全等三角形学案
全等三角形 学案
全等三角形讲义一、同步知识梳理一、全等形能够完全重合的两个图形叫做全等形。
二、全等三角形1.全等三角形:能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。
)2.全等三角形的符号表示、读法:△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。
(两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角)。
3.全等三角形的性质:全等三角形的对应边相等,对应角相等。
二、三角形全等的判定:1.三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。
2.两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。
3.两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。
4.两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。
5.斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。
)三、角的平分线的性质1.性质:角平分线上的点到角的两边距离相等。
2.逆定理:在角的内部,到角的两边距离相等的点在角平分线上。
(3.三角形的内心:利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。
)例1如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等. 证明:∵D 是BC 的中点, ∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中12CA CDCB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS ) ∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)例3.•关键是寻找到和已知条件有关的△ACD•和△ABE ,再证它们全等,从而得出AD=AE . 证明:在△ACD 与△ABE 中,()A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩公共角 ∴△ACD ≌△ABE (ASA ) ∴AD=AE【学生活动】参与教师分析,领会推理方法. 【媒体使用】投影显示例3. 【教学形式】师生互动.【教师提问】三角对应相等的两个三角形全等吗?【学生活动】与同伴交流,得到有三角对应相等的两个三角形不一定会全等,拿出三角板进行说明,如图3,下面这块三角形的内外边形成的△ABC 和△A ′B•′C ′中,∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,但是它们不全等.(形状相同,大小不等). 例4.证明:∵AC ⊥BC ,BD ⊥BD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,,,AB BA AC BD =⎧⎨=⎩∴Rt △ABC ≌Rt △BAD (HL ).∴BC=AD . 【学生活动】参与教师分析,提出自己的见解.【评析】在证明两个直角三角形全等时,要防止学生使用“SSA ”来证明.二、 同步练习1、下列命题中正确的( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2、下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F3、要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C , D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图1-3,可以得到△EDC ≌△ABC ,所以ED =AB ,因此测得ED 的长就是AB 的长, 判定△EDC ≌△ABC 的理由是( )A .SASB .ASAC .SSSD .HL4、如图1所示,△ACF ≌△DBE ,∠E=∠F ,若AD=20cm ,BC=8cm ,你能求出线段AB 的长吗?与同伴交流.(AB=6)5、如图2所示,△ABC ≌△AEC ,∠B=30°,∠ACB=85°,求出△AEC 各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)6、如图2-1,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =__ ___.7、已知ABC ∆≌DEF ∆,A 与D ,B 与E 分别是对应顶点,052=∠A , 067=∠B ,BC =15cm ,则F ∠= ,FE = cm.8、如图2-2,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.9、如图2-3,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)10、将一几何图形放在平面镜前,则该图形与镜子里的图形全等,因为它们的_______、___ __相同。
数学全等三角形教案
数学全等三角形教案数学全等三角形教案(通用10篇)作为一名教学工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?下面是小编为大家整理的数学全等三角形教案,希望对大家有所帮助。
数学全等三角形教案1一、引言根据《全日制义务教育数学课程标准》具体目标,结合学生已有的知识经验和认知水平,提供具有探究性的问题,让学生主动参与到解决问题的数学活动中,理性思考、大胆猜测,合理推断,从何培养学生的逻辑思维能力,发展学生的数学观念和数学思想,使学生形成良好的思维品质,达到启迪思维、开发智力的目的。
此案例就构造三角形全等为例,谈谈在课堂教学中如何发展学生的直觉思维,培养其创新意识。
二、全等三角形知识点的地位和作用全等三角形体现的是一种十分重要的保距变换,许多图形中线段之间,角之间的相互关系经常通过三角形全等来判断、得出,三角形全等还是基本尺规作图的根本依据。
由于全等三角形的判定及对全等三角形边、角之间的关系处理涉及推理,因此通过学习全等三角形知识对培养学生的逻辑推理和表达能力有着非常重要的作用。
三、全等三角形判定教学例子假设情景:某次组织学生参加生日聚会,需要裁剪小旗帜,如何让小旗帜和第一个剪裁的大小完全相同呢?由学生尝试把实际问题转化为数学问题:怎样画一个三角形与已知三角形全等?在解决这个问题的过程中,鼓励学生大胆猜想,激发同学们的主动性和创造性。
学生可能会提出:测出参照三条边的长度,或量出三个角的度数,或测量一条边、一个角的方案等。
对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过已知三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。
学生的思维在此产生碰撞:谁的想法可行呢?要使两个三角形全等到底需要满足哪些条件?进一步明确本节课研究的方向,引出课题。
学生在探究过程中会根据已有的知识积累,利用“几何画板”作图探究,举出反例来说明已知一个条件或两个条件画出的三角形与已知三角形不一定全等,这时教师鼓励学生画出尽可能类型的反例,并引导学生将举出的反例进行分类,初步体验分类的数学思想,为下一步已知三个条件画出三角形与已知三角形全等打下基础。
全等三角形的学案11.2和11.3
11.2三角形全等的条件(1)班级 姓名 学号教学目标1.掌握“边边边”条件的内容2、能初步应用“边边边”条件判定两个三角形全等 教学重点“边边边”的条件。
教学难点探究三角形全等的条件。
. 教学过程一.创设情境,引入新课什么叫全等三角形?△ABC ≌△DEF,说出对应边及对应角全等三角形的性质: 二、实践与探索三组对应角、对应边分别相等的两个三角形全等。
满足这六个条件的一部分两个三角形能否全等呢?1.如果两个三角形有一条边相等,作出的两个三角形一定全等吗?2.如果两个三角形有两条边相等,作出的两个三角形一定全等吗?3.如果两个三角形有三条边相等,那么作出的三角形一定全等吗?全班同学都画一个三边为4cm 、5cm 、2cm 的三角形,这些三角形全等吗?你能得到什么规律? 三、归纳总结全等三角形的条件: 四、【应用新知】例题 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .【小试牛刀】练习1、如图, C 是BF 的中点,AB = DC ,AC=DF.求证: △ABC ≌ △DCFA BC FE D BC A DFAB CD【变式练习】练习2、已知: 如图,点B 、E 、C 、F 。
在同一直线上 ,AB = DE ,AC = DF , BE = CF .求证:(1)△ABC ≌△DEF(2)【夯实基础 】练习3、已知: 如图,AC=EF,BC=BF ,BA=BE 。
求证:△ABC ≌ △EBF【能力提高】已知: 如图, AB = DE ,AC = DF , 点B 、E 、C 、F 在同一直线上,BE = CF .求证: △ABC ≌△DEF五.课时小结本节课你有什么收获?B CA E F D A C BE F ∠A=∠DB CA EFDO DCBAE DCBA 11.2 全等三角形的判定(2)学习目标1.掌握边角边条件的内容2.能初步应用边角边条件判定两个三角形全等 探究:先任意画出一个ABC ∆,再画出一个///C B A ∆,使AB B A =//,AC C A =//,A A ∠=∠/(即使两边和它们的夹角对应相等)。
直角三角形全等的判定-学案
19.7直角三角形全等的判定-学案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直角三角形全等的判定一、课前练习已知:如图,AB⊥BC,DC⊥BC,根据下列条件能否判定两个直角三角形ABC与DCB全等,为什么?(1)AB=DC;(2)∠A=∠D;(3)∠ACB=∠DBC;(4)AC=DB.二、阅读理解1.阅读教材P112~113.2.直角三角形全等的判定定理是3.判定直角三角形全等的方法有: 、、、 .4.尝试:想一想把斜边和一条直角边对应相等的两个直角三角形拼在一起,有哪几种不同的拼法其中,哪几种拼法可以创设边或角对应相等的条件,依据已学过的定理来判断这两个三角形全等5.阅读中遇到的问题有三、新课探索已知:如图,在Rt△ABC和Rt△A'B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′.求证:Rt△ABC≌Rt△A′B′C′.由前面“的证明方法的启示,是否可以考虑也将这两个三角形拼在一起,构造图形,创设条件请尝试把两个图形拼在一起,看看有几种不同的拼法.拼法中,哪几种不可取为什么例题1 已知:如图,在△ABC中,BD⊥AC,CE⊥AB,BD=CE.求证:△ABC是等腰三角形.例题2 求证:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.四、课内练习1.如图,AB、CD垂直相交于点O,根据下列条件,要判定△AOC与△DOB全等,分别用哪条判定定理?(1)∠A=∠D,AC=DB;(2)AO=DO,CO=BO;(3)AC=DB,CO=BO;(4)∠C=∠B,CO=BO.2.已知:如图,在△ABC中,AD是∠BAC的平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足分别为点E、F.求证:EB=FC.3.已知:如图,EC⊥AB,FD⊥AB,垂足分别为C、D,AF=BE,FD=EC.求证:AC=BD.4.已知:如图,AB⊥BC,AE⊥ED,垂足分别为点B、E,AB=AE,∠1=∠2.求证:BC=ED.5.已知:如图,AD⊥CD,BC⊥CD,D、C分别为垂足,AB的垂直平分线EF交AB于点E,交CD于点F,BC=DF.求证:AD=FC.BM直角三角形全等的判定一、选择题1、如图,在△ABC 中,MD 垂直平分AB ,交AB 于M ,交BC 与D,NE 垂直平分AC ,交AC 于N ,交BC 于E ,若∠BAC=100°,则∠DAE 的度数为( )° ° ° °2、如图,在△ABC 中,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于点F ,则图中全等的直角三角形的对数为( ) A .3二、填空题1、已知Rt △ABC ≌Rt △A ’B ’C ’,∠C=∠C ’=90°,AB=5,BC=4,AC=3,则△A ’B ’C ’的周长为___________,面积为__________,斜边上的高_____________.2、如图,在△ABC 中,∠C=90°,AM 平分∠CAB ,CM=10cm ,那么点M 到AB的距离是_______cmABCDEM N ABCDEFOAC三、简答题1、已知:如图,点A 、B 、C 、D 在同一直线上,BE ⊥AD ,CF ⊥AD ,垂足分别是B 、C ,AB=DC ,AE=DF 求证:AF=DEABCEFD。
第十一章 全等三角形 全章学案
第十一章 全等三角形 11.1全等三角形学习目标1.知道什么是全等形、全等三角形;2.能熟练找出全等三角形的对应元素,能用符号正确地表示两个三角形全等; 3.掌握全等三角形的性质.重点: 全等三角形的概念、性质。
难点: 对应边和对应角的确定。
自主学习一、全等形、全等三角形的概念阅读课本P2内容,回答课本思考问题,并完成下面填空: 1. 能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.能够完全重合的两个三角形叫做 . 二、全等三角形的对应元素及表示阅读课本P3第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略.2.全等三角形的对应元素(1)对应顶点(三个)---重合的顶点 (2)对应边(三条)--- 重合的边 (3)对应角(三个)--- 重合的角请同学们写出上图甲、乙、丙的对应顶点、对应边、对应角 图甲: 对应边是: 对应顶点是: 对应角是: 图乙:对应边是: 对应顶点是: 对应角是:图丙:对应顶点是: 对应边是:对应角是: 寻找对应元素的规律(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角;(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (5)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
3.“全等”用“≌”表示,读作“全等于”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作:注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 三、全等三角形的性质阅读课本P3第二个思考及下面内容,完成下面填空: 全等三角形的性质:全等三角形的 相等, 相等. 练习1.如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,说出这两个三角形中相等的边和角.D CABODCABE图1 图22.如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角. 课堂小结本节课你有哪些收获? 巩固练习1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角.(1)(2)(3)2.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,已知:∠A=43°,∠B=30°,求∠ADC的大小.B C课堂检测1.全等用符号表示,读作: .2.若△BCE≌△CBF,则∠CBE= , ∠BEC= ,BE= , CE= .3.判断题1)全等三角形的对应边相等,对应角相等.()2)全等三角形的周长相等,面积也相等. ()3)面积相等的三角形是全等三角形. ()4)周长相等的三角形是全等三角形. ()4.如图:△ABC≌△DBF,找出图中的对应边,对应角.答:∠B的对应角是,∠C的对应角是,∠BAC的对应角是;AB的对应边是,AC的对应边是,BC的对应边是 .课后作业:课本P4习题第1、2题板书设计:11.1 全等三角形一、全等形、全等三角形的概念二、全等三角形的对应元素及表示三、全等三角形的性质教学反思:BDAC FBE 11.2.1三角形全等的判定学习目标1.理解三边对应相等的两个三角形全等的内容. 2.会运用“边边边”条件证明两个三角形全等. 3. 会作一个角等于已知角. 自主学习 一、课前准备1. 叫做全等三角形2.全等三角形的 和 相等3.将△ABC 沿直线BC 平移,得到△DEF ,说出你得到的结论,说明理由?如果AB=5, ∠A=55°, ∠B=45°,那么DE= ,∠F= . 二、自主探究自主探究三角形全等的条件:阅读课本P6探究2之前,回答下面问题: 通过探究(1)只给一个条件对应相等的两个三角形一定全等吗?①只给一条边时;②只给一个角时;(2)如果给出两个条件画三角形,你能说出有哪几种可能的情况?①给出两个角时;②给出两条边时;③给出一条边和一个角时;45◦ 45◦45◦3㎝ 3㎝ 3cm(3)由上面的几种情景,两个三角形满足一个或两个条件时,它们一定全等吗?(4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况?①我们先来探究两个三角形三个角相等的情况:②画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?③上面的探究反映了什么规律?阅读课本P6-7探究2至例1前,回答下面问题:的两个三角形全等,简写为“ ”或“ ”. 三、例题学习阅读课本P7例1,学习“边边边”证明两个三角形全等的格式. 巩固练习1. 如图,AB=AD ,BC=CD ,求证:(1)△ABC ≌△ADC (2)∠B=∠D证明: (1)在△ABC 和△ADC 中(公共边)∴△ABC ≌△ADC ( )(2)∵△ABC ≌△ADC∴∠B=∠D ( )2.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到AB CD 300 700 800300 800700FDCBEABCDA这个条件?证明:四、作一个角等于已知角阅读课本P7最后一段至P8,回答书中问题.课堂小结本节课你有哪些收获? 课堂检测如图,AB=CD ,AC=BD ,△ABC 和△DCB 是否全等?试说明理由。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
《全等三角形》 导学案
《全等三角形》导学案一、学习目标1、理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2、掌握全等三角形的性质,能用全等三角形的性质解决简单的几何问题。
3、探索全等三角形的判定条件,掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)。
二、学习重难点1、重点(1)全等三角形的性质和判定方法。
(2)运用全等三角形的性质和判定解决实际问题。
2、难点(1)全等三角形判定方法的推导和理解。
(2)灵活运用全等三角形的判定方法进行证明。
三、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形的对应边相等。
(2)全等三角形的对应角相等。
3、全等三角形的表示通常用“≌”表示全等,读作“全等于”。
例如,△ABC≌△DEF,表示△ABC 与△DEF 全等。
4、全等三角形的判定方法(1)“边边边”(SSS):三边对应相等的两个三角形全等。
(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
四、典型例题例 1:已知△ABC≌△DEF,AB = 5,BC = 7,AC = 9,求△DEF 的各边长度。
解:因为△ABC≌△DEF,所以它们的对应边相等。
所以 DE = AB = 5,EF = BC = 7,DF = AC = 9。
例 2:如图,已知 AB = AD,∠B =∠D,∠1 =∠2,求证:△ABC≌△ADE。
证明:因为∠1 =∠2,所以∠1 +∠DAC =∠2 +∠DAC,即∠BAC =∠DAE。
在△ABC 和△ADE 中,AB = AD,∠B =∠D,∠BAC =∠DAE所以△ABC≌△ADE(ASA)五、课堂练习1、如图,已知△ABC≌△CDA,AC = 7cm,AB = 5cm,BC =8cm,则 AD 的长为()A 5cmB 8cmC 7cmD 无法确定2、下列条件能判定△ABC≌△DEF 的是()A AB = DE,BC = EF,∠A =∠DB ∠A =∠D,∠C =∠F,AC = EFC ∠A =∠E,∠B =∠D,AC = DFD ∠A =∠D,∠B =∠E,AC = DE六、课后作业1、已知△ABC≌△A'B'C',∠A = 60°,∠B = 40°,则∠C'的度数为()A 80°B 60°C 40°D 100°2、如图,在△ABC 和△ABD 中,AC = BD,AD = BC,求证:△ABC≌△ABD。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案
全等三角形教案全等三角形教案15篇全等三角形教案1一、教材分析(一) 本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两三角形间最简单、最常见的关系。
本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。
因此,本节课的知识具有承上启下的作用。
同时,人教版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二) 教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。
同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。
为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三) 教材重难点由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。
同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。
画有相关图片的作业纸。
二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
全等三角形导学案(共16课时)
课题: 11.1 全等三角形 第1课时 累计1课时编写人: 备课组长: 审查人 授课时间教学目标:1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等3、能熟练找出两个全等三角形的对应角、对应边。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角。
教学过程:一、 创设情境,引入新课(课前检测) 二、课前预习1、 阅读教材2——3页2、填空(1) 叫做全等形(2) 叫做全等三角形(3)把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做重合的角叫做 。
(4)“全等”用 表示, 读作 。
(5)全等三角形的性质: , 。
3.思考(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角(2)将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由?(3)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知:οο30,43=∠=∠B A ,求ADC ∠的大小。
三.合作探究D DBD BE BC例1.已知如图(1),ABC ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______. 例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,ο105=∠=∠AED ACB ,οο25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.三、疑难点拨1、如图,已知△ABE ≌△ACD , ∠ADE=∠AED,∠B=∠C,指出其它的对应边和对应角。
新人教版八年级数学上册《12.1 全等三角形》学案1
新人教版八年级数学上册《12.1 全等三角形》学案完成,小组内展示、点评,教师巡视.点拨精讲:通常把对应顶点的字母写在对应的位置上.是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.(第2题图),(第3题图)3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD =6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?解:①△ABC≌△DEF,A 和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC 与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC 与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC沿BC 所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC绕点A旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC -EC=EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A+∠ACB =90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,∴∠BAC=∠DCA,∴AB∥CD.2.如图,△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.解:对应边有AB与AC,AE与AD,BE与CD,对应角有∠BAE=∠CAD.找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(学生总结本堂课的收获与困惑)课后反思。
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
8.2全等三角形学案
《8.2全等三角形》导学案(第1课时)【课前预习学案】1.理解全等三角形的的概念并掌握全等三角形的性质,提高观察能力。
2.通过自主学习、合作探究,学会找全等三角形的对应边和对应角的方法。
3.全力以赴,享受成功学习的快乐,体会数学图形的直观美。
重点:探究全等三角形的性质。
难点:掌握找两个全等三角形的对应边,对应角。
使用说明与学法指导:1. 用15分钟左右的时间,阅读探究课本P 25—P 27有关全等三角形的基础知识,特别注意对应边和对应角。
2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测。
3. 将预习中不能解决的问题标识出来,并写到后面“我的疑惑”处。
一、学始于疑 ——我思考,我收获!1.在记两个三角形全等时,为什么通常把表示对应顶点的字母写在对应位置上?这样写有什么好处?2.应用全等三角形的性质可以解决什么问题?学习建议:请同学用3分钟时间认真思考这些问题,并结合预习中自己的疑问开始下面的探究学习。
二、质疑探究——质疑解疑,合作探究 (一)基础知识探究:探究点一:全等三角形的有关概念1. 观察图3,△DEF 是由△ABC 经过平移得到的。
这两个图形大小、形状有没有改变?是不是全等三角形?2. 观察图4,将△BCD 沿直线BC 翻折180°得到△ABC 。
这两个图形大小、形状有没有改变?是不是全等三角形?3.观察图5,将△ABC 旋转180°得△AED 。
这两个图形大小、形状有没有改变?是不是全等三角形?4.你能总结全等三角形的概念吗?5.当两个全等三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
请写出图5中的对应顶点、对应边、对应角。
DCAB FEDCABDCAE探究点二:全等三角形的性质(重点)1.寻找图3中两个三角形的对应元素,它们的对应边有什么关系?对应角呢?可以得到全等三角形的什么性质?2.如何表示图3中的两个三角形全等?表示两个三角形全等时注意什么问题?【归纳总结】 (二)知识综合应用探究探究点一:对应角、对应边的确定(重点、难点) 【例1】(1)在图6(1)中,△ABC ≌△DCB ,则AB =( ),AC =( ),BC =( )。
全等三角形教学学案
全等三角形学案(一)初二数学张子顺孙金义同步辅导:全等三角形1、概念理解:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形,而两个三角形全等的判定是几何证明的有力工具。
2、三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3、全等三角形的性质:全等三角形的对应角相等、对应边相等。
注意:1)性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2)利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
例题分析:例1,如图△ABC≌△DEF,AB和DE,AC和DF是对应边,说出对应角和另一组对应边。
解:∵AB和DE,AC和DF分别为对应边,∴另一组对应边是BC和EF。
∴对应角为:∠A和∠D,∠B和∠E,∠ACB和∠DFE例2,如图,△ABE≌△ACD,AB=AC,写出两个全等三角形的对应角与对应边,并问图中是否存在其它的全等三角形。
分析:由AB=AC,则AB和AC是对应边,可找AB的对角∠AEB,AC的对角∠ADC,则∠AEB和∠ADC为对应角。
由∠A是这两个三角形的公共角,它与其自身对应,因而∠A的对边为BE、DC为对应边,于是剩下的∠B、∠C是对应角。
AE和AD是对应边。
解:对应边:AB和AC,BE和DC,AE和AD对应角:∠A和∠A、∠B和∠C、∠AEB和∠ADC∵AB=AC,AD=AE,∴AB-AD=AC-AE,即BD=CE又由∠B=∠C,∠DFB=∠EFC(对顶角相等)于是构成一对全等三角形为△BFD 和△CFE。
1、找全等三角形的对应边,对应角的方法是:(1)若给出对应顶点即可找出对应边和对应角。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
全等三角形导学案.docx
学案《全等三角形》学习目标:知道什么是全等形、全等三角形及变换前后两个图形的全等关系;知道并能找出两个全等三角形的对应顶点、对应边、对应角;会用符号表示两个三角形全等;掌握全等三角形的性质并会进行简单的应用•课前预习单你能再举出一些例子吗?2 .把一块三角板按在纸板上,画下图形,照图形裁下来的纸板和三角板的形状、大小是完全一样吗?把三角板和裁得的纸板放在一起能够完全重合吗?3•什么是全等形?什么是全等三角形?什么是全等三角形的对应顶点?对应边?对应角?你能找出上图中两个全等三角形的对应顶点、对应边、对应角吗?4•你能用符号表示两个三角形全等吗?记全等时要注意什么?用符号表示上图中的全等关系:1下列图片中有形状、大小相同的图形吗?A活动一:小组白板展示预习单并交流活动二:合作探究在图11.1- 1中,把△ ABC沿直线BC平移,得到△ DEF。
在图11.1-2中,把△ ABC沿直线BC翻折180°,得到△ DBC 在图11.1-3中,把△ ABC旋转180 °,得到△ AED。
各图中的两个三角形全等吗?小结:经过变换后两个三角形的对应顶点、对应边、对应角分别是什么?并在小组内说说。
即时反馈:(小组内先试着说说,再派代表汇报)1.如右图所示,△ OCA^A OBD对应顶点有:点和点,点和点和,,点和点和;一;......O 对应角有:和,对应边有:和,和,和。
A D2.如下图,已知△ ABE ◎△ ACD ,指出对应顶点、对应边和对应角.3 .如上图△ ABC也厶ADE ,试找出对应边、对应角.课堂活动单fi ILM ffill.b2 ffl 11. PJ小结:在两个全等三角形中找对应边及对应角的方法:(1) 公共边一定是 _________,公共角一定是__________ ,对顶角一定是 ________ (2) —对最长(或短)的边是 ___________ ,一对最大(或小)的角是 ______________ (3) 对应角所对的边是 __________ ,两个对应角所夹的边是 _____________ ,对应边所对的角是 ___________ ,两条对应边所夹的角是 _____________ .活动三:探究并运用全等三角形的性质如上图13.1-1 , △ ABC DEF ,对应边有什么数量关系?对应角呢?小组交流归纳全等三角形对应边、对应角的性质:即时反馈:如图,若△ ABC ◎△ DEF ,回答下列问题:(1) 若厶 ABC 的周长为 17 cm , EF=6 Cm , DE=5 Cm ,贝U AC = _______ Cm(2) 若 ∠ A =50 °,∠ E=75 °,则 ∠ C= ______ °小结本课收获?4.如右图厶ABC 也 △ DEC ,试找出对应边、对应角。
新人教版八年级数学上册《12.1全等三角形》学案
新人教版八年级数学上册《12.1全等三角形》学案学习目标:(1-2分钟) 1、认识全等形和全等三角形2、掌握全等三角形的定义和符号表示3、认识到一个图形经过平移、翻折、旋转后的图形与原来的图形全等 学习过程:一、自学指导:(5分钟)自学课本P31——P321.什么是全等形、全等三角形及全等三角形的对应元素? 2.全等三角形的性质是什么?3. 怎样用符号正确地表示两个三角形全等?4. 能否熟练找出两个全等三角形的对应角、对应边? 二、自学检测1: (5-8分钟)1. 能够________的两个图形叫做全等形.两个三角形完全重合时,互相___ ____的顶点叫做对应顶点.记两个三角形全等时,通常把___ __ ___•顶点的字母写在___ __的位置上.2.说出下面甲乙丙三图中两个全等三角形对应顶点、对应边和对应角.甲DCABFE 乙DCAB丙DC ABE第4题图甲:对应点 乙:对应点 丙:对应点 对应边 对应边 对应边对应角 对应角 对应角DCABO思考:请同学们思考要说明两个三角形可以重合,可以通过怎样变换使两三角形重合? 总结:两个三角形全等与两个三角形的位置 .两个全等的三角形经过一定的转换可以重合.一般是 、 、 的方法.3.全等三角形的性质有: .4.如上图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.5.如下图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.(学生讨论完成)三、课堂检测:(5-8分钟)6.已知如图△ABC ≌△ADE ,试找出对应边、对应角.DCABEDCABEODCBEA第5题图 第6题图 第7题图7.如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?四、课堂作业:(15分钟) 1.如图△ABC ≌△ADE,若∠D=∠B,∠C=∠AED则∠DAE=_________.∠DAB=___________.DC BEADCBA D CBEA2.如图△ABD ≌△CDB ,若AB=4,AD=5,BD=6,则BC=______,CD=______.3.如图△ABD ≌△EBC ,AB=3cm ,BC=5cm ,求DE 的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册导学案
___
对应角有:
____
八年级数学上册导学案
B
,求证:△ABC ≌ ADE。
∠ODC
提升:
1、下列说法中,错误的有(
(1)周长相等的两个三角形全等。
)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
角形全等() A、
八年级数学上册导学案
八年级数学上册导学案
八年级数学上册导学案
是高,
“全等”或“不全等”)
、判断两个直角三角形全等的方法不正确的有()
、斜边和一锐角对应相等
、当堂检测
AB,DF⊥AB,垂足分别为E、F,
,根据
,根据
八年级数学上册导学案
、命题:角平分线上的点到这个角的两边距离相等.
题图形请你写出已知和求证,并证明命题
A
E
D
C
的周长。
八年级数学上册导学案
2、如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,
求证∠1=∠2
八年级数学上册导学案。