然后利用AAS 可证明△ABC ≌△DCB ,即可证明结论.【详解】证明:∵∠ABD=∠DCA ,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.20.(6+23)米【解析】【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【详解】由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ=EHPH=5BF,∴33∴3,∵tanβ= CG PG,∴CG=(3)·333∴CD=(3)米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.21.-17.1【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【点睛】此题要注意正确掌握运算顺序以及符号的处理.22.见详解【解析】【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.23. (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】【分析】(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为12(7+8)=7.5;平均数为110(6×2+7×3+8×2+10×2+11)=110×80=8,所以,方差=110[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=110(8+3+0+8+9),=110×28,=2.8;(3)6℃的度数,210×360°=72°,7℃的度数,310×360°=108°,8℃的度数,210×360°=72°,10℃的度数,210×360°=72°,11℃的度数,110×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n 个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.24.详见解析.【解析】【分析】根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.【详解】证明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,AE=BC=AD,∴∠AFD=∠B=90°,在△ABE和△DFA中∵∠AFD=∠B,∠DAF=∠AEB ,AE=AD∴△ABE≌△DFA(AAS),∴AB=DF.【点睛】本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.25.6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G【解析】【分析】(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.【详解】解:(1)4×3÷2=6,故△ABC的面积等于6.(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG 即为所求正方形.故答案为:6,作出∠ACB 的角平分线交AB 于F,再过F 点作FE ⊥AC 于E,作FG ⊥BC 于G .【点睛】本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.26.(1)生产A 产品8件,生产B 产品2件;(2)有两种方案:方案①,A 种产品2件,则B 种产品8件;方案②,A 种产品3件,则B 种产品7件.【解析】【分析】(1)设生产A 种产品x 件,则生产B 种产品(10)x -件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产A 产品y 件,则生产B 产品(10)y -件,根据题意,列出一元一次不等式组,求出y 的取值范围,即可求出方案.【详解】解:(1)设生产A 种产品x 件,则生产B 种产品(10)x -件,依题意得:3(10)14x x +-=,解得: 8x =,则102x -=,答:生产A 产品8件,生产B 产品2件;(2)设生产A 产品y 件,则生产B 产品(10)y -件25(10)443(10)22y y y y +-⎧⎨+->⎩…, 解得:24y <….因为y 为正整数,故2y =或3;答:共有两种方案:方案①,A 种产品2件,则B 种产品8件;方案②,A 种产品3件,则B 种产品7件.【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.27.1x-,当x=1时,原式=﹣1.【解析】【分析】先化简分式,然后将x的值代入计算即可.【详解】解:原式=22(2)244 (2)(2)22x x xx x x x⎛⎫---÷-⎪-+++⎝⎭=22222222(2)1x x xx xx xx x xx--=÷++-+=⋅+--=-.2240,20,20x x x x-≠+≠-≠Qx2∴≠±且x0≠,x<<Q∴x的整数有21012﹣,﹣,,,,∴取x1=,当x1=时,原式1=﹣.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.。

广西省钦州市2019-2020学年中考数学模拟试题(5)含解析

广西省钦州市2019-2020学年中考数学模拟试题(5)含解析

广西省钦州市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .42.某圆锥的主视图是一个边长为3cm 的等边三角形,那么这个圆锥的侧面积是( )A .4.5πcm 2B .3cm 2C .4πcm 2D .3πcm 23.已知方程组2728x y x y +=⎧⎨+=⎩,那么x+y 的值( ) A .-1 B .1 C .0 D .54.下列图标中,是中心对称图形的是( )A .B .C .D .5.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高6.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b7.用尺现作图的方法在一个平行四边形内作菱形ABCD,下列作法错误的是()A.B.C.D.8.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A.B.C.D.9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n210.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm211.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.2+3B.23C.3+3D.3312.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A.12cm B.122cm C.24cm D.242cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的方程2222x m mx x++=--的解是正数,则m的取值范围是____________________14.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.15.若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.16.如图,直线l1∥l2,则∠1+∠2=____.17.已知a+b=4,a-b=3,则a2-b2=____________.18.如果一个矩形的面积是40,两条对角线夹角的正切值是43,那么它的一条对角线长是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.20.(6分)在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 为半径,作⊙A 交AB 于点D ,交CA 的延长线于点E ,过点E 作AB 的平行线EF 交⊙A 于点F ,连接AF 、BF 、DF(1)求证:BF 是⊙A 的切线.(2)当∠CAB 等于多少度时,四边形ADFE 为菱形?请给予证明. 21.(6分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.22.(8分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.23.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)24.(10分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)25.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?26.(12分)A 粮仓和B 粮仓分别库存粮食12吨和6吨,现决定支援给C 市10吨和D 市8吨.已知从A 粮仓调运一吨粮食到C 市和D 市的运费分别为400元和800元;从B 粮仓调运一吨粮食到C 市和D 市的运费分别为300元和500元.设B 粮仓运往C 市粮食x 吨,求总运费W (元)关于x 的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?27.(12分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x 个笔记本需要y 1元,买x 支钢笔需要y 2元;求y 1、y 2关于x 的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】∵点(6,4)A -,D 是OA 中点∴D 点坐标(3,2)-∵(3,2)D -在双曲线(0)k y k x =<上,代入可得23k =- ∴6k =-∵点C在直角边AB上,而直线边AB与x轴垂直∴点C的横坐标为-6又∵点C在双曲线6 yx-=∴点C坐标为(6,1)-∴22(66)(14)3AC=-++-=从而1136922AOCS AC OB∆=⨯⨯=⨯⨯=,故选B2.A【解析】【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.3.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D4.B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.6.B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.7.A【解析】【分析】根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD 是菱形,D不符合题意故选A【点睛】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键8.B【解析】【分析】【详解】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.9.C【解析】【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.10.B【解析】试题分析:底面积是:9πcm 1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm 1. 则这个圆锥的全面积为:9π+15π=14πcm 1.故选B .考点:圆锥的计算.11.A【解析】【分析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=()a ,∴tan ∠故选A.【点睛】本题主要考查特殊角的三角函数值.12.D【解析】【分析】过A 作AD ⊥BF 于D,根据45°角的三角函数值可求出AB 的长度,根据含30°角的直角三角形的性质求出斜边AC 的长即可.【详解】如图,过A 作AD ⊥BF 于D ,∵∠ABD=45°,AD=12,∴sin 45AD AB ︒=, 又∵Rt △ABC 中,∠C=30°,∴,故选:D .【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m<4且m≠2【解析】解方程2222x m mx x++=--得x=4-m,由已知可得x>0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m<4且m≠2.14.2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,15.1【解析】【分析】根据题意找到等量关系x2﹣6x+b=(x+a)2﹣5,根据系数相等求出a,b,即可解题. 【详解】解:由题可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,∴a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.16.30°【解析】【分析】分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.【详解】如图,分别过A、B作l1的平行线AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.1.【解析】【分析】【详解】a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.18.1.【解析】【分析】如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH43BHOH==,可得BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,求出a即可解决问题.【详解】如图,作BH⊥AC于H.∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.∵tan∠BOH43BHOH==,∴BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,∴a=1,∴AC=1.故答案为:1.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=12x2﹣3x+1;tan∠ACB=13;(2)m=163;(3)四边形ADMQ是平行四边形;理由见解析.【解析】【分析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=12x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得BGAG=OCOA,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得255.继而可得4551255(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=83,据此求得点K(1,83).待定系数法求出直线CK的解析式为y=-13x+1.设点P的坐标为(x,y)知x是方程12x2-3x+1=-13x+1的一个解.解之求得x的值即可得出答案;(3)先求出点D坐标为(6,1),设P(m,12m2-3m+1)知M(m,1),H(m,0).及PH=12m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知ONPH=OAAH.据此得ON=m-1.再证△ONQ∽△HMQ得ONHM=OQHQ.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得4240{16440 a ba b++=++=,解得:123 ab⎧=⎪⎨⎪=-⎩;∴该抛物线的解析式为y=12x2﹣3x+1,过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴42BG OCAG OA===2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=255.∴BG=455,CG=AC+AG=25+255=1255.在Rt△BCG中,tan∠ACB═13BGCG=.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=83,∴点K(1,83),设直线CK的解析式为y=hx+1,将点K(1,83)代入上式,得83=1h+1.解得h=﹣13,∴直线CK的解析式为y=﹣13x+1,设点P的坐标为(x,y),则x是方程12x2﹣3x+1=﹣13x+1的一个解,将方程整理,得3x2﹣16x=0,解得x1=163,x2=0(不合题意,舍去)将x1=163代入y=﹣13x+1,得y=209,∴点P的坐标为(163,209),∴m=163;(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴y C=y D=1,将y=1代入y=12x2﹣3x+1,得1=12x2﹣3x+1,解得x1=0,x2=6,∴点D(6,1),根据题意,得P(m,12m2﹣3m+1),M(m,1),H(m,0),∴PH=12m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①当1<m<6时,DM=6﹣m,如图3,∵△OAN∽△HAP,∴ON OA PH AH,∴21342ONm m -+=22m -, ∴ON=2682m m m -+-=(4)(2)2m m m ---=m ﹣1,∵△ONQ ∽△HMQ , ∴ON OQHM HQ=, ∴4ON OQm OQ=-, ∴44m OQm OQ-=-, ∴OQ=m ﹣1,∴AQ=OA ﹣OQ=2﹣(m ﹣1)=6﹣m , ∴AQ=DM=6﹣m , 又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.②当m >6时,同理可得:四边形ADMQ 是平行四边形. 综上,四边形ADMQ 是平行四边形. 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.20.(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE 为菱形;证明见解析; 【解析】分析(1)首先利用平行线的性质得到∠FAB=∠CAB ,然后利用SAS 证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE 为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE ,利用邻边相等的平行四边形是菱形进行判断四边形ADFE 是菱形. 详解:(1)证明:∵EF ∥AB ∴∠FAB=∠EFA ,∠CAB=∠E ∵AE=AF ∴∠EFA =∠E ∴∠FAB=∠CAB ∵AC=AF ,AB=AB∴△ABC ≌△ABF∴∠AFB=∠ACB=90°, ∴BF 是⊙A 的切线. (2)当∠CAB=60°时,四边形ADFE 为菱形. 理由:∵EF ∥AB ∴∠E=∠CAB=60° ∵AE=AF∴△AEF 是等边三角形 ∴AE=EF , ∵AE=AD ∴EF=AD∴四边形ADFE 是平行四边形 ∵AE=EF∴平行四边形ADFE 为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大. 21.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94. 22.(1)刘徽奖的人数为40人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)P (点在第二象限)29=. 【解析】 【分析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得; (2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得. 【详解】(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.故答案为90、90;(3)列表法:∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限)29 .【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.23.(1)13;(2)19;(3)第一题.【解析】【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.24.303米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四边形AECF为矩形,∴EC=AF,AE=CF.设这条河宽为x米,∴AE=CF=x.在Rt△AED中,60ADP∠=oQ,3.tan6033AE ED x ∴===o ∵PQ ∥MN ,30.CBF BCP ∴∠=∠=o ∴在Rt △BCF 中,3.tan3033CF BF x ===o ∵EC=ED+CD ,AF=AB+BF ,3110503.3x x ∴+=+ 解得30 3.x =∴这条河的宽为303米.25.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人, 如图:(3)设需从甲组抽调x 名同学到丙组,根据题意得:3(11-x )=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图; (3)设需从甲组抽调x 名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解26.(1)w =200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】【分析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D 的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.27.(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+1.(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;当y1=y2,即12.6x=12x+1时,解得x=2;当y1>y2,即12.6x>12x+1时,解得x>2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.。

广西省钦州市2019-2020学年中考数学四模试卷含解析

广西省钦州市2019-2020学年中考数学四模试卷含解析

广西省钦州市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣3,0,4,6这四个数中,最大的数是()A.﹣3 B.0 C.4 D.62.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A.12B.34C.45D.353.计算2311xx x-+++的结果为()A.2 B.1 C.0 D.﹣14.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)25.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°6.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元7.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .610.如图的立体图形,从左面看可能是( )A .B .C .D .11.如图,为了测量河对岸l 1上两棵古树A 、B 之间的距离,某数学兴趣小组在河这边沿着与AB 平行的直线l 2上取C 、D 两点,测得∠ACB =15°,∠ACD =45°,若l 1、l 2之间的距离为50m ,则A 、B 之间的距离为( )A .50mB .25mC .(50﹣5033)m D .(50﹣253)m 12.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.14.如图,直线(0)y kx k =>交O e 于点A ,B ,O e 与x 轴负半轴,y 轴正半轴分别交于点D ,E ,AD ,BE 的延长线相交于点C ,则:CB CD 的值是_________.15.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .16.若不等式组有解,则m 的取值范围是______.17.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x ,则应列出方程 (列出方程,不要求解方程). 18.已知双曲线k 1y x+=经过点(-1,2),那么k 的值等于_______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x =<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D .(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?20.(6分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.21.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?22.(8分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.23.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)如图,ABC ∆内接于O e ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠;(2)若6BC =,3sin 5BAC ∠=,求AC 和CD 的长. 25.(10分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点与地面距离AN=14cm ,小球在最低点B 时,与地面距离BM=5cm ,∠AOB=66°,求细线OB 的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)26.(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题: (1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.27.(12分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,16这四个数中,﹣3<06<1,最大的数是1.故选C.2.C根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可. 【详解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD2234+=5,连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=45 OCCD=.故选:C.【点睛】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则. 3.B【解析】【分析】按照分式运算规则运算即可,注意结果的化简.【详解】解:原式=231111x xx x-++==++,故选择B.【点睛】本题考查了分式的运算规则.4.B【解析】【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.5.B【解析】【详解】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.6.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.7.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像8.D【解析】【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.9.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.10.A【解析】【分析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角, 故选A.本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.11.C【解析】【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN 分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.【详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=503tan6033BN==︒(m),∴MN=CM﹣CN=50﹣503(m).则AB=MN=(50﹣503)m.故选C.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.12.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x 轴交于点A 、B , ∴AB <1, ∵x 取m 时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A 的左侧,x=m-1时,y >0,故选B .【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.考点:三角形的外角性质;三角形内角和定理.142【解析】【分析】连接BD ,根据90EOD ∠=︒可得90AOD BOE ∠+∠=︒,并且根据圆的半径相等可得△OAD 、△OBE 都是等腰三角形,由三角形的内角和,可得∠C=45°,则有CDB △是等腰直角三角形,可得:2CB CD =即可求求解.【详解】解:如图示,连接BD ,∵90EOD ∠=︒,∴90AOD BOE ∠+∠=︒,∵OB OE =,OA OD =,∴OAD ODA ∠=∠,OBE OEB ∠=∠, ∴()1360901352OAD OBE ︒︒∠+∠=-=︒, ∴45ACB ∠=︒,∵AB 是直径, ∴90ADB CDB ∠=∠=︒,∴CDB △是等腰直角三角形,∴:2CB CD =.【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出CDB △是等腰直角三角形是解题的关键. 15.. 【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.考点:列表法与树状图法.16.【解析】分析:解出不等式组的解集,然后根据解集的取值范围来确定m 的取值范围.解答:解:由1-x≤2得x≥-1又∵x >m根据同大取大的原则可知:若不等式组的解集为x≥-1时,则m≤-1若不等式组的解集为x≥m时,则m≥-1.故填m≤-1或m≥-1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.17.π(x+5)1=4πx1.【解析】【分析】根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.【详解】解:设小圆的半径为x米,则大圆的半径为(x+5)米,根据题意得:π(x+5)1=4πx1,故答案为π(x+5)1=4πx1.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.18.-1【解析】【详解】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k1yx+=,得:k121+=-,解得:k=-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B (﹣1,2),C (3,2),∴AB=1,CA=3,∴线段AB 与线段CA 的长度之比为13; (2)∵B 是函数y=﹣2x (x <0)的一点,C 是函数y=6x(x >0)的一点, ∴B (﹣2a ,a ),C (6a,a ), ∴AB=2a ,CA=6a, ∴线段AB 与线段CA 的长度之比为13; (3)∵AB AC =13, ∴AB BC =14, 又∵OA=a ,CD ∥y 轴, ∴14OA AB CD BC ==, ∴CD=4a , ∴四边形AODC 的面积为=12(a+4a )×6a =1.20.(1)证明见解析;(2)(3)3;【解析】【分析】(1)连接OA 、AD ,如图,利用圆周角定理得到∠B=∠ADC ,则可证明∠ADC=2∠ACP ,利用CD 为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;(2)利用∠P=30°得到OP=2OA ,则PD OD ==O 的直径;(3)作EH ⊥AD 于H ,如图,由点B 等分半圆CD 得到∠BAC=45°,则∠DAE=45°,设DH=x ,则DE=2x ,HE AH HE ===,,所以)1x = 然后求出x 即可 得到DE 的长.【详解】(1)证明:连接OA 、AD ,如图,∵∠B=2∠P ,∠B=∠ADC ,∴∠ADC=2∠P ,∵AP=AC ,∴∠P=∠ACP ,∴∠ADC=2∠ACP ,∵CD 为直径,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO 为等边三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:在Rt △OAP 中,∵∠P=30°,∴OP=2OA , ∴3PD OD == ∴⊙O 的直径为23;(3)解:作EH ⊥AD 于H ,如图,∵点B 等分半圆CD ,∴∠BAC=45°,∴∠DAE=45°,设DH=x ,在Rt △DHE 中,DE=2x ,3HE x =,在Rt △AHE 中,3AH HE x ,== ∴()331AD x x x =+=+, 即()313x +=,解得33.x -=∴233DE x ==-.【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.21.(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.23.(1)3,补图详见解析;(2)7 12【解析】【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人),则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712 P=.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键24.(1)证明见解析;(2)AC=310,CD=90 13,【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OA ODBE DE=,求出OD=2513,得出CD=9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.本题解析:解:(1)证明:延长AO交BC于H,连接BO.∵AB=AC,OB=OC,∴A,O在线段BC的垂直平分线上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.25.15cm【解析】试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=OD AO,∴cos66°=9xx=0.40,解得:x=15,∴OB=15cm.26.(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解析】【分析】(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图,∵12215518721824318.6.25x⨯+⨯+⨯+⨯+⨯==∴这组数据的平均数是1.2.∵在这组数据中,3 出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.27.(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】【分析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×30100=960(人).【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.。

广西省钦州市2019-2020学年中考第五次模拟数学试题含解析

广西省钦州市2019-2020学年中考第五次模拟数学试题含解析

广西省钦州市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠B B .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形2.下列计算正确的是( ) A .a 2•a 3=a 6B .(a 2)3=a 6C .a 6﹣a 2=a 4D .a 5+a 5=a 103.等腰三角形的两边长分别为5和11,则它的周长为( ) A .21B .21或27C .27D .254.如图,矩形ABCD 中,AB=3,AD=4,连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC′E′.当线段BE′和线段BC′都与线段AD 相交时,设交点分别为F ,G .若△BFD 为等腰三角形,则线段DG 长为( )A .2513B .2413C .95D .855.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x-= D .72072054848x-=+ 6.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是07.已知=2{=1x y 是二元一次方程组+=8{=1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2B .C .2D .48.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .1.05×105B .0.105×10﹣4C .1.05×10﹣5D .105×10﹣79.若一个多边形的内角和为360°,则这个多边形的边数是( ) A .3 B .4C .5D .610.如图,O 为直线 AB 上一点,OE 平分∠BOC ,OD ⊥OE 于点 O ,若∠BOC=80°,则∠AOD 的度数是( )A .70°B .50°C .40°D .35°11.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC12.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( ) A .12B .23C .25D .710二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个正n 边形的每个内角为144°,则这个正n 边形的所有对角线的条数是_________.14.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .15.关于x 的一元二次方程230x x c -+=有两个不相等的实数根,请你写出一个满足条件的c 值__________.16.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.17.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1=_____.18.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)研究发现,抛物线21y x 4=上的点到点F(0,1)的距离与到直线l :y 1=-的距离相等.如图1所示,若点P 是抛物线21y x 4=上任意一点,PH ⊥l 于点H ,则PF=PH. 基于上述发现,对于平面直角坐标系xOy 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线21y x 4=的关联距离;当2d 4≤≤时,称点M 为抛物线21y x 4=的关联点.(1)在点()1M 20,,()2M 12,,()3M 45,,()4M 04-,中,抛物线21y x 4=的关联点是_____ ; (2)如图2,在矩形ABCD 中,点()A t 1,,点()C t 13+,,①若t=4,点M 在矩形ABCD 上,求点M 关于抛物线21y x 4=的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线21y x 4的关联点,则t 的取值范围是________. 20.(6分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:(1)根据上表中的数据,将下表补充完整:(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.21.(6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?22.(8分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.23.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24.(10分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?25.(10分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.26.(12分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)27.(12分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM 于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.2.B【解析】【分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.3.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.4.A【解析】【分析】先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=258,则AF=4-258=78.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,由GH∥FB,得出FDGD=BDHD,即可求解.【详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.5.D【解析】【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.6.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.7.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn..即2m n-的算术平方根为1.故选C.8.C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.考点:科学记数法.9.B【解析】【分析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.10.B【解析】分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数. 详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC.11.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.12.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入()32n n-中即可得出结论.【详解】∵一个正n边形的每个内角为144°,∴144n=180×(n-2),解得:n=1.这个正n边形的所有对角线的条数是:()32n n-=1072⨯=2.故答案为2.【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.14.y=﹣1x+1.【解析】【分析】由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.15.1【解析】【分析】先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.【详解】224(3)41940b ac c c-=--⨯⨯=->解得94 c<所以可以取0c=故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.16.【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得. 【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键. 17.50°【解析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.18.3或1【解析】【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) 12M M ,;(2)①d 4≤ ② 1.t ≤【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2))①当t 4=时,()A 41,,()B 51,,()C 53,,()D 43,,可以确定此时矩形ABCD 上的所有点都在抛物线21y x 4=的下方,所以可得d MF =,由此可知AF d CF ≤≤,从而可得4d ≤≤;②由①知d MF =,分两种情况画出图形进行讨论即可得.【详解】(1)()1M 20,,x=2时,y=21x 4=1,此时P (2,1),则d=1+2=3,符合定义,是关联点;()2M 12,,x=1时,y=21x 4=14,此时P (1,14),则d=74=3,符合定义,是关联点;()3M 45,,x=4时,y=21x 4=4,此时P (4,4),则=6,不符合定义,不是关联点; ()4M 04-,,x=0时,y=21x 4=0,此时P (0,0),则d=4+5=9,不不符合定义,是关联点, 故答案为12M M ,;(2)①当t 4=时,()A 41,,()B 51,,()C 53,,()D 43,, 此时矩形ABCD 上的所有点都在抛物线21y x 4=的下方, ∴d MF =,∴AF d CF ≤≤,∵AF=4,,∴4d ≤≤;②由①d MF =,AF d CF ≤≤,如图2所示时,CF 最长,当CF=4=4,解得:t=1,如图3所示时,DF 最长,当DF=4时,即DF=22(31)t +-=4,解得 t=23-,故答案为3t 23 1.-≤≤-【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.20.(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】【分析】(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数()16910888.25=++++=; 乙的众数为9;丙的中位数为9,丙的方差()()()()()222221589810858118 6.45⎡⎤=-+-+-+-+-=⎣⎦; 故答案为8.2;9;9;6.4;(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.21.(1)40(2)126°,1(3)940名【解析】【分析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×70200=126°.C组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处. 【解析】【分析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为 4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.23.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.24. (1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m 的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50; 骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图25.300米【解析】【详解】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.26.(1)72o (2)6.03米【解析】【详解】分析:延长ED ,AM 交于点P ,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC ,再利用PC+AC-EF 即可得解.详解:(1)如图,延长ED ,AM 交于点P ,∵DE ∥AB, MA AB ⊥∴EP MA ⊥, 即∠MPD=90°∵∠CDE=162°∴ 1629072MCD ∠=-=o o o(2)如图,在Rt △PCD 中, CD=3米,72MCD ∠=o∴PC = cos 3cos7230.310.93CD MCD ⋅∠=⋅≈⨯=o 米∵AC=5.5米, EF=0.4米,∴0.93 5.50.4 6.03PC AC EF +-=+-=米答:摄像头下端点F 到地面AB 的距离为6.03米.点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.27.(1)证明见解析;(2)AB 、AD 的长分别为2和1.【解析】【分析】(1)证Rt △ABO ≌Rt △DEA (HL )得∠AOB=∠DAE ,AD ∥BC .证四边形ABCD 是平行四边形,又90ABC ∠=︒,故四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt △DEA 中,由222AE DE AD +=得:()22293x x -+=.【详解】(1)证明:∵AB ⊥OM 于B ,DE ⊥ON 于E ,∴90ABO DEA ∠=∠=︒.在Rt △ABO 与Rt △DEA 中, ∵AO AD OB AE =⎧⎨=⎩∴Rt △ABO ≌Rt △DEA (HL ). ∴∠AOB=∠DAE .∴AD ∥BC .又∵AB ⊥OM ,DC ⊥OM ,∴AB ∥DC .∴四边形ABCD 是平行四边形.∵90ABC ∠=︒,∴四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,∴AB=DE=2. 设AD=x ,则OA=x ,AE=OE -OA=9-x . 在Rt △DEA 中,由222AE DE AD +=得: ()22293x x -+=,解得5x =.∴AD=1.即AB 、AD 的长分别为2和1.【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.。

广西省钦州市2019-2020学年中考数学一月模拟试卷含解析

广西省钦州市2019-2020学年中考数学一月模拟试卷含解析

广西省钦州市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在函数y =1x x -中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠1 2.若不等式组的整数解共有三个,则a 的取值范围是( )A .5<a <6B .5<a≤6C .5≤a <6D .5≤a≤63.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .04.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( )A .()2,4--B .()2,4-C .()2,4D .()4,2-5.将(x+3)2﹣(x ﹣1)2分解因式的结果是( )A .4(2x+2)B .8x+8C .8(x+1)D . 4(x+1)6.下列运算结果正确的是( )A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a7.下列计算正确的是( )A .5﹣2=3B .4 =±2C .a 6÷a 2=a 3D .(﹣a 2)3=﹣a 68.如图,⊙O 的半径OC 与弦AB 交于点D ,连结OA ,AC ,CB ,BO ,则下列条件中,无法判断四边形OACB 为菱形的是( )A .∠DAC=∠DBC=30°B .OA ∥BC ,OB ∥AC C .AB 与OC 互相垂直D .AB 与OC 互相平分9.如图,等边△ABC 内接于⊙O ,已知⊙O 的半径为2,则图中的阴影部分面积为( )A .8233π-B .433π-C .8333π- D .9344π- 10.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根 11.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π12.如图,已知菱形ABCD ,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .16B .12C .24D .18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.14.若式子12x -有意义,则x 的取值范围是_____________. 15.有下列各式:①·x y y x ;②x b y a ÷;③62x x ÷;④23·a a b b.其中,计算结果为分式的是_____.(填序号) 16.关于x 的一元二次方程x 2+bx+c =0的两根为x 1=1,x 2=2,则x 2+bx+c 分解因式的结果为_____. 17.64的立方根是_______.18.已知m=444153,n=44053,那么2016m ﹣n =_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)20.(6分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3o ,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7o ,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈o ,cos32.30.85≈o ,tan32.30.63≈o ,sin55.70.83≈o ,cos55.70.56≈,tan55.7 1.47)≈o21.(6分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON .(2)在OM 上依次截取OA a =,AB b =.(3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D .所以:线段________就是所求的线段x .①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r .22.(8分)如图,以△ABC 的一边AB 为直径作⊙O , ⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E .(1) 求证:DE ⊥AC ;(2) 连结OC 交DE 于点F ,若3sin 4ABC ∠=,求OF FC 的值.23.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)24.(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.25.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.26.(12分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.27.(12分)解方程:1322xx x+=--.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.2.C【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式组得:2<x≤a ,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a <1.故选C .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 3.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 4.C【解析】【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点()2,4P -,与点P 关于y 轴对称的点的坐标是()2,4,故选:C .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.C【解析】【分析】直接利用平方差公式分解因式即可.【详解】(x +3)2−(x−1)2=[(x +3)+(x−1)][(x +3)−(x−1)]=4(2x +2)=8(x +1).故选C .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.6.C【解析】选项A,3a2-a2 = 2 a2;选项B,a2·a3= a5;选项C,(-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.7.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;,故B选项错误;C. a6÷a2=a4≠a3,故C选项错误;D. (−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.8.C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等边三角形,∴OA=AC=OC=BC=OB,∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB 是菱形;(4)∵AB与OC互相平分,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.9.A【解析】解:连接OB 、OC ,连接AO 并延长交BC 于H ,则AH ⊥BC .∵△ABC 是等边三角形,∴33,OH=1,∴△OBC 的面积= 12×BC×3△OBA 的面积=△OAC 的面积=△OBC 的面积3BOC=120°,∴图中的阴影部分面积=2240223360π⨯-8233π-A . 点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.10.C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.【解析】试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°,AB=2∴S △ABC =12 根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′.∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC =2452360π⨯ =2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质.12.A【解析】【分析】由菱形ABCD ,∠B=60°,易证得△ABC 是等边三角形,继而可得AC=AB=4,则可求得以AC 为边长的正方形ACEF 的周长.【详解】解:∵四边形ABCD 是菱形,∴AB=BC .∵∠B=60°,∴△ABC 是等边三角形,∴AC=AB=BC=4,∴以AC 为边长的正方形ACEF 的周长为:4AC=1. 故选A .【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1:1【解析】【分析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【详解】∵S △BDE :S △CDE =1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=(BEBC)2=1:16,∴S△BDE:S四边形DECA=1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.x<1 2【解析】由题意得:1﹣2x>0,解得:12x<,故答案为12x<.15.②④【解析】【分析】根据分式的定义,将每个式子计算后,即可求解. 【详解】x y ·y x =1不是分式,x by a÷=xayb,62x x÷=3不是分式,2a3a·b b=323ab故选②④.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.16.(x﹣1)(x﹣2)【解析】【分析】根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.【详解】解:已知方程的两根为:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).【点睛】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)17.4.【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.18.1【解析】【分析】根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:∵m=444153=4?444353=44053,∴m=n,∴2016m-n=20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2.7米【解析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt △ADE 中∵tan ∠ADE=,∴DE="AE" ·tan ∠ADE=15∵山坡AB 的坡度i=1:,AB=10 ∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15 ∴CD=CF+EF —DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD 的高度为2.7米.20.(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【解析】【分析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===. 在Rt PCM V 中,()tan32.30.63PM x x m =⋅=o, 在Rt PDN V 中,()tan55.7 1.47PN x x m =⋅=o, 42CD MN m ==Q ,1.470.6342x x ∴-=,50x ∴=,AB ∴的长为50m .()2由()1可知:31.5PM m =,()904231.516.5AD m ∴=--=,9031.558.5AC =-=,16.53 5.5Q ÷=,58.5319.5÷=,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.①CD ;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③94DB π=-u u u r u r . 【解析】【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证OAC OBD ∆∆∽得OA AC OB BD =,即94BD AC =,从而知999DB CA AC 444π==-=-u u u r u u u r u u u r u r . 【详解】①∵//BD AC ,∴OA :AB=OC :CD ,∵OA a =,AB b =,OC c =,::a b c x =,∴线段CD 就是所求的线段x ,故答案为:CD ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵4OA =、5AB =,且//BD AC ,∴OAC OBD ∆∆∽, ∴OA AC OB BD =,即49AC BD=, ∴94BD AC =, ∴999444DB CA AC π==-=-u u u r u u r u u u r u r . 【点睛】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.22.(1)证明见解析(2)87 【解析】【分析】(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)连接AD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE 是⊙O 的切线,∴DE ⊥OD ,即∠ODE=90° .∵AB 是⊙O 的直径,∴O 是AB 的中点.又∵D 是BC 的中点, .∴OD ∥AC .∴∠DEC=∠ODE= 90° .∴DE ⊥AC .(2)连接AD . ∵OD ∥AC , ∴OF OD FC EC=. ∵AB 为⊙O 的直径, ∴∠ADB= ∠ADC =90° .又∵D 为BC 的中点,∴AB=AC.∵sin ∠ABC=AD AB =34, 设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE ⊥AC , ∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD,∴△ADC∽△AED.∴AD AC AE AD=.∴2AD AE AC=⋅.∴94=AE x. ∴74=EC x.∴87== OF ODFC EC.23.(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.24.(1)60,30;;(2)300;(3)1 3【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A 的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∵了解部分的人数为60﹣(15+30+10)=5,∴扇形统计图中“了解”部分所对应扇形的圆心角为:560×360°=30°; 故答案为60,30;(2)根据题意得:900×15+560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A 的情况有2种,所以P (抽到女生A )=26=13. 【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)见解析;(2);(3). 【解析】【分析】(1)连结OD ;由AB 是⊙O 的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A ,∠BDO=∠ABD ;得到∠PDO=90°,且D 在圆上,于是得到结论;(2)设∠A=x ,则∠A=∠P=x ,∠DBA=2x ,在△ABD 中,根据∠A+∠ABD=90o 列方程求出x 的值,进而可得到∠DOB=60o ,然后根据弧长公式计算即可;(3)连结OM ,过D 作DF ⊥AB 于点F ,然后证明△OMN ∽△FDN ,根据相似三角形的性质求解即可.【详解】(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圆上,∴PD是⊙O的切线.(2)设∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD长.(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,在Rt△BDF中,DF=,由△OMN∽△FDN得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.26.1【解析】【分析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.27.52【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可. 详解:去分母,得()132x x -=-.去括号,得136x x -=-.移项,得 361x x -=-.合并同类项,得 25x =.系数化为1,得52x =. 经检验,原方程的解为52x =. 点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.。

广西省钦州市2019-2020学年中考五诊数学试题含解析

广西省钦州市2019-2020学年中考五诊数学试题含解析

广西省钦州市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .1782.若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表: x﹣2﹣112y 8 3 0 ﹣1 0则抛物线的顶点坐标是( ) A .(﹣1,3)B .(0,0)C .(1,﹣1)D .(2,0)3.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( ) A .216000米 B .0.00216米 C .0.000216米D .0.0000216米4.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点D D .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D5.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>6.(2011•雅安)点P 关于x 轴对称点为P 1(3,4),则点P 的坐标为( )A .(3,﹣4)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)7.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( ) A .(a+b )元B .(3a+2b )元C .(2a+3b )元D .5(a+b )元8.如图是几何体的三视图,该几何体是( )A .圆锥B .圆柱C .三棱柱D .三棱锥9.△ABC 的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( ) A .13,5B .6.5,3C .5,2D .6.5,210.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 的长为( )A .2B .3C 3D .311.下列计算正确的是( ) A .a+a=2aB .b 3•b 3=2b 3C .a 3÷a=a 3D .(a 5)2=a 712.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球二、填空题:(本大题共6个小题,每小题4分,共24分.)13.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x ,则应列出方程 (列出方程,不要求解方程). 14.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.15.如图,在△ABC 中,AB =AC =10cm ,F 为AB 上一点,AF =2,点E 从点A 出发,沿AC 方向以2cm/s 的速度匀速运动,同时点D 由点B 出发,沿BA 方向以lcm/s 的速度运动,设运动时间为t (s )(0<t <5),连D 交CF 于点G .若CG =2FG ,则t 的值为_____.16.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.17.如图,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.18.25位同学10秒钟跳绳的成绩汇总如下表:人数 1 2 3 4 5 10次数15 8 25 10 17 20那么跳绳次数的中位数是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x20.(6分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.21.(6分)如图,已知反比例函数y=kx(x>0)的图象与一次函数y=﹣12x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=kx(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.23.(8分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.24.(10分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项a,b,c,第二道单选题有4个选项A,B,C,D,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是b,第二道题的正确选项是D,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.25.(10分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C (4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.26.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?27.(12分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】根据排列规律,10下面的数是12,10右面的数是14, ∵8=2×4−0,22=4×6−2,44=6×8−4, ∴m=12×14−10=158. 故选C. 2.C 【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标. 详解:Q 当0x =或2x =时,0y =,当1x =时,1y =-,04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩,解得120a b c =⎧⎪=-⎨⎪=⎩ ,∴二次函数解析式为222(1)1y x x x =-=--, ∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键. 3.B 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】2.16×10﹣3米=0.00216米. 故选B . 【点睛】考查了用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.D 【解析】 【分析】根据作一个角等于已知角的作法即可得出结论. 【详解】解:用尺规作图作∠AOC=2∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,第二步的作图痕迹②的作法是以点F 为圆心,EF 长为半径画弧. 故选:D . 【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键. 5.C 【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.6.A 【解析】∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数, ∴点P 的坐标为(3,﹣4). 故选A . 7.C 【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.8.C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C.点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.9.D【解析】【分析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为512132+-,【详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132, ∴△ABC是直角三角形,其斜边为外切圆直径,∴外切圆半径=132=6.5,内切圆半径=512132+-=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.10.B 【解析】分析:连接OC 、OB ,证出△BOC 是等边三角形,根据锐角三角函数的定义求解即可. 详解:如图所示,连接OC 、OB∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OC=OB ,∴△BOC 是等边三角形, ∴∠OBM=60°, ∴OM=OBsin ∠OBM=4×33. 故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键. 11.A 【解析】 【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解. 【详解】A.a+a=2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误. 故选:A. 【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键. 12.A 【解析】 【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可. 【详解】 A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;D 、是随机事件,选项错误. 故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.π(x+5)1=4πx 1. 【解析】 【分析】根据等量关系“大圆的面积=4×小圆的面积”可以列出方程. 【详解】解:设小圆的半径为x 米,则大圆的半径为(x+5)米, 根据题意得:π(x+5)1=4πx 1, 故答案为π(x+5)1=4πx 1. 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出. 14.-12 【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解. 详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键. 15.1 【解析】 【分析】过点C 作CH ∥AB 交DE 的延长线于点H ,则1028DF t t ---==,证明DFG HCG ∆∆∽,可求出CH ,。

广西省钦州市2019-2020学年第四次中考模拟考试数学试卷含解析

广西省钦州市2019-2020学年第四次中考模拟考试数学试卷含解析

广西省钦州市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠02.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x=-的图象上,则下列关系式一定正确的是( ) A .120x x <<B .120x x <<C .210x x <<D .210x x <<3.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是( )A .120240420x x -=+ B .240120420x x -=+ C .120240420x x -=- D .240120420x x-=- 4.若关于x 的一元二次方程x (x+2)=m 总有两个不相等的实数根,则( ) A .m <﹣1B .m >1C .m >﹣1D .m <15.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a+4)cmD .(a+8)cm6.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A .B .C .D .7.有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD .入口K 位于»AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C8.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.4310.计算(-18)÷9的值是( )A.-9 B.-27 C.-2 D.211.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A.B.C.D.12.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP 的大小为_______.15.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.16.如图,在Rt△ABC 中,∠C=90°,AM 是BC 边上的中线,cos∠AMC3=5,则tan∠B 的值为__________.17.分解因式:4a2﹣1=_____.18.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.20.(6分)计算:2112(1)6tan303π-︒⎛⎫+--+-⎪⎝⎭解方程:544101236x xx x-++=--21.(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.22.(8分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.(1)求证:△CDF≌△ADE;(2)若AF=1,求四边形ABCO的周长.23.(8分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).24.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.25.(10分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?26.(12分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.27.(12分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.2.A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.3.A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x 本笔记本,则这次买了(x+20)本, 根据题意得:1202404x x 20-=+. 故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可. 4.C 【解析】 【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围. 【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m +-=,Δ=4+4m > 0,解得m>﹣1,故选D. 【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键. 5.B 【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 6.B 【解析】 【分析】观察图形,利用中心对称图形的性质解答即可. 【详解】选项A ,新图形不是中心对称图形,故此选项错误; 选项B ,新图形是中心对称图形,故此选项正确; 选项C ,新图形不是中心对称图形,故此选项错误;选项D ,新图形不是中心对称图形,故此选项错误; 故选B . 【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键. 7.B 【解析】【分析】观察图象可知园丁与入口K 的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D ,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B ,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C ,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C ,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合, 故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键. 8.D 【解析】 【详解】∵∠ACD 对的弧是»AD ,»AD 对的另一个圆周角是∠ABD , ∴∠ABD=∠ACD (同圆中,同弧所对的圆周角相等), 又∵AB 为直径, ∴∠ADB=90°, ∴∠ABD+∠BAD=90°, 即∠ACD+∠BAD=90°, ∴与∠ACD 互余的角是∠BAD. 故选D. 9.C 【解析】 【分析】连接AC ,交O e 于点,F 设,FN a =则,NC =(2,DC a =+()4,AC a =根据△AMN的面积为4,列出方程求出a 的值,再计算半径即可. 【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线,AC 经过点,,O F FNC V 为等腰直角三角形,2,NC FN =,CD MN 为O e 的切线, ,EN NF =设,FN a =则2,NC a =(222,DC a =+()224,AC a =()223,AF AC CF a ∴=-=△AMN 的面积为4,则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅=解得222,a = ()()()2121222 2.r EC a ====故选:C. 【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强. 10.C 【解析】 【分析】直接利用有理数的除法运算法则计算得出答案. 【详解】解:(-18)÷9=-1. 故选:C . 【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键. 11.D 【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解: ∵主视图和俯视图的长要相等, ∴只有D 选项中的长和俯视图不相等,故选D .点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.12.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 2【解析】【分析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率61 122 ==.故答案为.1 2【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.14.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ , 在△OPQ 中,QP=QO , ∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°, ∴3∠OCP=120°, ∴∠OCP=40° 15.-3 【解析】试题解析:∵2240a a ,--= 即224a a ,-= ∴原式()2522583a a ,=--=-=- 故答案为 3.- 16.23【解析】 【分析】 根据cos ∠AMC 3=5,设3MC x =, 5AM x =,由勾股定理求出AC 的长度,根据中线表达出BC 即可求解. 【详解】解:∵cos ∠AMC 3=5, 35MC cos AMC AM ∠==, 设3MC x =, 5AM x =,∴在Rt △ACM 中,4AC x =∵AM 是 BC 边上的中线, ∴BM=MC=3x , ∴BC=6x ,∴在Rt △ABC 中,42tan 63AC x B BC x ∠===, 故答案为:23. 【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.17.(2a+1)(2a﹣1)【解析】【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】4a2﹣1=(2a+1)(2a﹣1).故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.18.30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.20.(1)10;(2)原方程无解.【解析】【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=169-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(1)y6x=;(2)y12=-x+1.【解析】【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y 6x=的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6,解得a =6, ∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键. 22.(1)详见解析;(2)225【解析】 【分析】(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF ≌△ADE ; (2)连接AC ,利用正方形的性质和四边形周长解答即可. 【详解】(1)证明:∵四边形ABCD 是正方形 ∴CD =AD ,∠ADC =90°,∵△CDE 和△DAF 都是等腰直角三角形, ∴FD =22 AD ,DE =22CD ,∠ADF =∠CDE =45°,∴∠CDF =∠ADE =135°,FD =DE , ∴△CDF ≌△ADE (SAS ); (2)如图,连接AC .∵四边形ABCD 是正方形, ∴∠ACD =∠DAC =45°, ∵△CDF ≌△ADE , ∴∠DCF =∠DAE , ∴∠OAC =∠OCA , ∴OA =OC , ∵∠DCE =45°, ∴∠ACE =90°, ∴∠OCE =∠OEC , ∴OC =OE , ∵AF =FD =1, ∴AD =AB =BC 2, ∴AC =2,∴OA+OC =OA+OE =AE 225AC CE +=,∴四边形ABCO 的周长AB+BC+OA+OC =225.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形.23.(Ⅰ)点P 的坐标为(231).(Ⅱ)2111m t t 666=-+(0<t <11). (Ⅲ)点P 1113-111+13,1).【解析】 【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP , △QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案. (Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值: 【详解】(Ⅰ)根据题意,∠OBP=90°,OB=1.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=12+t 2,解得:t 1=23,t 2=-23(舍去). ∴点P 的坐标为(23,1).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的, ∴△OB′P ≌△OBP ,△QC′P ≌△QCP . ∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°. ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ . 又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BPPC CQ=. 由题意设BP=t ,AQ=m ,BC=11,AC=1,则PC=11-t ,CQ=1-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11). (Ⅲ)点P 的坐标为(11133-,1)或(11+133,1).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q. ∵PC′=PC=11-t ,PE=OB=1,AQ=m ,C′Q=CQ=1-m , ∴22AC C Q AQ 3612m ''=-=-. ∴.∵6116=--t t m ,即6116-=-tt m,∴663612=-t m ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:1211131113t ,t 33-+==. ∴点P 的坐标为(11+133,1)或(11133+,1). 24.(1);(2)列表见解析,. 【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M 落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P (摸出的球为标有数字2的小球)=;(2)列表如下: 小华 小丽 -12-1 (-1,-1)(-1,0) (-1,2) 0 (0,-1)(0,0) (0,2) 2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M 落在如图所示的正方形网格内(包括边界)的结果数为6, ∴P (点M 落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.25.(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元. 【解析】 【分析】(1)设甲队单独完成此项工程需要3x 天,则乙队单独完成此项工程需要2x 天,根据两队共同施工6天可以完成该工程,即可得出关于x 的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.【详解】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:661, 32x x+=解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=1.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为24000160023⨯=+(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】【分析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得. ∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵ BE∥轴,∴点E的坐标是(0,-4).而CD =5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.∴□CBED是菱形27.(x﹣y)2;2.【解析】【分析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西钦州市中考数学试卷一、选择题(共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.(3分)(广西钦州)如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C. +100元D.﹣100元分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)(广西钦州)一个几何体的三个视图如图所示,这个几何体是()A.圆柱B.球C.圆锥D.正方体考点:由三视图判断几何体.专题:作图题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得为圆柱体.故选A.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.(3分)(广西钦州)我市参加中考的考生人数约为43400人,将43400用科学记数法表示为()A.434×102B.43.4×103C.4.34×104D.0.434×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将43400用科学记数法表示为:4.34×104.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(广西钦州)体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的()A.平均数B.中位数C.众数D.方差考点:统计量的选择.分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的方差.解答:解:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.点评:本题考查方差的意义.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.5.(3分)(广西钦州)下列运算正确的是()A.=+B.()2=3 C. 3a﹣a=3 D.(a2)3=a5考点:二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;二次根式的乘除法.分析:本题运用二次根式的乘方,合关同类项及幂的乘方的法则进行计算.解答:解:A、=,故本选项错误;B、()2=3,故本选项正确;C、3a﹣a=2a.故本选项错误;D、(a2)3=a6,故本选项错误.故选:B.点评:本题主要考查了二次根式的乘方,合关同类项及幂的乘方,熟记法则是解题的关键.6.(3分)(广西钦州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.(3分)(广西钦州)若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()7.A.﹣10 B.10 C.﹣16 D. 16 考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系得到两根之和即可.解答:解:∵x1,x2一元二次方程x2+10x+16=0两个根,∴x1+x2=﹣10.故选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.8.(3分)(广西钦州)不等式组的整数解共有()A.1个B.2个C. 3个D. 4个考点:一元一次不等式组的整数解.分析:此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值.解答:解:,解①得:x≥3,则不等式组的解集是:3≤x<5.则整数解是3和4共2个.故选B.点评:此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x 的整数解,然后代入方程即可解出a的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.(3分)(广西钦州)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60°B.45°C.30°D.20°考点:相交两圆的性质;等边三角形的判定与性质;圆周角定理.分析:利用等圆的性质进而得出△AO1O2是等边三角形,再利用圆周角定理得出∠ACO2的度数.解答:解:连接O1O2,AO2,∵等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,∴AO1=AO2=O1O2,∴△AO1O2是等边三角形,∴∠AO1O2=60°,∴∠ACO2的度数为;30°.故选;C.点评:此题主要考查了相交两圆的性质以及等边三角形的判定和圆周角定理等知识,得出△AO1O2是等边三角形是解题关键.10.(3分)(广西钦州)如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是()A.13 B.26 C.36 D.39考点:等腰梯形的性质;中点四边形.分析:首先连接AC,BD,由点E、F、G、H分别是边AB、BC、CD、DA的中点,可得EH,FG,EF,GH是三角形的中位线,然后由中位线的性质求得答案.解答:解:连接AC,BD,∵等腰梯形ABCD的对角线长为13,∴AC=BD=13,∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EH=GF=BD=6.5,EF=GH=AC=6.5,∴四边形EFGH的周长是:EH+EF+FG+GF=26.故选B.点评:此题考查了等腰梯形的性质以及三角形中位线的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.(3分)(广西钦州)如图,正比例函数y=x与反比例函数y=的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于y=的函数值时,x的取值范围是()A.x>2 B.x<﹣2 C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于y=的函数值.解答:解:当﹣2<x<0或x>2时,y=x的函数值大于y=的函数值.故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.12.(3分)(广西钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C. 3种D. 4种考点:勾股定理的应用.专题:计算题.分析:如图所示,找出从A点到B点的最短距离的走法即可.解答:解:根据题意得出最短路程如图所示,最短路程长为+1=2+1,则从A点到B点的最短距离的走法共有3种,故选C点评:此题考查了勾股定理的应用,弄清题意是解本题的关键.二、填空题(共6小题,每小题3分,共18分.)13.(3分)(广西钦州)|﹣8|= 8 .考点:绝对值.专题:计算题.分析:负数的绝对值是其相反数.解答:解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故本题的答案是8.点评:本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.14.(3分)(广西钦州)如图,直线a、b相交于点O,∠1=50°,则∠2=50 度.考点:对顶角、邻补角.分析:根据对顶角相等即可求解.解答:解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案为50.点评:本题考查了对顶角的识别与对顶角的性质,牢固掌握对顶角相等的性质是解题的关键.15.(3分)(广西钦州)分解因式:a2b﹣b3= b(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:a2b﹣b3,=b(a2﹣b2),﹣(提取公因式)=b(a+b)(a﹣b).﹣(平方差公式)点评:本题考查提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解因式要彻底.16.(3分)(广西钦州)如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为m+n .考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AD=BD,推出∠A=∠ABD=40°,求出∠ABC=∠C,推出AC=AB=m,求出△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC,代入求出即可.解答:解:∵AB的垂直平分线MN交AC于点D,∠A=40°,∴AD=BD,∴∠A=∠ABD=40°,∵∠DBC=30°,∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,∴∠ABC=∠C,∴AC=AB=m,∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,故答案为:m+n.点评:本题考查了三角形内角和定理,线段垂直平分线性质,等腰三角形的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.(3分)(广西钦州)如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为(a+5,﹣2).考点:坐标与图形变化-平移.分析:根据对应点A、A′的坐标确定出平移规律为向右5个单位,向下4个单位,然后写出点Q的坐标即可.解答:解:由图可知,A(﹣4,3),A′(1,﹣1),所以,平移规律为向右5个单位,向下4个单位,∵P(a,2),∴对应点Q的坐标为(a+5,﹣2).故答案为:(a+5,﹣2).点评:本题考查了坐标与图形变化﹣平移,观察图形得到变化规律是解题的关键.18.(3分)(广西钦州)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是336 分.考点:规律型:数字的变化类.分析:根据题意得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2014,解得n=672,则甲报出了672个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(本大题共8题,共66分,解答应写出文字说明或演算步骤)19.(5分)(广西钦州)计算:(﹣2)2+(﹣3)×2﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4﹣6﹣3=﹣5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(7分)(广西钦州)如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质可得AB=BC=CD,∠B=∠BCD=90°,然后求出BE=CF,再利用“边角边”证明△BCE和△CDF全等,根据全等三角形对应边相等证明即可.解答:证明:在正方形ABCD中,AB=BC=CD,∠B=∠BCD=90°,∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.点评:本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并确定出三角形全等的条件是解题的关键.21.(8分)(广西钦州)某校为了解学生对三种国庆活动方案的意见,对该校学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图.请根据图中提供的信息解答下列问题(1)在这次调查中共调查了60 名学生;扇形统计图中方案1所对应的圆心角的度数为144 度;(2)请把条形统计图补充完整;(3)已知该校有1000名学生,试估计该校赞成方案1的学生约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据赞成方案3的有15人,占25%,据此即可求得调查的总人数,利用360°乘以对应的比例即可求得图中方案1所对应的圆心角的度数;(2)利用总人数减去其它各组的人数,即可求得赞成方案2的人数,从而作出直方图;(3)利用总人数1000乘以对应的比例即可求解.解答:解:(1)调查的总人数是:15÷25%=60(人),扇形统计图中方案1所对应的圆心角的度数是:360°×=144°;(2)赞成方案2的人数是:60﹣24﹣15﹣9=12(人),;(3)该校赞成方案1的学生约有:1000×=400(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(7分)(广西钦州)甲口袋中装有3个相同的小球,它们分别写有数值﹣1,1,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y),请用树形图或列表法,求点A落在第一象限的概率.考点:列表法与树状图法;点的坐标.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点A落在第一象限的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,点A落在第一象限的有4种情况,∴点A落在第一象限的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(广西钦州)某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是7 元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?考点:一次函数的应用.分析:(1)根据函数图象可以得出出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(3)将x=18代入(2)的解析式就可以求出y的值.解答:解:(1)该地出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,代入(2,7)、(4,10)得解得∴y与x的函数关系式为y=x+4;(3)把x=18代入函数关系式为y=x+4得y=×18+4=31.答:这位乘客需付出租车车费31元.点评:此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.24.(9分)(广西钦州)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).考点:解直角三角形的应用-仰角俯角问题.分析:由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.解答:解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.点评:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.25.(10分)(广西钦州)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB 的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.考点:切线的判定;扇形面积的计算.分析:(1)连接OC,OC交BD于E,由∠CDB=∠OBD可知,CD∥AB,又AC∥BD,四边形ABDC为平行四边形,则∠A=∠D=30°,由圆周角定理可知∠COB=2∠D=60°,由内角和定理可求∠OCA=90°,证明切线;(2)利用(1)中的切线的性质和垂径定理以及解直角三角形来求BD的长度;(3)证明△OEB≌△CED,将阴影部分面积问题转化为求扇形OBC的面积.解答:(1)证明:连接OC,OC交BD于E,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∵∠CDB=∠OBD,∴CD∥AB,又∵AC∥BD,∴四边形ABDC为平行四边形,∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC又∵OC是⊙O的半径,∴AC是⊙O的切线;(2)解:由(1)知,OC⊥AC.∵AC∥BD,∴OC⊥BD,∴BE=DE,∵在直角△BEO中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;(3)解:易证△OEB≌△CED,∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.点评:本题考查了切线的判定,垂径定理,扇形面积的计算.关键是连接OC,利用内角和定理,三角形全等的知识解题.26.(12分)(广西钦州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)将A(1,0),B(0,4)代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由E(m,0),B(0,4),得出P(m,﹣m2﹣m+4),G(m,4),则PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)先由抛物线的解析式求出D(﹣3,0),则当点P在直线BC上方时,﹣3<m<0.再运用待定系数法求出直线BD的解析式为y=x+4,于是得出H(m,m+4).当以P、B、G为顶点的三角形与△DEH相似时,由于∠PGB=∠DEH=90°,所以分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.解答:解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0),与y轴交于点B(0,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵E(m,0),B(0,4),PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,﹣m2﹣m+4),G(m,4),∴PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.∵y=﹣x2﹣x+4,∴当y=0时,﹣x2﹣x+4=0,解得x=1或﹣3,∴D(﹣3,0).当点P在直线BC上方时,﹣3<m<0.设直线BD的解析式为y=kx+4,将D(﹣3,0)代入,得﹣3k+4=0,解得k=,∴直线BD的解析式为y=x+4,∴H(m,m+4).分两种情况:①如果△BGP∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣1;②如果△PGB∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或﹣.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,线段的表示,相似三角形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想及分类讨论是解题的关键.。

相关文档
最新文档