专题一元二次方程根的判别式含复习资料
中考数学复习《一元二次方程根的判别式、根与系数的关系》
专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•东城区一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根6.(2023•新郑市模拟)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根8.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】9.(2023•洛阳二模)已知关于x的一元二次方程x2+4x+k=0有两个实数根,则k的值为()A.k=4B.k=﹣4C.k≤4D.k<4 10.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1 B.m≤﹣1 C.m<﹣1D.m≥﹣1且m≠0 11.(2023•东莞市校级一模)已知方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值()A.k>﹣1B.k>1C.k>1且k≠0D.k>﹣1且k≠0 12.(2023春•洞头区期中)关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值是()A.﹣36B.﹣9C.9D.36 13.(2023•阿克苏市一模)若关于x的一元二次方程(k﹣2)x2+2x+3=0有两个实数根,则k的取值范围()A.B.C.k<且k≠2D.且k≠2 14.(2023•贵阳模拟)若关于x的一元二次方程x2﹣4x﹣k=0没有实数根,则k的值可以是()A.﹣5B.﹣4C.﹣3D.2【题型3 由根的判别式证明方程求根的必然情况】15.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.16.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.17.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.18.(2023•金溪县模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两根分别是等腰△ABC两边AB、AC的长,其中BC=10,求k 值.19.(2023•长安区校级一模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:方程有两个不相等的实数根;(2)若该方程的一个根为x=0,且m为正数,求m的值.20.(2022秋•东城区期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m的值,并求出此时方程的解.【题型4 由根与系数的关系求代数式(直接)】21.(2023•红桥区模拟)若一元二次方程x2+4x﹣12=0的两个根分别为x1,x2,则x1+x2的值等于()A.﹣4B.4C.﹣12D.12 22.(2023•五华县校级开学)设一元二次方程x2﹣12x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.3 23.(2023•六盘水二模)已知x1、x2是一元二次方程x2+4x+3=0的两根,则x1+x2+2x1x2的值为()A.﹣2B.﹣1C.1D.2 24.(2023•长丰县模拟)若m,n是方程x2﹣2x﹣3=0的两个实数根,则m+n ﹣mn的值是()A.5B.﹣5C.1D.﹣1【题型5 由根与系数的关系求代数式(代换)】25.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.26.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 27.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 28.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 29.(2022秋•南安市期末)已知一元二次方程x2﹣3x+1=0的两根分别是x1、x2,则x2+x1的值是()A.﹣2B.2C.﹣3D.3 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1 32.(2022秋•嘉陵区校级期末)如果m,n是一元二次方程x2+x=3的两个根,那么多项式m3+4n﹣mn+2022的值等于()A.2018B.2012C.﹣2012D.﹣2018【题型7 构造一元二次方程求代数式的值】33.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 34.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 35.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 36.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023 37.(2023春•江岸区校级月考)设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣6040 38.(2022秋•莲池区校级期末)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.12【题型8 已知方程根的情况判断另一个根】39.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 40.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 41.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 42.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 43.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。
一元二次方程的根与判别式
一元二次方程的根与判别式一元二次方程是数学中的经典问题,它的解析式可表示为ax^2 + bx + c = 0,其中a、b、c为实数且a ≠ 0。
而求解一元二次方程的根则需要使用判别式,下面将详细介绍一元二次方程的根和判别式。
1. 一元二次方程根的定义一元二次方程的根是指满足方程成立的未知数值。
对于一元二次方程ax^2 + bx + c = 0而言,若存在实数x1和x2使得将x1和x2代入方程后方程成立,则称x1和x2是一元二次方程的根。
2. 一元二次方程的解法(1) 因式分解法当一元二次方程的系数a、b、c满足一定条件时,可以使用因式分解法来求解方程的根。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其进行因式分解为(x + 2)(x + 3) = 0,从而得到方程的两个根为x = -2和x = -3。
(2) 完全平方法当一元二次方程的系数a、b、c满足一定条件时,可以使用完全平方法来求解方程的根。
例如,对于方程x^2 - 4x + 4 = 0,我们可以将其改写为(x - 2)^2 = 0,从而得到方程的根为x = 2。
(3) 公式法对于一元二次方程ax^2 + bx + c = 0,我们可以使用求根公式来求解方程的根。
公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,分别称为x1和x2。
3. 一元二次方程的判别式判别式是指用来判断一元二次方程的根的性质的一项数学公式。
对于一元二次方程ax^2 + bx + c = 0而言,其判别式的计算公式为Δ =b^2 - 4ac,即Δ等于系数b的平方减去4ac。
判别式Δ的值有以下三种情况:(1) 当Δ > 0时,方程有两个不相等的实数根。
此时,方程的根可以通过求根公式求解。
(2) 当Δ = 0时,方程有两个相等的实数根。
此时,方程的根可以通过求根公式求解,并且两个根是相等的。
(3) 当Δ < 0时,方程没有实数根,而是有两个共轭复数根。
第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)
专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
一元二次方程的根的判别式
一元二次方程的根的判别式Ting Bao was revised on January 6, 20021一元二次方程的根的判别式学习指导一、基本知识点:1.根的判别式:对于任何一个一元二次方程ax2+bx+c=0(a≠0)可以用配方法将其变形为:(x+)2=因为a≠0,所以4a2>0,这样一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定。
我们把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,用希腊字母⊿来表示,即⊿=b2-4ac。
一元二次方程ax2+bx+c=0(a≠0),当⊿=b2-4ac>0时,有两个不相等的实数根;当⊿=b2-4ac=0时,有两个相等的实数根;当⊿=b2-4ac<0时,没有实数根。
上述性质反过来也成立。
2.判别式的应用(1)不解方程,判断方程的根的情况;(2)根据方程的根情况确定方程的待定系数的取值范围;(3)证明方程的根的性质;(4)运用于解综合题。
二、重点与难点一元二次方程的根的判别式的性质是初中数学中的一个重要内容,在高中数学中也有重要应用。
正确理解判别式的性质,熟练灵活地运用它,是本节的重点,同时也是难点。
三、例题解析例1不解方程,判断下列方程根的情况(1)2x2-5x+10=0(2)16x2-8x+3=0(3)(-)x2-x+=0(4)x2-2kx+4(k-1)=0(k为常数)(5)2x2-(4m-1)x+(m-1)=0(m为常数)(6)4x2+2nx+(n2-2n+5)=0(n为常数)解:(1)⊿=(-5)2-4×2×10=-55<0∴方程没有实数根(2)⊿=(-8)2-4×16×3=0∴方程有两个相等的实数根(3)⊿=(-)2-4(-)×=5-4+8>0∴方程有两个不相等实根(4)⊿=(-2k)2-4×1×4(k-1)=4k2-16k+16=4(k2-4k+4)=4(k-2)2≥0∴方程有实数根(5)⊿=〔-(4m-1)〕2-4×2×(m-1)=16m2-8m+1-8m+8=16m2-16m+9=4(2m-1)2+5>0∴方程有两个不相等实根(6)⊿=(2n)2-4×4(n2-2n+5)=4n2-16n2+32n-80=-12n2+32n-80=-12(n-)2-<0∴方程没有实数根说明:①解这类题目时,一般要先求出⊿=b2-4ac,然后对⊿=b2-4ac进行化简或变形,使⊿=b2-4ac的符号明朗化,进而说明⊿=b2-4ac的符号情况,得出结论。
一元二次方程复习---挖掘隐含条件,打开解题突破口
∴m,n是方程x2-x-1=0的两个根.
∴m+n=1
mn= -1
法1:m2+n2=m+n+2=3
法2:m2+n2=(m+n)2-2mn=1-2× (−1) = 3
隐含条件:m,n是方程x2-x-1=0的两个根.Fra bibliotek当堂检测:
7. 如果关于 x 的方程(m-2)x2-2x+1=0 有实数解,求 m 的取值范围。
(1)隐含一元一次方程-------忽视“方程有实根”的含义,导致字母系数取值范围缩小
(2)隐含二次项系数a≠0------忽视二次项系数a≠0,导致字母系数取值范围扩大
1、关于x的方程(a2-4)x2+(a+2)x-1=0
(1)当a取什么值时,它是一元一次方程?
(2)当a取什么值时,它是一元二次方程?
解:(1)
a2-4=0
(2) a2-4≠0
a+2≠0
∴a=2
∴当a=2时,原方程是一元一次方程
隐含条件--------- 隐在其中,含而不露
∴a≠±2
∴当a≠±2时,原方程是一元二次方程
推论:如果方程 x2+px+q=0 的两个根是 x1,x2
那么
x1+x2=-p ,x1x2= q
.
温故知新:
6. 隐含条件:
是指已经包含于题目的文字叙述、图示表示或符号表示中,
但又未明确指出的条件.
也指在题目已知信息中没有明显呈现,
但却与题目涉及的数学概念、知识或方法等密切联系的数学信息。
当堂检测:
x
当堂检测:
思维拓展,更上一层
复习2:一元二次方程根的判别式
4、若关于x的一元二次方程mx2-2x+1=0有两个不相等实数根,
则m的取值范围是
()
A.m<1
B. m<1且m≠0
C.m≤1
D. m≤1且m≠0
5、若关于x的方程x2+(2k-1)x+k2-7/4=0有两个相等的实数根,则 k= .
6.关于x的一元二次方程mx2-(3m-1)x+2m-1=0, 其根的判别式的值为1,求m的值及该方程的根。
则x1+x2=
;x1x2= ;
2、方程2x2-kx-6=0的一个根是2,则k=
;
另一个根为( )
3、以2,-3为根的一元二次方程是
;
4、已知a、b是方程x2+x-1=0的两实根,则
a2+2a+b=
拓展已知a、b满足6a=a2+4,6b=b2+4,
求 ab ba
思维训练. 1、在一元二次方程
ax2 bx c 0(a 0)中
3、一元二次方程的根与系数的关系:注意:此关系是在( )条件下存 在的。若 ax2+bx+c=0 的两根为 X1、x2,则x1+x2= ;x1x2= ;
4、以x1、x2为根(二次项系数为1)的一元二次方程是——————
➢ 课时训练(一)
Hale Waihona Puke 1、下列一元一次方程中,有实数根的是( )
A
.x2-x+1=0
➢ 要点、考点聚焦
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
中考复习——一元二次方程的根的判别式(解析版)
中考复习——一元二次方程的根的判别式一、选择题1、一元二次方程2x2-3x+1=0的根的情况是().A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根答案:B解答:∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.2、已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是().A. k<14B. k≤14C. k>4D. k≤14且k≠0答案:B解答:∵关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,∴Δ=b2-4ac≥0,∵a=1,b=-(2k+1),c=k2+2k,∴[-(2k+1)]2-4×1×(k2+2k)≥0,∴-4k≥-1,∴k≤14.选B.3、若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定答案:A解答:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.选A.4、关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是().A. m≤12B. m≤12且m≠0C. m<1D. m<1且m≠0答案:B解答:∵Δ=[2(m-1)]2-4m2=-8m+4≥0,∴m≤12.∵x1+x2=-2(m-1)>0,x1x2=m2>0,∴m<1,m≠0,∴m≤12且m≠0.5、关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,且α2+β2=12,那么m的值为().A. -1B. -4C. -4或1D. -1或4答案:A解答:由题意知α+β=-2(m-1)=2-2m,αβ=m2-m,且Δ=[2(m-1)]2-4(m2-m)≥0,4(m2-2m+1)-4m2+4m≥0,4m2-8m+4-4m2+4m≥0,-4m≥-4,m≤1,由α2+β2=12可有(α+β)2-2αβ=12,(2-2m)2-2(m2-m)=12,4m2-8m+4-2m2+2m-12=0,2m2-6m-8=0,m2-3m-4=0,(m-4)(m+1)=0,解得m1=-1,m2=4,∵m ≤1故m =-1. 故答案为:A.6、关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1.其中正确结论的个数是( ).A. 0个B. 1个C. 2个D. 3个答案:D解答:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1·x 2=2n >0,y 1·y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,这两个方程的根都为负根,①正确; ②由根判别式有:Δ=b 2-4ac =4m 2-8n ≥0,Δ=b 2-4ac =4n 2-8m ≥0, ∵4m 2-8n ≥0,4n 2-8m ≥0,∴m 2-2n ≥0,n 2-2m ≥0,m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1、y 2均为负整数,故(y 1+1)(y 2+1)≥0,故2m -2n ≥-1,同理可得:2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1,得2n -2m ≥-1,即2m -2n ≤1,故③正确. 7、若关于x 的不等式x -2a<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ). A. 有两个相等的实数根 B. 有两个不相等的实数根C. 无实数根D. 无法确定答案:C解答:解不等式x -2a <1得x <1+2a , 而不等式x -2a<1的解集为x <1, 所以1+2a=1,解得a =0, 又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.8、已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( ).A. b=-1B. b=2C. b=-2D. b=0答案:A解答:Δ=b2-4,由于当b=-1时,满足b<0,而Δ<0,方程没有实数解,所以当b=-1时,可说明这个命题是假命题.9、在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=0答案:B解答:设3个函数的判别式分别为Δ1=a2-4,Δ2=b2-8,Δ3=c2-16,∵b2=ac,∴c=2ba,A选项,若M1=2,M2=2,则Δ1=a2-4>0,Δ2=b2-8>0,∵a>2,b2>8,∴c=2ba与4无法比较大小,∴Δ3=c2-16无法确定,故A错误;B选项,若M1=1,M2=0,则Δ1=a2-4=0,Δ2=b2-8<0,∴a=2,0<b2<8,∴c=282ba<=4,∴Δ3=c2-16<0,∴M3=0,故B正确;C选项,若M1=0,M2=2,则Δ1=a2-4<0,Δ2=b2-8>0,∴0<a<2,b2>8,∴C =2b a>4,∴Δ3=c 2-16>0, ∴M 3=2,故C 错误; D 选项,若M 1=0,M 2=0, 则Δ1=a 2-4<0,Δ2=b 2-8<0, ∴0<a <2,0<b 2<8,∴c =2b a与4无法比较大小,∴Δ3=c 2-16无法确定,故D 错误. 选B.10、已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个公共点. 有下列结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx +c +2=0无实数根; ③a -b +c ≥0; ④a b cb a++-的最小值为3.其中,正确结论的个数是( ).A. 1个B. 2个C. 3个D. 4个答案:D解答:∵b >a >0, ∴-2ba<0, 所以①正确;∵抛物线与x 轴最多有一个交点, ∴b 2-4ac ≤0,∴关于x 的方程αx 2+bx +c +2=0中,Δ=b 2-4a (c +2)=b 2-4ac -8a <0, 所以②正确;∵a >0及抛物线与x 轴最多有一个交点, ∴x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0, 所以③正确;· 当x =-2时,4a -2b +c ≥0 a +b +c ≥3b -3a a +b +c ≥3(b -a )a b cb a++-≥3,所以④正确. 选D. 二、填空题11、若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是______. 答案:n ≥0解答:∵关于x 的一元二次方程(x +2)2=n 有实数根, ∴x 2+4x +4-n =0有实数根, ∴Δ=b 2-4ac =16-4(4-n )=4n ≥0, ∴n ≥0, 故答案为:n ≥0.12、已知关于x 的一元二次方程x 2+k =0有两个相等的实数根,则k 值为______. 答案:3解答:∵关于x 的一元二次方程x 2+k =0有两个相等的实数根,∴Δ=()2-4k =0,∴12-4k =0,解得k =3.13、已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为______. 答案:-1解答:设另一个根为t , 根据题意得4+t =3, 解得t =-1, 即另一个根为-1.14、若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是______(写出一个即可). 答案:3解答:若一元二次方程x2+4x+c=0有两个不相等的实数根,则Δ=42-4c>0,故c<4.15、若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是______.答案:k≤5且k≠1解答:∵一元二次方程(k-1)x2+4x+1=0有实数根,∴k-1≠0,且b2-4ac=16-4(k-1)≥0,解得:k≤5且k≠1.16、已知关于x的一元二次方程x2-4x+m-1=0的实数根x1,x2,满足3x1x2-x1-x2>2,则m 的取值范围是______.答案:3<m≤5解答:由一元二次方程根与系数的关系,得x1x2=m-1,x1+x2=4,代入3x1x2-x1-x2>2,得3(m-1)-4>2,解得m>3,又Δ=16-4(m-1)≥0,解得m≤5,综上可知:3<m≤5.17、已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1和x2,且(x1-2)(x1-x2)=0,则k的值是______.答案:-2或-9 4解答:∵(x1-2)(x1-x2)=0,∴x1-2=0或x1-x2=0.①如果x1-2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,整理,得k2+4k+4=0,解得k=-2.②如果x1-x2=0,那么(x1-x2)2=(x1+x2)2-4x1x2=[-(2k+1)]2-4(k2-2)=4k+9=0,解得k=-94.又∵Δ=(2k+1)2-4(2k+1)≥0.解得:k≥-94.所以k的值为-2或-94.18、关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=______.答案:0解答:∵方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,∴x1+x2=2m-1,x1x2=m2-1,∵x12+x22=(x1+x2)2-2x1x2=(2m-1)2-2(m2-1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴Δ=(2m-1)2-4(m2-1)≥0,既m≤5 4∴m2=2(不合题意,舍去),∴m=0.19、关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是______(填序号).答案:①③解答:当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故答案为∶①③.20、对于函数y=x n+x m,我们定义y’=nx n-1+mx m-1(mn为常数).例如y=x4+x2,则y’=4x3+2x.已知:y=13x3+(m-1)x2+m2x.(1)若方程y’=0有两个相等实数根,则m的值为______.(2)若方程y’=m-14有两个正数根,则m的取值范围为______.答案:(1)1 2(2)m≤34且m≠12解答:(1)y’=x2+2(m-1)x+m2=0方程有两个相等的实数根,则Δ=0,即Δ=4(m-1)2-4m2=-8m+4=0,则m=12.(2)y’=x2+2(m-1)x+m2=m-14,∴x2+2(m-1)x+m2-m+14=0.要使方程有两个实数根,则Δ=4(m-1)2-4(m2-m+14)≥0,∴m≤34.要使方程有正根,则当x=0时x2+2(m-1)x+m2-m+14>0,∴m≠12.答案为m≤34且m≠12.三、解答题21、已知关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,求m的取值范围.答案:m>0且m≠1.解答:∵一元二次方程有两个不等实根,∴Δ=22-4(m-1)×(-1)>0,即m>0,又m-1≠0,∴m≠1,∴m>0且m≠1.22、已知关于x的一元二次方程x2-3x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围.(2)当x1=1时,求另一个根x2的值.答案:(1)m<9 4(2)2解答:(1)由题意得:Δ=(-3)2-4×1×m=94m0,解得:m<94.(2)∵x1+x2=-ba=3,x1=1,∴x2=2.23、已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.答案:(1)k≤54.(2)k=-2.解答:(1)有两个实数根x1,x2,∴Δ=b2-4ac=(2k-1)2-4(k2-1)=-4k+5,∴-4k+5≥0,∴k≤54.(2)∵x12+x22=(x1+x2)2-2x1x2,∴(x1+x2)2-2x1x2=16+x1x2,∴(2k-1)2=16+3(k2-1)k2-4k-12=0,∴k=-2或k=6(舍),∴k=-2.24、已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围.(2)若x1,x2满足3x1=|x2|+2,求m的值.答案:(1)m的取值范围为m≤5.(2)符合条件的m的值为4.解答:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴Δ=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1·x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4.当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.25、已知:一元二次方程12x2+kx+k-12=0.(1)求证:不论k为何实数时,此方程总有两个实数根.(2)设k<0,当二次函数y=12x2+kx+k-12的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式.(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?答案:(1)证明见解答.(2)此二次函数的解析式是y=12x2-x-32.(3)-2≤m≤2.解答:(1)∵Δ=k2-4×12×(k-12)=k2-2k+1=(k-1)2≥0,∴关于x的一元二次方程12x2+kx+k-12=0,不论k为何实数时,此方程总有两个实数根.(2)令y=0,则12x2+kx+k-12=0,∵x A+x B=-2k,x A·x B=2k-1,∴|x A-x B=2|k-1|=4,即|k-1|=2,解得k=3(不合题意,舍去),或k=-1,∴此二次函数的解析式是y=12x2-x-32.(3)由(2)知,抛物线的解析式是y =12x 2-x -32, 易求A (-1,0),B (3,0),C (1,-2),∴AB =4,AC,BC, 显然AC 2+BC 2=AB 2,得△ABC 是等腰直角三角形,AB 为斜边,∴外接圆的直径为AB =4,∴-2≤m ≤2.26、设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若11x +21x =1,求132m-的值. (2)求111mx x -+221mx x --m 2的最大值. 答案:(1(2)当m =-1时,最大值为3.解答:(1)∵方程有两个不相等的实数根,∴Δ=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1,结合题意知:-1≤m <1.∵x 1+x 2=-2(m -2),x 1x 2=m 2-3m +3 ∴11x +21x =1212x x x x +=()22233m m m ---+=1 解得:m 1=12,m 2=12(不合题意,舍去) ∴132m-. (2)111mx x -+221mx x --m 2 =()()1212121221m x x mx x x x x x +--++-m 2=-2(m-1)-m2=-(m+1)2+3.当m=-1时,最大值为3.。
中考专项复习--一元二次方程根与判别式
一元二次方程根的判别式 精典例题: 【例1】当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根;(3)没有实根。
【例2】求证:无论m 取何值,方程03)7(92=-++-m x m x 都有两个不相等的实根。
【例3】当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
探索与创新:【问题一】已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。
【问题二】如图,某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪(如图CDEF ,CD <CF )已知整修旧围栏的价格是每米1.75元,建新围栏的价格是每米4.5元。
(1)若计划修建费为150元,能否完成该草坪围栏修造任务?(2)若计划修建费为120元,能否完成该草坪围栏修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由。
跟踪训练:一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
3、如果二次三项式k x x 2432+-在实数范围内总能分解成两个一次因式的积,则k 的取值范围是 。
问题二图 F E D C B A4、在一元二次方程02=++c bx x 中)(c b ≠,若系数b 、c 可在1、2、3、4、5中取值,则其中有实数解的方程的个数是 。
二、选择题:1、下列方程中,无实数根的是( )A 、011=-+-x xB 、762=+y yC 、021=++xD 、0232=+-x x2、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( )A 、43<mB 、m ≤43C 、43>m 且m ≠2D 、m ≥43且m ≠2 3、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定三、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。
一元二次方程的根的判别式
一元二次方程的根的判别式为了判断一元二次方程的根的情况,我们可以使用根的判别式。
根的判别式表示为Δ=b^2-4ac,其中Δ代表判别式,b代表x的一次项的系数,a代表x的二次项的系数,c代表常数项。
根的判别式Δ的值决定了一元二次方程的根的数量和性质。
1.当Δ>0时,方程有两个不相等的实数根。
当判别式Δ大于零时,方程的根可以用求根公式来计算,即x=(-b±√Δ)/(2a)。
由于Δ大于零,所以√Δ也是实数,因此方程有两个实数根。
举个例子,假设我们有方程x^2-3x+2=0,将a=1,b=-3,c=2代入根的判别式Δ=b^2-4ac得到Δ=(-3)^2-4(1)(2)=9-8=1、因为Δ大于零,所以这个方程有两个实数根。
2.当Δ=0时,方程有两个相等的实数根。
当判别式Δ等于零时,方程的根仍然可以用求根公式来计算,即x=(-b±√Δ)/(2a)。
但是由于Δ等于零,所以方程的两个根将会相等。
举个例子,假设我们有方程x^2-4x+4=0,将a=1,b=-4,c=4代入根的判别式Δ=b^2-4ac得到Δ=(-4)^2-4(1)(4)=16-16=0。
因为Δ等于零,所以这个方程有两个相等的实数根。
3.当Δ<0时,方程没有实数根,而有两个虚数根。
当判别式Δ小于零时,方程没有实数根,而有两个虚数根。
此时,无法使用求根公式来计算方程的根,因为虚数不能直接在实数范围内进行计算。
举个例子,假设我们有方程x^2+2x+5=0,将a=1,b=2,c=5代入根的判别式Δ=b^2-4ac得到Δ=(2)^2-4(1)(5)=4-20=-16、因为Δ小于零,所以这个方程没有实数根,而有两个虚数根。
通过根的判别式,我们可以方便地判断一元二次方程的根的情况。
请牢记,Δ大于零时,方程有两个不相等的实数根;Δ等于零时,方程有两个相等的实数根;Δ小于零时,方程没有实数根,而有两个虚数根。
这一判别式是解决一元二次方程问题的重要基础。
(完整版)一元二次方程根的判别式知识点
一元二次方程根的判别式知识点及应用1、一元二次方程ax²+bx+c=0(a≠0)的根的判别式定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若△>0则方程有两个不相等的实数根若△=0则方程有两个相等的实数根若△<0则方程没有实数根2、这个定理的逆命题也成立,即有如下的逆定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若方程有两个不相等的实数根,则△>0若方程有两个相等的实数根,则△=0若方程没有实数根,则△<0特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。
(2)一元二次方程ax²+bx+c=0(a≠0)(Δ=b²4ac)一、不解方程,判断一元二次方程根的情况。
例1、判断下列方程根的情况2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。
例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根?三、证明方程根的性质。
例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。
四、判断二次三项式能否在实数范围内因式分解。
例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。
五、判定二次三项式为完全平方式。
例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。
例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是完全平方式。
六、利用判别式构造一元二次方程。
例7、已知:(z-x)2-4(x-y)(y-z)=0(x≠y)求证:2y=x+z七、限制一元二次方程的根与系数关系的应用。
例8、已知关于x的方程x2-(k-1)x-3k-2=0的两个实数根的平方和为17,求k的值。
一元二次方程根的判别式知识点
一元二次方程根的判别式知识点
嘿,朋友们!今天咱来聊聊一元二次方程根的判别式这个超重要的知识点呀!你想想看,就好像是给一元二次方程这个“小家伙”做一个超级厉害的诊断!
比如说方程x² - 3x + 2 = 0 ,这里的判别式b² - 4ac 就开始发挥作用啦。
如果判别式大于零,那方程就有两个不一样的根,哎呀呀,就像你找到了两颗不一样的糖果一样惊喜呢!要是判别式等于零呢,那方程就只有一个根,就像是只有一颗独苗苗糖果咯。
可要是判别式小于零呢,嘿嘿,这方程就没根啦,就好像去糖果罐子找,结果啥都没找到,有点小失落呢!咱再看个例子,方程x² - 2x + 3 = 0 ,这里b² - 4ac 明显小于零呀,那不就没根嘛!
总之,一元二次方程根的判别式真的超级重要呀!它能让我们一下子就知道方程的根是啥情况,是不是很神奇呢?所以呀,一定要好好理解和掌握它哟!。
专题2 一元二次方程的解法及根的判别式应用题型(学生版)
专题2一元二次方程的解法及根的判别式应用题型知识归纳理解一元二次方程的定义及一般形式,掌握一元二次方程的解法,熟练解各类一元二次方程;掌握一元二次方程根的判别式的相关知识点并熟练应用,这些是本节的重要知识点。
本专题主要对一元二次方程的解法及根的判别式应用题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。
知识点梳理一、一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.知识点梳理二.一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.知识点梳理三.一元二次方程的解(1)解一元二次方程-直接开平方法(2)解一元二次方程-配方法(3)解一元二次方程-公式法把x =(b 2﹣4ac ≥0)叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(4)解一元二次方程-因式分解法(5)换元法解一元二次方程知识点梳理四.根的判别式利用一元二次方程根的判别式(△=b 2﹣4ac )判断方程的根的情况.一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.常考题型专练一、选择题1.若关于x 的方程2x 2x m 0-+=有实数根,则m 的取值范围为()A.m ≤1B.m 1≥ C.1m > D.1m <2.若双曲线my x=在第二、四象限,那么关于x 的方程2x 2x m 0-+=的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.条件不足,无法判断3.当4a b +=时,关于x 的一元二次方程220ax bx -++=的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定4.关于x 的一元二次方程230x x k -+=有实数根,则k 的取值范围是()A .k ≤94B.k ≥94C.94k <D.k ≤94且0k ≠5.实数a ,b 在数轴上的位置如图所示,则关于x 的一元二次方程210+-=ax bx 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根6.关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是()A.8B.9C.10D.117.若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为()A.﹣1B.0C.1D.28.下列方程中,没有实数根的是()A .2310x x --=B .230x x -=C .2210x x -+=D .2230x x -+=9.新定义运算:a ※b =a 2﹣ab +b ,例如2※1=22﹣2×1+1=3,则方程x ※2=5的根的情况为()A .没有实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根10.若关于x 的一元二次方程()22110m x x m -++-=有一个根为0,则m 的值是()A .1-B .0C .1D .1或1-二、填空题1.方程22x x =的解是________.2.若实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,则11a b+的值为.3.一元二次方程2430x x -+=配方为2(2)x k -=,则k 的值是.4.如果关于x 的方程22(21)0x m x m --+=有两个不相等的实数根,那么m 的取值范围是________.5.在平面直角坐标系中,点(3,-2)关于原点对称的点的横纵坐标是x 的方程20x bx c ++=的两根,则b c +=________.三、解答题1.解方程:22(23)(32)x x +=+.2.已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.3.关于x 的一元二次方程()2104kkx k x +++=.(1)若该方程有两个不相等的实数根,求k 的取值范围;(2)若该方程有两个相等的实数根,求该方程的解.4.利用我们学过的完全平方公式及不等式知识能解决方程或代数式的一些问题,请阅读下列材料:阅读材料:若m2﹣2mm+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+4ab+5b2+6b+9=0,求a=,b=;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2﹣4a+2b2﹣4b+6=0,求c的值;(3)若A=3a2+3a﹣4,B=2a2+4a﹣6,试比较A与B的大小关系,并说明理由.5.学习了完全平方公式以后,小明有了下面的发现:因为x2﹣2x+2=(x2﹣2x+1)+1=(x﹣1)2+1,不论x取什么值,(x﹣1)2≥0,所以(x﹣1)2+1≥1.因此,代数式x2﹣2x+2的值不小于1.这种把一个多项式或一个多项式中的某一部分化为一个完全平方式或几个完全平方式和的方法,称为配方法.请用配方法解决下列问题:(1)填空:①a2+6a+15=(a+3)2+.②若(a﹣1)2+b2+4b+4=0,则a=,b=.(2)已知m2+4m+n2﹣6n+13=0,求m、n的值.(3)比较代数式3x3+2x2﹣4x﹣3与3x3+x2+2x﹣12的大小.。
一元二次方程的根的判别式和根与系数关系复习
一元二次方程的根的判别式和根与系数关系一、知识要点:1、一元二次方程20(0)ax bx c a ++=≠的根的判别式:24b ac ∆=-;2、一元二次方程20(0)ax bx c a ++=≠的根与系数关系:(1)设12,x x 是方程20(0)ax bx c a ++=≠的两根,则有1212,b c x x x x a a+=-=;(2)以12,x x 为两根的一元二次方程是:21212()0x x x x x x -++=。
3、公式变形:2221212122212121212121212121212(1)()2(2)()()4(3)(1)(1)()111(4)(5)x x x x x x x x x x x x x x x x x x x x x x x x x x +=+--=+- ++=++++ += -==121212121210000010x x x x x x x x x x x ⇔∆>⇔∆⇔∆<⇔∆≥∆≥⎧⎪⇔+=⎨⎪≤⎩∆≥⎧⇔⎨⎩∆≥⎧⎪⇔+>⎨⎪>⎩∆≥⇔+4、(1)方程有两个不等实根;(2)方程有两个相等实根=0;(3)方程没有实根0;(4)方程有两个实根0(5)方程有两个互为相反数的实根 (6)方程有两个互为倒数的实根=0 (7)方程有两个正根0 (8)方程有两个负根2121212121200000x x x x x x x x x x x ⎧⎪<⎨⎪>⎩∆>⎧⎪⇔+>⎨⎪<⎩∆>⎧⎪⇔+<⎨⎪<⎩0 (9)方程有两个异号根,且正根的绝对值比较大0 (10)方程有两个异号根,且负根的绝对值比较大例1、解关于x的方程:2--+=m x mx m(1)20例2、已知关于x的一元二次方程2m x mx m+++-=有两个不等实根,且这两根又不互为相反数,(1)230求m的取值范围。
例3、已知关于x的方程22--+=x m x m4(2)40(1)若方程有两个相等实根,求m的值,并求出方程的根;(2)是否存在正数m,使方程的两个实根的平方和等于224?若存在,请求出满足条件的m值;若不存在,请说明理由。
专题17.3 一元二次方程根的判别式【十大题型】(举一反三)-2023-2024学年八年级数学下册举
专题17.3 一元二次方程根的判别式【十大题型】【沪科版】【题型1 判断不含字母的一元二次方程的根的情况】 (1)【题型2 判断含字母的一元二次方程的根的情况】 (2)【题型3 由方程根的情况确定字母的值或取值范围】 (2)【题型4 应用根的判别式证明方程根的情况】 (3)【题型5 应用根的判别式求代数式的取值范围】 (3)【题型6 根的判别式与不等式、分式、函数等知识的综合】 (3)【题型7 根的判别式与三角形的综合】 (4)【题型8 根的判别式与四边形的综合】 (5)【题型9 关于根的判别式的多结论问题】 (5)【题型10 关于根的判别式的新定义问题】 (6)【知识点一元二次方程根的判别式】一元二次方程根的判别式:∆=b2−4ac.①当∆=b2−4ac>0时,原方程有两个不等的实数根;①当∆=b2−4ac=0时,原方程有两个相等的实数根;①当∆=b2−4ac<0时,原方程没有实数根.【题型1 判断不含字母的一元二次方程的根的情况】【例1】(2023春·山东青岛·八年级统考期末)下列方程中,有两个相等实数根的是()A.x2−2x+1=0B.x2+1=0C.x2−2x−3=0D.x2−2x=0【变式1-1】(2023春·八年级课时练习)一元二次方程x2−2√2x+2=0的实数根的个数是()A.0 B.1 C.2 D.无法判断1【变式1-2】(2023春·江西·八年级统考阶段练习)下列一元二次方程没有实数根的是()A.x2+1=0B.x2+2x+1=0C.x2=4D.x2+x−2=0【变式1-3】(2023春·上海长宁·八年级上海市延安初级中学校考期中)在下列方程中,有实数根的是()A.x2+2x+3=0B.√4x+1+1=0C.xx−1=1x−1D.x3+8=0【题型2 判断含字母的一元二次方程的根的情况】【例2】(2023春·安徽合肥·八年级统考期中)已知关于x的方程ax2−(1−a)x−1=0,下列说法正确的是()A.当a=0时,方程无实数解B.当a≠0时,方程有两个相等的实数解C.当a=−1时,方程有两个不相等的实数解D.当a=−1时,方程有两个相等的实数解【变式2-1】(2023·河北邯郸·统考一模)已知a、c互为相反数,则关于x的方程ax2+5x+c=0(a≠0)根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为5【变式2-2】(2023·全国·八年级专题练习)已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m+1)=0的根的情况.【变式2-3】(2023春·福建厦门·八年级厦门市松柏中学校考期末)关于x的一元二次方程x2−5x+c=0,当c=t0时,方程有两个相等的实数根:若将c的值在t0的基础上增大,则此时方程根的情况是()A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根【题型3 由方程根的情况确定字母的值或取值范围】【例3】(2023春·浙江舟山·八年级校联考期中)在实数范围内,存在2个不同的x的值,使代数式x2−3x+c 与代数式x+2值相等,则c的取值范围是.【变式3-1】(2023春·北京西城·八年级北京市第三十五中学校考期中)已知关于x的方程mx2−3x+1=0无实数解,则m取到的最小正整数值是.【变式3-2】(2023春·广西梧州·八年级校考期中)关于x的方程x2+2(m−2)x+m2−3m+3=0.(1)有两个不相等的实数根,求m的取值范围;(2)若方程有实数根,而且m为非负整数,求方程的根.【变式3-3】(2023春·北京平谷·八年级统考期末)关于x的一元二次方程ax2−2ax+b+1=0(ab≠0)有两个相等的实数根k,则下列选项成立的是()A.若﹣1<a<0,则ka >kbB.若ka>kb,则0<a<1C.若0<a<1,则ka <kbD.若ka<kb,则-1<a<0【题型4 应用根的判别式证明方程根的情况】【例4】(2023春·广东珠海·八年级统考期末)已知关于x的一元二次方程x2−2mx+m2−1=0.(1)求证:方程总有两个实数根;(2)若方程的一根大于2,一根小于1,求m的取值范围.【变式4-1】(2023春·八年级课时练习)已知关于x的一元二次方程2x2+2mx+m−1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根.【变式4-2】(2023春·八年级课时练习)已知关于x的一元二次方程x2−3x+2=m(x−1).(1)求证:方程总有两个实数根;(2)若方程两个根的差是2,求实数m的值.【变式4-3】(2023春·八年级课时练习)已知关于x的一元二次方程x2﹣(m﹣2)x+2m﹣8=0.(1)求证:方程总有两个实数根.(2)若方程有一个根是负整数,求正整数m的值.【题型5 应用根的判别式求代数式的取值范围】【例5】(2023春·浙江温州·八年级校考期中)已知关于x的一元二次方程x2−2x+3m=0有实数根,设此方程的一个实数根为t,令y=t2−2t+4m+1,则y的取值范围为.【变式5-1】(2023春·安徽合肥·八年级统考期中)关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根x0,则下列关于2ax0+b的值判断正确的是()A.2ax0+b>0B.2ax0+b=0C.2ax0+b<0D.2ax0+b≤0【变式5-2】(2023春·浙江宁波·八年级统考期末)已知实数m,n满足m2−mn+n2=3,设P=m2+mn−n2,则P的最大值为()A.3B.4C.5D.6【变式5-3】(2023春·浙江杭州·八年级校考期中)已知关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,设此方程的一个实数根为b,令y=4b2−8b+3m+2,则()A.y>1B.y≥1C.y≤1D.y<1【题型6 根的判别式与不等式、分式、函数等知识的综合】【例6】(2023春·重庆北碚·八年级西南大学附中校考期中)若关于x的一元一次不等式组{3x+82≤x+63x+a>4x−5的解集为x≤4,关于x的一元二次方程(a−1)x2+3x+1=0有实数根,则所有满足条件的整数a的值之和是.【变式6-1】(2023春·安徽安庆·八年级安庆市第四中学校考期末)若关于x的一元二次方程x2+2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【变式6-2】(2023春·八年级课时练习)要使关于x的一元二次方程ax2+2x−1=0有两个实数根,且使关于x的分式方程xx−4+a+24−x=2的解为非负数的所有整数a的个数为()A.5个B.6个C.7个D.8个【变式6-3】(2023·湖北武汉·校联考模拟预测)已知a,b为正整数,且满足a+ba2+ab+b2=449,则a+b的值为()A.4B.10C.12D.16【题型7 根的判别式与三角形的综合】【例7】(2023春·广东惠州·八年级校考期中)已知关于x的一元二次方程(a+c)x2−2bx+(a−c)=0,其中分别a、b、c是△ABC的边长.(1)若方程有两个相等的实数根,试判断△ABC的形状;(2)若△ABC是等边三角形,试求该一元二次方程的根.【变式7-1】(2023春·浙江杭州·八年级校考期中)已知关于x的一元二次方程x2−(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,①若k=3时,请判断△ABC的形状并说明理由;①若△ABC是等腰三角形,求k的值.【变式7-2】(2023春·浙江金华·八年级校考期中)已知关于x的方程x2−(m+1)x+2(m−1)=0.(1)当方程一个根为x=3时,求m的值.(2)求证:无论m取何值,这个方程总有实数根.(3)若等腰△ABC的一腰长a=6,另两边b、c恰好是这个方程的两个根.则△ABC的面积为______.【变式7-3】(2023春·福建厦门·八年级厦门市松柏中学校考期末)已知关于x的一元二次方程x2−(m+5)x+ 5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.【题型8 根的判别式与四边形的综合】【例8】(2023春·四川成都·八年级校考阶段练习)已知:矩形ABCD的两边AB,BC的长是关于方程x2−mx+m 2−14=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?【变式8-1】(2023春·湖南益阳·八年级统考期末)已知①ABCD两邻边是关于x的方程x2-mx+m-1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么①ABCD的周长是多少?【变式8-2】(2023春·浙江杭州·八年级杭州市采荷中学校考期中)已知关于x的一元二次方程x2+(m−5)x−5m=0.(1)判别方程根的情况,并说明理由.(2)设该一元二次方程的两根为a,b,且a,b是矩形两条对角线的长,求矩形对角线的长.【变式8-3】(2023春·广东佛山·八年级校考期中)关于x的一元二次方程14x2−mx+2m−1=0的两个根是平行四边形ABCD的两邻边长.(1)当m=2,且四边形ABCD为矩形时,求矩形的对角线长度.(2)若四边形ABCD为菱形,求菱形的周长.【题型9 关于根的判别式的多结论问题】【例9】(2023春·河北保定·八年级保定市第十七中学校考期末)已知关于x的方程kx2−(2k−3)x+k−2=0,则①无论k取何值,方程一定无实数根;①k=0时,方程只有一个实数根;①k≤94且k≠0时,方程有两个实数根;①无论k取何值,方程一定有两个实数根.上述说法正确的个数是()A.1个B.2个C.3个D.4个【变式9-1】(2023春·浙江绍兴·八年级统考期末)已知a(a>1)是关于x的方程x2−bx+b−a=0的实数根.下列说法:①此方程有两个不相等的实数根;①当a=t+1时,一定有b=t−1;①b是此方程的根;①此方程有两个相等的实数根.上述说法中,正确的有( )A .①①B .①①C .①①D .①①【变式9-2】(2023春·浙江杭州·八年级校考期中)对于代数式ax 2+bx +c (a ≠0,a ,b ,c 为常数)①若b 2−4ac =0,则ax 2+bx +c =0有两个相等的实数根;①存在三个实数m ≠n ≠s ,使得am 2+bm +c =an 2+bn +c =as 2+bs +c ;①若ax 2+bx +c +2=0与方程(x +2)(x −3)=0的解相同,则4a −2b +c =−2,以上说法正确的是 .【变式9-3】(2023春·浙江·八年级期末)已知方程甲:ax 2+2bx +a =0,方程乙:bx 2+2ax +b =0都是一元二次方程,①若x =1是方程甲的解,则x =1也是方程乙的解;①若方程甲有两个相等的实数解,则方程乙也有两个相等的实数解;①若方程甲有两个不相等的实数解,则方程乙也有两个不相等的实数解;①若x =n 既是方程甲的解,又是方程乙的解,那么n 可以取1或−1.以上说法中正确的序号是( )A .①②B .③④C .①②③④D .①②④【题型10 关于根的判别式的新定义问题】【例10】(2023春·江苏宿迁·八年级统考阶段练习)对于实数a 、b ,定义运算“*”; a ∗b ={a 2−ab (a ≤b )b 2−ab (a >b ) ,关于x 的方程(2x )∗(x −1)=t +3恰好有三个不相等的实数根,则t 的取值范围是 .【变式10-1】(2023春·四川雅安·八年级统考期末)对于实数a ,b 定义运算“①”如下:a☆b =ab 2−ab ,例如3☆2=3×22−3×2=6,则方程2☆x =−12的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 【变式10-2】(2023春·安徽马鞍山·八年级校考阶段练习)定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a =b −cB .a =bC .b =cD .a =c。
一元二次方程根的判别式及根与系数的关系
2021年中考专题复习一元二次方程根的判别式和根与系数的关系回忆与思考1.一元二次方程ax2+bx+c = 0(a≠0)的根的情况可由△=b2-4ac来判定:(1)当b2–4ac>0时,方程有实数根,即x1=,x2=.当b2–4ac=0时,方程有实数根,即x1=x2=.当b2–4ac<0时,方程实数根.我们把b2-4ac叫做一元二次方程ax2+bx+c = 0(a≠0)的根的判别式.(2)一元二次方程根的判别式的应用:①不解方程,判别根的情况,特别是判别含有字母系数的一元二次方程根的情况,可通过配方法把b2–4ac变形为±(m±h)2+k的形式,由此得出结论,无论m为何值,b2–4ac≥0或b2–4ac<0,从而判定一元二次方程根的情况.一般步骤是:先计算△,再用配方法将△恒等变形,然后判断△的符号,最后得出结论.②根据方程的根的情况,求待定系数的取值范围;③进展有关的证明.(3)关于根的判别式的应用:①对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;②对于字母系数的一元二次方程,假设知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;③运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题.(4)应用根的判别式须注意以下几点:①要用△,要特别注意二次项系数a≠0这一条件.②认真审题,严格区分条件和结论,譬如是△>0,△≥0还是要证明△<0.③要证明△≥0或△<0,需用配方法将△恒等变形为±(m±h)2+k的形式,从而得到判断.2.一元二次方程的根与系数的关系(1)如果方程ax2+bx+c = 0(a≠0)的根是x1和x2,那么x1+x2=,x1x2=.特别低,如果方程x2+px+q = 0的根是x1和x2,那么x1+x2=,x1x2=.(2)一元二次方程根与系数关系的应用.①验根.验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:一要先把一元二次方程化成标准型,二不要漏除二次项系数a≠0;三还要注意–ba中的符号.②方程一根,求另一根.③不解方程,求与根有关的代数式的值.一般步骤:先求出x1+x2,x1x2的值,再将所求代数式用x1+x2,x1x2的代数式表示,然后将x1+x2,x1x2的值代入求值.④两个数,求作以这两个数为根的一元二次方程:以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.(3)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2–4ac≥0;②二次项系数a≠0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(4)求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.(5) 常见的形式:3.二次三项式的因式分解:ax2+bx+c=a(x-x1)(x-x2).其中x1,x2是关于x的方程ax2+bx+c=0的两个实数根.【例1】不解方程,判定关于x的方程根的情况(1)2x2–9x+8=0 (2)9x2+6x+1=0 (3) 16x2+8x=–3 (4)x2=7x+18(5)2x2–(4k+1)x+2k2–1=0 (6)x2+(2t+1)x+(t–2)2=0【例2】(1)关于x的一元二次方程kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.(2)假设关于x的一元二次方程(a–2)x2–2ax+a+1=0没有实数解,求ax+3>0的解集〔用含a 的式子表示〕.【例3】(1)关于x的方程x2–mx+m–2=0,求证:方程有两个不相等的实数根(2)求证:方程(m2+1)x2–2mx+(m2+4)=0没有实数根.【例4】(1)方程x2–5x–6=0的根是x1和x2,求以下式子的值:①(x1–3)(x2–3) ②x12+x22+x1x2③x1x2+x2x1(2)利用根与系数的关系,求一个一元二次方程,①使它的根分别是方程3x2–x–10=0各根的3倍;②使它的根分别是方程3x2–x–10=0各根的负倒数。
《一元二次方程根的判别式及根与系数的关系—知识讲解 》 配套 2022人教版
一元二次方程根的判别式及根与系数的关系—知识讲解(提高)【学习目标】1. 会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2. 掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】要点一、一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆ (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0;(2)方程有两个相等的实数根⇒ac b 42-=0;(3)方程没有实数根⇒ac b 42-﹤0.要点诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 要点二、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k x x k =+++;⑦2212121212||()()4x x x x x x x x -=-=+-;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==; ⑨2212121212()()4x x x x x x x x -=±-=±+-; ⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x>,120x x+>时,两根同为正数;当△≥0且120x x>,120x x+<时,两根同为负数.②当△>0且120x x<时,两根异号.当△>0且120x x<,120x x+>时,两根异号且正根的绝对值较大;当△>0且120x x<,120x x+<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b+,则必有一根a b-(a,b为有理数).【典型例题】类型一、一元二次方程根的判别式的应用1(2020•梅州)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【答案与解析】解:(1)∵b2﹣4ac=(﹣2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【总结升华】熟练掌握一元二次方程根的判别式与根之间的对应关系.举一反三:【变式】(2020•张家界)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k ≥0,且k ≠0,解得:k ≤,且k ≠0. 则k 的非负整数值为1.2.已知关于x 的一元二次方程2(1)10m x x -++=有实数根,则m 的取值范围是________ 【答案】54m ≤且m ≠1 【解析】因为方程2(1)10m x x -++=有实数根,所以214(1)450m m =--=-+≥△,解得54m ≤, 同时要特别注意一元二次方程的二次项系数不为0,即(1)0m -≠, ∴ m 的取值范围是54m ≤且m ≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即(1)0m -≠,m ≠1. 举一反三:【变式】已知:关于x 的方程2(1)04kkxk x +++=有两个不相等的实数根,求k 的取值范围. 【答案】102k k ≠>-且.类型二、一元二次方程的根与系数的关系的应用3. 设x 1、x 2是方程22610x x -=的两根,不解方程,求下列各式的值:(1)2212x x +; (2)212()x x -; (3)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【思路点拨】由一元二次方程根与系数的关系,易得1262x x +=,1212x x =-,要求2212x x +,212()x x -,122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的值,关键是把它们化成含有12x x +、12x x 的式子.【答案与解析】由一元二次方程根与系数的关系知1262x x +=,1212x x =-,所以(1)222121212()2x x x x x x +=+-26135212222⎛⎫⎛⎫=-⨯-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭. (2)22121212()()4x x x x x x -=+-26137422222⎛⎫⎛⎫=-⨯-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭. (3)121221121112x x x x x x x x ⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭112122=-++-112222=-+-=-. 【总结升华】解此类问题关键是把它们化成含有12x x +、12x x 的式子.若一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21.举一反三:【变式】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和. 【答案】(1)134; (2)3.4. 求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【答案与解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-, 从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结升华】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数为根的一元二次方程是.”可以用这种语言形式记忆“2x-和x+积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.(2020•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A .0B .1C .2D .37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.(2020•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是 .13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD外接圆的直径为2a,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2020•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴. 4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B.【解析】设OP 与⊙O 交于点N ,连结MN ,OQ ,如图,∵OP=4,ON=2, ∴N 是OP 的中点, ∵M 为PQ 的中点,∴MN 为△POQ 的中位线,∴MN=OQ=×2=1,∴点M 在以N 为圆心,1为半径的圆上, 当点M 在ON 上时,OM 最小,最小值为1, ∴线段OM 的最小值为1.故选B . 7.【答案】C ; 【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°,∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH是⊙O的切线∴OF⊥FH∵FH∥BC ,∴OF垂直平分BC∴BF FC∴AF平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2∴∠1+∠4=∠2+∠3∴∠1+∠4=∠5+∠3∠FDB=∠FBD∴BF=FD.18.【答案与解析】证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.19.【答案与解析】解:∵公共弦AB=120AB CDEO12345HAB CDEO12r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =(2)180n n-°时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。
初中数学专题复习一元二次方程的根的判别式(A)
一元二次方程的根的判别式(A)一、知识要点:1.在关于x的方程ax2+bx+c=0(a≠0)中, ____________叫做一元二次方程的根的判别式.记作:Δ.2.在关于x的方程 ax2+bx+c=0(a≠0)中:(1)b2-4ac>0 ⇔方程有两个_________的实数根.(2)b2-4ac=0 ⇔方程有两个_______的实数根.(3)b2-4ac<0 ⇔方程________实数根.(4)b2-4ac≥0 ⇔方程___________两个实数根.3. c = 0 ⇔方程ax2+bx+c=0必有一根是_______.4.当a与c异号时,判别式b2-4ac的值的符号一定是______,方程ax2+bx+c=0(a≠0)总有两个______的实数根.5.当a_______时,方程x2=a总有两个实数根,并且这两个实数根互为__________数。
6.方程 ax2+bx+c=0有一根是1 ⇔ a+b+c的值是____.7.判别式只能对一元二次方程使用,因此使用判别式解题的前提是:二次项系数a≠____.8.求判别式的值,必须先把方程化为一元二次方程的______形式.二、判别式的应用(一)已知方程的根的情况,求方程中的常数的取值范围例1 关于x的方程2kx2-8x+6-x2=0无实数根,求k的最小整数值.例2 当a取什么值时,关于x的方程(1-2a)x2+2a x-1=0:(1) 只有一个实数根?(2)方程有两个实数根?(3)方程有实数根.练习11.填空(1)方程2x2-x-1=0的根的判别式的值是_________,根的情况是______________________.(2)方程2=4x-3x2的根的判别式的值是_________,根的情况是______________________.(3)方程9x2=6x-1的根的判别式的值是_________,根的情况是________________.(4)当m=_________时,方程x2+mx+1=0有两个相等的实数根。
22.2.5一元二次方程根的判别式
温故而知新
一元二次方程 ax bx c 0 (a≠0) 的求根公式
2
当b2-4ac≥0 时, 实数根为:
x
b b 4ac 2a
2
学习是件很愉快的事 练习:用公式法解方程 : (1)5x2-4x-12=0
1 (3) x 2 x 0 2
b b
x x
b
2
4ac 4ac
1
2a
b
2
2
2a
即 因为a≠0,所以4 a >0
2
2
b b 4ac x 2a 4a 2
2
2
2
式子 b 4ac的值有以下三种情况:
2 2
4ac b (2) b 4ac 0, 这时 0 4a b b 4ac 即 x =0 2a 2a
原方程没有实数根 .
练习1:不解方程,判别关于 x 的方程
x 2 2kx k 0的根的情况.
2 2
解: a 1
2
b 2 2k
ck2Biblioteka 系数含有 字母的方 程 b 4ac 2 2 k 4 1 k
2 2
2
2
8k 4k 4k
∵ k2
2
2
0,4k 0,即 0,
2
0
,
思考:究竟是谁决定了一元二次方程根的情况?
b 4ac 的正负性
2
我们把 b 2 4ac 叫做一元二次方程 ax2 bx c 0(a 0)
即 的根的判别式 ,用符号“ ”来表示 . △= b 2 4ac
专题:一元二次方程根的判别式(含答案)-
一元二次方程根的判别式姓名【1 】◆课前预习1.一元二次方程ax2+bx+c=0(a≠0)的根的情形可用b2-4ac来剖断,b2-4ac叫做________,通经常应用符号“△”为暗示.(1)b2-4ac>0方程_________;(2)b2-4ac=0方程_________;(3)b2-4ac<0方程_________.2.应用根的判别式之前应先把方程化为一元二次方程的________情势.◆互动教室【例1】不解方程,判别下列方程根的情形:(1)x2-5x+3=0(2)x2+2x+2=0;(3)3x2+2=4x(4)mx2+(m+n)x+n=0(m≠0,m≠n).【例2】若关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值规模.【例3】已知关于x的一元二次方程x2-(2k+1)x+4(k-)=0.求证:无论k取什么实数值,这个方程总有实数根;【例4】已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个实数根?(2)为m拔取一个适合的整数,使方程有两个不相等的实数根,并求这两个根.◆跟进教室1.方程2x2+3x-4=0的根的判别式△=________.2.已知关于x的一元二次方程mx2-10x+5=0有实数根,则m的取值规模是______.3.假如方程x2-2x-m+3=0有两个相等的实数根,则m的值为_______,此时方程的根为________.4.若关于x的一元二次方程kx2+2x-1=0没有实数根,则k的取值规模是______.5.若关于x的一元二次方程mx2-2(3m-1)x+9m-1=0有两个实数根,则实数m的取值规模是_______.6.下列一元二次方程中,没有实数根的是().A.x2+2x-1=0 B.x2+2x+3=0 C.x2+x+1=0 D.-x2+x+2=07.假如方程2x(kx-4)-x2-6=0有实数根,则k的最小整数是().A.-1 B.0 C.1 D.28.下列一元二次方程中,有实数根的方程是().A.x2-x+1=0 B.x2-2x+3=0 C.x2+x-1=0 D.x2+4=09.假如关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,那么k的取值规模是().A.k<1 B.k≠0 C.k<1且k≠0 D.k>110.关于x的方程x2+(3m-1)x+2m2-m=0的根的情形是().A.有两个实数根B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根◆课外功课1.鄙人列方程中,有实数根的是()(A)x2+3x+1=0 (B)=-1 (C)x2+2x+3=0 (D)=2.关于x的一元二次方程x2+kx-1=0的根的情形是A.有两个不相等的同号实数根B.有两个不相等的异号实数根C.有两个相等的实数根D.没有实数根3.关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a的值为().A.1或-4B.1C.-4D.-1或44.若关于的一元二次方程有实数根,则的取值规模是.5.若0是关于x的方程(m-2)x2+3x+m2-2m-8=0的解,求实数m的值,并评论辩论此方程解的情形.6.不解方程,试剖断下列方程根的情形.(1)2+5x=3x2 (2)x2-(1+2)x++4=0(3 )x2-2kx+(2k-1)=0 (x为未知数)7.关于x的一元二次方程mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及该方程的解.8.已知a.b.c分离是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有两个相等的实数根,试断定△ABC的外形.10.假如关于x的方程mx2-2(m+2)x+m+5=0没有实数根,试断定关于x的方程(m-•5)x2-2(m-1)x+m=0的根的情形.11.已知关于x的方程(n-1)x2+mx+1=0 ①有两个相等的实数根.(1)求证:关于y的方程m2y2-2my-m2-2n2+3=0 ②必有两个不相等的实数根;(2)假如方程①的一个根是-,求方程②的根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的判别式姓名
◆课前预习
1.一元二次方程20(a≠0)的根的情况可用b2-4•来判定,•b2-4•叫做,通常用符号“△”为表示.(1)b2-4>0方程;(2)b2-4=0方程;(3)b2-4<0方程.
2.使用根的判别式之前应先把方程化为一元二次方程的形式.
◆互动课堂
【例1】不解方程,判别下列方程根的情况:
(1)x2-53=0;(2)x2+22=0;(3)3x2+2=4x;(4)2+()0(m≠0,m≠n).
【例2】若关于x的方程(m2-1)x2-2(2)1=0有实数根,求m的取值范围.
【例3】已知关于x的一元二次方程x2-(21)4(k-)=0.(1)求证:
无论k取什么实数值,这个方程总有实数根;(2)如果等腰△有一边长4,另两条边长b,c恰好是这个方程的两个实数根,求△的周长.
【例4】已知关于x的方程x-2(1)2=0.(1)当m取何值时,方程有两个实数根?
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
◆跟进课堂
1.方程2x2+3x-4=0的根的判别式△.
2.已知关于x的一元二次方程2-105=0有实数根,则m的取值范围是.
3.如果方程x2-2x-3=0有两个相等的实数根,则m的值为,此时方程的根为.
4.若关于x的一元二次方程2+2x-1=0没有实数根,则k的取值范围是.5.若关于x的一元二次方程2-2(3m-1)9m-1=0有两个实数根,则实数m•的取值范围是.
6.下列一元二次方程中,没有实数根的是().
A.x2+2x-1=0 B.x2+23=0 C.x21=0 D.-x22=0 7.如果方程2x(-4)-x2-6=0有实数根,则k的最小整数是().A.-1 B.0 C.1 D.2
8.下列一元二次方程中,有实数根的方程是().
A.x2-1=0 B.x2-23=0 C.x2-1=0 D.x2+4=0
9.如果关于x的一元二次方程2-69=0有两个不相等的实数根,那么k的取值范围是().
A.k<1 B.k≠0 C.k<1且k≠0 D.k>1
10.关于x的方程x2+(3m-1)2m2-0的根的情况是().
A.有两个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根
◆课外作业
1.在下列方程中,有实数根的是()
(A)x2+31=0 (B) 1 (C)x2+23=0 (D)= 2.关于x的一元二次方程x2+-1=0的根的情况是
A、有两个不相等的同号实数根
B、有两个不相等的异号实数根
C、有两个相等的实数根
D、没有实数根
3.关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a的值为().
A、1或-4
B、1
C、-4
D、-1或4
4.若关于的一元二次方程有实数根,则的取值范围是.
5.若0是关于x的方程(2)x2+32-28=0的解,求实数m的值,并讨论此方程解的情况.
6.不解方程,试判定下列方程根的情况.
(1)2+53x2 (2)x2-(1+2)4=0 (3 )x2-2(21)=0 (x为未知数)
7.关于x的一元二次方程2-(3m-1)2m-1=0,其根的判别式的值为1,求m•的值及该方程的解.
8.已知a、b、c分别是△的三边长,当m>0时,关于x的一元二次方程c (x2)(x2-m)-20有两个相等的实数根,试判断△的形状.
9.等腰△中,8,、的长是关于x的方程x2-100的两根,求m的值.
10.如果关于x的方程2-2(2)5=0没有实数根,试判断关于x的方程(m -•5)x2-2(m-1)0的根的情况.
11.已知关于x的方程(n-1)x21=0 ①有两个相等的实数根.
(1)求证:关于y的方程m2y2-2-m2-2n2+3=0 ②必有两个不相等的实数根;
(2)如果方程①的一个根是-,求方程②的根.
12.若关于x的一元二次方程没有实数解,求的
解集(用含的式子表示).
13.要建一个面积为150m2的长方形养鸡场,为了节约材料,•鸡场的一边
靠着原有的一堵墙,墙长为,另三边用竹篱笆围成,如果篱笆的长为35m.
(1)求鸡场的长与宽各是多少?(2)题中墙的长度a对解题有什么作用.
*14. 若a,b,c,d都是实数,且2(c+d),求证:关于x的方程x2++0,x2++0中至少有一个方程有实数根.
答案:
1.41 2.m≤5且m≠0 3.2,x12=1 4.k<-1 5.m≤且m≠0 6.C 7.B 8.•C •9.C 10.A
11.2,x1=1,x2=12.△13.25或16
14.当5时方程有一个实根;当m>4且m≠5时,方程有两个不等实根.15.略。