中学数学思想方法之整体思想-2019年精选文档

合集下载

初中数学思想方法篇——整体思想

初中数学思想方法篇——整体思想

新梦想教育中高考名校冲刺教育中心【老师寄语:每天进步一点点,做最好的自己】解题思想之整体思想一、注解:郑板桥有这样一句大家耳熟能详的话:“难得糊涂”,如果事事较真,钻牛角尖,往往对解决问题没有帮助。

这句话提醒我们,在有些时候不能方方面面都照顾,该忽略的问题你就应该忽略。

而在我们的数学学习过程中,也经常运用这种思想解决问题。

整体思想就是要求大家在学习的过程中,有时候只能从大的,宏观的方面考虑问题,避免钻牛角尖,将一些问题“打包”处理,以达到事半功倍的效果。

整体思想就是考虑数学问题的时候不仅仅局限于它的局部特征,而且着眼于问题的整体结构上,通过对其全面深刻的观察,从宏观上认识问题的实质,把一些彼此独立,但实质又相互紧密联系的量作为整体进行处理的思想方法。

整体思想在处理数学问题时有着广泛的运用。

二、实例运用:1. 在数与式中的运用【例1】计算:11111111111111 1123423452345234⎛⎫⎛⎫⎛⎫⎛⎫++++++-++++++⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【例2】当x=1时,代数式px2+qx+1的值是2001,则当x= -1时,代数式px2+qx+1的值是:A -1999B -2000C -2001D 1999【例3】若13xx+=则221xx+=。

2. 在方程(组)中的运用【例1】已知二元一次方程组为2728x yx y+=⎧⎨+=⎩则x-y= ,x+y= .【例2】已知方程组45ax bybx ay+=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则a+b= .【例3】有甲乙丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元。

现购甲乙丙各1件,需要多少元?3. 在几何计算中的运用【例1】如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯的长度至少需要米。

【例4】有星型图,如图,求∠A,∠B,∠C,∠D,∠E的和。

三、随堂练习1、若分式x yx y+-中的x,y的值都变为原来的3倍,则此分式的值()A 不变B 是原来的3倍C 是原来的三分之一D 是原来的六分之一2、如图所示的直角坐标系中,已知半圆A和半圆B均与y轴相切于点O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分的面积是。

中考数学思想方法专题之整体思想

中考数学思想方法专题之整体思想

初中数学思想之整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一.数与式中的整体思想【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( )A .18B .12C .9D .7【例2】.已知114a b -=,则2227a ab b a b ab---+的值等于( ) A.6 B.6- C.125 D.27-【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.二.方程(组)与不等式(组)中的整体思想【例4】已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为 【例6】.解方程 22523423x x x x +-=+三.函数与图象中的整体思想【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式四.几何与图形中的整体思想【例8】.如图, 123456∠+∠+∠+∠+∠+∠=【例9】.如图,菱形ABCD 的对角线长分别为3和4,P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .【例10】.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.【巩固练习】:1.当代数式a -b 的值为3时,代数式2a -2b+1的值是 ( )A .5B .6C .7D .82.用换元法解方程(x 2+x) 2+2(x 2+x)-1=0,若设y=x 2+x ,则原方程可变形为 ( )A .y 2+2y+1=0B .y 2-2y+1=0C .y 2+2y -1=0D .y 2-2y -1=03.当x=1时,代数式a x 3+bx+7的值为4,则当x=-l 时,代数式a x 3+bx+7的值为( )A .7B .10C .11D .124.若方程组31,33x y k x y +=+⎧⎨+=⎩的解x ,y 满足0<x+y<1,则k 的取值范围是 ( ) A .-4<k<0 B .-1<k<0 C .0<k<8 D .k>-45.(08芜湖)已知113x y -=,则代数式21422x xy y x xy y----的值为_________.6.已知x2-2x-1=0,且x<0,则1xx-=__________.7.如果(a2+b2) 2-2(a2+b2)-3=0,那么a2+b2=_________.8.如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯长度至少需________米.9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和为__________cm2.10.(07泰州)先化简,再求值:2224124422aa a a a a⎛⎫--÷⎪-+--⎝⎭,其中a是方程x2+3x+1=0的根.11.(08苏州)解方程:()2221160x xx x+++-=.。

七年级数学培优专题:整体思想

七年级数学培优专题:整体思想
七年级数学培优专题 整体思想
目 录
• 整体思想概述 • 整体思想的基本概念 • 整体思想在解题中的应用 • 整体思想的培养与提高 • 整体思想在数学竞赛中的应用 • 总结与展望
01
整体思想概述
整体思想的定义
01
整体思想是指从整体的角度出发 ,将多个部分或要素视为一个整 体,对其进行全面、系统的分析 和处理。
促进知识整合
整体思想有助于学生将所 学知识进行整合,形成完 整的知识体系,加深对数 学本质的理解。
整体思想在数学中的应用
代数问题
在代数问题中,整体思想常用于因式 分解、方程组的求解等,通过将问题 看作一个整体,简化计算过程。
几何问题
函数问题
在函数问题中,整体思想常用于分析 函数的性质和图像,通过从整体角度 把握函数的规律,更好地理解函数的 本质。
03
整体思想在解题中的应 用
代数题中的应用
代数方程组的求解
通过将方程组视为一个整 体,利用消元法或代入法 求解,避免了逐一解每个 方程的繁琐过程。
代数式的化简
将复杂的代数式视为一个 整体,运用合并同类项、 提取公因式等技巧进行化 简,简化了解题过程。
代数式的变形
通过观察代数式的整体结 构,运用整体代换、整体 约简等方法,快速找到解 题思路。
06
总结与展望
总结整体思想的内容与意义
整体思想概述
整体思想是一种重要的数学思维方式 ,它强调从整体的角度看待问题,通 过全面分析、综合运用知识点,寻找 解题的突破口。
整体思想的意义
整体思想有助于培养学生的逻辑思维 、创新思维和问题解决能力,对于提 高学生的数学素养和应对复杂问题的 能力具有重要意义。
对未来学习的展望

中考数学复习《整体思想解析》

中考数学复习《整体思想解析》

方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。

它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。

运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。

它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。

整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。

数学中的整体思想

数学中的整体思想

数学中的整体思想整体思想是数学解题中一种重要的思想方法,在解决某些问题时,从问题的整体特性出发,统筹考虑,全面把握,构建整体结构,利用问题的各方面条件寻求简洁的解法。

有些数学问题中的某些元素虽然是非本质的,但若根据题目需要,设法将其视为对象,从整体上把握,则可化难为易,化繁为简。

一、整体代入有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。

例1:一船在静水中的速度是15千米/小时,要经过150千米的河,并且逆流而上(水流速度为5千米/小时),问船往返共用多少时间?分析:此题若从局部考虑,要分顺水、逆水两种情况分别计算,而从整体考虑,因为船速与水速均已知,所以两地之间距离(150千米)也是一个已知量,所以可以省去对其中繁琐细节的研究,直接利用公式解决问题。

设船往返共用x小时。

则根据题意列方程:15x-5x=150解得:x=15二、整体换元有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,视“黑箱”为新元,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。

例2:设a、b是方程2x2-7x+3=0的两根,且a>b>0,求a+b与ab的值。

分析:此题若从局部考虑,要解方程求出a、b的值再代入求值,而从整体考虑,因为a、b是方程2x2-7x+3=0的两根,所以a+b与ab满足一定的等量关系(韦达定理),因此可以省去对其中繁琐细节的研究,直接利用公式解决问题。

因为a、b是方程2x2-7x+3=0的两根,所以有:a+b=-(-7)/2=7/2;ab=3/2三、整体构造有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,根据题目的需要而恰到好处地构造这个“黑箱”,则可以省去对其中繁琐细节的研究,直接利用这些等量关系解题。

例3:已知二次函数y=-x2+mx-m2-0.5m+4的最大值为-18/5,求此函数的解析式。

数学思想篇:一、整体思想

数学思想篇:一、整体思想

第 1 页 共 2 页数学思想篇:一、整体思想【思想指导】整体思想,就是从整体上去认识问题、思考问题,常常能化繁为简、变难为易.其主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用.【范例讲析】一.数与式中的整体思想例1.已知114a b -=,则2227a ab ba b ab---+的值等于 ( )A.6B.6-C.125 D.27- 例2.已知当1x =时代数式25342()2x ax bx cx x dx ++++的值为3,则当1x =-时,代数式的值为 二.方程(组)与不等式(组)中的整体思想 例3.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是例4. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为例5. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?三.函数与图象中的整体思想例6.已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式.例7. 若关于x 的一元二次方程2(21)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.四.几何与图形中的整体思想例8.如图, 123456∠+∠+∠+∠+∠+∠= 例9.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .例10.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.第 2 页 共 2 页【优化训练】1.已知式子3y 2-2y+6的值为8,那么号23y 2-y+l 的值是 ( ) A .1 B .2 C .3 D .42.计算(250+0.9+0.8+0.7)2 -(250-0.9-0.8-0.7)2之值为( ) A. 11. 52 B.23. 04 C.1200 D.24003.已知411=+b a ,则 b ab a bab a 323434-+-++的值为 ( )A .1019-B .1019 c .-1910 D .19104.已知a 2-3a+1=0,则441a a+的值为 ( )A. 45B. 46C. 47D. 485.如图,在梯形ABCD 中,MN 是梯形的中位线,E 是AD 上一点,若S △EMN =4, 则S 梯形ABCD= ( )A .8B .12C .16D .206.已知a l ,a 2,…,a 2002均为正数,且满足M=(a l +a 2+…+a 2001)(a 2+a 3+---+a 2001-a 2002),N=(a l +a 2+- +a 200l -a 2002)(a 2 +a 3+…+a 2oo1),则M 与N 之间的关系是 ( )A .M>NB .M<NC .M-ND .无法确定.7.已知6111=+b a ,9111=+c a ,15111=+c b ,则bc ac ab abc++的值为 ( )A .18031B .31180 c .9031 D .31908.如图,在梯形ABCD 中,AD ∥BC,且AD :BC=1:3,梯形ABCD 的对角线AC,BD 交于点O,S △AOD :S △BOC :S △AOB ( )A. 1:3:1B.1:9:1C.1:9:3D. 1:3:29.若31=+xx ,则2421x x x ++的值是 ( ) A .81 B .101 c .21 D .4110.甲、乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占有济南市场同类产品的43,然而实际情况并不理想,甲厂仅有21的产品,乙厂仅有31的产品销到了济南,两厂的产品仅占了济南市场同类产品的31,则甲厂该产品的年产量与乙厂该产品的年产量的比为 ( )A .3B . 31 c .21D .211.如果a+b=5,那么(a+b)2 -4(a+b )=____.12.如果210x x +-=,则3223x x ++ =____.13.当x=-3时,式子ax 5 +bx 3 +cx-5的值是7,那么当x=3时,此式子的值是 .14.方程组⎩⎨⎧=-+=-+65)(53)(2y y x y y x ,的解为 .15.已知a=83 x-20,b=83x-18,c=83x-16,则222a +b +c -ab-ac-bc= .16.已知a-b=b-c=53,222a +b +c = 1,则ab+bc+ca 的值等于 .17.已知Rt △ABC 的两边a ,b 满足等式(a 2十b 2)2-(a 2+b 2)=6,a+b=2,那么这个直角三角形的斜边c 的长和面积分别____.18.对于正数x ,规定,f(x)=xx+1,例如,f(3)=43313=+,f(31)=4131131=+,计算+++++++-+-+)3()2()1()1()21()31()21()11()1(f f f f f f n f n f n f )()1()2(n f n f n f +-+-+ =____.(n 为正整数)19.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是__________.。

数学中的整体思想

数学中的整体思想

经济领域
总结词
整体思想在经济领域中,注重从宏观的角度看待问题,强调整体的经济效益和社会效益。
详细描述
在制定经济发展战略时,政府需要从整体上考虑国家的经济状况、市场需求、资源条件等因素,制定出符合国家 长远发展的政策。此外,企业在经营过程中也需要注重整体利益,通过优化资源配置、提高生产效率等方式实现 可持续发展。
02
它不是将问题分解为各个部分, 而是将问题看作一个整体,研究 整体与部分之间的关系,从而找 到解决问题的方法。
整体思想的重要性
整体思想有助于发现问题的本质和内在规律,从而更好地理解和解决复 杂问题。
整体思想有助于培养学生的逻辑思维和创造性思维,提高学生的数学素 养和解决问题的能力。
在数学中,许多问题需要运用整体思想来解决,如几何问题、代数问题 、概率统计问题等。因此,掌握整体思想对于提高学生的数学成绩和数 学思维能力具有重要意义。
概率统计中的应用
概率模型
在概率模型中,整体思想可以用 于研究事件的概率、期望和方差 等统计量,以及它们之间的关系
和性质。
统计分析
在统计分析中,整体思想可以用 于研究数据的分布、参数估计和 假设检验等统计方法,以及它们
之间的关系和性质。
决策理论
在决策理论中,整体思想可以用 于研究决策者的偏好、效用和期 望效用等决策准则,以及它们之
数学中的整体思 想
汇报人: 202X-01-02
目录
• 整体思想的定义与重要性 • 整体思想在数学中的应用 • 整体思想的优势与局限性 • 如何培养数学中的整体思想 • 整体思想在数学教育中的价值 • 整体思想在其他领域的应用
01
整体思想的定义与重要性
整体思想的定义

初中数学思想方法

初中数学思想方法

初中数学思想方法数学思想方法是解决数学问题的灵魂,也是把数学知识转化为数学能力的桥梁。

初中数学中常用的思想方法有:整体思想、分类讨论思想、函数思想、方程思想、转化思想、类比思想、分类讨论思想等。

1、整体思想整体思想是从问题的整体性质出发,通过研究问题的整体形式、整体结构、整体与局部的内在等,找出解决问题的途径。

2、分类讨论思想当一个问题因为某种量或条件的改变,而引起演变结果的改变时,我们就需要对问题从各种不同的角度或分类讨论加以解决。

3、函数思想用运动变化的观点去分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系用函数表示出来。

4、方程思想方程思想就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。

5、转化思想转化思想是将要解决的问题转化成一个或几个已经解决的简单问题。

6、类比思想类比是根据两个具有相同或相似性质的事物之间进行比较,从而找到另外一些具有相同或相似性质的事物。

7、分类讨论思想分类讨论是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。

分类依赖于标准的确定,不同的标准会有不同的分类方式。

总之数学思想方法是分析解决数学问题的灵魂,也是数学知识的精髓,是把数学知识转化为数学能力的桥梁。

一、引言在现今的初中数学教学中,培养学生的数学思想方法已经成为了一个重要的目标。

《初中数学思想方法导引》这本书,以其独特的视角和深入的剖析,成为了初中数学教师的重要参考书籍。

本书主要介绍了初中数学中的各类思想方法,如方程思想、函数思想、化归思想等,对于提高学生的数学素养,增强他们的解题能力,具有极大的指导意义。

二、数学思想方法的重要性数学思想方法是一种对数学规律和数学本质的深刻认识和理解,是对数学知识进行高度概括和抽象的结果。

在初中数学教学中,培养学生的数学思想方法不仅可以提高学生的数学成绩,更重要的是可以培养他们的逻辑思维能力、创新能力和解决问题的能力。

细说初中数学整体思想

细说初中数学整体思想

细说初中数学整体思想
整体思想是指善于用“集成”的眼光,把某些式子或图形看成一个整体,把握已知所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法。

从整体出发的处理方法,体现了一种着眼全局、通盘考虑的整体观念。

整体思想的应用对象
整体思想在初中数学的数与式、方程与不等式、函数与图像、几何与图形等方面机都有很好的应用,因此,每年的中考中涌现了许多的别具创意、独特新颖的涉及整体思想的问题,尤其在考察高层次思维能力和创新意识方面具有独特的作用
下面小编为大家整理了初中数学常见的几种应用整体思想的问题,供大家交流学习使用。

整体思想在数与式中的应用
整体思想在方程中的应用
整体思想在因式分解中的应用
整体思想在几何图形中的应用
温馨提示
如果您想获得word版资料,请在下方留言,并留下邮箱哦处在假期中的您现在的需要什么资料呢,快在下方留言吧。

数学中的整体思想

数学中的整体思想
[思路分析] 受一个“-〞号影响,应变号; 受两个“-〞号影响,不变号;
[规律总结]在含有多重括号的运算式中,括号里的项 是否变号,只与该项以及该项所在的各层括号前面的 “-〞号有关,而与其前面的“+〞号无关.因此只 要从外向里逐层确定影响该项的“-〞号的个数就 可整体去括号.当某项受奇数个“-〞号影响时该项 变号,受偶数个“-〞号影响时该项不变号.
分析:假设要直接求出a与b的值,要用 二次方程求解较繁。但由联想到运用整 体思想〔将ab视为一个整体〕,问题便 可顺利获解。
解:在Rt△ABC中,根据勾股定理,得 即
又由得
所以
第十七章 实数
观察全局,就是从全局上对条件进展观 察分析,综合考察,从而得出解决问题途径。
例:假设实数满足
那么
y202x 0 3 3 2030 2x 4 2
解:原式=(4+3)(x+y)+(2-3)(x-y)=7(x+ y)-(x-y)=7x+7y-x+y=6x+8y.
[规律总结]括号内所含内容一样的多项式运算, 可将括号看作一个“整体〞先行合并,再去括 号,可简化运算.
五、整体去括号
化简 2 x 2 y 2 x 3 x 2 y 2 ( 3 x 2 y 2 x Байду номын сангаас 4 x y 2 y
解:∵x=2m+1,y=1-2m.
∴x+y=2,x-y=4m.
∴原式= +(x+y)(x-y)= +2×4m=16
+8m. (x y)2
(4m)2
m2
[规律总结]把计算式中的某部分看作整体或先作适当变形转化,再整体代入,是经常 使用的一种方法.
二、整体转化法
计算(3a+2b-c+5)(3a-2b+c+5) [思路分析]将(3a+5)看成一样的项,将(2b-c) 看成相反的项,问题就转化平方差公式,计算起 来就方便了. 解:原式= ( 3 a 5 ) 2 ( 2 b c ) 2 9 a 2 3 a 2 0 4 b 5 2 4 b c 2 c

数学中的整体思想

数学中的整体思想
命题。
整体证明
利用整体思想对猜想进行证明,揭 示数学命题之间的内在联系和规律。
整体探究
通过探究数学命题的整体结构和性 质,发现新的数学规律和性质。
感谢您的观看
THANKS
整体构造法的应用场景
01
解决代数方程
在代数方程中,整体构造法可以用于解决一些复杂的方程组或高次方程。
通过将问题看作一个整体,可以发现方程之间的内在联系,从而简化解
题过程。
02
几何问题
在几何问题中,整体构造法可以用于解决一些复杂的图形问题,如面积、
体积和角度等问题。通过将图形看作一个整体,可以更直观地理解图形
03
整体构造法
整体构造法的定义
整体构造法是一种数学解题方法,它强调从整体的角度去 观察和思考问题,将问题看作一个整体,而不是将其拆分 成多个部分。通过整体构造法,可以更全面地理解问题, 发现问题的本质和内在规律。
整体构造法的核心思想是“以全局带动局部”,即通过研究 整体性质来推导和解决局部问题。这种方法在数学中广泛应 用于解决代数、几何和概率统计等领域的问题。
解析几何
在解析几何中,整体观察法可用于研究几何图形之间的关系和性质。例如,在研究平面几 何图形的面积和周长时,可以通过整体观察法发现它们之间的联系和规律,从而简化计算 过程。
函数分析
在函数分析中,整体观察法可用于研究函数的性质和变化规律。通过整体观察函数的图像 和性质,可以更好地理解函数的性质和变化规律,从而更好地解决与函数相关的问题。
02
在数学中,整体观察法通常用于 研究数学对象之间的关系、结构 和性质,以便更好地理解数学概 念、定理和解题方法。
整体观察法的应用场景
解决代数问题
整体观察法在代数问题中应用广泛,例如解方程组、因式分解、不等式证明等。通过从整 体上观察代数式或方程组,可以发现它们之间的内在联系和规律,从而简化解题过程。

数学解题思想——整体思想

数学解题思想——整体思想

数学解题思想—-整体思想杨相云整体思想就是从问题的整体性质出发,突出对问题整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子、图形或概念看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.一.整体代入在求代数式的值时,可先将条件或待求式变形,再整体代入求值,使问题化难为易。

例1 已知a 是方程210x x +-=的一个根,求代数式22211a a a a--+的值。

分析:由a 是方程210x x +-=的一个根,得210a a +-=,则21-a a -=,2=1a a +,再整体带入即可。

二.整体设元在解决某些比较复杂的式子时,也可以考虑将复杂的式子整体用字母代换,使问题化繁为简,巧妙获解。

例2 阅读材料:求2320141+2+2+2...2++的值。

解:设S=2320141+2+2+2...2++,则2S=234201420152+2+22...22++++,两式相减得 2S-S=201521-,即S=201521-;故2320141+2+2+2...2++=201521-。

请你仿照此方法计算:(1)23101+3+3+3...3++;(2)231+5+5+5...5n ++(其中n 为正整数).分析:(1)仿照阅读材料,设S=23101+3+3+3...3++,两边乘以3后得到关系式3S=2310113+3+3...33+++,再与已知等式相减,得2S=1131-,即可求出所求式子的值;(2)设S=231+5+5+5...5n ++,两边乘以3后得到关系式5S=2315+5+5...5+5n n +++,再与已知等式相减,得4S=151n +-,即可求出所求式子的值;三.整体构造就是对已知条件和所求联合研究,把问题作为一个整体来构造,从而解决问题.例3 甲、乙、丙三种商品,若买甲4件,乙5件、丙2件,共用69元;若买甲5件,乙6件、丙1件,共用84元。

数学思想方法(整体思想、转化思想、分类讨论思想

数学思想方法(整体思想、转化思想、分类讨论思想

数学思想方法(整体思想、转化思想、分类讨论思想专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。

数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。

数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

中考数学复习解题思想方法技巧--第一讲:整体思想

中考数学复习解题思想方法技巧--第一讲:整体思想

中考数学复习解题思想方法技巧第一讲:整体思想整体思想,就是探究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法。

从整体上去认识问题、思考问题,常常能化繁为简、变难为易。

整体思想的表现形式有:整体代入、整体约减、整体换元、整体合并等。

一、整体代入主体思想:求代数式的值时,通常会遇到各种各样关于未知数的关系式的条件,利用常规方法在这些关系式中求出未知数后再代入求值,其计算往往很复杂,甚至有时求不出具体的数值。

这时往往需要研究问题的条件和结论的整体形式,挖掘式子结构上的特征联系,将已知条件进行恰当变形,或把一些已知关系式作为整体,直接代入求值式中计算,过程简洁明了。

例题精析:m=1+,n=1-,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5B.5C.-9D.9点拨提示:如果将m,n的值直接代入,运算量很大。

观察含a的方程中,7m2-14m和m=1+隐约有一定的关系,尝试将m=1+变形为m-1=,再两边平方可得m2-2m+1=2,整理得m2-2m=1;所以7m2-14m=7(m2-2m)=7×1=7。

用类似的处理方法整体可得3n2-6n 的值,整体代入即可求出a的值。

参考答案:Ca是方程x2-2011x+1=0的一个根,试求a2-2010a + 的值。

点拨提示:由已知得a2-2011a+1=0,直接解方程会有2个根,需要分别都代入求值,而且运算很大。

观察a2-2011a+1=0和所求代数式中的a2-2010a部分,隐约有一定的关系,尝试整体变形处理后再代入。

解题过程:由a2-2011a+1=0得a2-2010a=a-1①,即a2+1=2011a②,显然a≠0,两边同除以a得a+=2011③,将①、②、③式代入得:原式=a-1+ =a-1+= a+-1=2011-1=2010同步练习:当时,求多项式(4x3-2007x-2004)2004的值。

数学思想方法一整体思想(解析)(自己整理)

数学思想方法一整体思想(解析)(自己整理)

数学思想方法一整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想例1.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27-分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解.解:112242b 6112272(4)72()7a ab b a a b ab b a------===-+⨯-+-+说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.例2.已知代数式25342()2x ax bx cx x dx++++,当1x =时,值为3,则当1x =-时,代数式的值为解:因为当1x =时,值为3,所以231a b c d +++=+,即11a b cd++=+,从而,当1x =-时,原式()21211a b c d-++=+=-+=+例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ⎡⎤=-+-+-⎣⎦,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232⎡⎤=-+-+=⎣⎦ 说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化. 二.方程(组)与不等式(组)中的整体思想例4.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133k <+<,解得3655k -<<例5. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为分析:如果把56x y =⎧⎨=⎩代入3511x ay x by -=⎧⎨+=⎩,解出a ,b 的值,再代入3()()()11x y a x y x y b x y +--=⎧⎨++-=⎩进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐. 若采用整体思想,在方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩中令x y mx y n+=⎧⎨-=⎩,则此方程组变形为3511m an m bn -=⎧⎨+=⎩,对照第一个方程组即知56m n =⎧⎨=⎩,从而56x y x y +=⎧⎨-=⎩,容易得到第二个方程组的解为11212x y ⎧=⎪⎪⎨⎪=-⎪⎩,这样就避免了求a ,b 的值,又简化了方程组,简便易操作.解:11212x y ⎧=⎪⎪⎨⎪=-⎪⎩说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.例6.解方程 22523423x x x x+-=+分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.解:设223x x y +=,则原方程变形为54y y-=,即2450y y --=,解得15y =,21y =-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41x =-,经检验1x ,2x ,3x ,4x 都是原方程的解.说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54y y =+来解. (2)利用整体换元,我们还可以解决形如22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322y y +=,再转化为一元二次方程来求解. 例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.依题意,得37315410420x y z x y z ++=++=⎧⎨⎩..,即2331533420()().()().x y x y z x y x y z ++++=++++=⎧⎨⎩解关于x y +3,x y z ++的二元一次方程组,可得x y z ++=105.(元) 答:购甲、乙、丙各1件共需1.05元.第9题YXO 1-14321I HEDBA说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以目标明确,直奔主题,收到了事半功倍的效果. 三.函数与图象中的整体思想例8.已知y m +和x n -成正比例(其中m 、n 是常数) (1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式. 解:(1)因y m +与x n -成正比例,故可设y m k x n k +=-≠()()0 整理可得y k x k n m =-+()因k ≠0,k 、-+()k n m 为常数,所以y 是x 的一次函数.(2)由题意可得方程组-=--+=-+⎧⎨⎩1517k k n m k k n m ()()解得k =2,k n m +=13. 故所求的函数解析式为y x =-213. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.例9. 若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.分析:此题如果运用根的判别式和韦达定理,解答此题较为困难.整体考虑,把一元二次方程22(1)20x a x a +-+-=与二次函数22(1)2y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即2220a a a a ⎧+-<⎨-<⎩,∴20a -<<. 说明:(1)由于当1x =,1x =-时,0y <, 所以解答过程中不必再考虑0∆>了.(2)利用函数与图象,整体考察,是解决涉及方程(不等式)有关根的问题最有效的方法第11题OP FEDCBA在之一,在数学教学中应当引起足够的重视. 四.几何与图形中的整体思想例10.如图,123456∠+∠+∠+∠+∠+∠=分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分别与ABC ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三 角形外角定理,得360DAB IBA GCB ∠+∠+∠=°, 所以123456∠+∠+∠+∠+∠+∠=360°.说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键. 例11.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .解:不难看出,四边形AEPF 为平行四边形, 从而△OAF 的面积等于△OAE 的面积, 故图中阴影部分的面积等于△ABC 的面积, 又因为12ABC ABCD S S ∆=1134322=⨯⨯⨯=,所以图中阴影部分的面积为3. 说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.解:AF 与BC CF +的大小关系为AF BC CF =+.分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.练习一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.52. (2011,台湾省,26,5分)计算(250+0.9+0.8+0.7)2﹣(250﹣0.9﹣0.8﹣0.7)2之值为何?( ) A 、11.52 B 、23.04C 、1200D 、24003. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---错误!未找到引用源。

2019中考数学专题复习(一) 数学思想方法

2019中考数学专题复习(一) 数学思想方法

专题复习(一) 数学思想方法类型1 整体思想整体思想是一种解题思想,它主要渗透在解题步骤当中.常见的有:1.求代数式的值时,不是求出代数式中每个字母的值,而是求代数式中整体某一个部分的值.2.求零散图形的面积时,利用它们的结构特点或全等变换进行整体求出.这种思想可以应用到各种类型的题之中.(2017·北京)如果a 2+2a -1=0,那么代数式(a -4a )·a 2a -2的值是(C ) A .-3 B .-1 C .1 D .3【思路点拨】 先化简所求代数式,然后把方程变形成a 2+2a =1,利用整体代入的方法求代数式的值.1.(2018·孝感)已知x +y =43,x -y =3,则式子(x -y +4xy x -y )(x +y -4xy x +y )的值是(D ) A .48 B .12 3 C .16 D .122.(2018·南充)已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是(D ) A .-72 B .-112 C .92 D .343.(2018·云南)已知x +1x =6,则x 2+1x 2=(C ) A .38 B .36 C .34 D .324.(2018·玉林)已知ab =a +b +1,则(a -1)(b -1)=2.5.(2018·菏泽)若a +b =2,ab =-3,则代数式a 3b +2a 2b 2+ab 3的值为-12.6.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是⎩⎨⎧a =32b =-12.7.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.类型2 分类思想分类讨论思想常见的六种类型:1.方程:若含有字母系数的方程有实数根,要考虑二次项系数是否等于0,进行分类讨论.2.等腰三角形:如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给出的角是顶角还是底角进行分类解决.3.直角三角形:在直角三角形中给出两边的长度,确定第三边时,若没有指明直角边和斜边,要注意分情况进行讨论(分类讨论),然后利用勾股定理即可求解.4.相似三角形:若题目中出现两个三角形相似,则需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论.5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交坐标轴于正半轴和负半轴两种情况讨论;确定反比例函数与一次函数交点个数,常分第一、三象限或第二、四象限两种情况讨论.6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论.(2017·孝感)已知半径为2的⊙O 中,弦AC =2,弦AD =22,则∠COD 的度数为30°或150°.【思路点拨】 先根据等边三角形的性质与判定、勾股定理的逆定理分别求出∠AOC 和∠AOD 的度数,再根据点D 位置的不确定性进行分类讨论,求出∠COD 的度数.1.(2018·乐山)已知实数a ,b 满足a +b =2,ab =34,则a -b =(C ) A .1 B .-52 C .±1 D .±522.(2018·安顺)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是(A )A .12B .9C .13D .12或93.(2018·潍坊)如图,菱形ABCD 的边长是4厘米,∠B =60°,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P ,Q 同时出发运动了t 秒,记△BPQ 的面积为S 平方厘米,下面图象中能表示S 与t 之间的函数关系的是(D )A B C D4.(2018·安顺)若x 2+2(m -3)x +16是关于x 的完全平方式,则m =-1或7.5.(2018·齐齐哈尔)若关于x 的方程1x -4+m x +4=m +3x 2-16无解,则m 的值为-1或5或-13. 6.(2017·随州)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =53或125时,以A ,D ,E 为顶点的三角形与△ABC 相似.7.(2017·兰州)如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A(3,0),B(0,2),动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐32类型3 化归思想化归的思想是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”,将“陌生”转化为“熟悉”,将“复杂”转化为“简单”的解题方法.化归思想常见的六种类型:1.在解方程和方程组中的应用:通过消元将二元一次方程组转化为一元一次方程;通过降次把一元二次方程转化为一元一次方程;通过去分母把分式方程转化为整式方程.2.多边形化为三角形:解决平行四边形、正多边形的问题通过添加辅助线转化为全等三角形、等腰三角形、直角三角形去解决.3.立体图形转化为平面图形:立体图形的展开与折叠、立体图形的三视图体现了立体图形与平面图形之间的相互转化.4.一般三角形转化为直角三角形:通过作已知三角形的高,将问题转化为直角三角形问题.5.化不规则图形为规则图形:根据图形的特点进行平移、旋转、割补等方法将不规则图形的面积转化为规则图形(如三角形、矩形、扇形等)面积的和或差进行求解.6.转化和化归在圆中的应用:圆中圆心角与圆周角、等弧与等弦、等弧与等弧所对的圆周角都是可以相互转化的.如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与AB ︵交于点D ,以O 为圆心,OC 的长为半径作CE ︵交OB 于点E.若OA =4,∠AOB =120°3(结果保留π)【思路点拨】 连接OD ,根据点C 为OA 的中点可得∠CDO =30°,继而可得∠DOC =60°,求出扇形AOD 的面积,最后用S 阴影=S 扇形AOB -S 扇形COE -(S 扇形AOD -S △COD )即可求出阴影部分的面积.1.(2017·山西)如图是某商品标志的图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD.若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为(B )A .5π cm 2B .10π cm 2C .15π cm 2D .20π cm 22.(2018·东营)如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是(C )A .31+πB .3 2C .34+π22 D .31+π23.(2018·宁波)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为(B )图1 图2A .2aB .2bC .2a -2bD .-2b4.(2017·福建)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于108度.类型4 数形结合思想数形结合思想常见的四种类型:1.实数与数轴:实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了.2.在解方程(组)或不等式(组)中的应用:利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题更直观、形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解.3.在函数中的应用:借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法.4.在几何中的应用:对于几何问题,我们常通过图形找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等.(2017·十堰)如图,直线y =3x -6分别交x 轴,y 轴于A ,B ,M 是反比例函数y =k x(x>0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于点C ,MD ⊥MC 交AB 于点D ,AC·BD =43,则k 的值为(A )A .-3B .-4C .-5D .-6【思路点拨】 分别过点C ,D 作CE ⊥x 轴于点E ,DF ⊥y 轴于点F.由已知条件可求出点A ,点B 的坐标,再由tan ∠OBA =OA OB即可求出∠OBA 的度数.设M(x ,y),在Rt △BDF 和Rt △CEA 中,分别用含x ,y 的代数式表示出BD ,CA 的长,再由AC·BD =43,可求出xy 的值 ,则k 值即可求出.1.(2018·枣庄)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是(B )A .|a|>|b|B .|ac|=acC .b <dD .c +d >02.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2C .-2<m <3D .-6<m <-2 3.(2018·河南)如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm /s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y(cm 2)随时间x(s )变化的关系图象,则a 的值为(C )图1 图2A . 5B .2C .52D .2 54.(2018·白银)如图,一次函数y =-x -2与y =2x +m 的图象相交于点P(n ,-4),则关于x 的不等式组⎩⎪⎨⎪⎧2x +m <-x -2,-x -2<0的解集为-2<x <2.类型5 方程、函数思想方程与函数思想是一种重要的数学思想:(1)在某些图形的折叠问题中,求线段长时,通常利用勾股定理建立方程模型来解决问题;(2)在运动中求最大值或最小值时,通常可以考虑将问题转化为函数的最值讨论问题,利用二次函数的顶点坐标或函数取值范围解决.如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm .点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm /s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是(C )A .20 cmB .18 cmC .2 5 cmD .3 2 cm【思路点拨】 根据P ,Q 两点的运动方向和运动速度用含t 的式子表示出PC ,CQ 的长度,进而用勾股定理表示出PQ 2,根据二次函数的性质在0≤t ≤2的范围内求出PQ 2的最小值,则PQ 的最小值即可求出.1.(2017·衢州)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于(B )A .35B .53C .73D .542.(2017·泰安)如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC 向点C 以1 cm /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm /s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为(C )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 2。

初中数学整体教学思想总结

初中数学整体教学思想总结

初中数学整体教学思想总结初中数学整体教学思想总结数学是一门抽象而又具有广泛应用价值的学科,对于初中学生来说,学习数学不仅仅是为了提高计算能力和逻辑思维,更重要的是培养学生的分析问题、解决问题的能力以及培养学生的创新和思考能力。

初中数学整体教学思想的核心是“全面发展培养”,即旨在培养学生的多方面能力,包括基本概念和基本技能的掌握、数学思维和解决问题的能力、数学学习和学习方法、自主学习和合作学习等。

首先,初中数学整体教学要注重基本概念和基本技能的掌握。

通过系统的知识结构和逐步深化的理论体系,帮助学生建立数学思维的框架和基础,理解和掌握数学基本概念、基础技能和基本思维方法。

其次,初中数学整体教学要注重数学思维和解决问题的能力。

数学思维是指学生在学习和解决问题过程中运用数学知识和方法进行思考和判断的能力。

通过培养学生的观察力、分析能力、归纳能力、推理能力和创造能力等,培养学生运用数学思维解决实际问题的能力。

此外,初中数学整体教学要注重数学学习和学习方法。

学习数学是一个系统的过程,需要有适合自己的学习方法和策略。

教师要引导学生正确学习数学的态度和方法,包括如何理解数学公式和定理、如何做题和思考问题、如何总结和应用数学知识等。

最后,初中数学整体教学要注重培养自主学习和合作学习的能力。

自主学习是指学生能够独立地进行学习和思考,具备自我发现和解决问题的能力。

合作学习是指学生在团队中相互合作、相互学习,共同解决问题的能力。

通过自主学习和合作学习,培养学生的自主学习和合作学习的能力。

总之,初中数学整体教学思想是以全面发展培养为核心,注重基本概念和基本技能的掌握、数学思维和解决问题的能力、数学学习和学习方法、自主学习和合作学习等。

这种思想的实施需要教师充分发挥引导者的作用,以学生为主体,根据学生的特点和需求,选择适合的教学方法和学习策略,让学生在学习中充分发展自己的潜力。

同时,教师还要注重对学生学习情况的了解和分析,及时调整教学计划和措施,使学生的进步得到有效的检查和评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学数学思想方法之整体思想
1p 中学数学思想方法之整体思想山东省邹平一中王宏东李王梅所谓整体思想就是在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后,得出结论。

整体思想的应用,主要根据整体的集合性,相对性几统一性等特殊性,做到观察全局、整体代入、整体换元、局部补全、整体构造、化零为整等。

一,整体观察,化繁为简
例1:(1)已知,求:
的值(99年高考题)
(2)已知函数则
【思路点拔】
(1)先将结论因式分解,然后将和都看作整体进行运算,分别令或,易得到结果为1。

(2)如果注意到,就易发现此题的结果为。

【点评】(1)题主要考察学生的整体观察能力,即不能将割裂来求,否则加大了运算难度;(2)题与(1)有类似情况,其关键是将作为一个整体运算,从问题的结构中也易发现这层关系,利用整体运算带来轻松的快感。

二,整体构造(式或形),化难为易
例2:已知是等比数列的前n项的和,且,求。

【思路点拔】
此题若考虑用求和公式,不仅计算量较大,而且对公比还要考虑进行分类讨论,若注意到,,依次相差n项,以此构造三个整体:,通过分析可知这三个数构成等比数列。

从而得【点评】在解决问题中,有时将局部的问题通过适当的增减,使之成为一个完整的有联系的整体,让问题中的局部与整体的关系有机地联系起来,显露出问题的本质,从而使问题的解决找到捷径。

不妨再看一例。

例3:已知三棱锥P ? ABC的三条侧棱PA、PB、PC两两相互垂直,其外接球的半径为R。

(1)求证:为定值;
(2)求三棱锥P ? ABC体积的最大值。

【思路点拔】
(1)首先此问题的定值只能与R发生关系,但碰到的棘手问题是球心O的位置难以确定,条件乍看也难以联系、利用。

如果联想到此三棱锥是长方体的一部分(三条侧棱两两相互垂直作为一个整体考虑),且长方体的外接球与此三棱锥有相同的外接球(即唯一性),于是尝试将此三棱锥的三条侧棱PA、PB、PC 作为长方体的棱补成长方体,这样就避开了球心位置的确定,而直接确定球的直径为长方体的对角线,从而得到:(定值)
(2)由(1)得
当。

整体代入,简单明了
最后我们再看一道初中竞赛题:
正方体的棱长为11,将这个正方体分割成个单位立方体,
从空间某一点望去,最多能看到多少个单位立方体?(见左上图形)
这个问题似乎并不复杂,似乎很容易入手,从空间的某一点看去作多可以看到原正方体的三个面,每个面中有个单位立方体,好像很容易就得出答案了。

但个单位立方体中三条棱上的立方体作了重复计算,故应减去个,可以就此作答了么?还不行!因为三棱交会处的立方体应计算一次,故共有:(个)刚才的思路我们最易想到,但也最易出错。

如果换个角度从整体考虑,会达到事半功倍的效果:
设想将所看到的三个面上的单位立方体全部移开,那么剩下的就是藏在它们下面棱长为10的正方体,它共有个单位立方体,从总数中减去个,即为所求:-=1331-1000=331(个)综上我们可以看出,整体思想是一种较先进的思想,它更具有思维的简约性和跳跃性。

解题过程中,如果能够充分把问题中的整体因素,不失时机地运用整体思想,会使问题巧妙解决。

相关文档
最新文档