专题一元二次方程根的判别式含复习资料

专题一元二次方程根的判别式含复习资料
专题一元二次方程根的判别式含复习资料

一元二次方程根的判别式姓名

◆课前预习

1.一元二次方程20(a≠0)的根的情况可用b2-4?来判定,?b2-4?叫做,通常用符号“△”为表示.(1)b2-4>0方程;(2)b2-4=0方程;(3)b2-4<0方程.

2.使用根的判别式之前应先把方程化为一元二次方程的形式.

◆互动课堂

【例1】不解方程,判别下列方程根的情况:

(1)x2-53=0;(2)x2+22=0;(3)3x2+2=4x;(4)2+()0(m≠0,m≠n).

【例2】若关于x的方程(m2-1)x2-2(2)1=0有实数根,求m的取值范围.

【例3】已知关于x的一元二次方程x2-(21)4(k-)=0.(1)求证:

无论k取什么实数值,这个方程总有实数根;(2)如果等腰△有一边长4,另两条边长b,c恰好是这个方程的两个实数根,求△的周长.

【例4】已知关于x的方程x-2(1)2=0.(1)当m取何值时,方程有两个实数根?

(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.

◆跟进课堂

1.方程2x2+3x-4=0的根的判别式△.

2.已知关于x的一元二次方程2-105=0有实数根,则m的取值范围是.

3.如果方程x2-2x-3=0有两个相等的实数根,则m的值为,此时方程的根为.

4.若关于x的一元二次方程2+2x-1=0没有实数根,则k的取值范围是.5.若关于x的一元二次方程2-2(3m-1)9m-1=0有两个实数根,则实数m?的取值范围是.

6.下列一元二次方程中,没有实数根的是().

A.x2+2x-1=0 B.x2+23=0 C.x21=0 D.-x22=0 7.如果方程2x(-4)-x2-6=0有实数根,则k的最小整数是().A.-1 B.0 C.1 D.2

8.下列一元二次方程中,有实数根的方程是().

A.x2-1=0 B.x2-23=0 C.x2-1=0 D.x2+4=0

9.如果关于x的一元二次方程2-69=0有两个不相等的实数根,那么k的取值范围是().

A.k<1 B.k≠0 C.k<1且k≠0 D.k>1

10.关于x的方程x2+(3m-1)2m2-0的根的情况是().

A.有两个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根

◆课外作业

1.在下列方程中,有实数根的是()

(A)x2+31=0 (B) 1 (C)x2+23=0 (D)= 2.关于x的一元二次方程x2+-1=0的根的情况是

A、有两个不相等的同号实数根

B、有两个不相等的异号实数根

C、有两个相等的实数根

D、没有实数根

3.关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a的值为().

A、1或-4

B、1

C、-4

D、-1或4

4.若关于的一元二次方程有实数根,则的取值范围是.

5.若0是关于x的方程(2)x2+32-28=0的解,求实数m的值,并讨论此方程解的情况.

6.不解方程,试判定下列方程根的情况.

(1)2+53x2 (2)x2-(1+2)4=0 (3 )x2-2(21)=0 (x为未知数)

7.关于x的一元二次方程2-(3m-1)2m-1=0,其根的判别式的值为1,求m?的值及该方程的解.

8.已知a、b、c分别是△的三边长,当m>0时,关于x的一元二次方程c (x2)(x2-m)-20有两个相等的实数根,试判断△的形状.

9.等腰△中,8,、的长是关于x的方程x2-100的两根,求m的值.

10.如果关于x的方程2-2(2)5=0没有实数根,试判断关于x的方程(m -?5)x2-2(m-1)0的根的情况.

11.已知关于x的方程(n-1)x21=0 ①有两个相等的实数根.

(1)求证:关于y的方程m2y2-2-m2-2n2+3=0 ②必有两个不相等的实数根;

(2)如果方程①的一个根是-,求方程②的根.

12.若关于x的一元二次方程没有实数解,求的

解集(用含的式子表示).

13.要建一个面积为150m2的长方形养鸡场,为了节约材料,?鸡场的一边

靠着原有的一堵墙,墙长为,另三边用竹篱笆围成,如果篱笆的长为35m.

(1)求鸡场的长与宽各是多少?(2)题中墙的长度a对解题有什么作用.

*14. 若a,b,c,d都是实数,且2(c+d),求证:关于x的方程x2++0,x2++0中至少有一个方程有实数根.

答案:

1.41 2.m≤5且m≠0 3.2,x12=1 4.k<-1 5.m≤且m≠0 6.C 7.B 8.?C ?9.C 10.A

11.2,x1=1,x2=12.△13.25或16

14.当5时方程有一个实根;当m>4且m≠5时,方程有两个不等实根.15.略

一元二次方程根的判别式知识点

一元二次方程根的判别 式知识点 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

一元二次方程根的判别式知识点及应用 1、一元二次方程ax2+bx+c=0(a≠0)的根的判别式定理:在一元二次方程 ax2+bx+c=0(a≠0)中,Δ=b24ac 若△>0则方程有两个不相等的实数根 若△=0则方程有两个相等的实数根 若△<0则方程没有实数根 2、这个定理的逆命题也成立,即有如下的逆定理: 在一元二次方程ax2+bx+c=0(a≠0)中,Δ=b24ac 若方程有两个不相等的实数根,则△>0 若方程有两个相等的实数根,则△=0 若方程没有实数根,则△<0 特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。 一、不解方程,判断一元二次方程根的情况。 二、例1、判断下列方程根的情况 三、2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、?已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0有两个实数根? 三、?证明方程根的性质。 例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 四、?判断二次三项式能否在实数范围内因式分解。 例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 五、?判定二次三项式为完全平方式。 例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是

一元二次方程应用一对一辅导讲义

课 题 一元二次方程的应用 授课时间: 2016-03-26 8:00——10:00 备课时间:2016-03-24 教学目标 1、综合运用一元二次方程和其他数学知识解决如面积、利润、增长率与降低 率等生活中的实际问题。 2、注意找准等量关系及检验根是否符合实际意义。 3、从现实问题中构建一元二次方程数学模型。 重点、难点 会运用一元二次方程解决简单的实际问题 考点及考试要求 1.一元二次方程的应用 2.一元二次方程实际问题 教 学 内 容 第一课时 一元二次方程的应用知识梳理 1.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.19 2.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________. 3.用适当的方法解下列一元二次方程. (1).22(3)5x x -+= (2).22330x x ++= 课前检测

1. 一元二次方程的实际应用????? ???????????????动点问题数字问题面积问题 利润问题增长率(降低率)问题常见类型、答步骤:设、列、解、验 2. 解题循环图: 3. 利用一元二次方程解决许多生活和生产实际中的相关问题,它的一般方法是: (1)根据题意找到等量关系,列出一元二次方程。 (2)特别要对方程的根注意检验,根据实际做出正确取舍,以保证结论的准确性。 第二课时 一元二次方程的应用典型例题 考点一:增长率(降低率)和利润问题 典型例题 知识梳理

(一)增长率(降低率)问题: 【例1】某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率. (二)利润问题: 【例2】商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降低1元,商场平均每天可多售出2件,求: (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)若要使商场平均每天赢利最多,请你帮助设计方案。

一元二次方程根的判别式专题 - 教师版

一元二次方程根的判别式专题 知识点一:已知系数直接判断方程根的情况 1.不解方程,直接判断下列方程根的情况. (1)2104 x - = (2)23630x x -+= (3)()2458x x x -=-- 【答案】(1)有两个不等实数根;(2)有两个相等实数根;(3)没有实数根 二、结合字母系数判断方程根的情况 2.判别下列关于x 的一元二次方程根的情况. (1)22125104 x mx m -++= (2)22440x mx m -+= 【答案】无实数根 【答案】有两个相等的实数根 (3)211022x mx m -+-= (4)21402 x mx m -+-= 【答案】有两个实数根 【答案】有两个不相等的实数根 三、结合“0a ≠”确定字母的取值范围 3.若关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ) A .1a ≥ B .1a >且5a ≠ C .1a ≥且5a ≠ D .5a ≠ 【答案】C 4.当m 为何值时,关于x 的一元二次方程()()2212110m x m x -+-+=有两个不相等的实数根? 【答案】依题意得( )()2221041410m m m ?-≠??---??>,解得1m <且1m ≠-

四、判别式与隐含条件相结合 5.已知关于x 的一元二次方程()21210k x x ---=有两个不相等的实数根,求k 的最大整数值. 【答案】依题意得:()4410k +->且10k -≠,解得2k <且1k ≠,所以k 的最大整数值为0. 6.已知关于x 的一元二次方程2450kx kx k -+-=有两个相等的实数根,求k 的值. 【答案】依题意得()2016450k k k k ≠???--=??,解得53k =-

第二章一元二次方程培优奥赛讲义

九上第二章一元二次方程培优讲义一.填空题(共15小题) 1.已知a是方程x2﹣2013x+1=0一个根,求a2﹣2012a+的值为.2.附加题:已知m,n都是方程x2+2007x﹣2009=0的根,则(m2+2007m﹣2008)(n2+2007n﹣2010)的值为. 3.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是. 4.已知x=﹣1是方程ax2+bx+c=0根,那么的值是. 5.已知a,b是等腰三角形ABC的两边长,且a、b满足a2+b2+29=10a+4b,则这个等腰三角形的周长为. 6.若实数a、b、c满足a2+b2+c2+4≤ab+3b+2c,则200a+9b+c=. 7.已知关于x的方程x2+(a﹣6)x+a=0的两根都是整数,则a的值等于.8.若方程x2﹣4|x|+5=m有4个互不相等的实数根,则m应满足.9.已知:a2+b2=1,a+b=,且b<0,那么a:b=. 10.方程(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2的解是.11.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.12.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是. 13.α,β为关于x的一元二次方程x2﹣x+2=0的两个根,则代数式2α2+β2+β﹣3的值为. 14.中新网4月26日电,据法新社26日最新消息,墨西哥卫生部长称,可能已有81人死于猪流感(又称甲型H1N1流感).若有一人患某种流感,经过两轮传染后共有81人患流感,则每轮传染中平均一人传染了人,若不加以控制,以这样的速度传播下去,经三轮传播,将有人被感染. 15.一个两位数,个位数字比十位数字的平方大3,而这个两位数字等于其数字之和的3倍,如果这个两位数的十位数字为x,则方程可列为.

专题:一元二次方程根的判别式(含答案)-

一元二次方程根的判别式 姓名 ◆课前预习 1.一元二次方程ax 2+bx+c=0(a ≠0)的根的情况可用b 2-4ac?来判定,?b 2-4ac?叫做________,通常用符号“△”为表示.(1)b 2-4ac>0?方程_________;(2)b 2-4ac=0?方程_________; (3)b 2-4ac<0?方程_________. 2.使用根的判别式之前应先把方程化为一元二次方程的________形式. ◆互动课堂 【例1】不解方程,判别下列方程根的情况: (1)x 2-5x+3=0; (2)x 2;(3)3x 2+2=4x ; (4)mx 2+(m+n )x+n=0(m ≠0,m ≠n ). 【例2】若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,求m 的取值范围. 【例3】已知关于x 的一元二次方程x 2-(2k+1)x+4(k -12 )=0.(1)求证:无论k 取什么实数 值,这个方程总有实数根;(2)如果等腰△ABC 有一边长a=4,另两条边长b ,c 恰好是这个方程的两个实数根,求△ABC 的周长. 【例4】已知关于x 的方程x -2(m+1)x+m 2=0.(1)当m 取何值时,方程有两个实数根? (2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根. ◆跟进课堂 1.方程2x 2+3x -4=0的根的判别式△=________. 2.已知关于x 的一元二次方程mx 2-10x+5=0有实数根,则m 的取值范围是______. 3.如果方程x 2-2x -m+3=0有两个相等的实数根,则m 的值为_______,此时方程的根为________. 4.若关于x 的一元二次方程kx 2+2x -1=0没有实数根,则k 的取值范围是______. 5.若关于x 的一元二次方程mx 2-2(3m -1)x+9m -1=0有两个实数根,则实数m?的取值范围是_______. 6.下列一元二次方程中,没有实数根的是( ). A .x 2+2x -1=0 B .x 2 C .x 2 D .-x 2+x+2=0 7.如果方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数是( ).A .-1 B .0 C .1 D .2 8.下列一元二次方程中,有实数根的方程是( ). A .x 2-x+1=0 B .x 2-2x+3=0 C .x 2+x -1=0 D .x 2+4=0 9.如果关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,那么k 的取值范围是( ). A .k<1 B .k ≠0 C .k<1且k ≠0 D .k>1 10.关于x 的方程x 2+(3m -1)x+2m 2-m=0的根的情况是( ). A .有两个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆课外作业 1.在下列方程中,有实数根的是( ) (A )x 2+3x+1=0 (B (C )x 2+2x+3=0 (D )1x x -=11 x - 2.关于x 的一元二次方程x 2+kx -1=0的根的情况是 A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数根 C 、有两个相等的实数根 D 、没有实数根 3.关于x 的一元二次方程(a -1)x 2+x +a 2+3a -4=0有一个实数根是x =0.则a 的值为( ). A 、1或-4 B 、1 C 、-4 D 、-1或4 4.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 . 5.若0是关于x 的方程(m -2)x 2+3x+m 2-2m -8=0的解,求实数m 的值,并讨论此方程解的情况.

一元二次方程的应用(专题训练)上课讲义

一元二次方程的应用(专题训练)

一元二次方程的实际应用 (1)与数字有关的问题 例1 一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数 解: 练习题一 1.一个两位数,个位数字比十位数字大3,个位数字的平方恰好等于这个两位数,则这个两位数是多少? 2、某两位数的十位数字是082=-x x 的解,则其十位数字是多少;某两位数的个位数字是方程082=-x x 的解,则其个位数是多少? 3、一个两位数,个位上数字比十位数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x ,求这个两位数? 4、一个两位数,个位上的数字是十位数字的平方还多1,若把个位上的数字与十位上的数字对调,所得的两位数比原数大27,求原两位数? 5、一个三位数,百位上数字为2,十位上数字比个位上数字小3,这个三位数个位、十位、百位上的数字之积的6倍比这个三位数小20,求这个三位数?

例2 三个连续奇数,它们的平方和为251,求这三个数? 解: 练习题二 1、两个数的和为16,积为48,则这两个正整数各是多少? 2、若两个连续正整数的平方和为313,则这两个正整数的和是多少? 3、三个连续正整数中,前两个数的平方和等于第三个数的平方,则这三个数从小到大依次是多少? 4、三个连续偶数,使第三个数的平方等于前两个数的平方和,求这三个数? 5、有四个连续整数,已知它们的和等于其中最大的与最小的两个整数的积,求这四个数?

(2)与几何图形面积有关的问题 例3 一个直角三角形三边的长是三个连续整数,求这三条边的长和它的面积 解: 练习题三 1.直角三角形两直角边的比是8:15,而斜边的长等于6.8cm ,那么这个直角三角形的面积等于多少? 2、直角三角形的面积为6,两直角边的和为7,则斜边长为多少? 3、用一条长12厘米的铁丝折成一个斜边长是5厘米的直角三角形,则两直角边的长是多少? 4、一个三角形的两边长为2和4,第三边长是方程0121022=+-x x 的解,则三角形的周长为多少 6、若三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为多少?

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次函数解法 辅导讲义

课题一元二次方程的解法 重点、难点熟练掌握一元二次方程的解法 教学内容 一元二次方程的解法: ①因式分解法: 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零. →因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 例题:用因式分解法解方程:3(x-3)=(x-3)2 练习:(2x+3)2=24x (2x-1)(3x+4)=x-4 1.2y-0.04=9y2 (2x-1)2+3(2x-1)=0 ②开平方法:方程的左边是完全平方式,右边是非负数x2=a(a》0) 例题:3x2-27=0; 练习:(x+1)2=4 (2x-3)2=7 x2+2x-3=0 ③配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 用配方法解一元二次方程的步骤: 1.变形:把二次项系数化为1 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解. 例题:x2-6x=-8

练习:(1)3x 2+6x-4=0 (2)2x 2-5x+2=0 ④公式法: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax 2+bx+c=0(a ≠0). 2.b 2-4ac ≥0. 例题:X 2+2x-3=0 练习: -2m 2+4=-3m 23a 2-a-4 1=0 8y 2-2y-15=0 △ 用三种方法解方程:2532=-x x (1)用因式分解法解: 解:移项,得 3x2-5x-2=0 ( 使方程右边为零) 方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成A`B=0的形式) 即 x-2=0或3x+1=0(A=0或B=0) 31 ,221-==∴x x (2)用配方法解: 解:两边同时除以3,得: 32352=-x x 左右两边同时加上 2 )65( ,得: .3625323625352+=+-x x 即 .3649652=??? ? ?-x 开平方,得:.36496 5±=-x .31,221-==∴x x (3)用公式法解: 解:移项,得02532=--x x ( 这里a=3,b=-5,c=-2) ())2(34542 2-??--=-∴ac b =49 6753249)5(±=?±--=∴x () .04a c b .2a 4a c b b x 22≥--±-=

根的判别式练习(答案版)

一元二次方程根的判别式练习题 (一)填空 1.方程x2+2x-1+m=0有两个相等实数根,则m=____. 2.a是有理数,b是____时,方程2x2+(a+1)x-(3a2-4a+b)=0的根也是有理数. 3.当k<1时,方程2(k+1)x2+4kx+2k-1=0有____实数根. 5.若关于x的一元二次方程mx2+3x-4=0有实数根,则m的值为____. 6.方程4mx2-mx+1=0有两个相等的实数根,则 m为____. 7.方程x2-mx+n=0中,m,n均为有理数,且方程有一个根是2 8.一元二次方程ax2+bx+c=0(a≠0)中,如果a,b,c是有理数且Δ=b2-4ac是一个完全平方数,则方程必有__.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x-1=0有两个实数根,则m的值为____. 10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____. 11.已知方程2x2-(3m+n)x+m·n=0有两个不相等的实数根,则m,n的取值范围是____. 12.若方程a(1-x2)+2bx+c(1+x2)=0的两个实数根相等,则a,b,c的关系式为_____. 13.二次方程(k2-1)x2-6(3k-1)x+72=0有两个实数根,则k为___. 14.若一元二次方程(1-3k)x2+4x-2=0有实数根,则k的取值范围是____. 15.方程(x2+3x)2+9(x2+3x)+44=0解的情况是_解. 16.如果方程x2+px+q=0有相等的实数根,那么方程x2-p(1+q)x+q3+2q2+q=0____实根. (二)选择 那么α= [ ]. 18.关于x的方程:m(x2+x+1)=x2+x+2有两相等的实数根,则m值为 [ ]. 19.当m>4时,关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数为 [ ]. A.2个; B.1个; C.0个; D.不确定. 20.如果m为有理数,为使方程x2-4(m-1)x+3m2-2m+2k=0的根为有理数,则k的值为 [ ]. 则该方程 [ ]. A.无实数根; B.有相等的两实数根; C.有不等的两实数根; D.不能确定有无实数根. 22.若一元二次方程(1-2k)x2+8x=6没有实数根,那么k的最小整数值是 [ ]. A.2; B.0; C.1; D.3. 23.若一元二次方程(1-2k)x2+12x-10=0有实数根,那么k的最大整数值是 [ ]. A.1; B.2; C.-1; D.0. 24.方程x2+3x+b2-16=0和x2+3x-3b+12=0有相同实根,则b的值是 [ ]. A.4; B.-7; C.4或-7; D.所有实数. [ ]. A.两个相等的有理根; B.两个相等的实数根; C.两个不等的有理根; D.两个不等的无理根. 26.方程2x(kx-5)-3x2+9=0有实数根,k的最大整数值是 [ ]. A.-1; B.0; C.1; D.2. 29.若m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为 [ ]. A.4; B.1; C.-2; D.-6. 30.方程x|x|-3|x|+2=0的实数根的个数是 [ ]. A.1; B.2; C.3; D. 4.

中考数学一轮复习知识点+题型专题讲义12 一元二次方程(教师版)

专题12 一元二次方程 考点总结 【思维导图】

【知识要点】 知识点一一元二次方程定义及一般形式 概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。 一般形式: 20(0) ax bx c a ++=≠。其中a为二次项系数,b为一次项系数,c为常数项。 【注意】 1)只含有一个未知数; 2)所含未知数的最高次数是2; 3)整式方程。 1.(2019·四川中考模拟)下列方程,是一元二次方程的是() ①3x2+x=20,②2x2-3xy+4=0,③x2-1 x =4,④x2=0,⑤x2- 3 x +3=0 A.①②B.①④⑤C.①③④D.①②④⑤ 【答案】B 【详解】 ①符合一元二次方程的定义,是一元二次方程;②含有两个未知数x、y,不符合一元二次方程的定义,不是一元二次方程;③方程中含有分式,不符合一元二次方程的定义,不是一元二次方程;④符合一元二次方程的定义,是一元二次方程;⑤符合一元二次方程的定义,是一元二次方程;综上,是一元二次方程的是①④⑤,故选B. 2.(2019·广西柳州二十五中中考模拟)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常

数)一个解的范围是( ) A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 【答案】C 【详解】 观察表格可知ax 2+bx+c 的值与0比较接近的是-0.02和0.03,相对应的x 的值分别为3.24秘3.25,因此方程ax 2+bx+c=0(a≠0,a 、b 、c 为常数)一个解的范围是3.24<x <3.25; 故选C. 3.(2019·广东中考模拟)方程2x 2﹣3x ﹣5=0的二次项系数、一次项系数、常数项分别为( ) A .3、2、5 B .2、3、5 C .2、﹣3、﹣5 D .﹣2、3、5 【答案】C 【详解】2x 2﹣3x ﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣3、﹣5. 故选C. 4.(2018·湖南中考模拟)下列方程中是关于x 的一元二次方程的是( ) A .2 2 1 0x x + = B .20ax bx c ++= C .()()121x x -+= D .223250x xy y --= 【答案】C 【详解】 A. 是分式方程,故此选项错误; B. 当a≠0时,是一元二次方程,故此选项错误; C. 是一元二次方程,故此选项正确; D. 是二元二次方程,故此选项错误; 故选:C. 5.(2018·湖北中考模拟)下列关于x 的方程中,属于一元二次方程的是( ) A .x ﹣1=0 B .x 2+3x ﹣5=0 C .x 3+x=3 D .ax 2+bx+c=0 【答案】B 【详解】

一元二次方程判别式及韦达定理

一元二次方程判别式及韦达定理 一、选择题 1.(2013湖北黄冈)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( ) A .2 B .3 C .4 D .8 2.(2013四川泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .1k >- B .1k <且0k ≠ C . 1k ≥-且0k ≠ D . 1k >-且0k ≠ 3. (2013四川泸州,)设12,x x 是方程2330x x +-=的两个实数根,则 2112 x x x x +的值为( ) A .5 B .-5 C .1 D .-1 4. (2013福建福州,)下列一元二次方程有两个相等实数根的是( ) A .x 2+3=0 B .x 2+2x =0 C .(x +1)2=0 D .(x +3)(x -1)=0 5.(2013山东滨州,)对于任意实数k ,关于x 的方程程x 2-2(k +1)x -k 2+2k -1=0的根的情况为 A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 6.(2013广东广州)若0205<+k ,则关于x 的一元二次方程042=-+k x x 的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断 7.(2013山东日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计准确的是 A .121-<<-x B .231-<<-x C .321<

二次函数与一元二次方程讲义

二次函数与一元二次方程 1?通过探索,理解二次函数与一元二次方程之间的联系. 2?能运用二次函数及其图象确定方程和不等式的解或解集. 3?根据函数图象与x轴的交点情况确定未知字母的值或取值范围. 、情境导入

如图,是二次函数y = ax2+ bx + c图象的一部分,你能通过观察图象得到一元二次方程ax2+ bx + c = 0的解集吗?不等式ax2+ bx + c<0的解集呢? 二、合作探究 探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x轴交点情况判断 F列函数的图象与x只有一个交点的 A. y= x2+ 2x —3 B. y = x2+ 2x + 3

C. y = X2—2x + 3 D . y= x2—2x + 1 解析:选项 A 中b2—4ac= 22—4X1 x(—3) = 16 >0 ,选项B 中b2—4ac = 22—4x i x 3= —8 v 0,选项C 中b2—4 ac= (—2)2—4 x i x3 = —8 v 0,选项D 中b2—4 ac = (—2)2— 4x i x i = 0 ,所以选项D的函数图象与X轴只有一个交点,故选 D. 【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴 如图,对称轴平行于y轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为___________

解析:???点(1 , 0)与(3 , 0)是一对对称点,其对称中心是(2 , 0) ,???对称轴的方程是x = 2. 方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程. 【类型三】利用函数图象与x轴交点情况确定字母取值范围 1 若函数y = mx2+ (m + 2)xm + 1 的图象与x轴只有一个交点,那么m的值为() A. 0 B . 0 或2 C. 2 或—2 D. 0, 2 或—2 解析:若m丸,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式 1 为零来求解;若m = 0,原函数是一次函数,图象与x轴也有一个交点.由(m + 2)2—4m$ m + 1)= 0,解得m = 2或一2,当m = 0时原函数是一次函数,图象与x轴有一个交点, 所以当m = 0, 2或一2时,图象与x轴只有一个交点. 方法总结:二次函数y = ax2+ bx + c,当b2—4ac >0时,图象与x轴有两个交点;当 b2—4ac= 0时,图象与x轴有一个交点;当b2—4ac v0时,图象与x轴没有交点.

一元二次方程讲义-绝对经典实用教案.doc

一元二次方程 ●夯实基础 例1 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围_________. 例2 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. ●能力提升 1、已知方程2240a b x x x --+=是关于x 的一元二次方程,求a =______、b =______. 2、若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数 ●培优训练 例3 m 为何值时,关于x 的方程2 ((3)4m m x m x m --+=是一元二次方程. 例4已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值. ●练习 1、m 为何值时,关于x 的方程2 ((3)4m m x m x m -+=是一元二次方程. 2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围. 4、若 2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________ ●夯实基础 (1)2269(52)x x x -+=- 21)x -= (3) 211 063 x x +-= (4) 231y += 板块一 一元二次方程的定义 板块二 一元二次方程的解与解法

一元二次方程根的判别式专题训练

一元二次方程根的判别式专题训练 1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = . 2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________. 3. (2010 江苏省苏州市) 若一元二次方程()2 220x a x a -++=的两个实数根分别是3b 、,则a b +=_________. 4. (2010 江苏省苏州市) 下列四个说法中,正确的是( ) A .一元二次方程22 452 x x ++=有实数根; B. 一元二次方程23 452 x x ++=有实数根; C. 一元二次方程25 453x x ++= 有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根. 5. (2010 湖南省益阳市) 一元二次方程 )0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42 -满足的条件是 A.ac b 42 -=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= . 7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, 求m 的值及方程的根. 8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根? 9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根. 10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念: 中考常见题型: 例1、下列方程中哪些是一元二次方程?试说明理由。 x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4) 2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一 —4)例次方程?2。,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-4 2(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程? 2)一元二次方程的解法: 1)直接开平方法(换元思想): 2)配方法: 3)求根公式(符号问题): 4)因式分解法(十字交叉法): 中考常见题型: 例1:考查直接开平方法和换元思想。 1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22( 249??1x?2x2 4)(2x+1)=(x-1) (5) 2( 2:用配方法解方程x+px+q=0(p2-4q≥0). 2例

例3:用配方法解方程: 22xx(1)-6x-7=0;(2)+3x+1=0. 2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3= 2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为 22-1=0 -(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1) -c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根. 练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n +m=0.求证:关于x的方程x+(2m+1)x-m2 22有两个不相等的实数根. 7例: 2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()3 3)一元二次方程的应用(常见四类题型):

中考专题_一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系 【重点、难点、考点】 重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。 ②掌握根与系数的关系及应用 难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。 考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。 【经典范例引路】 例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( ) A.m<43 B.m ≤43 C.m>43 且m ≠2 D.m ≥43 且 m ≠2 (2001年山西省中考试题) 【解题技巧点拨】 解 C ①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形 解题原理:对方程ax 2+bx +c =0 (a ≠0) 方程有两实根Δ方程有两相等实根 Δ方程有两不等实根Δ?≥? ?? ?=?>000 Δ<0?方程没有实根 注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。 例2 先阅读下列第(1)题的解答过程

(1)已知αβ是方程x2+2x-7=0的两个实数根。求α2+3β2+4β的值。 解法1 ∵α、β是方程x2+2x-7=0的两实数根 ∴α2+2α-7=0 β2+2β-7=0 且α+β=-2 ∴α2=7-2αβ2=7-2β ∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2 ×(-2)=32 解法2 由求根公式得α=-1+22β=-1-22 ∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22) =9-42+3(9+42-4-82)=32 解法3 由已知得:α+β=-2 αβ=-7 ∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2 +4α=B ∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ① A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ② ①+②得:2A=64 ∴A=32 请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题 (2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。x13+7x22 +3x2-66的值。 解∵x1、x2是方程x2-x-9=0的两根 ∴x1+x2=1 且x12-x1-9=0 x22-x2-9=0 即 x12=x1+9 x22=x2+9 ∴x13+7x22+3x2-66=x1(x1+9)+7(x2+9)+3x2-66 =x12+9x1+10x2-3=x1+9+9x1+10x2-3=10(x1+x2)+ 6=16 【同步达纲练习】 一、填空题

5一元二次方程的应用尖子班讲义

一元二次方程根与系数关系及应用题(讲义) 一、知识点睛 1.从求根公式中我们发现12x x +=_______,12x x ?=_________, 这两个式子称为_____________,数学史上称为___________. 注:使用___________________的前提是_________________. 2.一元二次方程应用题的常见类型有: ①______________;②______________;③______________. 增长率型 例如:原价某元,经过两次连续降价(涨价); 1人患了流感,经过两轮传染. 经济型 例如:“每涨价××元,则销量减少××件”. 3.应用题的处理流程: ① 理解题意,辨析类型; ② 梳理信息,建立数学模型; ③ 求解,结果验证. 二、精讲精练 1. 若x 1,x 2是一元二次方程2274x x -=的两根,则x 1+x 2与12x x ?的值分别是 ( ) A .7错误!未找到引用源。,4 B .7 2-,2 C .7 2,2 D .72 , -2 2. 若x 1 =2是一元二次方程210x ax ++=的一个根,则 该方程的另一个根x 2=_________,a =________. 3. 若关于x 的方程2210x x a ++-=有两个负根,则a 的取值范围是 ____________________. 4. 若关于x 的方程2220x x m +-=的两根之差的绝对值是则m =________. 5. 某商品原售价289元,经过连续两次降价后售价256元.设平均每次降价的 百分率为x ,则下面所列方程正确的是( ) A .2289(1)256x -= B .2256(1)289x -= C .289(12)256x -= D .256(12)289x -= 6. 据调查,某市2013年的房价为6 000元/米2,预计2015年将达到8 840元/ 米2,求该市这两年房价的年平均增长率.设年平均增长率为x ,根据题意,所列方程为_______________. 7. 有一人患了流感,经过两轮传染后共有121人患了流感,则每轮传染中平均 一个人传染了________________个人.

一元二次方程全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式: 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想 一元二次方程???→ 降次一元一次方程

2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程 )0(02 ≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42 -=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解 决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;

相关文档
最新文档