材料力学第10章-材料力学中的能量法
材料力学能量法
限制条件:不适 用于求解动力学 问题如振动、冲 击等
适用范围:适用 于求解线性问题 如弹性、塑性等
限制条件:不适 用于求解非线性 问题如塑性、蠕 变等
材料力学能量法的发展趋势和未来 展望
材料力学能量法的发展趋势
计算方法:发展高效、准确 的数值计算方法
应用领域:拓展应用领域如 航空航天、生物医学等
柱的压缩问题
问题描述:柱在轴向 压力作用下的压缩问 题
应用实例:桥梁、建 筑等结构中的柱在受 压时的变形和破坏
能量法分析:利用能 量法分析柱的受压变 形和破坏过程
结论:能量法在柱的 压缩问题中的应用可 以有效地预测柱的变 形和破坏情况为工程 设计提供依据。
弹性体的振动问题
添加 标题
弹性体振动问题的背景:在工程中弹性体的振动问题非常常见如桥梁、建筑物、机械设备等。
定义和原理
材料力学能量法: 一种研究材料力学 问题的方法通过分 析能量变化来求解 问题。
基本概念:能量、 应力、应变、位移 等。
原理:根据能量守 恒定律材料的变形 和破坏过程中能量 会发生变化通过分 析这些变化可以求 解问题。
应用:广泛应用于 结构分析、优化设 计等领域。
能量法的应用范围
结构力学:分析结构受力、变形和稳定性 材料力学:分析材料应力、应变和断裂 流体力学:分析流体流动、压力和速度 热力学:分析热传导、对流和辐射 电磁学:分析电磁场、电磁波和电磁感应 声学:分析声波传播、反射和吸收
能量法的基本假设
材料是连续、均匀、各向同性的
材料是线弹性的应力与应变成正 比
添加标题
添加标题
材料是弹性的满足胡克定律
添加标题
添加标题
材料是各向同性的应力与应变的 关系与方向无关
材料力学第十章杆件计算的能量法
T
T
A
T
l
o
B
3.梁弯曲时的应变能
3.1 纯弯曲梁
l Ml
M
EI
W
1 2
M e
Vε
W
1 2
M
e
M 2l 2EI
M
l
3.2 剪切弯曲梁
弯矩M:
dVε M
M (x)2 dx 2EI
M (x)2 dx
Vε M l 2EI
剪力FQ:
6FQ
h2 (
y2)
0 2EI
l
2EI
FA
4
F2 A
l
3
F
l2 3
5FA Fl3
3EI 6EI 6EI
3.位移
Δ A
Vε FA
0
FA
5 16
F
例 求如图所示简支梁截面A的转角,设梁EI的为常数。
Mo A
M B
l
解:为了求A截面的转角A,可在A端加一虚力偶M0,如
图所示。则按卡氏第二定理,A截面的转角:
§10-2 杆件的弹性应变能
一、杆在基本变形下的应变能
1.杆在轴向拉伸(压缩)时的应变能
F
F
A
l l1
Vε
1 2
FN l
FN2l 2EA
dF F1 F
o
d(△l) △l1
B △l
2.圆杆扭转时的应变能
W 1 T
2
Mx T
M xl
GIP
材料力学能量法
材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。
能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。
本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。
首先,我们来看一下材料力学能量法的基本原理。
能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。
在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。
能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。
其次,材料力学能量法的应用范围非常广泛。
它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。
在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。
通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。
最后,我们来介绍一下材料力学能量法的计算方法。
能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。
在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。
在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。
综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。
通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。
在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。
材料力学(能量法)
弹性变形阶段
01
外力作用下,材料发生弹性变形,此时外力所做的功全部转化
为应变能储存于材料内部。
塑性变形阶段
02
当外力继续增加,材料进入塑性变形阶段,部分应变能转化为
热能散失到环境中。
断裂破坏阶段
03
当材料达到强度极限时发生断裂破坏,此时储存的应变能迅速
释放并转化为断裂表面的新表面能和其他形式的能量。
非圆截面扭转时的能量可以通过实验或数值模拟等方法进 行计算,以获得准确的能量值。
扭转变形过程中能量转化
弹性变形能
在扭转变形过程中,部分能量以弹性变形能的形式储存在材料中。 当外力去除后,这部分能量可以释放并使材料恢复原状。
塑性变形能
当扭转变形超过材料的弹性极限时,部分能量会以塑性变形能的形 式消耗在材料中。这部分能量不可逆转,导致材料产生永久变形。
压缩过程中能量变化
外力做功
在压缩过程中,外力对杆件做 功,使其产生压缩变形和位移 。外力做功的大小与外力的大 小和杆件的位移成正比。
内力耗能
杆件在压缩过程中,材料内部 会产生应力和应变,从而消耗 能量。内力耗能的大小与材料 的应力-应变关系有关。
弹性势能
杆件在压缩过程中,由于材料 的弹性变形,会储存一定的弹 性势能。弹性势能的大小与材 料的弹性模量和变形量有关。
结构稳定性分析方法
能量准则
通过比较结构失稳前后的能量变 化,判断结构的稳定性。若失稳 后能量降低,则结构不稳定。
平衡路径跟踪法
通过逐步增加荷载或位移,跟踪 结构的平衡路径,观察结构从稳 定到不稳定的转变过程。
特征值分析法
基于结构刚度矩阵和质量矩阵, 求解特征值和特征向量,分析结 构的振动特性和稳定性。
材料力学第10章-能量法
10-4 卡氏定理
(2)先加载dFi ,则力 dFi 在其相应的位移 di上做的功为
1
W1 dFi di
2
F1
再加载F1, F2 ,, Fn ,在相应
的位移 i 上所做的功为
1
n1
W2 i1 2 Fi i V
F2
2
dFi Fi
di
i
n
Fn
原来载荷 dFi 对位移i 上所做的功为
W3 dFi i
F A
F
在位移坐标轴上取了一个微段d ,
该微段对应的外力可视为常力。则常力作
功为
dW Fd k d
B
当外载荷和相应的位移由零缓慢增加 O
d
至F 和 时,在这个过程中外力作功
k 2 F
W kd 0
2
2
SOAB
线弹性范围内,外载荷所做的功等于力与位移乘积的一半。
10-2 外载荷做的功
二、多个力作用下的外力功
量的损失),弹性体内部所贮存的应变能,在数
值上等于外力所作的功,即满足:
V W
l
P
利用功和能的概念来求解可变形固体的位移、变形和内力
等的方法,通称为能量方法。
10-2 外载荷做的功
一、单个力作用下的外力功
材料服从胡克定律,即在线弹性范围内,弹性体在外力
作用下位移 与外载荷F 成正比,即
F k
横力弯曲时,弯矩为x的函数,则横力弯曲时的应变能为
M (x)2 dx dV
2EI
M (x)2 dx
V l 2EI
四、用广义力和广义位移表示的应变能
轴向压力
扭转
弯曲
F l V 2
V M e
材料力学:第十章
一、概 述
几何法:
物理方程
应力
应变
平衡方程
几何方程 (变形协调方程)
外力
变形
能量法出发点:能量守恒与转换原理。
弹性体承载时,加力点发生位移——荷载做功,W
弹性体变形——储存变形能(应变能), U
略去在该过程中的微量能量损耗,则由能量守恒
与转换原理,得:
外力功 = 变形能
W=U
由能量的观点出发建立荷载与变形间关系的方法
f11
f12 )
1 2
F2 (
f21
f 22 )
第二种加载方案:先加 F1,然后再加 F2
F1 1
f11
2 F2
f12
f22
先加 F1,F1做功为:
1 2 F1 f11
再加 F2,F2 做功为:
1 2
F2
f22
在加F2的过程中 F1做功为: F1 f12
U2
W2
1 2
F1 f11
1 2
F2
如图,无刚性位移的线弹性结构体,
承受荷载P1、P2、P3…… 设想采用比例加载:P1、
P2、P3……缓慢的按相同 的比例增加,弹性体始终 δ1
δ2
P2
P3
δ3
保持平衡,而且各外力作 P1 用点的位移δ1、δ2、δ3也 将按与外力相同的比例增
加。
于是得到用“外力功”表示的变形 能的普遍表达式:
U
W
(即每个荷载是独立变化的。)
dU C
U C Pi
dPi
另一方面,因为 dPi,余功的增量为:
dWC idPi dUC
idPi
U C Pi
dPi
材料力学第十章
fC
1 EI
AC
M
(
x1
)
Fs
0
M ( x1 Fs
)
dx
)
f ( x) 1 EI
x 0
F
(l
x1
)(
x
x1
)dx1
Fx 2 6EI
(3l
x)
§10-4 卡氏第二定理
例10-5 图示悬臂梁AB,B端作用铅垂力F,梁的EI已知,
1)求梁的挠曲线方程;2)若在梁中截面再作用力F,求自
x2
F=F0
A
1)dx段应变能:
dU 1(A)( d
x
)
2
d
xA
FQ2dx
2
2G
2GA
dx dx
2)l段应变能:
U
l
0dU
0l
FQ2 dx 2GA
FQ—横截面剪力; A—横截面面积;
—截面系数
矩形:=6/5;实心圆:=10/9;薄圆环:=2;
3)注意:在一般细长梁中,远小于弯矩应变能的 剪力应变能,通常忽略不计。
若=0.3,h/l=0.1,比值为0.0312。长梁忽略剪切应变能。
3)求C点挠度:W
1 2
FfC
U弯
F 2l3 96EI
fC
Fl 3 48EI
§10-2 弹性应变能的计算
四、非线性固体的应变能
1.应变能
F 非线性
与比能:
U*
线性
非线性
u*
线性
2.余能与
F1
余比能:
U
d1
1 d
u
1
应变能:线弹性
F
由端挠度fB。
材料力学( 最新 )能量法
U W
• 10-2
杆件变形能的计算
P P
•轴向拉压 •轴力P与轴向变形成正比 •当轴力N沿轴向为变量时
N 2 ( x)dx dU udV dV Pl 2 2 EA N 2 ( x)dx dU 2 EA N 2 ( x)dx U dU l l 2 EA
' 4
1 1 U b P 3 P4 4 3 2 2
P3
P 4
A
B
1'
' 2
3
4
• 10-4
P 1
互等定理
P 2
A
P3
P 4
B
' 4 4
1
' 1
2
' 2
3
' 3
1 1 1 1 ' U1 P 1 P2 2 P 3 P4 4 P 1' P2 2 1 3 1 2 2 2 2 1 1 1 1 ' ' U 2 P 1 P2 2 P 3 P4 4 P 3 P4 4 1 3 3 2 2 2 2
U1 U 2
P 1' P2 2' P3 3' P4 4' 1
•功的互等定理
P P P P
' 1 1 ' 2 2 ' 3 3 ' 4 4
•第一组力在第二组力引起的位移上做的功,等 于第二组力在第一组力引起的位移上所做的功
' 当P2和P4等于零时 P 1' P3 3 1
V wA ε FP
FP2l 3 x 2dx 0 6 EI
l
FP l 3 wA () 3EI
第10章 能量法(作业解答)
=
1 EI
l 0
⎡ ⎢M ⎣
(x
)
∂M (x
∂M es
)
⎤ ⎥ ⎦
M
es
=
dx
0
=
qa 3 6EI
10-5 图示刚架,各杆的 EI 相等。试求截面 A 的位移和转角。
Bl F
x2
x1 A
1
1
1
h
C
解:用单位载荷法求解 如图所示,在截面 A 处分别作用一水平方向单位力、铅垂方向单
位力和一顺时针方向单位力偶,并分别求出由荷载 F 以及单位力和单 位力偶所引起的内力,列表计算如下:
∂Fs
当 a ≤ x ≤ l , M (x) = −Fs (l − x),
∂M (x) = −(l − x)
∂Fs
∫ yB
= ⎜⎜⎝⎛
∂U ∂Fs
⎟⎟⎠⎞Fs =0
=
1 EI
l 0
⎡ ⎢ ⎣
M
(x
)
∂M (x
∂Fs
)
⎤ ⎥ ⎦
Fs
=0
dx
∫ = q
a
(a
−
x)2 (l
−
x)dx
=
qa 3 (4l
−
a)
F=qa
q
面 A 和 B 之间的相对位移和相对转角。
A
F 对称轴 F
B
1
1
x1
h
x2
E
C
D
A
B
C
a
l
ql2/8
③
a
①②
解:用单位载荷法求解 由于结构和载荷的对称性,取刚架对称轴的一侧来求解 δ AB 和
材料力学能量法知识点总结
材料力学能量法知识点总结材料力学是工程力学的重要分支之一,研究材料在受力作用下的变形与破坏行为。
能量法是材料力学的基础理论之一,通过利用能量守恒原理,分析和求解材料的力学问题,具有重要的理论和实践价值。
本文将对材料力学能量法的基本概念、原理和应用进行总结。
1. 弹性势能与弹性应变能材料在受力作用下产生的变形能够存储为弹性势能,其中最常用的势能是弹性应变能。
弹性应变能是由于材料的弹性变形而储存的能量,可表示为弹性应变能密度。
2. 弹性势能的计算方法弹性应变能的计算方法主要有两种:一是通过力学平衡方程和材料力学性质的函数关系进行积分计算;二是通过应力-应变关系和应变能密度公式进行计算。
3. 弹性势能的应用弹性势能的应用涉及材料的变形、破裂、接头设计等问题。
通过计算弹性势能可以判断材料是否会发生破裂,并可用于材料的优化设计。
4. 塑性势能与塑性应变能材料在塑性变形时会产生塑性势能,塑性势能是由于材料的塑性变形而储存的能量。
塑性应变能可表示为塑性应变能密度。
5. 塑性势能的计算方法塑性势能的计算方法适用于材料的非弹性变形过程,常用的方法有等效应力法和Mises准则。
通过计算塑性势能可以估计材料在受力作用下的变形程度和破坏形式。
6. 塑性势能的应用塑性势能的应用主要涉及材料的变形、强度分析和塑性成形工艺等问题。
通过计算塑性势能可以评估材料的强度和变形能力,并可用于材料的成形优化。
7. 总势能与变分原理材料受到多种因素的叠加作用时,总势能是各种势能的代数和。
变分原理是能量法的基本原理之一,通过对总势能进行变分,得到材料力学问题的基本方程。
8. 总势能的应用总势能的应用主要涉及材料的稳定性分析和振动问题。
通过计算总势能可以判断材料的稳定性,预测振动频率和振动模式。
9. 耗散能与损伤模型材料在受力作用下会发生能量损耗,产生耗散能。
通过建立耗散能与应变的关系,可以描述材料的损伤行为,并建立损伤模型进行应力-应变分析。
材料力学课件10_能量法_浙江大学
F
B
A
F D
C
例10-6. 试分析下列结构的位移
A
B
F
AB
B
V F
F A
F B
AB
V F
或 V ? (2F )
F1 A
B
F2
AB
V F1
或 V F2
或?
q
AB
q
x
A w
B
y
解:线弹性、小变形条件下,弯矩 M 1 qLx 1 qx2
应变能
V
M 2 dx q2 L5
L 2EI
240EI
2
2
挠度 w q (L3 x 2Lx3 x4 )
24EI
外力功 W qdx w q2 L5
L
2 240EI
V W
思考:若计算梁弯曲的剪切应变能,功能相等 关系是否仍成立。
2 2
1
引起杆伸缩
2
L1 0,L2
2 2
2
L1 1 ,L2
2 2
(1
2
)
应变能 V
EAL2i 2Li
EA 2L
21
2
1 2
(1
2
)2
卡氏第一定理
0
V 1
EA 2L
21
2 2
1
2 2
2
F
V 2
EA 2L
2 2 1
2 2
2
解得
1
FL, EA
2
(1 2
2) FL EA
(2)余能定理与卡氏第二定理
V
L
M
2
dx
0 2EI
挠度
wB
V F
材料力学 第10章 能量法
§10.3 互等定理
1.先在1点作用F1
A 1 1 U1 F1 11 F2 22 F1 12 2 2
F1 1
11 12
2.先在2点作用F2
21 22 F2
F2 2
B
1 外力功: F2 22 2
再在1点作用F1
A
F1 1
12 11
22 21
F2 2
V W
弹性范围内应变能可逆
第十章 能量法
§10.2 弹性应变能的计算
一、线弹性问题的应变能 线弹性体的应变能等于每一外力 与其相应位移乘积的二分之一的总和 即:
1 3
F1 F2
2
F3
1 1 1 U W F1 1 F2 2 F3 3 2 2 2
变形能是外力或位移的二次函数
例1
求图示简支梁的变形能,并求yC
a A F b C B
解: 1.求支反力 2.列弯矩方程
Fb x1 AC段: M x1 l Fa M x x2 CB段: 2 l
RA = Fb l
x1
x1
l
x2
RB = Fa l
例1
求图示简支梁的变形能,并求fC
a A F b C B
解: 1.求支反力 2.列弯矩方程
3. 梁 应变能
Vε W M e d
ε1 0 0
1
应变能密度 vε d 式中, Me为外力偶矩,为弯曲转角,为正应力, 为线应变。 应变能和应变能密度之间的关系为
Vε vε d x d y d z vε dV
V V
式中,V 为体积。
例 题 3-1
Me
材料力学能量法最经典解析PPT课件
能量法——利用定理求变形
极坐标方程是给一 个角度能够确定一 个挠度。因此该问 题是求任意位置角 的径向变形。
注意2个角度φ和θ的意义。 Φ用于表 示力F作用下任意位置上的弯矩。而θ 是用于表示任意位置的挠度,单位力 作用的位置。摩尔积分应该是对Φ积 分。 Φ在0到360度变化。
能量法——利用定理求变形
能量法——其他
超静定——与拉压杆相关
每根杆都沿杆的方 向线变形,后旋转 到变形后的位置。 变形用作垂线代替。
超静定——与拉压杆相关
此处注意CD杆
变形转换后是 BC杆变形的一 半。
超静定——与拉压杆相关
超静定——与拉压杆相关
广义胡克定律的应用。 每一点的应力状态为
p p
超静定——弯扭相关
此题仍然是有两个变 量,x是所求任意截面 的挠度值,而ξ是任意 截面的弯矩值,摩尔 积分是对ξ积分。
超静定——弯扭相关
超静定——弯扭相关
此类题目重点是分析圆盘 及2根杆的受力情况及变 形情况。
超静定——弯扭相关
该表达式上课过 程中没有出现过, 但是很容易推导 出来。
超静定——弯扭相关
超静定——弯扭相关
超静定——弯扭相关
超静定——弯扭相关
超静定——弯扭相关
此题目的重点是分析的方法和思路。由弹簧变 形与力和力矩之间的关系找到变形协调方程求 解超静定问题。
能量法——利用力做功求变形
能量法——利用力做功求变形
应力已知,计算应变能从而得到外力 功,最终获得力作用下的变形。
能量法——利用力做功求变形
能量法——利用力做功求变形
能量法——互等定理
该表达式上课过 程中没有出现过, 但是很容易推导 出来。积分求得 挠曲线后可得到 弯矩方程,进而 计算应变能。
材料力学能量法范文
材料力学能量法范文材料力学能量法是一种分析和计算物体的力学行为的方法,它基于能量守恒定律。
在这种方法中,物体或结构的变形和应力被视为能量的转化和传递过程。
通过确定系统的动能和势能,并将其与外部力和内部能力作为输入参数,可以计算系统的平衡状态和力学性能。
材料力学能量法的应用十分广泛,特别在工程领域中,例如结构分析、疲劳分析、材料强度计算和复杂系统的模拟等。
这种方法的基本原理是通过对物体的动能和势能之间的转化过程的考虑,来得到物体的平衡状态和力学性能。
在材料力学能量法中,物体的动能是由其质量和速度决定的,而势能是由物体的形变和应力分布决定的。
物体的动能包括其线性运动的动能和旋转运动的动能。
线性运动的动能可以通过物体的质量和速度平方的乘积来计算,而旋转运动的动能可以通过物体的惯性矩和角速度平方的乘积来计算。
物体的势能包括其弹性势能和塑性势能。
弹性势能是由物体的形变和应力分布引起的,而塑性势能是由物体在塑性变形时的能量损失引起的。
弹性势能可以通过弹性模量和物体的形变量的乘积来计算,而塑性势能可以通过材料的塑性应变和应力的乘积来计算。
在材料力学能量法中,系统的总能量是系统动能和势能的总和。
根据能量守恒定律,系统的总能量在无外部能量输入的情况下保持不变。
通过计算系统各个部分的动能和势能,可以确定系统的能量平衡状态和力学性能。
材料力学能量法的优点是可以考虑到物体的整体行为,并对动能和势能之间的转化过程进行分析。
它可以用来解决复杂的力学问题,并提供物体的应力和变形的直观理解。
此外,它还可以与其他力学方法相结合,例如有限元分析和基于能量的优化方法。
然而,材料力学能量法也有一些限制。
它通常只适用于小变形和较简单的物体形状,而对于大变形、非线性材料和复杂几何形状的物体,其精确性可能会降低。
此外,对于一些实际工程问题,由于存在其他影响因素,如温度和湿度等,材料力学能量法可能需要进一步修正和扩展。
总之,材料力学能量法是一种重要的力学分析方法,它基于能量守恒定律,通过对系统动能和势能之间的转化过程进行分析,来确定物体的平衡状态和力学性能。
材料力学 第10章 能量法
材料力学第10章能量法在材料力学这门学科中,能量法是一种重要的分析方法。
它可以帮助我们计算杆件受力、弯曲、扭转等方面的机械能量,以及计算受力杆件的变形和应力分布等方面的物理能量。
本文将对材料力学第10章中的能量法做一简要介绍和讲解。
第一节:能量法的基本概念能量法的基本概念是物理学中的能量守恒定律。
根据能量守恒定律,能量可以被转化为其他形式,但总能量守恒不变。
在材料力学中,能量法通过分析杆件的受力变形过程,计算机械能、变形能和应变能等不同形式的能量,来求解某些物理量,如杆件的应力、变形等。
第二节:能量法的应用能量法可以应用在杆件的弯曲、扭转、受力等方面。
其中,弯曲问题是最为常见的。
在弯曲分析中,我们需要计算杆件上各点的剪力和弯矩,使用能量法时,我们可以采用双曲线弧长法和曲率半径法来计算。
在扭转分析中,我们需要计算杆件上各点的切向力和扭矩,使用能量法时,我们可采用扭转角度法和扭转能的变化法来计算。
在受力分析中,我们需要计算杆件上各点的应力和应变,使用能量法时,我们可以用弹性能和破裂能来计算杆件的应力和应变等物理量。
第三节:能量法的计算过程在应用能量法进行分析时,需要进行以下步骤:1. 建立受力变形模型:根据杆件的几何形状和受力情况建立受力变形模型,确定受力分布和变形情况。
2. 确定杆件的位移和应变能量:计算杆件受力变形后的弹性能、变形能等物理能量。
3. 利用能量守恒定律:将机械能、弹性能、变形能和应变能等能量之和等于零,根据能量守恒定律和受力变形模型,求解杆件的位移、应力和应变等物理量。
4. 对解得的结果进行有效检验:通过检查应力、应变等物理量的分布情况,对解得的结果进行有效检验。
总而言之,能量法是材料力学分析领域中非常重要的分析方法。
它广泛应用于工程设计、科研和生产实践等领域。
通过掌握能量法的理论基础和实际应用方法,可以有效地分析和解决杆件受力、弯曲、扭转等方面的技术问题,推动材料力学学科的发展进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vε2
Δ
V V 1 V 2
第10章 材料力学中的能量方法
互等定理
线弹性,位移可以叠加,但应变能不能叠加
FP FP
FP
FP1+FP2
FP1 O Δ 1 Vε1 Δ FP2
Vε2
O Δ2
Vε Δ Vε1 O Δ2 Δ
V2 Δ1 ε Δ
V V 1 V 2
第10章 材料力学中的能量方法
M
第10章 材料力学中的能量方法
基本概念
A
FP FP B
V 1
A B
V 2
A
V 3 V 1 V 2
FP FP
M
V 3
BM
M
第10章 材料力学中的能量方法
基本概念
F A
C
B
l
A
l C l
F B
M
V 3 V 1 V 2 ?
l
A
M l
C l
B
第10章 材料力学中的能量方法
FS1 ΔPS1 FS2 ΔPS2 FSn ΔPSn
功的互等定理:一个力系的力在另一个力系引起 的相应的位移上所作之功等于另一个力系的力在这一 个力系引起的相应的位移上所作之功。
第10章 材料力学中的能量方法
互等定理
功的互等定理的证明
FP1 FS1
P1 SP1 S1
FP2
互等定理
功的互等定理
第10章 材料力学中的能量方法
互等定理
功的互等定理(reciprocal theorem of work)
FP2 FP1 FPm
…
P1 P2
FS2 FS1
Pm
FSn
FP 系统
…
S2
Sn
S1
FS 系统
第10章 材料力学中的能量方法
互等定理
功的互等定理(reciprocal theorem of work)
第10章 材料力学中的能量方法
基本概念
对于拉伸和压缩杆件
dx 对于拉伸和压缩杆件,微段 的应变能为
FN
FN
dVε
1 FN dx 2
dx + dx
第10章 材料力学中的能量方法
基本概念
对于拉伸和压缩杆件
dx 对于拉伸和压缩杆件,微段 的应变能为 FN
Vε=
dx+dx
…
P S1 P S2
P Sn
FP 系统
FS2 FS1
FSn
…
FS 系统
FS1 ΔPS1 FS2 ΔPS2 FSm ΔPS m
第10章 材料力学中的能量方法
互等定理
功的互等定理(reciprocal theorem of work)
FP1ΔSP1 FP 2ΔSP2 FPmΔSP m
第10章 材料力学中的能量方法
基本概念
弹性体在平衡力系的作用下,在一定的变形状态保持平衡, 这时,如果某种外界因素使这一变形状态发生改变,作用在弹性 体上的力,由于加力点的位移,也作功,但不是变力功,而是常 力功:
FP FP
W=FPΔ
Δ´
需要指出的是,上述功的表达式中,力和位移都是广义的。 FP 可以是一个力,也可以是一个力偶;当 FP是一个力时,对应 的位移 Δ和 Δˊ都是线位移,当 FP是一个力偶时,对应的位移 Δ和 Δˊ都是角位移。
能量守恒原理的应用及其局限性
A B
2 3
1
FP1 FP2
C
FP3
承载的构件或结构发生变形时,加力点的位置都要发生 变化,因而外力作功。
如果不考虑加载过程中其他形式的能量损耗,根据机 械能守恒定理,外力所作的功,全部转变为应变能储存于构 件或结构内。
第10章 材料力学中的能量方法
能量守恒原理的应用及其局限性
非线性弹性,位移也不可以叠加
FP FP
FP
FP1+FP2 FP2
1
Δ Δ2 O Δ2 Δ Δ
FP1
O Δ1
Δ
O
1+2
第10章 材料力学中的能量方法
基本概念
FP A B
A
B
V 3 V 1 V 2 ?
M
FP A B
V 3 V 1 V 2
FP1 FP2 FPm
… FP 系统
FS2 FSn
FS1
…
SP2
SPm
SP1
FS 系统
FP1ΔSP1 FP 2ΔSP2 FPmΔSP m
第10章 材料力学中的能量方法
互等定理
功的互等定理(reciprocal theorem of work)
FP1 FP2 FPm
互等定理
一个有意义的结果
FP
FP
FP1 O Δ1
Δ2
Δ
FP2 O Δ2
Δ1
Δ
FP1 Δ2 FP 2 Δ1
第10章 材料力学中的能量方法
互等定理
应用能量守恒原理和叠加原理,可以导出功的 互等定理与位移互等定理。
第10章 材料力学中的能量方法
互等定理
功的互等定理
位移互等定理
第10章 材料力学中的能量方法
FS2
P2
FPm
Pm
FSn
FP 系统
S2
SP2
SP m
Sn
FS 系统
1 1 1 Vε = FP1Δ P1+ FP 2Δ P 2+ + FP mΔ Pm 2 2 2 1 1 1 FS1ΔS1 FS2ΔS2 FSnΔSn 2 2 2
FP1ΔSP1 FP 2ΔSP 2 FPmΔSPm
FP1ΔSP1 FP 2ΔSP 2 FPmΔSPm
1 1 1 Vε = FP1Δ P1+ FP 2Δ P2+ + FP mΔ Pm 2 2 2 1 1 1 FS1ΔS1 FS2ΔS2 FSnΔSn 2 2 2
第10章 材料力学中的能量方法
本章将介绍:
☆ 功和能的基本概念; ☆ 虚位移原理; ☆ 莫尔积分; ☆ 计算莫尔积分的图乘法;
重点是基本概念和图乘法。
第10章 材料力学中的能量方法
基本概念 互等定理 应用于弹性杆件的虚位移原理 计算位移的莫尔积分 直杆莫尔积分的图乘法 结论与讨论
A B
3
C
FP3
通过计算构件或结构的应变能,可以确定构件或结构 在加力点处沿加力方向的位移。 但是,根据机械能守恒定律,难以确定构件或结构上任 意点沿任意方向的位移,也不能确定构件或结构上各点的位 移函数。
第10章 材料力学中的能量方法
应用更广泛的能量方法,可以确定:
构件或结构上加力点沿加力方向的位移; 构件或结构上任意点沿任意方向的位移; 不仅可以确定特定点的位移,而且可以 确定梁的位移函数。
FP1ΔSP1 FP 2ΔSP 2 FPmΔSPm
第10章 材料力学中的能量方法
互等定理
功的互等定理的证明
FP1 FS1
P1 SP1 S1
FP2
FS2
P2
FPm
Pm
FSn
S2
SP2
SP m
FP1 F S1
P1 S1
FP2
FS2
S2 P2
…
PS2
第10章 材料力学中的能量方法
基本概念
上述应变能表达式必须在小变形条件下,并且 在弹性范围内加载时才适用。
第10章 材料力学中的能量方法
基本概念
叠加原理的应用限制
第10章 材料力学中的能量方法
基本概念
线弹性,位移可以叠加
FP FP
FP
FP1+FP2
FP2 FP1 O Δ 1 Δ O Δ Δ2 O Δ2 Δ
第10章 材料力学中的能量方法
基本概念
返回总目录
返回
第10章 材料力学中的能量方法
基本概念
作用在弹性杆件上的力所作的 常力功和变力功 杆件的弹性应变能
叠加原理的应用限制
第10章 材料力学中的能量方法
基本概念
作用在弹性杆件上的力所作的
常力功和变力功
第10章 材料力学中的能量方法
Δ1
Δ
Δ=Δ1+ Δ2
第10章 材料力学中的能量方法
基本概念
线弹性,位移可以叠加,但应变能不能叠加
FP FP
FP
FP1+FP2
FP1 O Δ 1 Vε1 Δ FP2
Vε1
Δ1
Vε2
O Δ Δ2
Vε O Δ2 Δ
Vε2
Δ
V V 1 V 2
第10章 材料力学中的能量方法
基本概念
…
FPm FSn
S n PSn
Pm
PS1
小变形、弹性范围加载的情形下,最后的变形状态与加载 顺序无关。而应变能只与最后的变形状态有关。
第10章 材料力学中的能量方法
互等定理
功的互等定理的证明
1 1 1 Vε = FP1Δ P1+ FP 2Δ P 2+ + FP mΔ Pm 2 2 2 1 1 1 FS1ΔS1 FS2ΔS2 FSnΔSn 2 2 2
不同的内力分量引起的应变 能,在什么条件下才能叠加?
第10章 材料力学中的能量方法
互等定理
返回总目录
返回
第10章 材料力学中的能量方法
互等定理
线弹性,位移可以叠加,但应变能不能叠加
FP FP
FP
FP1+FP2