二次函数图像—a,b,c符号确定-精解

合集下载

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

A 、 abc>0
B 、 b>a+c
C、 2a-b=0
D、 b 2 -4ac< 0
14、已知二次函数 y= ax2 +bx+c ( a≠0)的图象如图所示,则下列结论:
① ac> 0;② a-b+c< 0;③当 x< 0 时, y< 0;
④方程 ax 2 +bx+c=0 ( a≠ 0)有两个大于 -1 的实数根.其中错误的结论有( C)
A 、 ab<0
B、 ac<0
C、当 x< 2 时,函数值随 x 增大而增大;当 x> 2 时,函数值随
B) x 增大而减小
D、二次函数 y= ax 2 +bx+c 的图象与 x 轴交点的横坐标就是方程 ax2 +bx+c=0 的根
A 、②③
B、②④
C、①③
D、①④
15、如图所示为二次函数 y=ax2+bx+c ( a≠ 0)的图象,在下列选项中错误的是( C)
A 、 ac< 0
B、 x>1 时, y 随 x 的增大而增大
C、 a+b+c> 0 D、方程 ax2+bx+c=0 的根是 x1 =-1 , x2 =3
16、二次函数 y=ax 2+bx+c 的图象如图所示,下列结论错误的是(
11、已知二次函数 y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是(
B)
A 、 ac< 0
B 、a-b+c> 0
C、 b=-4a
D 、关于 x 的方程 a x 2 +bx+c=0 的根是 x 1=-1 , x 2=5

二次函数图像与abc符号关系课件

二次函数图像与abc符号关系课件
二次函数图像与abc符号关系课 件
目 录
• 二次函数的基本概念 • 二次函数的图像分析 • 二次函数的abc符号变化对图像的影响 • 实际应用举例 • 总结与思考
01
二次函数的基本概念
二次函数的一般形式
总结词
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a, b, c$是常数,且$a neq 0$。
于负半轴。
对二次函数图像与abc符号关系的深入思考
a符号与开口大小的关系
虽然a决定了开口方向,但a的绝对值大小也会影响开口的大小。当|a|越大,开口越宽; 当|a|越小,开口越窄。
b符号与对称性的关系
b的符号和大小决定了抛物线的对称性。当b=0时,抛物线关于y轴对称;当b≠0时,抛物 线关于x=−b/2a对称。
详细描述
在二次函数的一般形式$f(x) = ax^2 + bx + c$中,$a, b, c$分别被称为二次项系数、一次项系数和常数项。它 们的符号决定了函数的开口方向、顶点位置等性质。例如,当$a > 0$时,函数图像开口向上;当$a < 0$时,函 数图像开口向下。
二次函数的开口方向与abc符号的关系
04
实际应用举例
利用二次函数解决实际问题
总结词
通过理解二次函数的图像和abc符 号关系,可以解决一些实际问题 。
详细描述
二次函数图像的开口方向、顶点 位置和对称轴等特性,可以帮助 我们解决一些实际问题,例如最 值问题、面积问题等。
二次函数在数学建模中的应用
总结词
二次函数是数学建模中常用的函数之 一,可以用来描述一些实际问题中的 数量关系。
05
总结与思考

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。

一、a ,b ,c 符号的确定(1)a 符号的确定。

抛物线的开口向上,a >0,抛物线的开口向下,a <0。

(2)c 符号的确定。

因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。

(3)b 符号的确定。

b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。

二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。

分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。

对称轴ab x 2-=>0,而a >0,故b <0。

(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。

对称轴ab x 2-=<0,而a <0,故b <0。

(C )图中(过程略),a >0,c >0 ,b >0。

(D )图中(过程略),a <0, c <0 ,b >0。

2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。

对称轴ab x 2-=>0,而a <0,故b >0。

因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。

3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。

二次函数图像的性质与解析

二次函数图像的性质与解析

二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。

2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。

二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。

2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。

3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。

4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。

三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。

2.求对称轴:对称轴为x=h。

3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。

4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。

四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。

2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。

3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。

五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。

判定二次函数中的a,b,c的符号

判定二次函数中的a,b,c的符号

10A B C D二次函数:图象位置与a,b,c,(1)a决定抛物线的开口方向:a>0⇔;a<0⇔.(2)C决定抛物线与y轴交点的位置,c>0⇔抛物线交y轴于;c<0⇔抛物线交y轴于;c=0⇔.(3)ab决定抛物线对称轴的位置,当a,b同号时⇔对称轴在y轴;b=0⇔对称轴为;a,b异号⇔对称轴在y轴,简称为.一、通过抛物线的位置判断a,b,△c,的符号.例1.根据二次函数y=ax2+bx+c的图象,判断a、b、c、b2-4ac的符号yx2.看图填空(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0(4)4a+2b+c_______0二、通过a,b,△c,的符号判断抛物线的位置:例1.若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()y y y yOx O x O x O xA B C D例2.若a>0,b>0,c>△0,>0,那么抛物线y=ax2+bx+c经过象限.例3.已知二次函数y=ax2+bx+c且a<0,a-b+c>0;则一定有b2-4ac0例4.如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的大致图象是()y yy 1x0x-1x 0-101.若抛物线y=ax2+bx+c开口向上,则直线y=ax+3经过象限.2.二次函数y=ax2+bx+c的图象如图所示,则下列条件不正确的是()yO x3.二次函数 y=ax 2+bx+c 的图象如图,则点, ⎪ 在.( )⎝ b 2 - 4ac b ⎭y yA 、 a < 0, b > 0, c < 0B 、 b 2 - 4ac < 0C 、 a + b + c < 0D 、 a - b + c > 0⎛ a + b ac ⎫yA 、第一象限B 、第二象限C 、第三象限D 、第四象限O4.二次函数 y=ax 2+bx+c 与一次函数 y = ax + c 在同一坐标系中的图象大致是() yyO xO xO x OxABCD5.二次函数 y=ax 2+bx+c (a ≠ 0)的图象,如图,下列结论①c < 0 ② b > 0 ③ 4a + 2b + c > 0 ④ (a + c )2 < b 2 其中正确的有()A 、1 个B 、2 个C 、3 个D 、4 个6.已知函数 y=ax 2+bx+c 的图象如图所示,关于系数 a, b , cyOxx = 1y有下列不等式① a < 0 ② b < 0 ③ c > 0 ④ 2a + b < 0 ⑤ a + b + c > 0 其中正确个数为 .7.已知直线 y=ax 2+bx+c 不经过第一象限,则抛物线y = ax 2 + bx 一定经过()A .第一、二、四象限B .第一、二、三象限C .第一、二象限D .第三、四象限8. 如图所示的抛物线是二次函数 y =ax 2-3x +a 2-1 的图象,那么 a 的值是__.- O 1x.. 轴正半轴相交,其顶点坐标为,1⎪ ,下列结论:①ac<0;② 精品资料 欢迎下载9. 若抛物线 y =x 2-bx +9 的顶点在 x 轴上,则 b 的值为______若抛物线 y =x 2-bx +9 的顶点在 y 轴上,则 b 的值为______10.已知二次函数 y =ax 2+bx +c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b +c=2; ③a >结论是( )1 2;④b<1.其中正确的A .①②B .②③C .②④D .③④11.二次函数 y =ax 2+bx +c(a≠0)的图象开口向上,图象经过点(-1,2)和(1,0),且与 y 轴负半轴交于一点,给出以下结论①abc<0;②2a+b >0;③a+c =1;④a>1.其中正确的结论是()A 、1 个B 、2 个C 、3 个D 、4 个12. 二次函数 y =ax 2 -2x -1 与 x 轴有交点,则 k 的取值范围________。

二次函数图象与系数a、b、c的关系

二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B 【分析】①由图象开口方向,对称轴位置,与y 轴交点位置判断a ,b ,c 符号.②把2x =±分别代入函数解析式,结合图象可得22(4)(2)a c b +-的结果符号为负.③由抛物线开口向上,距离对称轴距离越远的点y 值越大.④由抛物线顶点纵坐标为m 可得2ax bx c m ++…,从而进行判断21ax bx c m ++=-无实数根.【详解】解:①Q 抛物线图象开口向上,0a \>,Q 对称轴在直线y 轴左侧,a \,b 同号,0b >,Q 抛物线与y 轴交点在x 轴下方,0c \<,0abc \<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b \+-<,即22(4)(2)a c b +<,故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--,12|1||1|x x +>+Q ,\点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y \>,故③错误.④Q 抛物线的顶点坐标为(1,)m -,y m \…,2ax bx c m \++…,21ax bx c m \++=-无实数根.故④正确,综上所述,①②④正确,故选:B .【点睛】本题考查二次函数的图象的性质,解题关键是熟练掌握二次函数2(0)y ax bx c a =++¹中a ,b ,c 与函数图象的关系.2.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x…﹣3﹣2﹣112…y … 1.8753m 1.8750…A .①④B .②③C .③④D .②④【答案】B 【分析】由表格可以得到二次函数图象经过点点(-3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a ,b ,c 的值,依次代入到①②③④中进行判断即可解决.【详解】解:由表格可以得到,二次函数图象经过点(3,1.875)-和点(1,1.875),Q 点(3,1.875)-与点(1,1.875)是关于二次函数对称轴对称的,\二次函数的对称轴为直线3112x -+==-,\设二次函数解析式为2(1)y a x h =++,代入点(2,3)-,(2,0)得,390a h a h +=ìí+=î,解得38278a h ì=-ïïíï=ïî,\二次函数的解析式为:2327(1)88y x =-++,Q 233384y x x =--+,3c \=,\①是错误的,2934430168b ac -=+´´>Q ,\②是正确的,方程20ax bx +=为233084x x --=,即为220x x +=,12x \=-,20x =,\③是正确的,3377()3088a c +=´-+=>Q ,\④是错误的,\②③是正确的,故选:B .【点睛】本题考查了二次函数系数特征和二次函数解析式求法,利用待定系数法求解函数解析式是通法,由表格提炼出对称轴的信息,是解题的突破口,此题,也可以通过二次函数系数特征来解决.3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .4【答案】B 【分析】根据二次函数的图象和性质逐一进行判断即可【详解】解:∵抛物线y =ax 2+bx +c (a ≠0)的开口向上, ∴a >0,∵抛物线线y =ax 2+bx +c (a ≠0)的顶点坐标为(1,n ),∴对称轴x =12ba-=,∴b =-2a <0,∵抛物线与y 轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c <-2<0,∴abc>0;故①正确;∵抛物线线x 轴的一个交点B (3,0),∴9a +3b +c =0,抛物线线x 轴的一个交点(-1,0),∵b =-2a ∴c =32b,∴-3<32b<-2,∴﹣2<b 43<-,故②错误;∵抛物线线x 轴的一个交点(-1,0),∴a -b +c =0,∴(a +c )2﹣b 2=(a +b +c )(a -b +c )=0,故③正确;∵a >0,∴-a <0∵b =-2a ∴3a +2b =-a <0∴2c ﹣a >2(a +b +c ),∵抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),∴a +b +c =n ,∴2c ﹣a >2n ;故④错误;故选:B 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),明确以下几点:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;③常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).4.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .1【答案】A 【分析】根据已知条件可判断0c >,0a b <<,据此逐项分析解题即可.【详解】解:Q 抛物线开口向下a \<把(1,0)A ,(,0)B m 代入2y ax bx c =++得200a b c am bm c ++=ìí++=î2am bm a b\+=+20am bm a b \+--=(1)()0m am a b -++=21m -<<-Q 0am a b \++=,(1)am c a m b\=+=-0c \>110m \-<+<10m +<Q 11022m +\-<<1022b a\-<-<10b a\>>0a b \<<①220b c b a b b a +=--=->,故①正确;②220a c a a b a b +=--=-<,故②正确;③ (1)2230a m b c b c b a b b a +-+=-+=---=-->,故③正确;;④若方程()(1)10a x m x ---=有两个不相等的实数根,即2(1)10ax a m x am -++-=22(1)4(1)a m a am D =+--222(1)44a m a m a=+-+2244a bb a a a--=-⋅+22444b a ab a=+++24()4b a a b a=+++2440b ac a =-+>244ac b a \-<,故④正确,即正确结论的个数是4,故选:A .【点睛】本题考查二次函数的图象与性质、二次函数与系数a 、b 、c 关系,涉及一元二次方程根的判别式,是重要考点,有难度,掌握相关知识是解题关键.5.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .5【答案】D 【分析】由题意易得1,12b c a ==--,则有0c <,进而可判定①②,当x =1时,则12y a b c =++=-,当x =-1时,则有32y a b c =-+=-,然后可判定③,由题意可知抛物线的对称轴为直线104x a =-<,则有当23x ££时,y 随x 的增大而增大,故可得④;联立抛物线及直线解析式即可判断⑤.【详解】解:∵13,22a b c a b c ++=--+=-,∴两式相减得12b =,两式相加得1c a =--,∴0c <,∵0,0,0a b c >><,∴0abc <,故①正确;∴12222102a b c a a a ++=+´--=>,故②正确;∵当x =1时,则12y a b c =++=-,当x =-1时,则有32y a b c =-+=-,∴当0y =时,则方程20ax bx c =++的两个根一个小于-1,一个根大于1,∴抛物线与x 轴正半轴必有一个交点,故③正确;由题意可知抛物线的对称轴为直线1024b x a a=-=-<,∴当23x ££时,y 随x 的增大而增大,∴当2x =时,有最小值,即为424113y a b c a a a =++=+--=,故④正确;联立抛物线2y ax bx c =++及直线y x c =-可得:2x c ax bx c -=++,整理得:22012ax x c -+=,∴1804ac D =->,∴该抛物线与直线y x c =-有两个交点,故⑤正确;∴正确的个数有5个;故选D .【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.6.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个【答案】B 【分析】先根据抛物线开口向下、与y 轴的交点位于y 轴正半轴0,0a c <>,再根据对称轴可得0b a =->,由此可判断结论①;将点()2,0代入二次函数的解析式可判断结论②③;根据二次函数的对称轴可得其增减性,由此可判断结论④;利用二次函数的性质可求出其最大值,由此即可得判断结论⑤.【详解】解:Q 抛物线的开口向下,与y 轴的交点位于y 轴正半轴,0,0a c \<>,Q 抛物线的对称轴为122b x a =-=,0b a \=->,0abc \<,则结论①正确;将点()2,0代入二次函数的解析式得:420a b c ++=,则结论③错误;将a b =-代入得:20b c -+=,则结论②正确;Q 抛物线的对称轴为12x =,32x \=和12x =-时的函数值相等,即都为1y ,又Q 当12x ³时,y 随x 的增大而减小,且3522<,12y y \>,则结论④错误;由函数图象可知,当12x =时,y 取得最大值,最大值为1111142424a b c b b c b c ++=-++=+,12m ¹Q ,214b c am bm c +>++\,即1()4b c m am b c +>++,结论⑤正确;综上,正确的结论有①②⑤,共3个,故选:B .【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题关键.7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据抛物线的开口方向,对称轴,与y 轴交点可得a ,b ,c 的符号,从而判断①;再根据二次函数的对称性,与x 轴的交点可得当x =-2时,y >0,可判断②;再根据x =-1时,y 取最大值可得a -b +c ≥ax 2+bx +c ,从而判断③;最后根据x =1时,y =a +b +c ,结合b =2a ,可判断④.【详解】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即12b a-=-,∴b =2a ,则b <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;∵抛物线对称轴为直线x =-1,与x 轴的一个交点横坐标在0和1之间,则与x 轴的另一个交点在-2和-3之间,∴当x =-2时,y =4a -2b +c >0,故②错误;∵x =-1时,y =ax 2+bx +c 的最大值是a -b +c ,∴a -b +c ≥ax 2+bx +c ,∴a -b ≥ax 2+bx ,即a -b ≥x (ax +b ),故③正确;∵当x =1时,y =a +b +c <0,b =2a ,∴a +2a +c =3a +c <0,故④正确;故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >【答案】D【分析】由图像可得0a <,0c >,当1x =,y a b c =++,并与x 轴交于OP 之间,得0a b c ++<,据悉可得()0M ac a b c =++>,据此求解即可.【详解】解:由图像可知,图像开口向下,并与y 轴相交于正半轴,∴0a <,0c >,当1x =,211y a b c a b c =++=++g g ,∵1OP =,并由图像可得,二次函数2y ax bx c =++与x 轴交于OP 之间,∴0a b c ++<∴()0M ac a b c =++>,故选:D .【点睛】本题考查二次函数图象及性质,熟悉相关性质是解题的关键.9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据二次函数的图像及性质逐项分析即可判断.【详解】解:∵二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,∴当x =1时,0a b c ++=,故结论①正确;根据函数图像可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a-=-,根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确;根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1,故结论③正确;根据函数图像可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图像与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象与性质进行逐项判断即可求解.【详解】解:①由图象可知,a <0,b >0,c >0,∴abc <0,故①正确;②∵对称轴为直线x = 2b a-=1,且图象与x 轴交于点(﹣1,0),∴图象与x 轴的另一个交点坐标为(3,0),b=﹣2a ,∴根据图象,当x =2时,y =4a +2b +c >0,故②错误;③根据图象,当x =﹣2时,y =4a ﹣2b +c =4a +4a +c =8a +c <0,故③正确;④∵抛物线经过点()3,n -,∴根据抛物线的对称性,抛物线也经过点()5,n ,∴抛物线2y ax bx c =++与直线y =n 的交点坐标为(﹣3,n )和(5,n ),∴一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,故④正确,综上,上述结论中正确结论有①③④,故选:C .本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A .1B .2C .3D .4【答案】A【分析】根据抛物线的开口方向、于x 轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a >0,故①正确;∵抛物线与x 轴没有交点∴24b ac -<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)1933a b c a b c ++=ìí++=î∴8a+2b=2∴4a +b =1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x 交于这两点∴()21ax b x c +-+<0可化为2ax bx c x ++<,根据图象,解得:1<x <3故选A .【点睛】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.12.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】①根据图像开口向上,对称轴位置,与y 轴交点分别判断出a ,b ,c 的正负②根据对称轴公式2b x a =-,12x =判断,a b 的大小关系③根据2x =时,0y =,比较423a b c ++与0的大小;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等结合②的结论判断即可⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.【详解】①图像开口朝上,故0a > ,根据对称轴“左同右异”可知0b <,图像与y 轴交点位于x 轴下方,可知c <0abc \>故①正确;②122b x a =-=得=-a b 0a b \+=③2y ax bx c =++Q 经过()2,0420a b c \++=又由①得c <04230a b c \++<故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等\ 当1x =-时0y =,即0a b c -+=a b=-Q 20a c \+=即12c a=- \ 2y ax bx c =++经过,02c a ⎛⎫⎪⎝⎭,即经过(1,0)- 故④正确;⑤当12x =时,1142y a b c =++, 当x m =时,2y am bm c =++0a >Q\ 函数有最小值1142a b c ++\ 21142am bm c a b c ++³++化简得2440am bm b +-≥,故⑤正确.综上所述:①③④⑤正确.故选D .【点睛】本题考查二次函数图象与性质,二次函数解析式中系数与图像的关系,结合图像逐项分析,结已知条件得出结论是解题的关键.13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c ->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【分析】依据抛物线的图像和性质,根据题意结合二次函数图象与系数的关系,逐条分析结论进行判断即可【详解】①从图像观察,开口朝上,所以0a >,对称轴在y 轴右侧,所以0b <,图像与y 轴交点在x 轴下方,所以0c <0,0a b a b c--><\,所以①不正确;②点()2,0A -和点B ,与y 轴的负半轴交于点(0,)C c ,且2OB OC=设(2,0)B c -代入2y ax bx c =++,得:2420ac bc c -+=0c ¹Q \241b ac -=,所以②正确;③Q ()2,0A -,(2,0)B c -设抛物线解析式为:(2)(2)y a x x c =++过(0,)C c 4c ac \= 14a \=,所以③正确;④如图:设,AN BM 交点为P ,对称轴与x 轴交点为Q ,顶点为D ,根据抛物线的对称性,APB △ 是等腰直角三角形,()2,0A -Q ,(2,0)B c -22AB c \=-,112PQ AB c ==- 又对称轴2(2)12c x c -+-==+ (1,1)P c c \+- 由顶点坐标公式可知24(1,)4ac b D c a-+ 14a =Q 2(1,)D c cb \+- 由题意21c b c -<-,解得1b > 或者1b <-由①知0b <\1b <-,所以④不正确.综上所述:②③正确共2个故选B .【点睛】本题考查了二次函数图象与系数的关系,利用了数形结合的思想,二次函数2y ax bx c =++(a ≠0),a 的符号由抛物线的开口决定;b 的符号由a 及对称轴的位置确定;c 的符号由抛物线与y 轴交点的位置确定,此外还有注意利用特殊点1,-1及2对应函数值的正负来解决是解题的关键.14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是()A .0B .1C .2D .3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.∴c =1>0,a -b +c = -1,4a -2b +c >1,∴a -b = -2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++-=,∴△=24(3)b a c --=28b a +>0,∴230ax bx c ++-=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.15.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【分析】根据抛物线的开口向下,对称轴方程以及图象与y 轴的交点得到a ,b ,c 的取值,于是可对①进行判断;根据抛物线与x 轴的交点的个数可对②进行判断;根据对称轴可得12b a-=,则12a b =-,根据1x =-可得0a b c -+<,代入变形可对③进行判断;当1x =时,y a b c =++的值最大,即当(1)x m m =¹时,即a b c ++>2am bm c ++,则可对④进行判断;由于方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =-1有2个根,则利用根与系数的关系可对⑤进行判断.【详解】解:①∵抛物线开口方向向下,∴a <0,∵抛物线与y 轴交于正半轴,∴c >0,∵对称轴在y 轴右侧,∴b >0,∴abc <0,①错误;②∵抛物线与x 轴有两个交点∴24b ac ->0∴24b ac >,故②错误;③∵抛物线的对称轴为直线x =1,∴12b a-=,∴12a b =-由图象得,当1x =-时,0y a b c =-+<,∴102b bc --+<∴23c b <,故③正确;④当1x =时,y a b c =++的值最大,∴当(1)x m m =¹时,a b c ++>2am bm c ++,∴()a b m am b +>+(1m ¹),∵b >0,∴2()a b m am b +>+(1m ¹),故④正确;⑤∵方程|ax 2+bx +c |=1有四个根,∴方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =-1有2个根,∴所有根之和为2×(-b a)=2×2a a =4,所以⑤错误.∴正确的结论是③④,故选:A【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4【答案】B【详解】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.综上所述,正确的结论有③④两个,故选B.。

二次函数图象与系数a、b、c的关系

 二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .12.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .44.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .15.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .56.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有()A .1个B .2个C .3个D .4个8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有()A .1个B .2个C .3个D .4个10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是()A .1B .2C .3D .412.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有()A .1个B .2个C .3个D .4个13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a bc->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .315.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4。

二次函数的性质a,b,c符号问题

二次函数的性质a,b,c符号问题

二次函数的图像与性质知识点:二次函数抛物线,图像对称是关键,开口、顶点和交点,它们确定图像现。

a 的正负开口判(开口大小由a 断),c 与y 轴来相见,b 的符号较特别,符号与a 相关联,顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱。

△的符号最简便,x 轴上数交点,顶点坐标最重要,一般配方它就现,横标即为对称轴,纵标函数最值现,若求对称轴位置,括中符号正相反,一般、顶点、交点式,不同表达能互换。

二次函数a ,b ,c 及相关问题的解决:1、 a 正负性:由开口方向决定,开口向上,a >0;开口向下,a <02、 b 的正负性:由于抛物线对称轴为ab x 2-=,所以b 的正负性与对称轴的位置和a 的正负性相关联。

对称轴在y 轴的左边时,a 、b 符号相同,对称轴在y 轴的右边时,a 、b 符号相反,对称轴为y 轴时,b=0(左同右异中为0)3、 c 的正负性:c 表示抛物线与y 轴交点的纵坐标,即当x=0时,y=c ,所以当抛物线与y 轴的交点在x 轴的上方时,c >0,当抛物线与y 轴的交点在x 轴的下方时,c <0。

(c 与y 轴来相见)4、 abc 的正负性:a ,b ,c 确定,则随之确定5、 ac b 42-=∆的正负性:△是根的判别式,由于一元二次方程是二次函数y=0的特殊情况,所以可以从抛物线与x 轴的交点个数来判断△的正负性,与x 轴有两个交点时,042>-ac b ,与x 轴的交点有一个时,042=-ac b ,与x 轴没有交点时,042<-ac b6、 利用x 的特殊值判断一些代数式的正负性:当x=1时,y=a+b+c ,当x=-1时,y=a-b+c ,当x=2时,y=4a+2b+c ,当x=-2时,y=4a-2b+c ,当x=3时,y=9a+3b+c ,当x=-3时,y=9a-3b+c ,对于取x 的特殊值得到代数式的正负性,重点看此时图像在x 轴的上方还是下方。

二次函数基本概念_图像及性质

二次函数基本概念_图像及性质

二次函数基本概念,图像及性质定义:一般地,如果 yax2bx c( a,b,c 是常数, a0),那么 y叫做 x 的二次函数 .yOx函数 y ax22.二次bx c的结构特征:⑴等号左边是函数,右边是关于自变量 x的二次式, x的最高次数是 2.⑵ a,b ,c是常数, a 是二次项系数, b 是一次项系数, c 是常数项. 3.二次函数的基本形式2(1)二次函数基本形式:yax的性质: a 的绝对值越大,抛物线的开口越小。

a的 符开口方向顶点坐标对 称性质号轴x 0 时, y随 x 的增大而增大; x 0a 0向上0,0y 轴 时, y随 x的增大而减小; x 0 时,y有最小值 0.x 0时,y随 x的增大而减小;x 0a 0向下0 ,0y 轴 时, y随 x的增大而增大; x 0 时,y有最大值.(2)y ax 2 c的性质:上加下减。

开a 的 口顶 点 对 称符号方 坐标性质轴向向0,cx 0时,y随 x 的增大而增大;x0 时, y 随 x 的ay 轴上时,y有最小值 c.增大而减小;x向0 ,cx 0时,y随 x 的增大而减小;x0 时, y随 x 的y 轴a 0下增大而增大;x时,y有最大值 c.2(3)y a x h的性质:结论:左加右减。

开 对口a顶 点 性质方 称坐标向 轴向 h ,0xh时,y随 x 的增大而增大; xh时,y随 x的增大a 0上X=hh时,y有最小值 0.x向 h ,0xh时,y随 x的增大而减小; xh时,y随 x的增大a 0下X=hh时,y有最大值 0.x2(4) y a x hk的性质:开 对a 的 口顶 点性质符号方 称 坐标向 轴向 h ,kx h 时, y随 x 的增大而增大; xh 时, y 随a 0上X=hx的增大而减小;x h时, y 有最小值 k.向 h ,kx h时,y随 x的增大而减小;xh 时, y随a 0下X=hx的增大而增大;x h时, y 有最大值 k.4.二次函数由特殊到一般,可分为以下几种形式: ①⑤y ax 2;② y ax2k ;③ ya x h 2;④ y a x h2k ;yax2bx c .函数解析式开口方向对称轴顶点坐标y ax2x0 (y轴)( 0,0)y ax2k x0 (y轴)(0,k)当a0 时h2x( h ,0)y a x h开口向上y a x h 2k当 a0x h(h,k)时y ax2bx c 开口向下x b b4ac b 22a( 2a,4a)5.二次函数图像与性质:函二次函数数y ax2bx c(a, b, c是常数, a 0)a>0a<0yy 图像( 1)抛物线开口向上,并向(1)抛物线开口向下,并向下无限延上无限延伸;伸;b b( 2)对称轴是x=2a ,顶( 2)对称轴是x=2a,顶点坐标是b b4ac b 2点坐标是(2a ,( 2a , 4a);4ac b2b 4a);( 3)在对称轴的左侧,即当 x<2a 时,( 3)在对称轴的左侧,即当y 随 x 的增大而增大;在对称轴的右侧,性b b质x< 2a时, y 随 x 的增大而即当 x>2a时,y 随 x 的增大而减小,减小;在对称轴的右侧,即简记左增右减;b b当 x>2a时, y 随 x 的增大( 4)抛物线有最高点,当x=2a 时,而增大,简记左减右增;4ac b 2( 4)抛物线有最低点,当 x=y最大值4a by 有最大值,2a时, y有最小值,y最小值4ac b 2 4a6.用待定系数法求二次函数的解析式(1)一般式:yax2bxc.已知图像上三点或三对x、y的值,通常选择一般式 .(2)顶点式:ya x h 2k.已知图像的顶点或对称轴,通常选择顶点式.( 3 )交点式:已知图像与x 轴的交点坐标x1、 x2,通常选用交点式:y a x x1 x x 2 .7.求抛物线的顶点、对称轴的方法b2b2y ax2bx4acc a x(1)公式法:2a4a,(b4ac b2b ,)x∴顶点是2a4a,对称轴是直线2a .2(2)配方法:运用配方的方法,将抛物线的解析式化为y a x hk 的形式,得到顶点为 ( h , k ),对称轴是直线x h .8. 二次函数yax2bx c 中,a,b, c的作用(1)a决定开口方向及开口大小,这与y ax2中的 a 完全一样.( 2)b和a共同决定抛物线对称轴的位置.由于抛物线 y ax2bxc的对称xb2a ,轴是直线(3)c的大小决定抛物线y ax2bx c与y轴交点的位置 .9.二次函数与x轴的交点情况判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x 轴上)0抛物线与 x轴相切;③没有交点0抛物线与 x 轴相离.10教材分析课时规划教学目标分析教学思路。

二次函数图像与abc符号关系资料

二次函数图像与abc符号关系资料
1.抛物线y=ax2+bx+c在x轴 上方的条件是什么? a> 0 b2-4ac<0 x
变式:不论x取何值时,函数y=ax2+bx+c(a≠0)
的值永远是正值的条件是什么?
你知道吗?不论x取何值时,函数
y=ax2+bx+c(a≠0)的值永远是非负 数的条件是什么? a>0,b2-4ac≤0
知识点二:
6、无论m为任何实数,二次函数y=x2-(2-m)x+m 的图像总是过点 (C ) A.(1,3) B.(1,0) C.(-1,3) D.(-1,0)
7.(安徽)二次函数y=ax2+bx+c 的图像如图,则下列a、b、 c间的关系判断正确的是 ( ) D A.ab < 0 B.bc < 0 C.a+b+c > 0 D.a-b+c < 0 a <0,b <0,c <0
练一练:
1、已知:二次函数y=ax2+bx+c的图象 如图所示,下列结论中:①abc>0; ②b=2a;③a+b+c<0;④a+b-c>0; ⑤a-b+c>0正确的个数是 ( C )
y
A 、 2个
C 、 4个
4错
B 、 3个
D 、 5个
-1 o 1 x
练一练:
2、已知:二次函数y=ax2+bx+c的图象如 图所示,下列结论中下正确的是( D) A、abc>0
O
②求得抛物线解析式;
③求出抛物线与x轴的交点;
三、综合应用 能力提升
1、(青海省)如图所示,已知抛物线 y=-x2+bx+c与x轴的两个交点分别为A(x1,0), B(x2,0),且x1+x2=4,x1x2=3, (1)求此抛物线的解析式; (2)设此抛物线与y轴的交点为C,过点B、C作 直线,求此直线的解析式; (3)求△ABC的面积. (1)y= -x2+4x-3 (2) y= x-3 (3) 3

初中干货-二次函数图像内容精讲汇总

初中干货-二次函数图像内容精讲汇总

九、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于 x 轴对称 y ax2 bx c 关于 x 轴对称后,得到的解析式是 y ax2 bx c ;
y a x h2 k 关于 x 轴对称后,得到的解析式是 y a x h2 k ;
第5页共6页
五、二次函数 y ax2 bx c 图象的画法
五点绘图法:利用配方法将二次函数 y ax2 bx c 化为顶点式 y a(x h)2 k ,确定其开口方向、对称 轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 y 轴的交点
0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、与 x 轴的交点 x1 ,0 , x2 ,0 (若与 x 轴没有交点,
第6页共6页
a 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物
线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物 线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后 再写出其对称抛物线的表达式.
2. 关于 y 轴对称 y ax2 bx c 关于 y 轴对称后,得到的解析式是 y ax2 bx c ;
2
2
y ax h
k 关于 y 轴对称后,得到的解析式是 y a x h
k ;
3. 关于原点对称 y ax2 bx c 关于原点对称后,得到的解析式是 y ax2 bx c ;
1. 一般式: y ax2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a(x h)2 k ( a , h , k 为常数, a 0 ); 3. 两根式: y a(x x1)(x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与 x 轴有交点,即 b2 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三 种形式可以互化.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像—符号确定
1、二次函数f(x)=ax2+bx+c,图象如图()
又由图可知,当X=-1时,对应的点在第三象限,将X=-1代入y=ax²+bx+c,得a-b+c<0
∴将a-b+c<0与a+b+c=2相减,得
-2b<-2
b>1
∴④是错的。

2、二次函数y=ax2+bx+c的图象的一部分如图,则a的取值范围是()
3、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1.则以下结论错误的是()
(只填序号).①abc>0;②c=-3a;③b+ac>0.
5、如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a-b<0;④b2+8a>4ac中正确的是(填写序号)
6、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,有下列5个结论:
其中正确的结论有.(请填序号)
7、抛物线y=ax2+bx+c的图象如图所示,下列不等式正确的是()
8、如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出5个结论:①abc<0;②b2-4ac>0 ③2a+b>0;④a+c=1;⑤a>1.其中结论正确的个数为()
9、已知:如图所示,抛物线y=ax2+bx+c的对称轴为x=-1,与x轴交于A、B两点,交y轴于点C,且OB=OC,则下列结论正确的个数是()
10、二次函数y=ax2+bx+c的图象如图所示,则下列关系式:
①abc<0;②2a-b>0;③b2-4ac>0;④a+2b-3c<0;⑤b2+b-2a>4ac
不正确结论的序号是.
11、抛物线y=ax2+bx+c的图象如图,OA=OC,则()
12、
13、如图,抛物线y=ax2+bx+c与x轴A、B两点,与y轴交于点C,若OC=2OA,
则a、b、c之间的关系为()
14、如图已知二次函数y=ax2+bx+c的图象与y轴正半轴相交,对称轴为直线x=1,顶点坐标P(1,4).则下列结论中:
①ac<0;②2a+b=0;③b<8;④当m<4时,方程ax2+bx+c-m=0有两个不相等的实数根.
正确的结论有()
15、如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.
给出四个结论:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正确结论是.
16、。

相关文档
最新文档