北师大八年级数学下册一元一次不等式应用题精讲及分类训练(分类训练含答案)
2022-2023学年北师大版八年级数学下册《2-4一元一次不等式》知识点分类练习题(附答案)
2022-2023学年北师大版八年级数学下册《2.4一元一次不等式》知识点分类练习题(附答案)一.一元一次不等式的定义1.下列不等式中,是一元一次不等式的是()A.2x﹣1>0B.﹣1<2C.x﹣2y≤﹣1D.y2+3>52.在x>0,<﹣1,2x<﹣2+x,x+y≥﹣3,x+1=0,x2>3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个二.解一元一次不等式3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.24.若3a﹣22和2a﹣3是实数m的两个平方根,且t=,则不等式4(2x﹣t)﹣6(3x﹣t)≥5的解集为()A.x≤B.x≥C.x≤D.x≥5.不等式x﹣1<3x+3的解集在数轴上表示正确的是()A.B.C.D.6.如果关于x的方程=的解是非负数,那么a与b的关系是()A.a>b B.b≥a C.a≥b D.a=b7.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的取值范围为.8.已知点P(2,3﹣2x)在第四象限,则x的取值范围是.三.一元一次不等式的整数解9.不等式3x≤7+x的非负整数解有()A.1个B.2个C.3个D.4个10.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是()A.5≤m<8B.5<m<8C.5≤m≤8D.5<m≤8 11.不等式2x﹣1≤x+1的正整数解有()A.1个B.2个C.3个D.4个12.已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为()A.0<m<2B.0≤m<2C.0<m≤2D.0≤m≤2四.由实际问题抽象出一元一次不等式13.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小芳得分不低于80分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣2(20﹣x)≥80B.10x﹣(20﹣x)>80C.10x﹣5(20﹣x)≥80D.10x﹣5(20﹣x)>8014.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1080元,设x个月后小丽至少有1080元,则可列计算月数的不等式为()A.30x+750>1080B.30x﹣750≥1080C.30x﹣750≤1080D.30x+750≥108015.用不等式表示:x与5的差不大于x的2倍:.16.“x的2倍与5的和不大于4”,用不等式表示是()A.2x﹣5<4B.2x+5<4C.2x+5≤4D.2x﹣5≤4五.一元一次不等式的应用17.今年六一,小明在超市买一款心爱的玩具,付款时收银员说:玩具成本是80元,定价为120元,今天是儿童节打折优惠卖给小朋友,但利润率不能低于5%,则该玩具最多可以打()折.A.8.5B.8C.7.5D.718.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保证利润率不低于10%,则至多可以打几折()A.8折B.8.5折C.8.8折D.9折19.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.若有一个格点多边形的面积为9,则b的最大值为()A.17B.18C.19D.2020.某射击运动员在一次比赛中前6次射击共中55环,如果他要打破92环(10次射击)的纪录,第7次射击起码要超过()A.6环B.7环C.8环D.9环参考答案一.一元一次不等式的定义1.解:A、该不等式符合一元一次不等式的定义,故此选项符合题意;B、不含未知数,不是一元一次不等式,故此选项不符合题意;C、该不等式中含有2个未知数,不是一元一次不等式,故此选项不符合题意;D、未知数的次数是2,不是一元一次不等式,故此选项不符合题意;故选:A.2.解:是一元一次不等式的有:x>0,2x<﹣2+x共有2个.故选:B.二.解一元一次不等式3.解:解不等式≤﹣2得:x≥,∵不等式的解集为x≥4,∴=4,解得m=2,故选:D.4.解:由题意知3a﹣22+2a﹣3=0,解得a=5,则m=(3a﹣22)2=(15﹣22)2=(﹣7)2=49,∴t==7,则不等式为4(2x﹣7)﹣6(3x﹣7)≥5,∴8x﹣28﹣18x+42≥5,∴8x﹣18x≥5+28﹣42,∴﹣10x≥﹣9,∴x≤,故选:C.5.解:x﹣1<3x+3,x﹣3x<3+1,﹣2x<4,x>﹣2,在数轴上表示为:;故选:B.6.解:=,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x=,∵关于x的方程=的解是非负数,∴≥0,解得:a≥b,b≤a,故选:C.7.解:根据题意得4x﹣3(3﹣x)>0,去括号,得:4x﹣9+3x>0,移项、合并,得:7x>9,系数化为1,得:x>,故答案为:x>.8.解:∵点P(2,3﹣2x)在第四象限,∴3﹣2x<0,解得x.∴x的取值范围是x.故答案为:x.三.一元一次不等式的整数解9.解:解不等式3x≤7+x得,x≤3.5,∴不等式3x≤x+4的非负整数解是0,1,2,3,一共4个.故选:D.10.解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.11.解:移项得:2x﹣x≤1+1,合并同类项得:x≤2,∴不等式的正整数解是1、2.故选:B.12.解:由2x﹣m>4得x>,∵x=2不是不等式2x﹣m>4的整数解,∴≥2,解得m≥0;∵x=3是关于x的不等式2x﹣m>4的一个整数解,∴<3,解得m<2,∴m的取值范围为0≤m<2,故选:B.四.由实际问题抽象出一元一次不等式13.解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥80.故选:C.14.解:根据题意,得30x+750≥1080.故选:D.15.解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x16.解:“x的2倍与5的和不大于4”,用不等式表示是2x+5≤4,故选:C.五.一元一次不等式的应用17.解:设该玩具打x折销售,依题意得:120×﹣80≥80×5%,解得:x≥7,∴该玩具最多可以打7折.故选:D.18.解:设该商品打x折销售,依题意,得:500×﹣400≥400×10%,解得:x≥8.8.故选:C.19.解:∵格点多边形的面积为9,∴a+b﹣1=9,又∵a≥0,∴b﹣1≤9,∴b≤20,∴b的最大值为20.故选:D.20.解:设第7次射击为x环,∵射击环数最多为10环,∴第8次,第9次,第10次最多射中环数都是10环,∴55+(10﹣6﹣1)×10+x>92,解得x>7,即第7次射击起码要超过7环,故选:B.。
一元一次不等式八年级数学下学期重要考点精讲精练(北师大版)
2.4一元一次不等式一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,是一个一元一次不等式. 注意:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式.不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.题型1:识别一元一次不等式1.在数学表达式:﹣4<0,2x +y >0,x =1,x 2+2xy +y 2,x ≠5,x +2>y +3中,是一元一次不等式的有( ) A .1个B .2个C .3个D .4个【变式1-1】下列各式中,是一元一次不等式的有( ) (1)x +2+x 2<2x ﹣5+x 2;(2)2x +xy +y ;(3)3x ﹣4y ≥0;(4)﹣5<x ;(5)x ≠0;(6)a 2+1>5. A .1个B .2个C .3个D .4个【变式1-2】已知(m +2)x |m |﹣1+1>0是关于x 的一元一次不等式,则m 的值为( ) A .1B .±1C .2D .±2一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:(或2503x >a x <)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为(或)的形式(其中);(5)两边同除以未知数的系数,得到不等式的解集. 注意:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号; ④在不等式两边都乘以(或除以)同一个负数时,不等号的方向要改变.题型2:一元一次不等式的解法2.不等式2x ≤4的解集,在数轴上表示正确的是( )A .B .C .D .【变式2-1】不等式6﹣2x >0的解集是( ) A .x >3 B .x >﹣3C .x <3D .x <﹣3【变式2-2】不等式的解集在数轴上表示正确的是( )A .B .C .D .题型3:解一元一次不等式3.(1)解不等式:2x +1>3(2﹣x ),并把它的解集在数轴上表示出来.(2)解不等式4(x ﹣1)+3≤2x +5,并把它的解集在数轴上表示出来.【变式3-1】(1)解不等式3(x +2)﹣9≥﹣2(x ﹣1),并把解集表示在数轴上.a x >ax b>ax b <0a ≠(2)解不等式x﹣3<+1;并把解集在数轴上表示出来.【变式3-2】(1)解不等式:≥+1,并把解集在数轴上表示出来.(2)解不等式+1≥.并把此不等式的解表示在数轴上.题型4:已知不等式的解集求字母的值4.(1)解不等式:8﹣5(x﹣2)<4(x﹣1)+13;(2)若(1)中不等式的最小整数解是关于x的方程2x﹣ax=3的解,求a的值.【变式4-1】已知不等式x>﹣3的最小正整数解是方程3x﹣ax=6的解,求a的值.【变式4-2】已知不等式3(x﹣2)﹣5>6(x+1)﹣7的最大整数解是方程2x﹣mx=﹣10的解,求m的值.题型5:构造一元一次不等式求字母的取值范围5.已知关于x的不等式3x﹣m≤0的正整数解有四个,求m的取值范围.【变式5-1】已知不等式2x﹣a<1的所有正整数解的和为6,求a的取值范围.【变式5-2】已知不等式2x﹣m≤0至少有5个正整数解,求m的取值范围.题型6:一元一次不等式的实际应用6.用适当的符号表示下列关系:(1)x的3倍与8的和比x的5倍大;(2)x2是非负数;(3)地球上海洋面积大于陆地面积;(4)老师的年龄比你年龄的2倍还大;(5)铅球的质量比篮球的质量大.【变式6-1】.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如表所示:原料甲乙维生素C/(单位/kg)600100原料价格/(元/kg)84(1)现配制这种饮料10kg,要求至少含有4200单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求购买甲、乙两种原料的费用不超过72元,那么你能写出x(kg)应满足的另一个不等式吗?【变式6-2】用数学式子表示下列数量之间的关系:(1)小明每天跑步xmin,学校规定每名学生每天跑步的时间不少于20min;(2)某次知识竞赛共有20道题,每答对1道题得10分,答错或不答1道题倒扣5分,娜娜答对了n 道题.她的得分超过了90分;(3)某药品说明书上标明药品保存的温度t(℃)是(10±4)℃.题型7:方程组与一元一次不等式的综合应用7.某工厂计划生产A,B两种产品共10件,其生产成本和利润如表.A产品B产品成本/(万元/件)25利润/(万元/件)13(1)若工厂计划获利14万元,则A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且生产A产品x件,请列出不等式.【变式7-1】在2019年全国青少年信息学联赛中,巴蜀中学创历史新高,有69人获得“全国信息学联赛一等奖”,充分展现了巴蜀人探索求知的精神,实力冠绝重庆.学校想借此提升信息课的教学质量,准备更换一批硬件设备,包括电脑主机,显示器和鼠标.其中学校通过招标拟采购两种类型的鼠标,分别为无线鼠标和有线鼠标.根据计划的采购清单,采购12个无线鼠标和16个有线鼠标共花费972元,采购25个无线鼠标比采购8个有线鼠标多花费909元.(1)求采购的无线鼠标和有线鼠标单价各为多少?(2)学校本次计划拟采购两种鼠标一共420个,若采购的无线鼠标数量不少于有线鼠标的数量,用W (单位:元)表示本次计划采购的总费用,请求出W的最小值.【变式7-2】某商场新进一批A,B两种型号的节能防近视台灯,每台进价分别为200元、170元,近两周的销售情况如表.销售时段销售数量销售收入A种型号B种型号第一周3台5台2100元第二周4台10台3600元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A,B两种型号的台灯的销售单价;(2)若该商场准备用不多于7250元的金额再购进这两种型号的台灯共40台,求A种型号的台灯最多能购进多少台?(3)在(2)的条件下,能否求出该商场销售完这40台台灯所获得的最大利润,若能,求出最大利润;若不能,请说明理由.【变式7-3】某中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元?(2)该中学决定购买以上两种地球仪共30个,总费用不超过960元,那么至少要购买多少个小地球仪?题型8:一元一次不等式与最优方案问题8..某花店计划在母亲节来临之前购进一批康乃馨和百合花,已知购买2支康乃馨和3支百合共需40元;购买3支康乃馨和1支百合共需25元.(1)求每支康乃馨和百合花的价格分别是多少元?(2)若该花店准备同时购进这两种花共300支,并且康乃馨的数量不多于百合花数量的2倍,请设计出最省钱的购买方案,并说明理由.【变式8-1】根据国家精准扶贫政策,某地A、B两局分别提供12个和6个扶贫名额,甲、乙两地分别有贫苦户10户、8户,其中A局每个名额给甲、乙两地的钱数分别为400元、800元,B局每个名额给甲、乙两地的钱数分别为300元、500元(1)设B局给甲地x个名额,求总钱数y关于x的关系式;(2)若总钱数不超过9000元,问共有几种分配方案.【变式8-2】有A、B两个商场以同样价格出售同样商品,且各自推出了不同的优惠方案:在A商场累计购物超过400元后,超出部分按80%收费;在B商场累计购物超过200元后,超出的部分按90%收费.顾客选择到哪家购物花费少?【变式8-3】某市要创建“全国文明城市”.其小区为了响应号召,计划购进A,B两种树苗共23棵.已知A种树苗每棵100元,B种树苗每棵80元.(1)若购进A,B两种树苗共花费了2100元,问购进A,B两种树苗各多少棵?(2)若购进A种树苗的数量不少于B种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.。
北师大版八年级数学下册第二章 一元一次不等式和一元一次不等式组练习(含答案)
第二章 一元一次不等式与一元一次不等式组一、单选题1.下列式子:(1)4>0;(2)2x+3y <0;(3)x=3;(4)x≠y ;(5)x+y ;(6)x+3≤7中,不等式的个数有( )A .2个B .3个C .4个D .5个2.若x >y ,则下列式子错误的是( )A .1﹣2x >1﹣2yB .x +2>y +2C .﹣2x <﹣2yD .22x y > 3.下列各数中,是不等式 x >1的解的是( )A .﹣2B .0C .1D .34.已知关于不等式2<(1-a )x 的解集为x <21a -,则a 的取值范围是( ) A .1a > B .0a > C .0a <D .1a < 5.在数轴上表示不等式10x -≥的解集,正确的是( )A .B .C .D . 6.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式()7811x x +>,则横线的信息可以是( )A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本7.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x +b 的解集为( )A .x>-1B .x<-1C .x>3D .x<38.不等式组3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩的整数解有( ) A .4 个 B .3 个 C .2个 D .1个9.若不等式组12x x a-<<⎧⎨>⎩无解,则a 的取值范围是( )A .2a ≥B .2a >C .1a 2-<<D .1a <-或2a > 10.某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为( )A .18B .19C .20D .21二、填空题11.一种药品的说明书上写着:“每日用量60~120mg ,分4次服用”,一次服用这种药量x(mg)范围为_________.12.(1)若a b >,则2a a b >+,是根据________.(2)若a b >,则33a b >,是根据________.(3)若a b >,则a b -<-,是根据________.(4)若1a >,则2a a >,是根据________.(5)若1a <-,则2a a >-,是根据________.13.已知()1230m m x -++>是关于x 的一元一次不等式,则m 的值为_________.14.关于x 的不等式组23284a x x a ->⎧⎨+>⎩的解集中每一个值均不在15x -≤≤的范围中,则a 的取值范围是_________.三、解答题15.解下列不等式(组).(1)211146x x -+-≥ (2)523(1)5x x x x +⎧>⎪⎨⎪--≤⎩ 16.设0>>>a b c ,且1a b c ++=-,若b c M a +=,a c N b +=,b a P c+=,试比较M 、N 、P 的大小.17.某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.18.(1)解不等式()21132x x +-≥+(2)解不等式组:并将()3241213x x x x ⎧-≤-⎪⎨+>-⎪⎩其解集表示在如图所示的数轴上(3)()2532123x x x x ⎧+≤+⎪⎨-≤⎪⎩,并写出不等式组的整数解. 19.商场销售甲、乙两种商品,它们的进价和售价如表:(1)若该商场购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件;(2)该商场为使销售甲、乙两种商品共100件的总利润(利润=售价–进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案答案1.C 2.A 3.D 4.A 5.C6.B7.B8.B9.A10.C11.15mg <x <3012.不等式两边都加上同一个数,不等号方向不变. 不等式两边都乘同一个正数,不等号的方向不变. 不等式两边都乘同一个负数,不等号的方向改变. 不等式两边都乘同一个正数,不等号的方向不变. 不等式两边都乘同一个负数,不等号的方向改变. 13.214.92a ≥或1a ≤ 15.(1)x≥(2)-1≤x <5 16.M P N <<17.(1) A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A 种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.18.(1)1x ≤-;(2)1x ≤;(3)13x -≤≤;整数解为-1,0,1,2,319.(1)商场购进甲种商品40件,乙种商品60件.(2)方案一:购进甲种商品48件,购进乙种商品52件.方案二:购进甲种商品49件,购进乙种商品51件.方案三:购进甲种商品50件,购进乙种商品50件。
最新北师版八年级下数学2.6一元一次不等式组习题精选1(含答案)
数学2.6习题精选1(含答案)一.选择题(共2小题)1.下列不等式组中,是一元一次不等式组的是()A.B.C.D.2.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个二.填空题(共11小题)3.(2004•无为县)试写出一个由两个一元一次不等式组成的一元一次不等式组,使它的解集是﹣1<x≤2,这个不等式组是_________.4.试构造一个解为x<﹣1的一元一次不等式组_________.5.(2013•衢州)不等式组的解集是_________.6.(2013•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是_________.7.(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是_________.8.(2013•来宾)不等式组的解集是_________.9.(2013•鄂州)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为_________.10.(2011•包头)不等式组的解集是_________.11.(2010•沈阳)不等式组的解集是_________.12.(2009•烟台)如果不等式组的解集是0≤x<1,那么a+b的值为_________.13.(2008•天门)已知不等式组的解集为﹣1<x<2,则(m+n)2008=_________.三.解答题(共17小题)14.(2013•玉溪)解不等式组.15.(2013•新疆)解不等式组.16.(2013•遂宁)解不等式组:并把它的解集在数轴上表示出来.17.(2013•南平)解不等式组:.18.(2012•威海)解不等式组,并把解集表示在数轴上:.19.(2012•聊城)解不等式组.20.(2012•黄冈)解不等式组.21.(2012•衡阳)解不等式组,并把解集在数轴上表示出来.22.(2012•甘孜州)解不等式组并把解集在数轴上表示出来.23.(2012•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.24.(2011•新疆)解不等式组,并将解集在数轴上表示出来.25.(2011•龙岩)解不等式组:,并把解集在数轴上表示出来.26.(2011•莱芜)解不等式组:.27.(2011•衡阳)解不等式组,并把解集在数轴上表示出来.28.(2011•南平)解不等式组:,并把它的解集在数轴上表示出来.29.(2010•扬州)解不等式组:,并把它的解集在数轴上表示出来.30.(2010•威海)解不等式组:数学2.6习题精选1(含答案)参考答案与试题解析一.选择题(共2小题)1.下列不等式组中,是一元一次不等式组的是()A.B.C.D.考点:一元一次不等式组的定义.分析:根据一元一次不等式组的定义判定则可.解答:解:A选项是一元一次不等式组;B选项中有2个未知数;C选项中最高次项是2;D选项中含有分式,不属于一元一次不等式的范围.故选A点评:本题考查了一元一次不等式的定义.定义:不等式的两边是整式,只含有1个未知数,并且未知数最高次是1次的不等式叫做一元一次不等式,由几个一元一次不等式组成的不等式组叫做一元一次不等式组.2.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个考点:一元一次不等式组的定义.分析:根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解答:解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选B.点评:本题主要考查一元一次不等式组的定义,熟练掌握定义并灵活运用是解题的关键.二.填空题(共11小题)3.(2004•无为县)试写出一个由两个一元一次不等式组成的一元一次不等式组,使它的解集是﹣1<x≤2,这个不等式组是等.考点:一元一次不等式组的定义.专题:开放型.分析:本题为开放性题,按照口诀大小小大中间找列不等式组即可.如:根据“大小小大中间找”可知只要写2个一元一次不等式x≤a,x>b,其中a>b即可.解答:解:根据解集﹣1<x≤2,构造的不等式为.答案不唯一.点评:本题考查了一元一次不等式解集与不等式组之间的关系.本题为开放性题,按照口诀列不等式组即可.解不等式组的简便求法就是用口诀求解,构造已知解集的不等式是它的逆向运用.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.试构造一个解为x<﹣1的一元一次不等式组.考点:一元一次不等式组的定义.专题:开放型.分析:本题为开放性题,根据同小取小列不等式组即可.解答:解:.答案不唯一点评:本题考查了一元一次不等式解集与不等式组之间的关系,本题为开放性题,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.(2013•衢州)不等式组的解集是x≥2.考点:解一元一次不等式组.专题:计算题.分析:分别计算出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥2;由②得,x≥﹣;则不等式组的解集为x≥2.故答案为x≥2.点评:本题考查了解一元一次不等式组,找到公共解是解题的关键,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(2013•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是x<1.考点:解一元一次不等式组.分析:先解两个不等式,再用口诀法求解集.解答:解:解不等式,得x<4,解不等式x+3(x﹣1)<1,得x<1,所以它们解集的公共部分是x<1.故答案为x<1.点评:本题考查一元一次不等式组的解法,求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.解答:解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(2013•来宾)不等式组的解集是x>4.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≥3;由②得,x>4,故此不等式组的解集为:x>4.故答案为:x>4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2013•鄂州)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为x>.考点:解一元一次不等式组;不等式的解集;解一元一次不等式.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出a b的值,代入求出不等式的解集即可.解答:解:∵解不等式①得:x≥,解不等式②得:x≤﹣a,∴不等式组的解集为:≤x≤﹣a,∵不等式组的解集为3≤x≤4,∴=3,﹣a=4,b=6,a=﹣4,∴﹣4x+6<0,x>,故答案为:x>点评:本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,关键是能根据不等式组的解集求出a b的值.10.(2011•包头)不等式组的解集是5≤x<8.考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,由①得:x≥5,由②得:x<8.∴不等式组的解集是5≤x<8,故答案为:5≤x<8.点评:本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.(2010•沈阳)不等式组的解集是﹣1≤x≤1.考点:解一元一次不等式组.分析:先求出各不等式的解集,再求出其公共解集即可.解答:解:由(1)去括号得,4≥2﹣2x,移项、合并同类项得,﹣2x≤2,系数化为1得,x≥﹣1.由(2)移项、合并同类项得,﹣3x≥﹣3,系数化为1得,x≤1.故原不等式组的解集为:﹣1≤x≤1.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.(2009•烟台)如果不等式组的解集是0≤x<1,那么a+b的值为1.考点:解一元一次不等式组.专题:计算题;压轴题.分析:先用含有a、b的代数式把每个不等式的解集表示出来,然后根据已告知的解集,进行比对,得到两个方程,解方程求出a、b.解答:解:由得:x≥4﹣2a由2x﹣b<3得:故原不等式组的解集为:4﹣2a≤又因为0≤x<1所以有:4﹣2a=0,解得:a=2,b=﹣1于是a+b=1.点评:本题既考查不等式的解法,又考查学生如何逆用不等式组的解集构造关于a、b的方程,从而求得a、b.13.(2008•天门)已知不等式组的解集为﹣1<x<2,则(m+n)2008=1.考点:解一元一次不等式组.专题:计算题.分析:先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出m、n.解答:解:解不等式组得,,因为解集为﹣1<x<2,所以m+n﹣2=﹣1,m=2,解得,m=2,n=﹣1,即(m+n)2008=(2﹣1)2008=1.点评:主要考查了一元一次不等式组的解定义,解此类题是要先用字母m,n表示出不等式组的解集,然后再根据已知解集,对应得到相等关系,解关于字母m,n的一元一次方程求出字母m,n的值,再代入所求代数式中即可求解.三.解答题(共17小题)14.(2013•玉溪)解不等式组.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:∵由①得x<3,由②得x>﹣2.∴此不等式组的解集为:﹣2<x<3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2013•新疆)解不等式组.考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①得,x≥1,解不等式②得,x<6.5,所以,不等式组的解集是1≤x<6.5.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(2013•遂宁)解不等式组:并把它的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题;压轴题.分析:分别解两个不等式得到x<1和x≥﹣4,然后根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.解答:解:,由①得:x>1由②得:x≤4所以这个不等式的解集是1<x≤4,用数轴表示为.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了用数轴表示不等式的解集.17.(2013•南平)解不等式组:.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:∵由①得:2x<5,,由②得:,,x>﹣3,∴不等式组的解集为.点评:本题考查了解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集.18.(2012•威海)解不等式组,并把解集表示在数轴上:.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,在数轴上表示为(如图)点评:本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.19.(2012•聊城)解不等式组.考点:解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(2012•黄冈)解不等式组.考点:解一元一次不等式组.分析:首先分别解出两个不等式的解集,再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定不等式组的解集.解答:解:,由①得:x<,由②得:x≥﹣2,故不等式组的解集为:﹣2≤x<.点评:此题主要考查了解一元一次不等式组,一般是求出其中各不等式的解集,再求出这些解集的公共部分.21.(2012•衡阳)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,在数轴上表示为:点评:本题考查的是在数轴上表示一元一次不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.22.(2012•甘孜州)解不等式组并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<4,由②得,x≥2,故此不等式组的解集为:2≤x<4,在数轴上表示为:.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(2012•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:,解不等式(1)得:3﹣2x+1≥5x+4,﹣2x﹣5x≥4﹣3﹣1,﹣7x≥0,x≤0,解不等式(2)得:x﹣6<4x,x﹣4x<6,﹣3x<6,x>﹣2,∴不等式组的解集是﹣2<x≤0.点评:本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集能找出不等式组的解集,题目比较好,难度适中.24.(2011•新疆)解不等式组,并将解集在数轴上表示出来.考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题;压轴题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,解不等式①得:x<3,解不等式②得:x≥1,∴不等式组的解集是1≤x<3,把不等式组的解集在数轴上表示为:.点评:本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.25.(2011•龙岩)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,在数轴上表示为:故答案为:0<x≤3.点评:本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.26.(2011•莱芜)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:由不等式组中第一个不等式两边同时乘以3,去分母后利用去括号法则:括号前面是负号,去掉负号和括号,括号里各项都变号,合并后在不等式两边同时除以﹣1即可求出第一个不等式的解集;把第二个不等式去括号后,合并即可求出解集,把求出的两解集表示在数轴上,根据图形即可求出不等式组的解集.解答:解:,由①去分母得:3﹣(x﹣1)≥0,化简得:﹣x≥﹣4,解得:x≤4;由②去括号得:3﹣(2x﹣2)<3x,即3﹣2x+2<3x,解得:x>1,把两解集表示在数轴上,如图所示:∴不等式组的解集为1<x≤4.点评:此题考查了一元一次不等式组的解法,解不等式组是以解一元一次不等式为基础,一般步骤是:去分母,去括号,移项,合并同类项,系数化为“1”,特别注意不等式的两边同时乘以或除以同一个负数时要改变不等号的方向,然后取解集的方法是:同大取大,同小取小,大小小大取中间,大大小小无解.27.(2011•衡阳)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题;数形结合.分析:首先解每个不等式,确定两个不等式的解集的公共部分即可确定不等式组的解集.解答:解:解第一个不等式得:x≤3;解第二个不等式得:x>﹣2.故不等式组的解集是:﹣2<x≤3.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.28.(2011•南平)解不等式组:,并把它的解集在数轴上表示出来.考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.解答:解:由①得,x≤3,由②得,x>﹣2,∴不等式组的解集是﹣2<x≤3,把不等式组的解集在数轴上表示为:.点评:本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.29.(2010•扬州)解不等式组:,并把它的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:不等式可化为:,即;在数轴上表示为:故不等式组的解集为:﹣2≤x<1.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x介于两数之间.30.(2010•威海)解不等式组:考点:解一元一次不等式组.分析:先求出各不等式的解集,再求出其公共解集即可.解答:解:,解不等式(1),得x<5,(3分)解不等式(2),得x≥﹣2,(6分)因此,原不等式组的解集为﹣2≤x<5.(7分)点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7年级上册1、为什么人要有自知之明?a、十全十美的人在现实生活中时不存在的,即使伟人、名人也不例外。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
北师大八下应用题复习一元一次不等式应用题分式应用题含详细答案
一元一次不等式应用题、分式应用题.选择题(共16小题)1 .若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是(2.如图,一次函数y i=x+b与一次函数y2=kx+4的图象交于点P (1, 3),则关于x的不等式x+b > kx+4的解集是()1-八A. x>- 2B. x>0C. x> 1D. x v 13.同一直角坐标系中,一次函数y i=k i x+b与正比例函数y2=k2x的图象如图所示,D. x>- 2则满足y i》y2的x取值范围是(4.如图,直线y=- x+m与y=nx+4n 5工0)的交点的横坐标为-2,则关于x的不等式-x+m > nx+4n > 0的整数解为()C. x v - 2A.- 1B.- 5C. - 4D.- 35. 如图,函数y=kx+b (k M 0)的图象经过点B (2, 0),与函数y=2x 的图象交6.如图,函数y i =- 2x 与y 2=ax+3的图象相交于点A ( m , 2),则关于x 的不等 式-2x > ax+3的解集是()9k比=处十3/*/ °A . x >2B . x v 2C. x >- 1 D. x v - 1 7.如图,已知:函数y=3x+b 和y=ax- 3的图象交于点P (- 2,- 5),则根据图D . x v - 2的解集为( ) A . x >0 B . 0v x v 1 C. 1v x v 2 D . x >28.如图,若一次函数y=-2x+b的图象交y轴于点A(0,3),则不等式-2x+b9.如图,函数的解集为(x>3C. x v 二 D. x v 32y=2x和y=ax+4的图象相交于点A (m,3),则不等式2x v ax+4 )x>!10.如图,经过点B (- 2,0)-2),4x+2v kx+b v 0 的解集为D. x> 3的直线y=kx+b与直线y=4x+2相交于点A (- 1 , x v- 1 D. x>- 111 .如图,已知正比例函数y i=ax与一次函数y2= x+b的图象交于点P.下面有四个结论:①a v0;②b v0;③当x>0时,y i>0;④当x v- 2时,y i>y2•其A.①②B.②③C•①③D.①④12.直线y=kx+3经过点A (2, 1),则不等式kx+3> 0的解集是()A. x< 3B. x>3C. x>- 3D. x< 013.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有()A. 5间B. 6间C. 7间D. 8间14.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些图书有()A. 23 本B. 24 本C. 25 本D. 26 本15.把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是()A. 3B. 4C. 5 D . 616 .现有43本书,计划分给各学习小组,若每组8本有剩余,每组9本却不足,则学习小组共有()A . 4个B. 5个C. 6个D . 7个=kx+17. —次函数y i=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是18•如图,直线y i=mx经过P(2,1)和Q (- 4,- 2)两点,且与直线20.去冬今春,我市部分地区遭受了罕见的旱灾,旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?21.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元, 请问有哪几种购货方案?并直接写出其中获利最大的购货方案.22.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8 件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28 件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.23.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B 两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5 件,B 种纪念品6 件,需要800 元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元, 在第( 2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3 个、乙种书柜2 个,共需资金1020 元;若购买甲种书柜4 个,乙种书柜3 个,共需资金1440 元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20 个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320 元,请设计几种购买方案供这个学校选择.25.某电器商场销售A、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500 元的资金购进A、B 两种型号计算器共70 台,问最少需要购进A型号的计算器多少台?26.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30 台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株, 乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500 元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?28.某商场销售A, B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍•若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?29•—水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?30.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30 名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?31.某商家预测一种应季衬衫能畅销市场,就用13200 元购进了一批这种衬衫,面市后果然供不应求,商家又用28800 元购进了第二批这种衬衫,所购数量是第一批购进量的2 倍,但单价贵了10 元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?32.宁波火车站北广场将于2015 年底投入使用,计划在广场内种植A,B 两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?33.为了提高产品的附加值,某公司计划将研发生产的1200 件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10 天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5 倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?34.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40 元,用90 元购进甲种玩具的件数与用150 元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48 件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000 元,求商场共有几种进货方案?35.东营市某学校2015 年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000 元,购买乙种足球共花费1400 元,购买甲种足球数量是购买乙种足球数量的2 倍,且购买一个乙种足球比购买一个甲种足球多花20 元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016 年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50 个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900 元,那么这所学校最多可购买多少个乙种足球?36.某文化用品商店用2000 元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3 倍,但单价贵了4 元,结果第二批用了6300 元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120 元,全部售出后,商店共盈利多少元?。
北师大版初2数学8年级下册 第2章 一元一次不等式与一元一次不等式组 经典好题专题训练(含答案)
北师大版八年级数学下册第2章一元一次不等式与一元一次不等式组经典好题专题训练(附答案)1.下列不等式说法中,不正确的是( )A.若x>y,y>2,则x>2B.若x>y,则x﹣2<y﹣2C.若x>y,则2x>2y D.若x>y,则﹣2x﹣2<﹣2y﹣22.若x>y,则下列式子错误的是( )A.x﹣3>y﹣3B.C.﹣2x<﹣2y D.3﹣x>3﹣y 3.把一个两位数的个位数字a和十位数字b交换位置,得到一个新的两位数.若新的两位数大于原来的两位数,则a与b的大小关系是( )A.a>b B.a<b C.a≥b D.a≤b4.关于x的不等式组无解,则a的取值范围是( )A.a≤5B.a≥5C.a<5D.a>55.不等式组的解集在数轴上应表示为( )A.B.C.D.6.若关于x的不等式组的解集为x≥2,则m的取值范围是( )A.m≥﹣2B.m≤2C.m<2D.m=27.下列哪个数是不等式2(x﹣1)+3<0的一个解?( )A.﹣3B.﹣C.D.28.已知关于x的不等式2x﹣m<1﹣x的正整数解是1,2,3,则m的取值范围是( )A.3<m≤4B.3≤m<4C.8<m≤11D.8≤m<119.若整数a使关于x的不等式组至少有4个整数解,且使关于x,y的方程组的解为正整数,那么所有满足条件的整数a的值的和是( )A.﹣3B.﹣4C.﹣10D.﹣1410.若关于x和y的二元一次方程组,满足x+y>0,那么m的取值范围是 .11.由ac>bc得到a<b的条件是:c 0(填“>”,“<”或“=”).12.对于任意的﹣1≤x≤1,x﹣a﹣5>0恒成立,则a的取值范围是 .13.若关于x的不等式组的解集是x<4,则P(m+1,2﹣m)在第 象限.14.若不等式组无解,则m的取值范围是 .15.不等式组的解集为 .16.若关于x的不等式组有3个整数解,则a的取值范围是 .17.关于x的不等式组的解集为﹣1≤x<4,则(a+1)(b﹣1)的值为 .18.不等式组的整数解的和是 .19.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为 .20.已知实数x、y满足2x﹣3y=4,且x>﹣1,y≤2,设k=x﹣y,则k的取值范围是 .21.若不等式组有解,则a的取值范围是 .22.解不等式组:,把解集在数轴上表示出来,并求出它的整数解.23.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.24.已知关于x,y的二元一次方程组的解是一对正数.(1)求a的取值范围;(2)化简:|a+4|﹣|a|+|2a+3|.25.为应对新冠肺炎疫情,某服装厂决定转型生产口罩,根据现有厂房大小决定购买10条口罩生产线,现有甲、乙两种型号的口罩生产线可供选择.经调查:购买3台甲型口罩生产线比购买2台乙型口罩生产线多花14万元,购买4条甲型口罩生产线与购买5条乙型口罩生产线所需款数相同.(1)求甲、乙两种型号口罩生产线的单价;(2)已知甲型口罩生产线每天可生产口罩9万只,乙型口罩生产线每天可生产口罩7万只,若每天要求产量不低于75万只,预算购买口罩生产线的资金不超过90万元,该厂有哪几种购买方案?哪种方案最省钱?最少费用是多少?26.列方程(组)或不等式解决问题每年的4月23日是世界读书日.某校为响应“全民阅读”的号召,计划购入A,B两种规格的书柜用于放置图书.经市场调查发现,若购买A种书柜3个、B种书柜2个,共需资金1020元;若购买A种书柜5个、B种书柜3个,共需资金1620元.(1)A、B两种规格书柜的单价分别是多少?(2)若该校计划购买这两种规格的书柜共20个,学校至多有4350元的资金,问B种书柜最多可以买多少个?27.随着全国疫情防控取得阶段性进展,各学校在做好疫情防控工作的同时积极开展开学准备工作.为方便师生返校后测体温,某学校计划购买甲、乙两种额温枪.经市场调研得知:购买1个甲种额温枪和2个乙种额温枪共需700元,购买2个甲种额温枪和3个乙种额温枪共需1160元.(1)求每个甲种额温枪和乙种额温枪各多少元;(2)该学校准备购买甲、乙两种型号的额温枪共50个;其中购买甲种额温枪不超过15个.请设计出最省钱的购买方案,并求出最低费用.参考答案1.解:A、∵x>y,y>2,∴x>2,原说法正确,故本选项不符合题意;B、∵x>y,∴x﹣2>y﹣2,原说法错误,故本选项符合题意;C、∵x>y,∴2x>2y,原说法正确,故本选项不符合题意;D、∵x>y,∴﹣2x﹣2<﹣2y﹣2,原说法正确,故本选项不符合题意;故选:B.2.解:若x>y,则有x﹣3>y﹣3;3﹣x<3﹣y;﹣2x<﹣2y;>,所以错误的是3﹣x>3﹣y.故选:D.3.解:设原两位数字为10b+a,则新的两位数字为10a+b,根据题意,得10a+b>10b+a,∴10a﹣a>10b﹣b,∴9a>9b,∴a>b.故选:A.4.解:关于x的不等式组无解,则a的取值范围是a≥5.故选:B.5.解:,解不等式①得:x>1,解不等式②得:x≤2,故不等式组的解集为1<x≤2,在数轴上应表示为故选:C.6.解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.7.解:解不等式2(x﹣1)+3<0,得,因为只有﹣3<,所以只有﹣3是不等式2(x﹣1)+3<0的一个解,故选:A.8.解:2x﹣m<1﹣x,移项得2x+x<m+1,系数化为1,得:x<,∵不等式的正整数解为1,2,3,∴3<≤4,解得:8<m≤11.故选:C.9.解:,不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,解方程组,得,∵关于x,y的方程组的解为正整数,∴a﹣2=﹣6或﹣12,解得a=﹣4或a=﹣10,∴所有满足条件的整数a的值的和是﹣14.故选:D.10.解:,将两个方程相加即可得3x+3y=3m+3,则x+y=m+1,根据题意,得:m+1>0,解得m>﹣1.故m的取值范围是m>﹣1.故答案为:m>﹣1.11.解:根据不等式的性质3,由ac>bc得到a<b的条件是:c<0.故答案为:<.12.解:由x﹣a﹣5>0得,x>a+5,对于任意的﹣1≤x≤1,x﹣a﹣5>0恒成立,∴a+5<﹣1,解得a<﹣6.故答案为:a<﹣6.13.解:∵关于x的不等式组的解集是x<4,∴m≥4.∴m+1>0,2﹣m<0,∴P(m+1,2﹣m)在第四象限.故答案为:四.14.解:若不等式组无解,则2m﹣1≥3,解得m≥2.故答案为:m≥2.15.解:,由①得:x>﹣3,由②得:x≤2.故不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤2.16.解:解不等式组得:4<x≤a,∵关于x的不等式组有3个整数解,∴7≤a<8.故答案为:7≤a<8.17.解:,解①得x≥a,解②得x<3﹣b,因为不等式组的解集为﹣1≤x<4,所以a=﹣1,3﹣b=4,解得a=﹣1,b=﹣1,所以(a+1)(b﹣1)=(﹣1+1)(﹣1﹣1)=0.故答案为:0.18.解:,解2﹣x≥x﹣2得x≤2,解3x﹣1>﹣4得x>﹣1,故不等式组的解集为﹣1<x≤2,则不等式组的整数解为0,1,2,和为0+1+2=3.故答案为:3.19.解:∵不等式ax﹣b>0的解集为x<,∴=,即a=3b且a<0,则b<0∴不等式(a+b)x>a﹣b整理为4bx>2b,∴x<.故答案为:x<.20.解:∵2x﹣3y=4,∴y=(2x﹣4),∵y≤2,∴(2x﹣4)≤2,解得x≤5,又∵x>﹣1,∴﹣1<x≤5,∵k=x﹣(2x﹣4)=x+,当x=﹣1时,k=×(﹣1)+=1;当x=5时,k=×5+=3,∴1<k≤3.故答案为:1<k≤3.21.解:解不等式x+2a≥5得:x≥5﹣2a,解不等式1﹣2x>x﹣2得:x<1,∵该不等式组有解,∴5﹣2a<1,解得:a>2,故答案为:a>2.22.解:,解①得x>﹣1.5,解②得x≤4,故不等式组的解集是:﹣1.5<x≤4.不等式组的解集在数轴上表示为:故该不等式组的整数解为﹣1,0,1,2,3,4.23.解:(1)解这个方程组的解为,由题意,得,不等式①的解集是:a≤3,不等式②的解集是:a>﹣2,则原不等式组的解集为﹣2<a≤3;(2)∵不等式(2a+1)x>(2a+1)的解为x<1,∴2a+1<0且﹣2<a≤3,∴在﹣2<a<﹣范围内的整数a=﹣1.24.解:(1),①+②得2x=2a+8,解得x=a+4,代入①得y=﹣2a﹣3.故方程组的解为:,∵x>0,y>0,∴,解得:﹣4<a<﹣1.5;(2)由(1)得:a+4>0,a<0,2a+3<0,∴原式=a+4﹣(﹣a)+(﹣2a﹣3)=a+4+a﹣2a﹣3=1.25.解:(1)设甲型号口罩生产线的单价为x万元,乙型号口罩生产线的单价为y万元,由题意得:,解得:,答:甲型号口罩生产线的单价为10万元,乙型号口罩生产线的单价为8万元.(2)设购买甲型号口罩生产线m条,则购买乙型号口罩生产线(10﹣m)条,由题意得:,解得:2.5≤m≤5,又∵m为整数,∴m=3,或m=4,或m=5,因此有三种购买方案:①购买甲型3条,乙型7条;②购买甲型4条,乙型6条;③购买甲型5条,乙型5条.当m=3时,购买资金为:10×3+8×7=86(万元),当m=4时,购买资金为:10×4+8×6=88(万元),当m=5时,购买资金为:10×5+8×5=90(万元),∵86<88<90,∴最省钱的购买方案为:选购甲型3条,乙型7条,最少费用为86万元.26.解:(1)设A种书柜的单价是x元,B种书柜的单价是y元,依题意得,解得.答:A种书柜的单价熟练掌握180元,B种书柜的单价是240元.(2)设A种书柜可以买m个,则B种书柜可以买(20﹣m)个,依题意得180m+240(20﹣m)≤4350,解得:m≥7.5,则20﹣m≤12.5.∵m为整数,∴B种书柜最多可以买12个.27.解:(1)设每个甲种额温枪x元,每个乙种额温枪y元,根据题意得:,解得:.答:每个甲种额温枪220元,每个乙种额温枪240元.(2)设购买m个甲种额温枪,则购买(50﹣m)个乙种额温枪,总费用为w元,根据题意得:w=220m+240(50﹣m)=﹣20m+12000(0≤m≤15,且m为整数).∵﹣20<0,∴w随m的增大而减小,∴当m=15时,w取最小值,w最小值=﹣20×15+12000=11700(元).答:买15个甲种额温枪,35个乙种额温枪总费用最少,最少为11700元。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (12)
(共25题)一、选择题(共10题)1. 关于 x 的不等式 2x +a ≤1 只有 2 个正整数解,则 a 的取值范围为 ( ) A . −5<a <−3 B . −5≤a <−3 C . −5<a ≤−3D . −5≤a ≤−32. 下列说法正确的是 ( ) A . x =−3 是不等式 x >−2 的一个解 B . x =−1 是不等式 x >−2 的一个解 C .不等式 x >−2 的解是 x =−3 D .不等式 x >−2 的解是 x =−13. 已知点 P (a,b ) 在直线 y =−3x −4 上,且 2a −5b ≤0,则下列不等式一定成立的是 ( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤254. 若 a >b ,则下列不等式中,不成立的是 ( ) A . a +5>b +5 B . a −5>b −5 C . 5a >5bD . −5a >−5b5. 不等式组 {2x +1≤3,−x <3 的解集在数轴上表示正确的是 ( )A .B .C .D .6. 下列说法中正确的有 ( )① 4 是不等式 x +3>6 的一个解; ② x +3<6 的解集是 x <2; ③ 3 是不等式 x +3≤6 的一个解;④ x >4 是不等式 x +3≥6 的解集的一部分. A . 1 个B . 2 个C . 3 个D . 4 个7. 如图,天平右边托盘里的每个砝码的质量都是 1 千克,则图中显示物体质量的范围是 ( )A .大于 2 千克B .小于 3 千克C .大于 2 千克且小于 3 千克D .大于 2 千克或小于 3 千克8. 关于 x 的一元一次不等式组的解集在数轴上表示如图,则该不等式的解集是 ( )A . −2<x ≤1B . −2≤x <1C . −2<x <1D . −2≤x ≤19. 【例 5 】满足 −1≤x <1 的数在数轴上表示为 ( ) A . B . C .D .10. 已知 12(m +4)x ∣m∣−3+6>0 是关于 x 的一元一次不等式,则 m 的值为 ( ) A . 4 B . ±4 C . 3 D . ±3二、填空题(共7题)11. 不等式组 {x ≥−3,x <1 的解是 .12. 若 a >b ,则 2a +1 2b +1 (填“>”或“<”)13. 在平面直角坐标系中,点 P (6−2m,4−m ) 在第三象限,则 m 的取值范围是 .14. 已知有理数 a ,b ,c 在数轴上对应的点如图所示,则 cb ab .(填“>”或“<”或“=”)15. 若关于 x 的不等式组 {1−2x >−3,x −a ≥0 的整数解共有 5 个,则 a 的取值范围是 .16. 若关于 x 的不等式 (5−a )x >1 的解集为 x <15−a ,则 a 的取值范围是 .17. 不等式组 {x −3>2x,12x <−3 的解集是 .三、解答题(共8题)18. 解不等式组:{2x −1≤5,1−x+62<2x+13,并把解集在数轴上表示出来.19. 不等式 mx >2 两边同乘以 1m ,得 x <2m ,求 m 的取值范围.20. 解不等式组 {3x ≤2x +1, ⋯⋯①2x +5≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 ; (2) 解不等式 ②,得 ;(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .21. 解不等式组 {3(x +2)≥x +4,x +1<4,并把解表示在数轴上.22. 已知关于 x ,y 的方程组 {x −y =3,2x +y =6a的解满足不等式 x +y <3.(1) 求实数 a 的取值范围;(2) 在(1)的条件下,解关于 a 的方程 ∣a −1∣+12=2.23. 根据等式的性质和不等式的性质,我们可以得到比较两个数大小的方法:若 A −B >0,则 A >B ;若 A −B =0,则 A =B ;若 A −B <0,则 A <B ,这种比较大小的方法称为“作差比较法”,试比较 2x 2−2x 与 x 2−2x 的大小.24. 回答下列问题:(1) 解方程组 {x4−y =−1,x =3y.(2) 解不等式组:{x −3(x −2)>4,2x−15≥x+12.25.解一元一次不等式,并把解集在数轴上表示.2x 3−x+36≥1.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x+a≤1得x≤1−a2,因为不等式只有2个正整数解,一定是1和2,所以2≤1−a2<3,解得−5<a≤−3.【知识点】含参一元一次不等式、常规一元一次不等式组的解法2. 【答案】B【解析】A.x=−3不是不等式x>−2的一个解,此选项错误;B.x=−1是不等式x>−2的一个解,此选项正确;C.不等式x>−2的解有无数个,此选项错误;D.不等式x>−2的解有无数个,此选项错误;故选:B.【知识点】不等式的解集3. 【答案】D【解析】∵点P(a,b)在直线y=−3x−4上,∴−3a−4=b,又2a−5b≤0,∴2a−5(−3a−4)≤0,解得a≤−2017<0,当a=−2017时,得b=−817,∴b≥−817,∵2a−5b≤0,∴2a≤5b,∴ba ≤25.【知识点】常规一元一次不等式的解法、一次函数图像上点的坐标特征4. 【答案】D【解析】A,B.不等式的两边都加或都减同一个整式,不等号的方向不变,故A,B正确;C.不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D.不等式的两边都乘以同一个负数不等号的方向改变,故D错误.【知识点】不等式的性质5. 【答案】A【解析】解不等式2x+1≤3,得:x≤1,解不等式−x<3,得x>−3,∴不等式组的解集为−3<x≤1,故选:A.【知识点】常规一元一次不等式组的解法6. 【答案】C【知识点】不等式的解集7. 【答案】A【知识点】一元一次不等式的应用8. 【答案】B【知识点】不等式的解集9. 【答案】B【解析】由于x≥−1,∴表示−1的点应该是实心点,折线的方向应该是向右;由于x<1,∴表示1的点应该是空心点,折线的方向应该是向左.∴数轴表示的解集为:故选:B.【知识点】不等式的解集10. 【答案】A【知识点】一元一次不等式的概念二、填空题(共7题)11. 【答案】−3≤x<1【解析】{x≥−3,x<1,将解集在数轴上表示如下:所以方程组解集为:−3≤x<1.【知识点】常规一元一次不等式组的解法12. 【答案】 <【解析】 ∵a >b , ∴2a >2b , ∴2a +1>2b +1. 【知识点】不等式的性质13. 【答案】 m >4【解析】根据题意,得 {6−2m <0, ⋯⋯①4−m <0. ⋯⋯②解不等式①,得 m >3, 解不等式②,得 m >4, 所以不等式组的解集为 m >4, 所以 m 的取值范围为 m >4. 【知识点】常规一元一次不等式组的解法14. 【答案】 >【解析】由图可知:a >0>b >c , ∴cb >ab .【知识点】不等式的性质15. 【答案】 −4<a ≤3【解析】 {1−2x >−3……①,x −a ≥0……②,解不等式 ① 得:x <2, 解不等式 ② 得:x ≥a , ∴ 不等式组的解集是 a ≤x <2,∵ 关于 x 的不等式组 {1−2x >−3,x −a ≥0 的整数解共有 5 个,∴a 的取值范围是 −4<a ≤−3. 【知识点】含参一元一次不等式组16. 【答案】 a >5【知识点】不等式的性质17. 【答案】 x <−6【解析】 {x −3>2x, ⋯⋯①12x <−3. ⋯⋯②由①得,x <−3, 由②得,x <−6,故此不等式组的解集为:x <−6. 【知识点】常规一元一次不等式组的解法三、解答题(共8题)18. 【答案】解不等式 2x −1≤5,得:x ≤3.解不等式 1−x+62<2x+13,得:x >−2.则不等式组的解集为−2<x ≤3.将不等式组的解集表示在数轴上如下:【知识点】常规一元一次不等式组的解法19. 【答案】 m <0.【知识点】不等式的性质20. 【答案】(1) x ≤1 (2) x ≥−3 (3)(4) −3≤x ≤1【知识点】不等式组的解集、常规一元一次不等式的解法、常规一元一次不等式组的解法21. 【答案】{3(x +2)≥x +4, ⋯⋯①x +1<4. ⋯⋯②由 ① 得x ≥−1.由 ② 得x <3.∴ 不等式组的解集是−1≤x <3.把不等式组的解集在数轴上表示为:【知识点】常规一元一次不等式组的解法22. 【答案】(1) {x −y =3, ⋯⋯①2x +y =6a, ⋯⋯②① + ②得 3x =6a +3,解得 x =2a +1;把 x =2a +1 代入①得 2a +1−y =3, 解得y =2a −2,∵x +y <3, ∴2a +1+2a −2<3,解得a <1.故实数 a 的取值范围为 a <1; (2) ∵a <1,∴∣a −1∣+12=2 可以变形为 −a +1+12=2, 解得 a =−12.【知识点】常规一元一次不等式的解法、含绝对值的一元一次方程的解法、含参二元一次方程组23. 【答案】 ∵(2x 2−2x )−(x 2−2x )=x 2≥0,∴2x 2−2x ≥x 2−2x .【知识点】整式的加减运算、不等式的性质24. 【答案】(1) {x4−y =−1, ⋯⋯①x =3y. ⋯⋯②把②代入①得,3y4−y =1.解得y =4.把 y =4 代入②得,x =12.故原方程组的解为:{x =12,y =4.(2) {x −3(x −2)>4, ⋯⋯①2x−15≥x+12. ⋯⋯②由①得,x <1.由②得,x ≤−7.故不等式组的解集为:x ≤−7.【知识点】常规一元一次不等式组的解法、代入消元25. 【答案】2x3−x+36≥1.不等式两边同乘以 6,得4x −(x +3)≥6.去括号,得4x −x −3≥6.移项及合并同类项,得3x ≥9.系数化为 1,得x ≥3.故原不等式组的解集是 x ≥3,在数轴上表示. 【知识点】常规一元一次不等式的解法。
北师大版初2数学8年级下册 第2章 第2章一元一次不等式与一元一次不等式组 常考题型专题训练(答案)
北师大版八年级数学下册第2章一元一次不等式与一元一次不等式组常考题型专题训练(附答案)1.如果关于x的不等式组的解集为x≥1,且关于x的方程有非负整数解,则所有符合条件的整数m的值有( )个.A.2个B.3个C.4个D.5个2.关于x的不等式组的解集是( )A.x≥2B.x>5C.﹣2≤x<5D.﹣2≤x<33.如图,直线y=kx+b(b>0)经过点(2,0),则关于x的不等式kx+b≥0的解集是( )A.x>2B.x<2C.x≥2D.x≤24.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为( )A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4 5.已知x>y,则下列不等式成立的是( )A.2x<2y B.x﹣6<y﹣6C.x+5>y+5D.﹣3x>﹣3y 6.若不等式组的解集为x<5,则m的取值范围为( )A.m<4B.m≤4C.m≥4D.m>47.已知关于x的不等式组有解,则a的取值不可能是( )A.0B.1C.2D.﹣28.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )A.六折B.七折C.八折D.九折9.不等式4﹣x≤2(3﹣x)的正整数解有( )A.1个B.2个C.3个D.无数个10.若不等式组无解,则a的取值范围是( )A.a B.a≤12C.a<D.a<1211.不等式组的解集为 .12.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是 .13.已知不等式组有三个整数解,则a的取值范围是 .14.已知关于x的不等式组恰好有2个整数解,则整数a的值是 .15.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是 .16.不等式组的解集为x>2,则a的取值范围是 .17.若不等式组有解,则a的取值范围是 .18.已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 .19.关于x、y的二元一次方程组的解满足不等式x﹣y>4,则m的取值范围是 .20.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)的值为 .21.解不等式组:,并写出它的所有整数解.22.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?23.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲,乙两种货车向武汉运送爱心物资.两次满载的运输情况如表:甲种货车辆数乙种货车辆数合计运物资吨数第一次3429第二次2631(1)求甲、乙两种货车每次满载分别能运输多少吨物资;(2)目前有46.4吨物资要运输到武汉,该公司拟安排甲乙货车共10辆,全部物资一次运完,其中每辆甲车一次运送花费500元,每辆乙车一次运送花费300元,请问该公司应如何安排车辆最节省费用?24.某口罩加工厂有A、B两组工人共150人,A组工人每人每小时可加工口罩70只,B组工人每人每小时可加工口罩50只,A、B两组工人每小时一共可加工口罩9300只.(1)求A、B两组工人各多少人;(2)由于疫情加重,A、B两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共同可生产口罩200只,若A、B两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?25.已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.26.如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.27.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?参考答案1.解:不等式组整理得:,由不等式组的解集为x≥1,得到m+4≤1,即m≤﹣3,方程去分母得:m﹣1+x=3x﹣6,解得:x=,由方程有非负整数解,得到m=﹣5或﹣3,则符合条件的整数m的值有2个.故选:A.2.解:解不等式3x+8≥2,得:x≥﹣2,解不等式>x﹣2,得:x<5,则不等式组的解集为﹣2≤x<5,故选:C.3.解:由图象可得:当x≤2时,kx+b≥0,所以关于x的不等式kx+b≥0的解集是x≤2,故选:D.4.解:∵3x+a≤2,∴3x≤2﹣a,则x≤,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤<3,解得:﹣7<a≤﹣4,故选:D.5.解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x﹣6>y﹣6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴﹣3x<﹣3y,故本选项不符合题意;故选:C.6.解:∵解不等式①得:x<5,解不等式②得:x<m+1,又∵不等式组的解集为x<5,∴m+1≥5,解得:m≥4,故选:C.7.解:∵关于x的不等式组有解,∴a<2,∵0<2,1<2,﹣2<2,∴a的取值可能是0、1或﹣2,不可能是2.故选:C.8.解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.9.解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.10.解:不等式组整理得:,由不等式组无解,得到5﹣a≥﹣,即10﹣2a≥﹣7,解得:a≤,故选:A.11.解:∵解不等式x+2<3得:x<1,解不等式﹣2x<4得:x>﹣2∴不等式组的解集是﹣2<x<1,故答案为:﹣2<x<1.12.解:一次函数y=(m﹣1)x﹣m+4中,令x=0,解得:y=﹣m+4,与y轴的交点在x轴的上方,则有﹣m+4>0,解得:m<4.故本题答案为:m<4且m≠1.13.解:∵不等式组有三个整数解,∴1<x<a,∴4<a≤5,故答案为:4<a≤5.14.解:不等式组,由①得:ax<﹣4,当a<0时,x>﹣,当a>0时,x<﹣,由②得:x<4,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是﹣<x<4,即整数解为2,3,∴1≤﹣<2(a<0),解得:﹣4≤a<﹣2,则整数a的值为﹣4,﹣3,故答案为:﹣4,﹣3.15.解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式②得,m>,所以,不等式组的解集是<m<2,故答案为<m<2.16.解:由不等式组的解集为x>2,可得a≤2.故答案为:a≤217.解:解不等式x+2a≥5得:x≥5﹣2a,解不等式1﹣2x>x﹣2得:x<1,∵该不等式组有解,∴5﹣2a<1,解得:a>2,故答案为:a>2.18.解:∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;故答案为:1<x+y<5.19.解:,①﹣②得,x﹣y=2m﹣2,∵x﹣y>4,∴2m﹣2>4,解得m>3.故答案为m>3.20.解:由得.∵﹣1<x<1,∴=1,3+2b=﹣1,解得a=1,b=﹣2,∴(a+1)(b﹣1)=(1+1)(﹣2﹣1)=﹣6,故答案为﹣6.21.解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.22.解:(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,依题意,得:,解得:.答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.(2)设学校购买甲种词典m本,则购买乙种词典(30﹣m)本,依题意,得:70m+50(30﹣m)≤1600,解得:m≤5.答:学校最多可购买甲种词典5本.23.解:(1)设甲、乙两种货车每次满载分别能运输x吨和y吨物资,根据题意得,,解得,,答:甲、乙两种货车每次满载分别能运输5吨和3.5吨物资;(2)设安排甲货车z辆,乙货车(10﹣z)辆,根据题意得,5z+3.5(10﹣z)≥46.4,解得,z≥7.6,∵x为整数,∴x=8或9或10,设总运费为w元,根据题意得,w=500z+300(10﹣z)=200z+3000,∵200>0,∴w随z的增大而增大,∴当z=8时,w的值最小为w=200×8+3000=4600,答:该公司应如何甲货车8辆,乙货车2辆最节省费用.24.解:(1)设A组工人有x人、B组工人有(150﹣x)人,根据题意得,70x+50(150﹣x)=9300,解得:x=90,150﹣x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200﹣a)只口罩;根据题意得,90a+60(200﹣a)≥15000,解得:a≥100,答:A组工人每人每小时至少加工100只口罩.25.解:(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴>,解得a>﹣.26.解:(1)∵直线y=kx+b经过点A(﹣5,0),B(﹣1,4),,解得,∴y=x+5(2)∵若直线y=﹣2x﹣4与直线AB相交于点C,∴,解得,故点C(﹣3,2).∵y=﹣2x﹣4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,﹣4),直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积为:DE•|∁x|=×9×3=.(3)根据图象可得x>﹣3.27.解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件。
北师大版八年级下册数学《解一元一次不等式组》练习题(含答案)
解一元一次不等式组一 、填空题(本大题共2小题)1.不等式组1236x x +≥⎧⎨<⎩的解集是 2.不等式组2401(8)202x x +<⎧⎪⎨+->⎪⎩的解集是 ,这个不等式组的整数解是 二 、解答题(本大题共14小题)3.解不等式组:,并把它的解集在数轴上表示出来.4.解关于x 的不等式:()()a x a b x b ->-5.分别就a 得不同取值,讨论关于x 的不等式()12a x x ->-的解的情况。
6.解不等式组:734342555(4)2(4)3x x x x x -+⎧-≥-⎪⎪⎨⎪+-≤-⎪⎩ 7.求同时满足56477x x +>+和83450x x +<+的整数解8.求不等式组2(2)43251x x x x -≤-⎧⎨--⎩< ①②的整数解. 9.讨论ax b <的解集.10.解不等式组()121123621[41]43x x x x x x x --+⎧->-⎪⎪⎨⎪---⎪⎩①≥② 11.解不等式组,并把解集在数轴上表示出来 (1)3(21)4213212x x x x ⎧--≤⎪⎪⎨-⎪>-⎪⎩ ⑵211841x x x x -≥+⎧⎨+<-⎩ 12.解不等式组:323(1)12123x x x x x +≥--⎧⎪-+⎨->-⎪⎩13.解不等式组31422x x x ->-⎧⎨<+⎩,并把它的解集表示在数轴上.14.解关于x的不等式23mx+<3x n+15.分别就a得不同取值,讨论关于x的不等式()12a x x->-的解的情况。
16.解不等式组:11141010372xx xxx⎧-+>+⎪⎪--⎨⎪+>+⎪⎩;解一元一次不等式组答案解析一 、填空题1.12x ≤<2.42x -<<-,整数解为3x =-二 、解答题3.解:解不等式3x ﹣5<x +1,得:x <3,解不等式2(2x ﹣1)≥3x ﹣4,得:x ≥﹣2,则不等式组的解集为﹣2≤x <3,将不等式组的解集表示在数轴上如下:4.由原不等式得:()()()a b x a b a b ->-+当0a b ->,即得不等式解集为x a b >+;当0a b -=,即得00>,不等式无解;当0a b -<,即得不等式解集为x a b <+.5.原不等式可化为:()12a x a ->-(1)当1a >时,原不等式的解集为21a x a ->-; (2)当1a =时,原不等式化为01x ⋅>-,不等式的解集为一切实数;(3)当1a <时,元不等式的解集为21a x a -<-。
北师版八年级下数学2.4一元一次不等式习题精选3(含答案)
数学2.4习题精选3(含答案)一.填空题(共16小题)1.小明、小杰和小丽代表班级参加学校组织的团体智力竞赛,如果小明得86分,小杰得79分,那么要使三人团体平均分不低于83分,小丽至少应得_________分.2.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是_________.3.为了迎接2012伦敦奥运会,我区举办奥运知识竞赛,共有20道题.每一题答对十分,答错或不答都扣5分,小欣得分超过70分,则她至少要答对_________道题.4.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_________人去该景点,买30张票反而合算.5.有关学生体质健康评价指定规定:七年级男生握力体重指数m的合格标准是m≥35.若七年级男生小明的体重是50kg,那么小明的握力至少要达到_________kg时才能合格.【握力体重指数=(握力÷体重)×100】6.小王家的鱼塘可出售的大鱼和小鱼共800㎏,大鱼每千克售价10元,小鱼每千克售价6元.若将这800㎏鱼全部出售,收入可超过6800元,则其中出售的大鱼应多于_________㎏.7.某种商品进价是100元,出售时标价为150元,春节期间为了“大酬宾”优惠,特意大折出售,但要保证利润不低于20%,则最低可以打_________折.8.(2009•万年县模拟)一种药品的说明书上写着“每日用量60~120mg,分3~4次服用”,则一次服用这种剂量x mg应该满足_________.9.(2007•中山区一模)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为_________.10.如图,a,b,c三种物体的质量的大小关系是_________.11.爸爸上个月的电话费用37.5元,其中月租费是12.5元,每打一次市话不超过3分钟收费0.2元.爸爸上月没有打过长途或其他电话,且每次却不超过3分钟,那么爸爸上个月累计通话时间至多为_________分钟.12.随着两岸交往的不断深入,台湾地区的水果源源不断地进入内地市场,一种台湾苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗.为避免亏本,商家将售价应该至少定为每千克_________元.13.某种品牌的八宝粥,外包装标明:净含量为330g±10g,表明了这罐八宝粥的净含量x的范围是_________.14.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_________个儿童,分_________个橘子.15.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有_________人.16.有人问一位老师,他教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球.”因此,这个班一共有学生_________人.二.解答题(共10小题)17.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)18.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?20.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.21.(2010•菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?22.(2009•天水)为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:经预算,该企业购买设备的资金不高于105万元.A型B型价格(万元/台)12 10处理污水量(吨/月)240 200年消耗费(万元/台) 1 1(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)23.(2009•贵港)蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?24.(2008•南平)“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金25.(2006•宿迁)甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠?26.(2006•泸州)九年级(3)班学生到学校阅览室上课外阅读课,班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各个组,若每组8本,还有剩余;若每组9本,却又不够,你知道该分几个组吗?(请你帮助班长分组,注意写出解题过程,不能仅有分组的结果哟!)数学2.4习题精选3(含答案)参考答案与试题解析一.填空题(共16小题)1.小明、小杰和小丽代表班级参加学校组织的团体智力竞赛,如果小明得86分,小杰得79分,那么要使三人团体平均分不低于83分,小丽至少应得84分.考点:一元一次不等式的应用.分析:只要运用求平均数公式:=列出关系式即可求出,为简单题.解答:解:设小丽成绩为x分,由题意得:≥83,解得x≥84.故小丽的成绩至少是84分.故答案为:84.点评:本题考查了样本平均数的求法以及不等式的应用.熟记求平均数公式是解决本题的关键.2.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是24cm.考点:一元一次不等式的应用.分析:设导火线应有x厘米长,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.解答:解:设导火线应有x厘米长,根据题意≥,解得:x≥24.故导火线至少应有24厘米.故答案为:24cm.点评:此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.3.为了迎接2012伦敦奥运会,我区举办奥运知识竞赛,共有20道题.每一题答对十分,答错或不答都扣5分,小欣得分超过70分,则她至少要答对12道题.考点:一元一次不等式的应用.分析:设小欣答对x道题,则答错或者不答为(20﹣x)道题,等量关系为:答对得分﹣扣分>70,列不等式求出最小整数解即可.解答:解:设小欣答对x道题,则答错或者不答为(20﹣x)道题,由题意得,10x﹣5(20﹣x)>70,解得:x>11,故答案为:12.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.4.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有25人去该景点,买30张票反而合算.考点:一元一次不等式的应用.分析:先求出购买30张票,优惠后需要多少钱,然后再利用5x>120时,求出买到的张数的取值范围再加上1即可.解答:解:30×(5﹣1)=30×4=120(元);故5x>120时,解得:x>24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算;24+1=25(人);则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.点评:此题主要考查了一元一不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.5.有关学生体质健康评价指定规定:七年级男生握力体重指数m的合格标准是m≥35.若七年级男生小明的体重是50kg,那么小明的握力至少要达到x≥17.5kg时才能合格.【握力体重指数=(握力÷体重)×100】考点:一元一次不等式的应用.分析:设小明的握力至少要达到xkg时才能合格,根据握力体重指数=(握力÷体重)×100建立方程求出其解就可以了.解答:解:设小明的握力至少要达到xkg时才能合格,由题意,得(x÷50)×100≥35,解得:x≥17.5.故答案为:x≥17.5点评:本题一道关于列一元一次不等式解实际问题的运用题,考查了握力体重指数=(握力÷体重)×100在实际问题中的运用,解答时根据题意建立不等式是关键.6.小王家的鱼塘可出售的大鱼和小鱼共800㎏,大鱼每千克售价10元,小鱼每千克售价6元.若将这800㎏鱼全部出售,收入可超过6800元,则其中出售的大鱼应多于500㎏.考点:一元一次不等式的应用.分析:关系式为:大鱼的收入+小鱼的收入>6800元,把相关数值代入关系式即可得到所列不等式,求解即可.解答:解:售出的大鱼为x千克,大鱼每千克售价10元,所以大鱼的收入为10x;小鱼每千克售价6元,售出小鱼为(800﹣x)千克,小鱼的收入为6(800﹣x);解得:x>500,即出售的大鱼应多于500kg.故答案为:500.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是找到总收入的关系式,易错点是找到对应的数量与单价.7.某种商品进价是100元,出售时标价为150元,春节期间为了“大酬宾”优惠,特意大折出售,但要保证利润不低于20%,则最低可以打8折.考点:一元一次不等式的应用.专题:应用题.分析:设打x折,则实际售价为150×0.1x,再由利润不低于20%,得出不等式,解出即可得出答案.解答:解:设打x折,则实际售价为150×0.1x,由题意得:150×0.1x﹣100≥100×20%,解得:x≥8.即最低可以打8折.故答案为:8.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.8.(2009•万年县模拟)一种药品的说明书上写着“每日用量60~120mg,分3~4次服用”,则一次服用这种剂量x mg应该满足15≤x≤40.考点:一元一次不等式的应用.专题:应用题.分析:一次服用剂量x=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解答:解:由题意,当每日用量60mg,分4次服用时,一次服用的剂量最小;当每日用量120mg,分3次服用时,一次服用的剂量最大;根据依题意列出不等式组:解得15≤x≤40.故答案为:15≤x≤40.点评:由实际问题中的不等关系列出不等式,通过解不等式可以得到实际问题的答案.9.(2007•中山区一模)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为60≤x≤80.考点:一元一次不等式的应用.分析:早晨8点离开家,要在8点30分到8点40分之间到学校,即所用的时间是大于等于30分钟并且小于等于40分钟,设速度是x米/分,则时间是分钟,根据以上的不等关系,就可以列出不等式组,求出x的范围.解答:解:由题意可得,30≤≤40解之得60≤x≤80.故答案为:60≤x≤80点评:此题关键是用代数式,表示阳阳从家到校的时间,时间=.10.如图,a,b,c三种物体的质量的大小关系是a>b>c.考点:一元一次不等式的应用.分析:根据第一个图可知2a=3b,可判断a,b的大小关系,从图2可知,2b>3c,可判断b,c的大小关系.解答:解:∵2a=3b,∴a>b,∵2b>3c,∴b>c,∴a>b>c.故答案为:a>b>c.点评:本题考查一元一次不等式的应用,关键是根据图可依次判断a,b的大小关系,b,c的大小关系可求出解.11.爸爸上个月的电话费用37.5元,其中月租费是12.5元,每打一次市话不超过3分钟收费0.2元.爸爸上月没有打过长途或其他电话,且每次却不超过3分钟,那么爸爸上个月累计通话时间至多为375分钟.考点:一元一次不等式的应用.专题:应用题.分析:本题首先由题意得出不等关系即每次通话都不超过3分钟,可列出方程为x÷≤3,解出不等式即可.解答:解:设爸爸上个月累计通话时间为x分钟.依题意可得:x÷≤3,解得:x≤375,∴爸爸上个月累计通话时间至多为375分钟.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等12.随着两岸交往的不断深入,台湾地区的水果源源不断地进入内地市场,一种台湾苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗.为避免亏本,商家将售价应该至少定为每千克8元.考点:一元一次不等式的应用.分析:设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果损耗后的价格为x(1﹣5%)元,根据题意列出不等式即可.解答:解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥7.6,解得,x≥8,所以为避免亏本,商家把售价应该至少定为每千克8元.故答案为:8.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.13.某种品牌的八宝粥,外包装标明:净含量为330g±10g,表明了这罐八宝粥的净含量x的范围是320≤x≤340.考点:一元一次不等式的应用.专题:应用题.分析:将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可.解答:解:因为净含量为330g±10g,则这罐八宝粥的净含量x少不过320g,多不过340g,即320≤x≤340.点评:此题是一道与生活联系紧密的题目,解答起来较容易.14.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有7个儿童,分37个橘子.考点:一元一次不等式的应用.分析:如果每人分4个橘子,则剩下9个橘子,可设有x个儿童,则橘子数有:4x+9;每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,即橘子总数小于6(x﹣1)+3,就可以列出不等式,得出x的取值范围.解答:解:设共有x个儿童,则共有4x+9个橘子,则1≤4x+9﹣6(x﹣1)<3解得6<x≤7所以共有7个儿童,分了4x+9=37个橘子故答案为:7,37.点评:本题考查的是一元一次不等式的运用,要注意不等式两边同时除以一个负数不等式的方向要改变.正确理解“最后一个儿童分得的橘子数将少于3个”这句话包含的不等关系是解决本题的关键.15.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有28或29人.分析:有空客房10间,每个房间住3人时,只有一个房间不空也不满即:9间客房住满了,一个房间不空也不满即1个房间客房住了一个人或两个人,则就可以得到所有旅客的人数.解答:解:9个房间住的人数是9×3=27人.当不空也不满的房间有一个人时:有游客27+1=28人.当不空也不满的房间有2个人时:有游客27+2=29人.因而旅游团共有28或29人.点评:解决问题的关键是读懂题意,理解每个房间住3人时,只有一个房间不空也不满的含义,得到这个房间中的人数是解决本题的关键.16.有人问一位老师,他教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球.”因此,这个班一共有学生28人.考点:一元一次不等式的应用.分析:一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球,即踢足球的学生人数大于0并且小或等于5.设这个班一共有学生x人,根据这个不等关系就可以列出不等式.解答:解:不足6位学生说明剩下人数在1和5之间.设有x人,则0<x﹣x﹣x﹣x≤50<x﹣0.5x﹣0.25x﹣x≤5解得9<x≤46这些整数里,∵x,,都表示学生人数,∴必须为整数,∴学生总数应为28的倍数,∴只有28能被28整除.∴这个班一共有学生28人.点评:解决本题的关键是读懂题意,理解:不足6位学生正在操场踢足球的含义,找到符合题意的不等关系.二.解答题(共10小题)17.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)专题:应用题;压轴题;方案型.分析:(1)在题目中,每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100﹣x)台的情况下,可列不等式22400≤200x+240(100﹣x)≤22500,解不等式,取其整数值即可求解;(2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100﹣x)=6000﹣10x,利用函数的自变量取值范围和其单调性即可求得函数的最值;(3)结合(2)得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x,在此,必须把(m﹣10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小.解答:解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40.∵x取非负整数,∴x为38,39,40.∴有三种生产方案①A型38台,B型62台;②A型39台,B型61台;③A型40台,B型60台.(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x∴当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得最大利润.(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;当m=10时,m﹣10=0则三种生产方案获得利润相等;当m>10,则x=40时,W最大,即生产A型40台,B型60台.点评:考查学生解决实际问题的能力,试题的特色是在要求学生能读懂题意,并且会用函数知识去解题,以及会讨论函数的最大值.要结合自变量的范围求函数的最大值,并要把(m﹣10)正负性考虑清楚,分情况讨论问题.18.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?考点:一元一次不等式的应用.分析:设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.解答:解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.点评:本题考查了一元一次不等式的应用,难度一般,解答本题的关键是表示出胜场得分和输场得分并列出不等式.19.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;(2)设该中学购买篮球m个,根据购买三种球的总费用不超过6000元,可得出不等式,解出即可.解答:解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤33,∵m是整数,∴m最大可取33.答:这所中学最多可以购买篮球33个.点评:本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.20.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.考点:一元一次不等式的应用;一元一次方程的应用.专题:应用题;压轴题.分析:(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克,列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,列出不等式求解即可.解答:解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克,则所含蛋白质质量为4y克,所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%,∴y≥40,∴﹣5y≤﹣200,∴380﹣5y≤380﹣200,即380﹣5y≤180,∴所含碳水化合物质量的最大值为180克.点评:本题由课本例题改编而成(原题为浙教版七年级下P96例题),这使学生对试题有“亲切感”,而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点,给出两个量的和的范围,求其中一个量的最值,隐含着函数最值思想.本题切入点较多,方法灵活,解题方式多样化,可用不等式解题,也可用极端原理求解,不同的解答反映出思维的不同层次.21.(2010•菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?。
北师大八年级数学下册一元一次不等式应用题精讲及分类训练(分类训练含答案)
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0) 依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少? 分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x ∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11 答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
北师大版八年级数学《一元一次不等式的应用》练习题(含答案)
一元一次不等式的应用一、选择题(本大题共2小题)1.初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( )A.2个 B.3个 C.4个 D.5个2.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( ) A.4辆 B.5辆 C.6辆 D.7辆二、填空题(本大题共2小题)3.在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s,引爆员点着导火索后,至少以每秒_____米的速度才能跑到600m或600m以外的安全区域?4.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或 90分以上)则小明至少答对了道题.三、解答题(本大题共11小题)5.工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?6.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?7.八戒去水果店买水果,八戒有45元,买了5斤香蕉,若香蕉每斤3元,西瓜每个8元,请问八戒至多能买几个西瓜?8.若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?9.某工人9月份计划生产零件180个,前10天每天平均生产6个,后经改进生产技术,提前2天并且超额完成任务,这个工人改进技术后平均每天至少生产零件多少个?10.某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B 型车多少辆?11.“六一”儿童节前夕,某小学的小朋友喜欢奥运福娃,学校就特意买了一些,送给学校的小朋友做为节日礼物.如果每班分10套,那么多出5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?12.一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球与红球各有多少个?13.商业大厦购进某种商品l000件,售价定为进价的125%.现计划节日期间按原售价让利l0%,至多售出l00件商品;而在销售淡季按原定价的60%大甩卖.为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?14.在保护地球爱护家园活动中,校团委把一批树苗分给初三⑴班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).⑴设初三⑴班有x名同学,则这批树苗有多少棵?(用含x的代数式表示).⑵初三⑴班至少有多少名同学?最多有多少名15.某校今年新改造了一片绿化带,现计划种植龙舌兰和春兰两种花卉,已知2盆龙舌兰和3盆春兰售价130元,3盆龙舌兰和2盆春兰售价120元.(1)求每盆龙舌兰和春兰单价.(2)学校今年计划采购龙舌兰和春兰共400盆,相关资料表明:龙舌兰和春兰的成活率分别为70%和90%,学校明年都要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补花卉不多于80盆,应如何选购花卉,使今年购买花卉的费用最低?并求出最低费用.一元一次不等式的应用答案解析一 、选择题1.C2.C二 、填空题3.3m/s4.24三 、解答题5.设后几天每天平均完成x 土方,根据题意,得:60(612)300x +--≥,解得80x ≥,每天平均至少挖土80土方.6.设他行走剩下的一半路程的速度为x ,则12 2.4 1.260x -≥所以6x ≥. ∴他行走剩下的一半路程的速度至少为6千米/小时.7.设八戒买了x 个西瓜,则35845x ⨯+≤,解得154x ≤,故八戒至多买3个西瓜. 8.设有x 位同学参加照像,根据题意得:20 1.5(2)4x x +-≤,解得 6.8x ≥, 所以至少应有7名同学参加照像.9.这个工人改进技术后平均每天至少生产零件x 个,根据题意得:610(30102)180x ⨯+-->,263x >,这个工人改进技术后平均每天至少生产零件7个.10.设至少还需要B 型车x 辆,依题意得20515300x ⨯+≥解得1133x ≥,∴14x =.11.设该小学有x 个班,则奥运福娃共有()105x +套.由题意,得()()1051314105131x x x x ⎧+<-+⎪⎨+>-⎪⎩解之,得1463x <<. ∵x 只能取整数,所以5x =,此时10555x +=.∴该小学共有5个班级,55套福娃12.设白球有x 个,红球有y 个,依题意有22360x y x x y <<⎧⎨+=⎩,解得7.512x << 又由26033(20)x y y =-=-,知x 是3的倍数.故白球共有9个,红球共有l4个.13.设进价为a 元,按原定价售出x 件,节日让利售出y 件(0100y <≤).依题意有125%125%(1a x a y ⋅⋅+⋅⋅⋅-10%)(1000)125%60%1000x y a a +--⋅⋅⋅>, 整理得432000x y +>,由于0100y <≤,所以425x >,因此按原定价至少销售426件.14.⑴ 242x +;⑵ ()1242315x x +--<≤,则4044x <≤,至少有41名同学;最多有44名同学.15.解(1)设龙舌兰的单价为x 元/盆,春兰的单价为y 元/盆依题意得:{2313032120x y x y +=+=解得{2030x y ==答:每盆龙舌兰的单价为20元,每盆春兰的单价为30元(2)设购买龙舌兰m 盆, 则购买春兰 (400-m )盆,总费用为w 元 30%10%(400)80m m ∴+-≤ 200m ∴≤2030(400)w m m ∴=+-1012000m =-+100-<w ∴随m 的增大而减小当200m =min 10201200010000w ∴=-⨯+=400400200200m ∴-=-=答:购买龙舌兰200盆, 则购买春兰200盆,总费用最低为10000元。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)
(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
北师大新版八年级下册《第2章 一元一次不等式》1含解析答案
北师大新版八年级下册《第2章一元一次不等式》一、选择题:1.(3分)不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣2 2.(3分)下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.3.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数多个4.(3分)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.5.(3分)如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>2 6.(3分)要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2 7.(3分)不等式组的解集是()A.x<3 B.3<x<4 C.x<4 D.无解8.(3分)若a>b>0,则下列结论正确的是()A.﹣a>﹣b B.>C.a3<0 D.a2>b2 9.(3分)下列图形中,能表示不等式组解集的是()A.B.C.D.10.(3分)观察函数y1和y2的图象,当x=1,两个函数值的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y211.(3分)如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤812.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4二、填空题13.(3分)已知三角形的两边为3和4,则第三边a的取值范围是.14.(3分)不等式组的解集是.15.(3分)不等式组﹣1<x<4的整数解有个.16.(3分)若a>c,则当m时,am<cm;当m时,am=cm.17.(3分)小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.18.(3分)不等式组﹣1<x﹣5<11的解集是.19.(3分)若不等式组有解,则a的取值范围是.20.(3分)一次函数y=﹣3x+12中x时,y<0.21.(3分)不等式x﹣8>3x﹣5的最大整数解是.22.(3分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.三、解答题:23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.24.解不等式组:(1);(2).25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k 的值,若不存在,说明理由.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,最多还可以购买几支笔?28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?30.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.北师大新版八年级下册《第2章一元一次不等式》参考答案与试题解析一、选择题:1.(3分)不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣2【分析】两边同时除以﹣2,把x的系数化成1即可求解.【解答】解:两边同时除以﹣2,得:x>﹣2.故选:D.2.(3分)下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.【分析】根据不等式的性质分析判断.【解答】解:A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a ≤4a,故错误;B、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;C、因为﹣1>﹣2,不等式两边同乘以a,而a≤0时,不等号方向改变,即﹣a≤﹣2a,故错误;D、因为4>2,不等式两边同除以a,而a≤0时,不等号方向改变,即,故错误.故选:B.3.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数多个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1.故选A.4.(3分)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D.故选:C.5.(3分)如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>2【分析】通过观察函数图象,当y<0时,图象在x轴左方,写出对应的自图象在x轴左方变量的范围即可.【解答】解:由图象可得,一次函数的图象与x轴的交点为(﹣2,0),当y<0时,x<﹣2.故选:A.6.(3分)要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2【分析】二次根式的被开方数x﹣2是非负数.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.7.(3分)不等式组的解集是()A.x<3 B.3<x<4 C.x<4 D.无解【分析】先求出不等式x﹣1>2的解集,继而根据“大小小大中间找”即可确定不等式组的解集.∴不等式组的解集为:3<x<4,故选:B.8.(3分)若a>b>0,则下列结论正确的是()A.﹣a>﹣b B.>C.a3<0 D.a2>b2【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、不等式两边都乘﹣1,不等号的方向改变,错误;B、3>2>0,但<,错误;C、正数的奇次幂是正数,a3>0,错误;D、两个正数,较大的数的平方也大,正确;9.(3分)下列图形中,能表示不等式组解集的是()A.B.C.D.【分析】注意:表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.【解答】解:如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.故选:A.10.(3分)观察函数y1和y2的图象,当x=1,两个函数值的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【分析】从图象得到,当x=1时,函数y2对应的点在函数y1对应的点的上面,故有y1<y2.【解答】解:当x=1时,函数y2对应的点在函数y1对应点的上面,因而当x=1,两个函数值的大小为y1<y2故选:B.11.(3分)如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.12.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4【分析】首先解第二个不等式,两个不等式的解集的公共部分就是不等式组的解集,求得解集中的最小整数值即可.【解答】解:解3x﹣4≤8,得:x≤4,则不等式组的解集是:﹣<x≤4.则最小的整数解是:0.故选:B.二、填空题13.(3分)已知三角形的两边为3和4,则第三边a的取值范围是1<a<7 .【分析】已知两边的值,则第三边的范围是:大于两边的差,而小于两边的和.【解答】解:根据三角形的三边关系,得4﹣3<a<4+3,即1<a<7.故答案为:1<a<7.14.(3分)不等式组的解集是﹣1<x<3 .【分析】根据“小大大小中间找”的原则求出不等式组的解集即可.【解答】解:∵﹣1<3,∴此不等式组的解集为:﹣1<x<3.故答案为:﹣1<x<3.15.(3分)不等式组﹣1<x<4的整数解有 4 个.【分析】直接根据不等式﹣1<x<4范围内的整数可得其整数解,也可借助数轴直观解答.【解答】解:在﹣1<x<4范围内的整数只有0,1,2,3,所以等式﹣1<x<4的整数解有4个,故答案为4.16.(3分)若a>c,则当m<0 时,am<cm;当m=0 时,am=cm.【分析】根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,可知m<0.【解答】解:∵a>c,又知:am<cm,∴根据不等式的基本性质3可得:m<0;又知:am=cm,∴m=0.故答案为:<0;=0.17.(3分)小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有 5 个.【分析】(1)根据“两位正整数其个位数字比十位数字大4”可得此两位数为(10×十位数)+个位数;(2)再根据此两位数小于88,列出不等式即可.【解答】解:设十位数字为x,则个位数字为x+4依题意得10x+x+4<88得x<又∵x应为正整数,且大于0;并且0≤个位数字≤9,因而5≤x+4≤9∴1≤x≤5故这样的两位数有5个.18.(3分)不等式组﹣1<x﹣5<11的解集是4<x<16 .【分析】可以直接用口诀解题,也可用不等式的性质直接解不等式组.【解答】解:不等式每个部分都加5得,4<x<16.故答案为:4<x<16.19.(3分)若不等式组有解,则a的取值范围是a≤2 .【分析】根据不等式组有解,可得a与2的关系,可得答案.【解答】解:∵不等式组有解,∴a≤2,故答案为:a≤2.20.(3分)一次函数y=﹣3x+12中x>4 时,y<0.【分析】y<0即3x+12<0,解不等式即可求解.【解答】解:根据题意得:﹣3x+12<0,解得:x>4.故答案为:>4;21.(3分)不等式x﹣8>3x﹣5的最大整数解是﹣2 .【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x﹣8>3x﹣5的解集为x<﹣;所以其最大整数解是﹣2.22.(3分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1 .【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.三、解答题:23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4,将解集表示在数轴上如下:(2)去分母,得:2(2x﹣1)﹣(5x﹣1)<0,去括号,得:4x﹣2﹣5x+1<0,移项、合并,得:﹣x<1,系数化为1,得:x>﹣1,将解集表示在数轴上如下:.24.解不等式组:(1);(2).【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集.【解答】解:(1)解不等式5x﹣6≤2(x+3),得:x≤4,解不等式,得:x>0,∴不等式组的解集为0<x≤4;(2)解不等式3+x≤2(x﹣2)+7,得:x≥0,解不等式5x﹣1<3(x+1),得:x<2,∴不等式组的解集为0≤x<2.25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?【分析】解不等式解不等式2x﹣m>n﹣1得x>,由不等式组的解集为﹣1<x<1可得=﹣1,从而知m+n的值,代入即可.【解答】解:解不等式2x﹣m>n﹣1,得:x>,∵不等式组的解集为﹣1<x<1,∴=﹣1,∴m+n=﹣1,则(m+n)2014=(﹣1)2014=1.26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k 的值,若不存在,说明理由.【分析】解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值.【解答】解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,最多还可以购买几支笔?【分析】设她最多还可以购买x只笔,根据总钱数不超过21元,列不等式求解.【解答】解:设她还可能买x只笔,由题意得,3x+2×2.2≤21,解得:x≤.答:她最多还可以购买5枝笔.28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?【分析】设该校一共有x人去植树,共有y棵树.则根据题意可得:,求解即得【解答】解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?【分析】(1)根据存款数=原有存款+又存入的钱数,列式即可;(2)列出一元一次不等式,然后求解即可.【解答】解:(1)根据题意,甲:y1=400x+800,乙:y2=200x+1800;(2)根据题意,400x+800>200x+1800,解得x>5,所以,从第6个月开始,甲存款额能超过乙存款额.30.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【分析】(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30﹣a)台,根据需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元列出不等式组,求出a的取值范围,再根据a只能取整数,得出购买方案,再根据每台电脑的价格和每台电子白板的价格,算出总费用,再进行比较,即可得出最省钱的方案.【解答】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,解得:15≤a≤17,∵a只能取整数,∴a=15,16,17,∴有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台,方案1:15×0.5+1.5×15=30(万元),方案2:16×0.5+1.5×14=29(万元),方案3:17×0.5+1.5×13=28(万元),∵28<29<30,∴选择方案3最省钱,即购买电脑17台,电子白板13台最省钱.。
北师大新版八年级下册《第2章 一元一次不等式》2含解析答案
北师大新版八年级下册《第2章一元一次不等式》一、选择题(本大题共有12小题,每小题4分,共48分)1.(4分)若a<b,则下列不等式中一定成立的是()A.a﹣3>b﹣3 B.a﹣3<b﹣3 C.3﹣a<3﹣b D.3ac<3bc2.(4分)下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个3.(4分)不等式组整数解的个数是()A.1个B.2个C.3个D.4个4.(4分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(4分)若不等式组有2个整数解,则a的取值范围为()A.﹣1<a<0 B.﹣1≤a<0 C.﹣1<a≤0 D.﹣1≤a≤0 6.(4分)不等式组的解集是()A.x>3 B.x<6 C.3<x<6 D.x>67.(4分)不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<28.(4分)代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥09.(4分)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.10.(4分)如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥a C.5a≥3b D.5a=3b11.(4分)不等式组的所有整数解的和是()A.2 B.3 C.5 D.612.(4分)如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对B.6对C.8对D.9对二、填空题(本大题共有6小题,每小题4分,共24分)13.(4分)不等式4x﹣3<2x+1的解集为.14.(4分)不等式组的整数解为.15.(4分)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.16.(4分)小亮准备用36元钱买笔和练习本,已知每支笔3.5元,每本练习本1.8元.他买了8本练习本,最多还可以买支笔.17.(4分)已知:关于x的不等式(2a﹣b)x+a﹣5b>0的解集是x<,则ax+b>0的解集是.18.(4分)用不等式表示“a与5的差不是正数”:.三、计算题(本大题共有4小题,每小题8分,共32分.)19.(8分)解不等式:.20.(8分)解不等式,并把解集表示在数轴上.21.(8分)解不等式组:.22.(4分)解不等式组:.四、解答题(本大题共有5小题,共46分.)23.(9分)x取哪些正整数时,代数式的值不小于代数式﹣3的值.24.(9分)已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.25.(9分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?26.(9分)据统计某外贸公司2007年、2008年的进出口贸易总额分别为3300万元和3760万元,其中2008年的进口和出口贸易额分别比2007年增长20%和10%.(1)试确定2007年该公司的进口和出口贸易额分别是多少万元;(2)2009年该公司的目标是:进出口贸易总额不低于4200万元,其中出口贸易额所占比重不低于60%,预计2009年的进口贸易额比2008年增长10%,则为完成上述目标,2009年的出口贸易额比2008年至少应增加多少万元?27.(10分)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地22 20 20 运往D地(元/立方米)20 22 21 运往E地(元/立方米)在(2)的条件下,请说明哪种方案的总费用最少?北师大新版八年级下册《第2章一元一次不等式》参考答案与试题解析一、选择题(本大题共有12小题,每小题4分,共48分)1.(4分)若a<b,则下列不等式中一定成立的是()A.a﹣3>b﹣3 B.a﹣3<b﹣3 C.3﹣a<3﹣b D.3ac<3bc【分析】根据不等式的性质对各选项进行逐一判断即可.【解答】解:A、∵a<b,∴a﹣3<b﹣3,故本选项错误;B、∵a<b,∴a﹣3<b﹣3,故本选项正确;C、∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项错误;D、当c=0时,3ac=3bc,故本选项错误.故选:B.2.(4分)下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个【分析】根据两个不等式中含有同一个未知数且未知数的次数是1次的,可得答案.【解答】解:①是一元一次不等式组,故①正确;②是一元一次不等式组,故②正确;③是一元二次不等式组,故③错误;④是一元一次不等式组,故④正确;⑤是二元一次不等式组,故⑤错误;故选:B.3.(4分)不等式组整数解的个数是()A.1个B.2个C.3个D.4个【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:由(1)得x≥0,由(2)得x<3,其解集为0≤x<3,所以不等式组整数解为0,1,2,共3个.故选:C.4.(4分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】解不等式,求出不等式的解集,即可解答.【解答】解:,由①得:x>﹣3,由②得:x≤2,∴不等式的解集为:﹣3<x≤2,故选:A.5.(4分)若不等式组有2个整数解,则a的取值范围为()A.﹣1<a<0 B.﹣1≤a<0 C.﹣1<a≤0 D.﹣1≤a≤0【分析】首先解第一个不等式求得不等式组的解集,然后根据整数解的个数确定整数解,则a的范围即可求得.【解答】解:解x<1得x<2.则不等式组的解集是a<x<2.则整数解是1,0.则﹣1≤a<0.故选:B.6.(4分)不等式组的解集是()A.x>3 B.x<6 C.3<x<6 D.x>6【分析】先求出第一个不等式的解集,再求其公共解.【解答】解:,由①得,x<6,所以,不等式组的解集是3<x<6.故选:C.7.(4分)不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:6x﹣3x>8﹣5,合并同类项,得3x>3,系数化为1,得:x>1,故选:B.8.(4分)代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥0【分析】根据不等关系小于0列式即可.【解答】解:∵代数式5x﹣4的值小于0,∴5x﹣4<0.故选:A.9.(4分)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数﹣(x﹣1)间宿舍的人数≥1;总人数﹣(x﹣1)间宿舍的人数≤5,把相关数值代入即可.【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.10.(4分)如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥a C.5a≥3b D.5a=3b【分析】本题首先要解这个关于x的方程,求出方程的解,根据解是负数,可以得到一个关于a的不等式,就可以求出a的范围.【解答】解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故选:C.11.(4分)不等式组的所有整数解的和是()A.2 B.3 C.5 D.6【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选:D.12.(4分)如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对B.6对C.8对D.9对【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.【解答】解:∵解不等式①得:x>,解不等式②得:x≤,∴不等式组的解集为<x≤,∵x的不等式组的整数解仅有7,8,9,∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,∴a=15或16或17,b=21或22或23,即(15,21),(15,22),(15,23)(16,21),(16,22)(16,23),(17,21),(17,22),(17,23)共9对,故选:D.二、填空题(本大题共有6小题,每小题4分,共24分)13.(4分)不等式4x﹣3<2x+1的解集为x<2 .【分析】利用不等式的基本性质,把﹣3移到不等号的右边,把2x移到等号的左边,合并同类项即可求得原不等式的解集.【解答】解:4x﹣3<2x+1,4x﹣2x<1+3,2x<4,x<2,故答案为:x<2.14.(4分)不等式组的整数解为0、1 .【分析】先求出不等式的解集,再据此求出不等式的整数解.【解答】解:由①得,2x>﹣1﹣1,x>﹣1;由②得,x≤3﹣2,x≤1;不等式组的解集为:﹣1<x≤1.其整数解为0,1.15.(4分)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4 .【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.16.(4分)小亮准备用36元钱买笔和练习本,已知每支笔3.5元,每本练习本1.8元.他买了8本练习本,最多还可以买 6 支笔.【分析】求最多可以买的比的支数可根据每支笔3.5元,每本练习本1.8元,买了8本练习本最多可用36元钱列出不等式,再根据不等式的性质求解即可.【解答】解:设最多还可买x支铅笔,依题意得,3.5x+1.8×8≤36,解得,x≤6.所以最多还可以买6支笔.17.(4分)已知:关于x的不等式(2a﹣b)x+a﹣5b>0的解集是x<,则ax+b>0的解集是x<﹣.【分析】根据已知条件“关于x的不等式(2a﹣b)x+a﹣5b>0的解集是x<”求得=,且2a﹣b<0,即b=a,且a<0;然后将以a表示的b值代入所求的不等式中,根据a的符号可以求得x的取值范围.【解答】解:由关于x的不等式(2a﹣b)x+a﹣5b>0,得(2a﹣b)x>5b﹣a;∵关于x的不等式(2a﹣b)x+a﹣5b>0的解集是x<,∴=,且2a﹣b<0,∴b=a,且a<0,∴由ax+b>0,得ax>﹣a,∴x<﹣;故答案是:x<﹣.18.(4分)用不等式表示“a与5的差不是正数”:a﹣5≤0 .【分析】理解:不是正数,意思是应小于或等于0.【解答】解:根据题意,得a﹣5≤0.三、计算题(本大题共有4小题,每小题8分,共32分.)19.(8分)解不等式:.【分析】根据解不等式的一般步骤解答即可,解答的一般步骤为:去分母,去括号,移项及合并同类项,系数化为1.【解答】解:去分母得:3(3+x)﹣6≤4x+3,去括号得:9+3x﹣6≤4x+3,移项得:3x﹣4x≤3﹣9+6,合并同类项得:﹣x≤﹣0,系数化为1得:x≥0.20.(8分)解不等式,并把解集表示在数轴上.【分析】首先去分母,然后去括号,移项合并同类项系数化成1即可求解.【解答】解:去分母得:3(3x﹣2)≥5(2x+1)﹣15,去括号得:9x﹣6≥10x+5﹣15,移项,合并同类项得:﹣x≥﹣4,则x≤4.21.(8分)解不等式组:.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣1,解不等式②得:x<5,∴不等式组的解集为﹣1≤x<5.22.(4分)解不等式组:.【分析】分别求出两个不等式的解集,求其公共解.【解答】解:由①得,x>3,由②得,x≥2,∴原不等式组的解集是:x>3.四、解答题(本大题共有5小题,共46分.)23.(9分)x取哪些正整数时,代数式的值不小于代数式﹣3的值.【分析】代数式的值不小于代数式﹣3的值,即:﹣3,解不等式求得解集,然后确定正整数解即可.【解答】解:根据题意得:﹣3,解得:x≤.∵x是正整数,∴x=1、2、3.24.(9分)已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.25.(9分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?【分析】(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.根据用124元恰好可以买到3个书包和2本词典,列方程求解;(2)设购买书包y个,则购买词典(40﹣y)本.根据不等关系“余下不少于100元且不超过120元”列不等式组求解.【解答】解:(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.根据题意,得:3x+2(x﹣8)=124,解得:x=28.∴x﹣8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)设购买书包y个,则购买词典(40﹣y)本.根据题意得:,解得:10≤y≤12.5.因为y取整数,所以y的值为10或11或12,所以有三种购买方案,分别是:①购买书包10个,词典30本;②购买书包11个,词典29本;③购买书包12个,词典28本.答:共有3种购买书包和词典的方案,分别是购买书包10个,词典30本,购买书包11个,词典29本,购买书包12个,词典28本.26.(9分)据统计某外贸公司2007年、2008年的进出口贸易总额分别为3300万元和3760万元,其中2008年的进口和出口贸易额分别比2007年增长20%和10%.(1)试确定2007年该公司的进口和出口贸易额分别是多少万元;(2)2009年该公司的目标是:进出口贸易总额不低于4200万元,其中出口贸易额所占比重不低于60%,预计2009年的进口贸易额比2008年增长10%,则为完成上述目标,2009年的出口贸易额比2008年至少应增加多少万元?【分析】(1)可以设2007年进口贸易额为x万元,出口贸易额为y万元,据进出口贸易总额为3300万元,且参照08年增长比例可得到关于08年进出口贸易总额为3760万的两个关于x、y的方程,求方程组的解即可.(2)由第(1)问可知08年的进口贸易额为1300×1.2=1560万元,出口贸易额为2000×1.1=2200万元.设2009年的出口贸易额比2008年至少增加z万元,根据进出口贸易总额不低于4200万元,其中出口贸易额所占比重不低于60%可得到两个关于z的不等式,求不等式组的解集即可.【解答】解:设2007年进口贸易额为x万元,出口贸易额为y万元,则:,解得:.答:2007年进口贸易额为1300万元,出口贸易额为2000万元.(2)设2009年的出口贸易额比2008年增加Z万元,由2008年的进口贸易额是:1300(1+20%)=1560万元,2008年的出口贸易额是:2000(1+10%)=2200万元,则:,解得:,所以z≥374,即2009年的出口贸易额比2008年至少增加374万元.(10分)27.(10分)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地22 20 20运往D地(元/立方米)20 22 21运往E地(元/立方米)在(2)的条件下,请说明哪种方案的总费用最少?【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,∴2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+30×20+22×10+39×20+11×21=2873(元),第二种方案共需费用:22×22+28×20+30×20+22×10+38×20+12×21=2876(元),所以,第一种方案的总费用最少.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0) 依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少? 分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x ∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11 答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
(分配问题)1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
设:一共有X个小朋友,则玩具总数=3X+4件。
第二次分的时候,前面X-1个小朋友每人得到4件,则一共有4(X-1)=4X-4件。
余下的不足3件,也就是0<(3X+4)-(4X-4)<3化简得0<-X+8<3,8>X>5因为小朋友的人数为整数,所以X的取值有2个,分别是6人和7人。
当6个小朋友时,玩具总数22件,前5个每人分4件,最后1人得2件;当7个小朋友时,玩具总数25件,前6个每人分4件,最后1人得1件。
2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?设:预定每组x人。
由已知得:8x+8>100解得:x>11.5根据实际情况,解得预定每组分配战士的人数至少12人。
3、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?解:设有x只猴子和y颗花生,则:y-3x=8,①5x-y<5,②由①得:y=8+3x,③③代入②得5x-(8+3x)<5,∴x<6.5因为y与x都是正整数,所以x可能为6,5,4,3,2,1,相应地求出y的值为26,23,20,17,14,11.经检验知,只有x=5,y=23和x=6,y=26这两组解符合题意.答:有五只猴子,23颗花生,或者有六只猴子,26颗花生.4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?设有X名学生,那么有(3X+8)本书,于是有0≤(3x+8)-5(x-1)<30≤-2x+13<3-13≤-2x<-105<x≤6.5因为x整数,所以X=6。
即有6名学生,有26本书。
5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
设宿舍有x间∵如果每间数宿舍住4人,则有20人没有宿舍住∴学生人数为4x+20∵如果每间住8人,则有一间宿舍住不满∴0<8x-(4x+20)<8, x为整数∴0<4x-20<8∴20<4x<28∴5<x<7∴x=6 即宿舍有6间,学生人数有4x+20=44人6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?设有x个笼子4x+1<40 得x<=95(x-2)+3>4x+1得x>8所以x=97、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?设有X辆汽车4X+20=8(X-1)4X+20=8X-84X=28X=7有7辆汽车8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?不空也不满表示最后一间房有1~5人。
6(x-1)<4x+19<6x9.5<x<12.5 x=10或11或1210间宿舍,59人11间宿舍,63人12间宿舍,67人3组解(积分问题)1、某次数学测验共20道题(满分100分)。
评分办法是:答对1道给5分,答错1道扣2分,不答不给分。
某学生有1道未答。
那么他至少答对几道题才能及格?因为总共有20道题,一道未答,则总共答了19道题。
设答对X道,则答错(19-X)道题。
根据题意得:5X-2(19-X)>=607X>=98X>=14所以,至少答对14题就及格了。
2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目?解:设至少需要做对x道题(x为自然数)。
4x -2×(25-x)≥604x-50+2x≥606x≥110X≥19答:至少需要做对19道题。