2020-2021学年高二数学下学期第二次月考试题

合集下载

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二数学(理)下学期第二次月考试题(含答案)

高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。

山东省菏泽市高二数学下学期第二次月考试卷文(探究部,含解析)

山东省菏泽市高二数学下学期第二次月考试卷文(探究部,含解析)

山东省菏泽市高二数学下学期第二次月考试卷文(探究部,含解析)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数Z=+i2015对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限2.某市电子认证审查流程图如图:则有几处审查可能不被通过的环节()A.1 B.2 C.3 D.03.李江同学在某商场运动品专柜买一件运动服,获100元的代金券一张,此代金券可以用于购买指定的价格分别为18元、30元、39元的3款运动袜,规定代金券必须一次性用完,且剩余额不能兑换成现金.李江同学不想再添现金,使代金券的利用率超过95%,不同的选择方式的种数是()A.3 B.4 C.5 D.64.不等式ax>b,(b≠0)的解集不可能是()A.∅B.R C.D.5.已知,则()A.p是q的充分而不必要条件B.p是q的必要而不充分条件C.p是q的充要条件D.p是q的既不充分也不必要条件6.根据以下样本数据x 1 2 3 4 y ﹣4 ﹣3.2 ﹣2.1 ﹣1 得到回归方程=bx+a,则下述说法正确的是()A.y与x负相关B.回归直线必经过点(2.5,﹣3)C.a<0,b<0 D.a<0,b>07.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.8 B.18 C.26 D.808.已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i9.复数z1=3+4i,z2=1+i,i为虚数单位,若z22=z•z1,则复数z=()A.﹣ +i B.﹣﹣i C. +i D.﹣i10.定义A﹡B,B﹡C,C﹡D,D﹡A的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(5)、(6)所对应的运算结果可能是()A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D11.如果关于x的方程x2+(k+2i)x+3+ki=0有实根,则()A.k≥4或k≤﹣4 B.或C.D.12.在技术工程中,常用到双曲正弦函数和双曲余弦函数,其实双曲正弦函数和双曲线余弦函数与我们学过的正弦和余弦函数相似,比如关于正、余弦函数有cos(x+y)=cosxcosy﹣sinxsiny成立,而关于双曲正、余弦函数满足ch(x+y)=chxchy ﹣shxshy,请你类比关系式,得出关于双曲正弦、双曲余弦函数的关系中不正确的是()A.sh(x+y)=shxchy+chxshy B.sh2x=2shxchxC.ch2x=2sh2x﹣1 D.ch2x+sh2x=1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.观察下列图案,则第n个图案中有白色地面砖块.14.观察等式: =, =1,=照此规律,对于一般的角α,β,有等式.15.已知虚数z满足等式:,则z= .16.设Z1=i4+i5+i6+…+i12,Z2=i4•i5•i6•…•i12,则Z1,Z2关系为.三、解答题:本大题共4小题,满分48分,解答应写出文字说明、证明过程或演算步骤17.已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a•i)2在复平面内对应的点在第一象限,则实数a的取值范围为.18.已知a>0,求证:﹣≥a+.19.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调査,如表是在某单位得到的数据(人数):赞同反对合计男10 20 30女20 5 25合计30 25 55(Ⅰ)判断是否有99.5%以上的把握认为赞同“男女同龄退休”与性别有关?(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.下面的临界值表供参考:P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001k 2.760 3.841 5.024 60635 7.879 10.828 (参考公式:K2=,其中n=a+b+c+d)20.对任意函数f(x),x∈D,可按如图所示,构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0);②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈输入端,再输出x2=f(x1),并以此规律进行下去,现定义.(1)若输入,则由数列发生器产生数列{x n},写出数列{x n}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.(选做,二选一)[选修4-4:坐标系与参数方程]21.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]22.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.23.已知是定义[﹣1,1]在上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有.(1)证明:f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若f(x)≤t2﹣2at+1对任意x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.2016-2017学年山东省菏泽市鄄城一中探究部高二(下)第二次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数Z=+i2015对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的出错运算法则,以及复数单位的幂运算,化简复数,推出对应点的坐标即可.【解答】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.2.某市电子认证审查流程图如图:则有几处审查可能不被通过的环节()A.1 B.2 C.3 D.0【考点】EI:流程图的作用.【分析】先运行循环体,看运行后运行的可能不被通过审查的环节就看判断框,从而得到不被通过审查的环节有多少处.【解答】解:从某市电子认证审查流程图看出,判断框有2个,可得在审查过程中可能不被通过审查的环节有2处,故选B3.李江同学在某商场运动品专柜买一件运动服,获100元的代金券一张,此代金券可以用于购买指定的价格分别为18元、30元、39元的3款运动袜,规定代金券必须一次性用完,且剩余额不能兑换成现金.李江同学不想再添现金,使代金券的利用率超过95%,不同的选择方式的种数是()A.3 B.4 C.5 D.6【考点】F4:进行简单的合情推理.【分析】设3款运动袜分别为x,y,z个,则18x+30y+39z>95,可得x=0,y=2,z=1或x=1,y=0,z=2或x=2,y=2,z=0,即可得出结论.【解答】解:设3款运动袜分别为x,y,z个,则18x+30y+39z>95,x=0,y=2,z=1或x=1,y=0,z=2或x=2,y=2,z=0,故不同的选择方式的种数是3种,故选:A.4.不等式ax>b,(b≠0)的解集不可能是()A.∅B.R C.D.【考点】3U:一次函数的性质与图象.【分析】当a=0,b>0时,不等式ax>b,(b≠0)的解集是∅;当a=0,b<0时,不等式ax >b,(b≠0)的解集是R;当a>0时,不等式ax>b,(b≠0)的解集是();当a <0时,不等式ax>b,(b≠0)的解集是(﹣∞,).【解答】解:当a=0,b>0时,不等式ax>b,(b≠0)的解集是∅;当a=0,b<0时,不等式ax>b,(b≠0)的解集是R;当a>0时,不等式ax>b,(b≠0)的解集是();当a<0时,不等式ax>b,(b≠0)的解集是(﹣∞,).∴不等式ax>b,(b≠0)的解集不可能是(﹣∞,﹣).故选D.5.已知,则()A.p是q的充分而不必要条件B.p是q的必要而不充分条件C.p是q的充要条件D.p是q的既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】ab>0⇔≥2=2,即可判断出结论.【解答】解:ab>0⇔≥2=2,∴p是q的充要条件.故选:C.6.根据以下样本数据x 1 2 3 4y ﹣4 ﹣3.2 ﹣2.1 ﹣1得到回归方程=bx+a,则下述说法正确的是()A.y与x负相关B.回归直线必经过点(2.5,﹣3)C.a<0,b<0 D.a<0,b>0【考点】BK:线性回归方程.【分析】根据相关关系的定义及线性回归的性质,逐一分析四个答案的正误,可得结论.【解答】解:由已知中的数据,x增大时,y也呈现增大趋势,故y与x正相关,故A错误;由=2.5, =﹣2.575,可得回归直线必经过点(2.5,﹣2.575),故B错误;由A中分析可知b>0,故C错误,D正确,故选:D7.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.8 B.18 C.26 D.80【考点】EF:程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=2,n=2,不满足退出循环的条件;第二次执行循环体后,S=8,n=3,不满足退出循环的条件;第三次执行循环体后,S=26,n=4,满足退出循环的条件;故输出S值为26,故选:C8.已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i【考点】A5:复数代数形式的乘除运算.【分析】代入复数,利用复数的代数形式的乘除运算,求解即可.【解答】解:∵复数z1=1﹣i,z2=1+i,则====﹣2i.故选:B.9.复数z1=3+4i,z2=1+i,i为虚数单位,若z22=z•z1,则复数z=()A.﹣ +i B.﹣﹣i C. +i D.﹣i【考点】A7:复数代数形式的混合运算.【分析】设复数z=a+bi(a、b∈R),代入z22=z•z1,利用两个复数相等的充要条件解出a、b的值,从而求出复数z.【解答】解:设复数z=a+bi(a b∈R),∵z22 =z•z1,∴2i=(a+bi)(3+4i),∴2i=3a﹣4b+(3b+4a)i,∴3a﹣4b=0,3b+4a=2,∴a=,b=,故复数z=+i,故选 C.10.定义A﹡B,B﹡C,C﹡D,D﹡A的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(5)、(6)所对应的运算结果可能是()A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D【考点】F1:归纳推理.【分析】本题考查的是归纳推理的应用,方法是根据已知图象与运算的关系,进行必要的分析归纳,找出规律,猜想未知的图象与运算的关系.【解答】解:通过观察可知:A表示“|”,B表示“□”,C表示“﹣”,D表示“○”,图中的(5)、(6)所对应的运算结果可能是B*D,A*C故答案选B.11.如果关于x的方程x2+(k+2i)x+3+ki=0有实根,则()A.k≥4或k≤﹣4 B.或C.D.【考点】A7:复数代数形式的混合运算.【分析】关于x的方程x2+(k+2i)x+3+ki=0有实根,考虑到k是实数,用复数相等的条件可解本题.【解答】解:∵方程x2+(k+2i)x+3+ki=0有实根,不妨令x为实数,∴,消去x得,∴k=±2.故选:C.12.在技术工程中,常用到双曲正弦函数和双曲余弦函数,其实双曲正弦函数和双曲线余弦函数与我们学过的正弦和余弦函数相似,比如关于正、余弦函数有cos(x+y)=cosxcosy﹣sinxsiny成立,而关于双曲正、余弦函数满足ch(x+y)=chxchy ﹣shxshy,请你类比关系式,得出关于双曲正弦、双曲余弦函数的关系中不正确的是()A.sh(x+y)=shxchy+chxshy B.sh2x=2shxchxC.ch2x=2sh2x﹣1 D.ch2x+sh2x=1【考点】F3:类比推理.【分析】由余弦的二倍角公式可知,ch2x=1﹣2sh2x,可得结论.【解答】解:类比关系式,得sh(x+y)=shxchy+chxshy,sh2x=2shxchx,ch2x+sh2x=1正确.由余弦的二倍角公式可知,ch2x=1﹣2sh2x,即C不正确;故选C.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.观察下列图案,则第n个图案中有白色地面砖4n+2 块.【考点】F1:归纳推理.【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【解答】解:第1个图案中有白色地面砖6块;第2个图案中有白色地面砖10块;第3个图案中有白色地面砖14块;…设第n个图案中有白色地面砖n块,用数列{a n}表示,则a1=6,a2=10,a3=14,可知a2﹣a1=a3﹣a2=4,…可知数列{a n}是以6为首项,4为公差的等差数列,∴a n=6+4(n﹣1)=4n+2.故答案为4n+2.14.观察等式: =, =1,=照此规律,对于一般的角α,β,有等式=tan.【考点】F1:归纳推理.【分析】由已知可得:等式左边的分式是两个角的正弦和,分母是两个角的余弦和,等式右边是两个角和的半角的正切值.【解答】解:∵ ==tan60°=tan()=1=tan45°=tan(),==tan30°=tan(),…∴对于一般的角α,β,有等式=tan,故答案为: =tan.15.已知虚数z满足等式:,则z= 1+2i .【考点】A3:复数相等的充要条件.【分析】设复数 z=a+bi (a、b∈R),根据两个复数相等的充要条件,待定系数法求出a、b的值,从而求出z.【解答】解:∵虚数z满足等式:,∴设复数 z=a+bi (a、b∈R),由题意得(2a+2bi)﹣(a﹣bi)=1+6i,a+3bi=1+6i,∴a=1,3b=6,∴a=1,b=2,∴z=1+2i,故答案为:1+2i.16.设Z1=i4+i5+i6+…+i12,Z2=i4•i5•i6•…•i12,则Z1,Z2关系为Z1=Z2.【考点】A1:虚数单位i及其性质.【分析】由虚数单位的性质分别计算可得结论.【解答】解:Z1=i4+i5+i6+…+i12=1+i﹣1﹣i+…+1=1,Z2=i4•i5•i6•…•i12=1×i×(﹣1)×(﹣i)…×1=(﹣1)2×1=1∴Z1=Z2,故答案为:Z1=Z2三、解答题:本大题共4小题,满分48分,解答应写出文字说明、证明过程或演算步骤17.已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a•i)2在复平面内对应的点在第一象限,则实数a的取值范围为{a|2<a<6} .【考点】A5:复数代数形式的乘除运算.【分析】设z=m+ni,由Z+2i=m+ni+2i是实数,求得n=﹣2, =为实数,求得m=4,故z=4﹣2i.所以(z+ai)2=(12﹣a2+4a)+(8a﹣16)i,再由复数(z+ai)2在复平面对应的点在第一象限,能求出实数a的取值范围.【解答】解:(1)设z=m+ni∵Z+2i=m+ni+2i是实数,∴n=﹣2, =为实数,∴m=4,∴z=4﹣2i,∴(z+ai)2=(4﹣2i+ai)2=16+8(a﹣2)i+(a﹣2)2i2=(12﹣a2+4a)+(8a﹣16)i,∵复数(z+ai)2在复平面对应的点在第一象限,∴,解得:2<a<6,∴实数a的取值范围是{a|2<a<6},故答案为:{a|2<a<6}.18.已知a>0,求证:﹣≥a+.【考点】R6:不等式的证明.【分析】根据分析法的证明步骤,即可证明结论.【解答】证明:要证﹣≥a+,只要证明+2≥a++.∵a>0,∴只要证明(+2)2≥(a++)2,只要证明2≥(a+),只要证明≥2,显然成立,∴﹣≥a+.19.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调査,如表是在某单位得到的数据(人数):赞同反对合计男10 20 30女20 5 25合计30 25 55(Ⅰ)判断是否有99.5%以上的把握认为赞同“男女同龄退休”与性别有关?(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.下面的临界值表供参考:P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001k 2.760 3.841 5.024 60635 7.879 10.828 (参考公式:K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(I)由题设知K2=≈11.978>7.879,由此得到结果;(Ⅱ)所抽样本中男士有=2,女士有4人,基本事件总数为=15个,满足恰有1名男士和1名女士的基本事件有2×4=8个,由此能求出事件“恰有1名男士和1名女士”的概率.【解答】解:(Ⅰ)K2=≈11.978>7.879,所以有99.5%以上的把握认为赞同“男女同龄退休”与性别有关;(Ⅱ)所抽样本中男士有=2,女士有4人,基本事件总数为=15个,满足恰有1名男士和1名女士的基本事件有2×4=8个,所以恰有1名男士和1名女士的概率为.20.对任意函数f(x),x∈D,可按如图所示,构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0);②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈输入端,再输出x2=f(x1),并以此规律进行下去,现定义.(1)若输入,则由数列发生器产生数列{x n},写出数列{x n}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.【考点】EF:程序框图.【分析】(1)利用f(x)=,x0=及工作原理,注意函数的定义域,直接可求得数列{x n}的只有三项;(2)要数列发生器产生一个无穷的常数列,则有f(x)==x,从而求出相应的初始数据x0的值;【解答】解:(1)∵函数f(x)的定义域D=(﹣∞,﹣1)∪(﹣1,+∞),∴数列{x n}只有3项,x x=,x2=,x3=﹣1.(2)令f(x)==x,即x2﹣3x+2=0,解得:x=2,或x=1,故当x0=2或x0=1时,x n+1==x n,所以,输入的初始数据x0=1时,得到常数列x n=1;x0=2时,得到常数列x n=2.(选做,二选一)[选修4-4:坐标系与参数方程]21.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.【考点】J1:圆的标准方程;J8:直线与圆相交的性质.【分析】(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.【解答】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴t=,代入y=tsinα,得:直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(﹣6,0),半径r=5,圆心到直线的距离d=.∴圆心C(﹣6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.[选修4-5:不等式选讲]22.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.【考点】R5:绝对值不等式的解法.【分析】(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,配方后,可证得结论.【解答】解:(I)当x<时,不等式f(x)<2可化为:﹣x﹣x﹣<2,解得:x>﹣1,∴﹣1<x<,当≤x≤时,不等式f(x)<2可化为:﹣x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:﹣ +x+x+<2,解得:x<1,∴<x<1,综上可得:M=(﹣1,1);证明:(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.23.已知是定义[﹣1,1]在上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有.(1)证明:f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若f(x)≤t2﹣2at+1对任意x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.【考点】3R:函数恒成立问题;3N:奇偶性与单调性的综合.【分析】(1)根据题意,设﹣1≤x1<x2≤1,则有f(x1)﹣f(x2)=f(x1)+f(﹣x2)=(x1﹣x2),结合题意分析可得f(x1)﹣f(x2)的符号,由函数单调性的定义分析可得答案;(2)根据题意,由函数的单调性以及定义域可得,解可得x的取值范围,即可得答案;(3)根据题意,由函数的单调性可得f(x)≤t2﹣2at+1对任意x∈[﹣1,1],则有t2﹣2at+1≥1恒成立,即t2﹣2at≥0恒成立,令g(a)=t2﹣2at,分析有g(a)=t2﹣2at≥0在[﹣1,1]上恒成立,由一次函数的性质可得,解可得t的取值范围,即可得答案.【解答】解:(1)证明:根据题意,设﹣1≤x1<x2≤1,f(x1)﹣f(x2)=f(x1)+f(﹣x2)=(x1﹣x2),又由﹣1≤x1<x2≤1,则x1﹣x2<0,且>0,故有f(x1)﹣f(x2)<0,则函数f(x)在[﹣1,1]上是增函数;(2)由(1)可得,f(x)在[﹣1,1]上是增函数,若;则有,解可得﹣≤x<﹣1,故不等式的解集为{x|﹣≤x<﹣1},(3)由(1)可得,f(x)在[﹣1,1]上是增函数,且f(1)=1,则有对于任意x∈[﹣1,1],有f(x)≤f(1)=1,若f(x)≤t2﹣2at+1对任意x∈[﹣1,1],则有t2﹣2at+1≥1恒成立,即t2﹣2at≥0恒成立,其中a∈[﹣1,1],令g(a)=t2﹣2at,a∈[﹣1,1],若g(a)=t2﹣2at≥0在[﹣1,1]上恒成立,则有,即,解可得t≥2或t≤﹣2或t=0,故t的取值范围是t≥2或t≤﹣2或t=0.。

2020-2021学年高二数学12月月考试题 (II)

2020-2021学年高二数学12月月考试题 (II)

S ←9i ←1While S ≥0 S ←S -ii ←i +1End While Print i(第4题)2020-2021学年高二数学12月月考试题 (II)一、填空题(每小题5分共70分)1.命题“,x R ∀∈20x >”的否定是 ▲ . 2.若点(1,1)到直线cos sin 2x y αα+=的距离为d ,则d 的最大值是 ▲ .3. 右图是xx 年“隆力奇”杯第13届CCTV 青年歌手电视大奖赛上,某一位选手的部分得分的 茎叶统计图,则该选手的所有得分数据的中位数与众数之和为 ▲ .4.右图是一个算法的伪代码,则输出的i 的值为 ▲ . 5.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按 000,001,…,799进行编号,如果从随机数表第8行第18列的数开始向右读,请你依次写出最先检测的3袋牛奶的编号 ▲ . (下面摘取了一随机数表的第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 1206 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 6258 7973 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 0279 54 6.函数21()2ln 2f x x x x =-+的极值点是____▲_______. 7.在平面直角坐标系xOy 中,若抛物线)0(22>=p px y 上横坐标为1的点到焦点的距离 为4,则该抛物线的准线方程为 ▲ .8.已知样本7,8,9,x ,y 的平均数是8,标准差为2,则xy 的值是 ▲ __. 9. 已知条件a x p >:,条件021:>+-x xq . 若p 是q 的必要不充分条件,则实数a 的取值范 围是 ▲ .10.若函数()(1)(2)(3)(4)f x x x x x =----,则(2)=f ' ▲ .7 88 4 4 4 6 7 9 2 4 7 第3题图11.已知直线2y x =-与x 轴交于P 点,与双曲线C :2213y x -=交于A 、B 两点,则||||PA PB += ▲ .12.已知函数1()sin cos f x x x =+,函数1()n f x +是函数()n f x 的导函数,即'''*21321()=(),()=(),,()=(),n n f x f x f x f x f x f x n N +∈,则122019()()()=222f f f πππ+++▲ .13.设F 是椭圆C :221(0)x y m n m n+=>>的右焦点,C 的一个动点到F 的最大距离为d ,若C 的右准线上存在点P ,使得PF d =,则椭圆C 的离心率的取值范围是 ▲ . 14.若函数()xf x e =,g()ln x a x =的图像关于直线y x =对称. 则在区间),21(+∞上不等式2)()1(x x g x f <+-的解集为 ▲ .二、解答题(共90分)15.(14分)从扬州中学参加xx 全国高中数学联赛预赛的500名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.(1)根据表中已知数据,你认为在①、②、③处的数值分别为 ▲ , ▲ , ▲ .(2)补全在区间 [70,140] 上的频率分布直方图; (3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?分组频数频率 [70,80) 0.08 [80,90) 0.10 [90,100)③ [100,110) 16①[110,120)0.08 [120,130) ② 0.04[130,140]0.02 合计 50分数708090100110120130140组距频率040.0036.0032.0028.0024.0020.0016.0012.0008.0004.016. (14分)已知0,1c c >≠且,设p :函数xy c =在R 上单调递减;q :函数2()21f x x cx =-+在1(,)2+∞上为增函数.(1)若p 为真,q ⌝为假,求实数c 的取值范围;(2)若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.17.(14分)先后2次抛掷一枚骰子,将得到的点数分别记为a,b .(1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.18. (16分)某小区为解决居民停车难的问题,经业主委员会协调,现决定将某闲置区域改建为停车场. 如图,已知该闲置区域是一边靠道路且边界近似于抛物线)11(12≤≤--=x x y 的区域,现规划改建为一个三角形形状的停车场,要求三角形的一边为原有道路,另外两条边均与抛物线相切.(1)设AC AB ,分别与抛物线相切于点),(),,(2211y x Q y x P ,试用Q P ,的横坐标表示停车场的面积;(2)请问如何设计,既能充分利用该闲置区域,又对周边绿化影响最小?19.(16分)如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,右准线:2l x =,设O 为坐标原点,若不与坐标轴垂直的直线与椭圆E 交于不同两点,P Q (均异于点A ),直线AP 交l 于M (点M 在x 轴下方). (1)求椭圆E 的标准方程;(2)过右焦点F 作OM 的垂线与以OM 为直径的圆H 交于,C D 两点,若6CD =,求圆H 的方程;(3)若直线AP 与AQ 的斜率之和为2,证明:直线PQ 过定点,并求出该定点.20.(16分)已知函数32()(63)x f x x x x t e =-++,t R ∈. (1)若函数()y f x =有三个极值点,求t 的取值范围;(2)若()f x 依次在,,()x a x b x c a b c ===<<处取到极值,且22a c b +=,求()f x ;(3)若存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式()f x x ≤恒成立,试求正整数m 的 最大值.MlxyFOAPQ(第19题图)高二数学参考答案1.,x R ∃∈使得20x ≤ 2.2+ 2 3. 170 4. 5 5. 719,050,717 6. 1 7.3x =- 8. 60 9. 2a ≤- 10. 2 11.62 12.-1 13. 1,12⎡⎫⎪⎢⎣⎭14.()1,+∞15. 解:(1)0.32;2;0.36 (2)如图.(3)在随机抽取的50名同学中有7名 出线,75007050⨯=. 答:在参加的500名中大概有70名同学出线. 16.解:函数xy c =在R 上单调递减,01c ∴<<即:01p c <<2分函数2()21f x x cx =-+在1(,)2+∞上为增函数,12c ∴≤即21:≤c q 4分(1)p 为真,q ⌝为假由0110122c c c <<⎧⎪⇒<≤⎨≤⎪⎩ 所以实数c 的取值范围是1{|0}2c c <≤ (2)又“p 或q ”为假,“p 且q ”为真,∴p 真q 假或p 假q 真所以由112c c >⎧⎪⎨≤⎪⎩或0112c c <<⎧⎪⎨>⎪⎩解得112c <<, 所以实数c 的取值范围是1{|1}2c c <<17.解:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax +by +c =0与圆x 2+y 2=1相切的充要条件是2251a b =+即:a 2+b 2=25,由于a,b ∈{1,2,3,4,5,6}∴满足条件的情况只有a =3,b =4,c =5;或a =4,b =3,c =5两种情况.∴直线ax +by +c =0与圆x 2+y 2=1相切的概率是213618= (2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5 ∴当a =1时,b =5,(1,5,5) 1种 当a =2时,b =5,(2,5,5) 1种 当a =3时,b =3,5,(3,3,5),(3,5,5) 2种当a =4时,b =4,5,(4,4,5),(4,5,5) 2种 当a =5时,b =1,2,3,4,5,6, (5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5) 6种当a =6时,b =5,6,(6,5,5),(6,6,5) 2种 故满足条件的不同情况共有14种 答:三条线段能围成不同的等腰三角形的概率为1873614=.18解(1)因AC AB ,为分别与抛物线)11(12≤≤--=x x y 相切于),(),,(2211y x Q y x P不妨设11x ≤-<0<12≤x则直线AB :12121++-=x x x y 直线AC :12222++-=x x x y可得)0,21(),0,21(),1,2(2221122121x x C x x B x x x x A ++-+所以停车场的面积ABC S ∆=22221121212211211(1)()11()(1)2224x x x x x x x x x x x x ++--=--=其中[)(]1,0,0,121∈-∈x x(2)ABC S ∆=[][]21221122122121)(1)(41)1)((41x x x x x x x x x x x x --+-+⋅=--⋅ []21221)(121x x x x --+⋅≥,当且仅当021=+x x 时等号成立 令t x x =-21,则tt t t t t f 12)1()(322++=+=(01t <≤), 22123)(t t t f -+=',令33,0)(=='t t f 得当0<t <33时,)(t f '<0,)(t f 单调递减; 当1>t >33时,)(t f '>0,)(t f 单调递增 所以938),9316)33()(min mi ===∆ABC n S f t f 故(,所以当AC AB ,分别与闲置区的抛物线的边界相切于点)3233(),3233(,,Q P -时,既能充分利用该闲置区域,又对周边绿化影响最小19.解(1)由222212b aca b c =⎧⎪⎪=⎨⎪⎪=+⎩,解得2,1a b ==.所以椭圆E 的标准方程为2212x y +=.(2)设(2,)M m ,由CD OM ⊥得12CD OMk k m=-=-, 则CD 方程为2(1)y x m=--,即220x my +-=. 因为圆心(1,)2m H ,则圆心H 到直线CD 的距离为2222|22|2424m m d m m+-==++. 圆半径为2422OM m r +==,且622CD =,由222()2CD d r +=,代入得2m =±. 因为点M 在x 轴下方,所以2m =-,此时圆H 方程为22(1)(1)2x y -++=. (3)设PQ 方程为:(1)y kx b b =+≠-,(0,1)A -,令1122(,),(,)P x y Q x y , 由直线AP 与AQ 的斜率之和为2得1212112y y x x +++=, 由1122,y kx b y kx b =+=+得1212(1)()22b x x k x x +++=,①联立方程2212y kx b x y =+⎧⎪⎨+=⎪⎩,得222(12)4220k x kbx b +++-=, 所以122412kbx x k -+=+,21222212b x x k -=+代入①得,(1)(1)0b b k ++-=,由1b ≠-得10b k +-=,即1b k =-,所以PQ 方程为1(1)1y kx k k x =+-=-+,所以直线PQ 过定点,定点为(1,1). 20解(1)①23232()(3123)(63)(393)x x f x x x e x x x t x x x t e '=-++-++=--++∵()f x 有3个极值点,∴323930x x x t --++=有3个不同的根,令32()393g x x x x t =--++,则2()3693(1)(3)g x x x x x '=--=+-, 从而函数()g x 在(,1)-∞-,(3,)+∞上递增,在(1,3)-上递减. ∵()g x 有3个零点,∴(1)0(3)0g g ->⎧⎨<⎩,∴824t -<<.(2),,a b c 是()f x 的三个极值点∴3232393()()()()()x x x t x a x b x c x a b c x ab bc ac x abc --++=---=-+++++-----6分∴23932a b c ab ac bc t abc a c b ++=⎧⎪++=-⎪⎨+=-⎪⎪+=⎩,∴1b =或32-(舍∵(1,3)b ∈-)∴12311238a b c t ⎧=-⎪=⎪⎨=+⎪⎪=⎩,所以,32()(638)x f x x x x e =-++.(3)不等式()f x x ≤,等价于32(63)x x x x t e x -++≤,即3263x t xe x x x -≤-+-. 转化为存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式3263x t xe x x x -≤-+-恒成立. 即不等式32063x xe x x x -≤-+-在[1,]x m ∈上恒成立. 即不等式2063x e x x -≤-+-在[1,]x m ∈上恒成立. 设2()63x x e x x ϕ-=-+-,则()26x x e x ϕ-'=--+. 设()()26x r x x e x ϕ-'==--+,则()2x r x e -'=-.因为1x m ≤≤,有()0r x '<. 所以()r x 在区间[1,]m 上是减函数. 又1(1)40r e -=->,2(2)20r e -=->,()3330r -=-<, 故存在()02,3x ∈,使得00()()0r x x ϕ'==.当01x x ≤<时,有()0x ϕ'>,当0x x >时,有()0x ϕ'<. 从而()y x ϕ=在区间0[1,]x 上递增,在区间0[,)x +∞上递减. 又1(1)40e ϕ-=+>,2(2)50e ϕ-=+>,3(3)60e ϕ-=+>,4(4)50e ϕ-=+>,5(5)20e ϕ-=+>,6(6)30e ϕ-=-<.所以,当15x ≤≤时,恒有()0x ϕ>;当6x ≥时,恒有()0x ϕ<.故使命题成立的正整数m的最大值为5.【感谢您的阅览,下载后可自由编辑和修改,关注我每天更新】。

2020-2021 学年度第二学期四月月考 高二数学(理)测试题

2020-2021 学年度第二学期四月月考 高二数学(理)测试题

即Sk + ak+1 = 1 − (k + 1)ak+1.
又Sk
=
1

kak
=
k,
k+1
所以 k
k+1
+
ak+1
=
1

(k
+
1)ak+1,
从而ak+1
=
1 (k+1)(k+2)
=
1

(k+1)[(k+1)+1]
即 n = k + 1 时,猜想也成立.
故由①和②可知猜想成立. 【解析】本题考查数列的递推公式的应用,数列的和与数列的通项公式之间的关系,归纳推理及运
于 2 的偶数可以表示为两个素数的和”,如 = + .在不超过 30 的素数中,随机选取两个不
同的数,其和等于 30 的概率是__________________. 16、( − − ) 的展开式中, 的系数为_________________. (用数字填写答案)
三、解答题(本大题共 6 小题,第 17 题 10 分,其余题 12 分,共 70 分) 17、(10 分)已知 5 名同学站一排,要求甲站中间,乙不站两端,记满足条件的所有不同的排法种
k(k+1)
n
=
k
+
1
时,由题意Sk
+
ak+1
=
1

(k
+
1)ak+1,结合Sk
=
1

kak
=
k ,则 k
k+1
k+1

河北省保定市定兴中学2022高二数学下学期第二次月考(4月线上测试)试题

河北省保定市定兴中学2022高二数学下学期第二次月考(4月线上测试)试题

河北省保定市定兴中学2022高二数学下学期第二次月考(4月线上测试)试题卷I(选择题共 60分)一、选择题(共12小题,每小题5分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π43.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11165.(1+2x2 )(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.246.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数 C.方差D.极差7.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.88.在某项测试中,测量结果ξ服从正态分布2(1,)(0)Nσσ>,若(01)0.4Pξ<<=,则(02)Pξ<<= A.0.4B.0.8 C.0.6D.0.29.同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X,则X的数学期望是A.1B.2 C.32D.5210.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x,方差为2s,则A.270,75x s=<B.270,75x s=>C.270,75x s><D.270,75x s><11.已知51(1)(2)axx x+-的展开式中各项系数的和为2,则该展开式中常数项为A.80-B.40-C.40D.8012.已知曲线e lnxy a x x=+在点(1,ae)处的切线方程为y=2x+b,则A.e1a b==-,B.a=e,b=1C .1e 1a b -==,D .1e a -=,1b =-卷II (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡对应题号后的横线上)13.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再取到不合格品的概率为________.14.从1,3,5,7,9中任取2个数字,从0,2,4,任取2个数字,一共可以组成______个没有重复数字的四位数.(用数字作答)15.从一批含有13件正品、2件次品的产品中不放回地抽取3次,每次抽取1件,设抽取的次品数为ξ,则E(5ξ+1)= .16.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互,则甲队以4∶1获胜的概率是________.(用小数作答.....) 三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.18.(12分)有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x ,然后放回,再抽取一张,其上数字记作y ,令X =x ·y. 求:(1)X 所取各值的概率; (2)随机变量X 的均值与方差.19.(12分)设2*012(1),4,n n n x a a x a x a x n n +=++++≥∈N .已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.20.(12 分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X=2);(2)求事件“X=4且甲获胜”的概率.21.(12分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.22.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互. (1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求)(X E ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?高二线上测试数学参考答案一、选择题(共12小题,每小题5分,计60分。

宁夏银川市高二下学期第二次月考数学试卷 有答案

宁夏银川市高二下学期第二次月考数学试卷 有答案

宁夏银川市唐徕回民高二下学期第二次月考数学试卷命题人:高二数学备课组 (满分:150分,时间:120分钟)一、选择题(共60分)1.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误2.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是( ) A .0 B .3 C .-2 D .3-2t3.函数y =x 4-2x 2+5的单调减区间为( )A .(-∞,-1)及(0,1)B .(-1,0)及(1,+∞)C .(-1,1)D .(-∞,-1)及(1,+∞) 4. 执行如图所示的程序框图,则输出的S 值为( )A .3B .6C .7D .10 5.设复数z 1=2-i ,z 2=1-3i ,则复数iz 1+z 25的虚部等于( )A .1B .-1 C. 12 D .-126.定义A *B ,B *C ,C *D ,D *A 的运算分别对应下面图中的(1),(2),(3),(4),则图中,a ,b 对应的运算是( )A .B *D ,A *D B .B *D ,A *C C .B *C ,A *DD .C *D ,A *D7. 某公司要在某一规划区域内筹建工厂,拆迁与工程设计可同时进 行,如果工程设计分为土建设计与设备采购两个部分,两者可同时 进行;拆迁和土建设计进行完才能进行厂房建设,厂房建设和设备 采购进行完才能进行设备安装调试,最后才能进行试生产.上述过 程的工序流程图如图.则设备采购,厂房建设,土建设计,设备安装与图中①②③④处正确的对应次序应为( ) A .①②③④ B .①④②③ C .②③①④D .①③②④8.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )9.已知函数f (x )=ax 3-x 2+x -5在(-∞,+∞)上既有极大值,也有极小值,则实数a 的取 值范围为( )A .a >13B .a ≥13C .a <13且a ≠0D .a ≤13且a ≠010.如果圆柱的轴截面周长为定值4,则圆柱体积的最大值为( )A. 827πB. 1627πC. 89πD. 169π 11.函数f (x )=ln x -x 2的极值情况为( )A .无极值B .有极小值,无极大值C .有极大值,无极小值D .不确定12.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若某城市居民人均消费水平 为7.675(千元),估计该城市人均消费额占人均收入的百分比约为( ) A .83% B .72% C .67%D .66%二、填空题(共20分)13. 在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________. 14. 若4321,,,a a a a ∈R +,有以下不等式成立:21212a a a a ≥+, 33213213a a a a a a ≥++, 4432143214a a a a a a a a ≥+++.由此推测成立的不等式是_____.(要注明成立的条件)15. 在同一直角坐标系下,曲线369422=+y x 变为曲线122=+y x 的伸缩变换是_______.16.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知复数1z 满足i i z -=+-1)1)(2(1(i 为虚数单位),复数2z 的虚部为2,且21z z是实数,求2z .18.(12分)已知x ∈R ,22,12+=-=x b x a ,求证b a ,中至少有一个不小于0.19.(12分) (1)求直线θθρsin cos 1b a +=与圆()0cos 2>=c c θρ相切的条件;(2)求曲线0=θ,()03≥=ρπθ和4=ρ所围成图形的面积.20.(12分)在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格 进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如下表所示:通过分析,发现销售量(1)求销售量y 对商品的价格x 的回归直线方程; (2)欲使销售量为12,则价格应定为多少。

实验中学高二数学下学期第二次月考试题理含解析

实验中学高二数学下学期第二次月考试题理含解析
10. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A. 144B。120C. 72D. 24
【答案】D
【解析】
试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有 种
考点:排列、组合及简单计数问题
11。若随机变量 ,则 最大时, 的值为( )
A. 1或2B. 2或3C. 3或4D。 5
【答案】D
【解析】
【分析】
由 ,两边取对数得,化简得 ,构造函数 ,然后作图可求得答案。
【详解】由 ,两边取对数得, ,然后化简得 ,
设 ,然后可以画出 的图像,如图,
明显地,当 ,且 时,只有阴影部分内的取值能成立,此时, 和 的取值在阴影部分,即 ,从图像观察可得, 的最大值是 ,没有最小值,但是 ,综上, 的范围为
【点睛】本题考查了根据函数过点和公切线求参数,求公切线,意在考查学生的计算能力和转化能力。
20。“石头、剪刀、布"是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势 次记为 次游戏,“石头”胜“剪刀”,“剪刀"胜“布”,“布”胜“石头";双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的。
4。从集合{0,1,2,3,4,5,6}中任取两个互不相等的数 , 组成复数 ,其中虚数有( )
A。 30个B. 42个C. 36个D。 35个
【答案】C
【解析】
【详解】解:∵a,b互不相等且为虚数,
∴所有b只能从{1,2,3,4,5,6}中选一个有6种,
a从剩余的6个选一个有6种,
∴根据分步计数原理知虚数有6×6=36(个).

高二数学下学期第二次5月月考试题 文 试题

高二数学下学期第二次5月月考试题 文 试题

泉港一中2021-2021学年度高二下学期第二次月考单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明数学试题〔文科〕〔考试时间是是:120分钟 总分:150分〕第一卷〔选择题 一共60分〕一.选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 设}2|{->∈=x Q x A ,}2|{<∈=x R x B ,,那么以下结论中正确的选项是 ( )A .A ∈2B .)2,2(-=⋂B AC .R B A =⋃D .B A ⋂∈1 2. a R ∈,那么“1a〞是“11<a〞的 〔 〕 A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件 3.命题02,:>∈∀xR x P ,那么命题p ⌝是〔 〕A .02,00≤∈∃xR x B .02,≤∈∀xR x C .02,0<∈∃xR x D .02,<∈∀xR x 4.假设函数x y a log =的图像经过点〔3,2〕,那么函数1+=x a y 的图像必经过点( ) A.〔2,2〕 B.〔2,3〕 C. 〔3,3〕 D.〔2,4〕 5. 以下函数中,在(0)+∞,上单调递增又是偶函数的是 〔 〕A.3y x =B. y ln x =C.21y x=D.1-=x y 6. 以下命题中,假命题是 ( ) A .命题“面积相等的三角形全等〞的否命题B.,s i n x R x ∃∈C .假设xy=0,那么|x|+|y|=0〞的逆命题D .),,0(+∞∈∀x 23xx< 7.设0.3113211l o g2,l o g ,32a b c ⎛⎫=== ⎪⎝⎭,那么 ( )A 、a b c << B 、 b a c << C 、b c a << D 、a c b << 8. 方程4=+x e x的解所在的区间是 〔 〕 A .()1,0- B . ()0,1 C .()1,2 D .()2,39.函数y =|x|axx(a>1)的图像的大致形状是 ()10. 定义在R 上的函数⎩⎨⎧>---≤-=0)2()1(0)1(log )(2x x f x f x x x f ,那么)2018(f 的值是〔 〕 A .-11.假设函数()y f x =〔R x ∈〕满足()()1f x f x +=-,且[]1,1x ∈-时,()21f xx =-,函数()lg ,01,0x x g x x x>⎧⎪=⎨-<⎪⎩,那么函数()()()h x f x g x =-在区间[-4,5]内的零点的个数为 A .7 B .8 C .9 D .1012. 函数,log )31()(2xx x f -=实数c b a ,,满足)0(0)()()(c b a c f b f a f<<<<⋅⋅假设实数0x 为方程0)(=x f 的一个解,那么以下不等式中,不可能...成立的是 〔 〕 A .0x a < B . 0x b > C .0x c < D .0x c >第二卷〔非选择题 一共90分〕二.填空题:一共4小题,每一小题5分,一共20分,将答案写在答题纸的相应位置. 13二次函数4)(2++=mx x x f ,假设)1(+x f 是偶函数,那么实数m = . 14. 3log 1552245log 2log 2+++______.15.函数()()()()3141l o g 1a a x a x f x x x -+≤⎧⎪=⎨>⎪⎩是R 上的单调递减函数,那么a 的取值范围是________.16.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,假设对任意[],x a b ∈,都有 |()()|1f x g x -≤成立,那么称()f x 和()g x 在[],a b 上是“亲密函数〞,区间[],a b 称为“亲密区间〞.假设2()34f x x x =-+与()23g x x =-在[],a b 上是“亲密函数〞,那么其“亲密区间〞可以是_________.①[1.5,2] ②[2,2.5] ③[3,4] ④ [2,3]三.解答题:本大题有6小题,一共70分,解容许写出文字说明,证明过程或者演算步骤. 17.(本小题满分是10分)a >0,a ≠1,设p :函数2+=x a y 在(0,+∞)上单调递增,q :函数y =x 2+(2a -3)x +1的图像与x 轴交于不同的两点.假如p ∧q 真,务实数a 的取值范围.18.(本小题满分是12分)函数)1(log )(2-=x x f 的定义域为A ,函数)32(12)(≤≤-=x x x g 的值域为B.(I )求B A ⋂;(II )假设}12|{-≤≤=a x a x C ,且B C ⊆,务实数a 的取值范围.19.〔本小题满分是12分〕 幂函数)()(*322N m xx f m m ∈=--的图象关于y 轴对称,且在〔0,+∞〕上是减函数. 〔1〕求m 的值和函数f 〔x 〕的解析式 〔2〕解关于x 的不等式)21()2(x f x f -<+20.〔本小题满分是12分〕某公司对营销人员有如下规定(1)年销售额x 在8 万元以下,没有奖金,(2) 年销售额x (万元), ]64,8[∈x ,奖金y 万元, x y y a log ],6,3[=∈,且年销售额x 越大,奖金越多,(3) 年销售额超过64万元,按年销售额x 的10%发奖金. (1) 确定a 的值,并求奖金y 关于x 的函数解析式.(2) 某营销人员争取年奖金]10,4[∈y (万元),年销售额x 在什么范围内?21.〔本小题满分是12分〕函数 2()21(0)g x a x a x b a =-++>在区间[2,3]上有最大值4和最小值1。

2020-2021学年北京第二中学高二数学理月考试题含解析

2020-2021学年北京第二中学高二数学理月考试题含解析

2020-2021学年北京第二中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知平面,,直线,,且有,,则下列四个命题正确的个数为().①若,则;②若,则;③若,则;④若,则;A.B.C.D.参考答案:A若,则,又由,故,故①正确;若,,则或,故②错误;若,则与相交、平行或异面,故③错误;若,则与相交,平行或,故④错误.故四个命题中正确的命题有个.故选.2. “”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A3. 设,用表示不超过x的最大整数,已知函数,,则函数的值域为()A. {0}B. {0,1}C. {-1,0}D. {1}参考答案:B【分析】先求出函数的值域,再根据新定义即可求出函数y=[f(x)]的值域【详解】,故则函数的值域为故选:B【点睛】本题考查了函数性质及值域,以及新定义的应用,属于中档题.4. 在等差数列中,若,则数列的前项之和为A. B. 39 C. D.78参考答案:B略5. 设x∈R,则“|x﹣1|<2”是“x2﹣4x﹣5<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:|x﹣1|<2得:﹣1<x<3,解x2﹣4x﹣5<0得:﹣1<x<5,故“|x﹣1|<2”是“x2﹣4x﹣5<0”的充分而不必要条件,故选:A6. 对于函数f(x)=x图象上的任一点M,在函数g(x)=lnx上都存在点N(x0,y0),使是坐标原点),则x0必然在下面哪个区间内?()A.B.C.D.参考答案:C【考点】对数函数的图象与性质.【分析】问题转化为x0是函数h(x)=x+lnx的零点,根据函数的零点的判断定理求出x0的范围即可.【解答】解:由题意得: ==﹣1,即lnx0+x0=0,即x0是函数h(x)=x+lnx的零点,由h(x)在(0,+∞)是连续的递增函数,且h()=﹣1+<0,h()=>0,得h(x)在(,)有零点,即x0∈(,),故选:C.7. 设复数z满足=()A.13 B. C. D .参考答案:C8. i是虚数单位,复数等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】根据两个复数代数形式的乘除法法则,以及虚数单位i的幂运算性质,把要求的式子化简求得结果.【解答】解:复数===i﹣i2=1+i,故选D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.9. 已知集合M={x|x>2},N={x|1<x<3},则N∩?R M=()A.{x|﹣2≤x<1} B.{x|﹣2≤x≤2}C.{x|1<x≤2} D.{x|x<2}参考答案:C【考点】交、并、补集的混合运算.【分析】求出?R M,再由交集的定义,即可得到所求集合.【解答】解:集合M={x|x>2},N={x|1<x<3},则N∩?R M={x|1<x<3}∩{x|x≤2}={x|1<x≤2},故选:C.【点评】本题考查集合的运算,主要是交集和补集的运算,运用定义法是解题的关键,属于基础题.10. 直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()A.a=2,b=5;B.a=2,b=;C.a=,b=5;D.a=,b=.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 在平面直角坐标系xoy中,若直线(t为参数)过椭圆C:(为参数)的右顶点,则常数a的值为______.参考答案:312. 如图2,在正三棱柱中,已知是棱的中点,且,则直线与所成的角的余弦值为.参考答案:略13. 在区间[﹣,]上任取一个数x,则函数f(x)=3sin(2x﹣)的值不小于0的概率为.参考答案:【考点】几何概型.【分析】本题是几何概型的考查,利用区间长度比即可求概率.【解答】解:在区间[﹣,]上任取一个数x,等于区间的长度为,在此范围内,满足函数f(x)=3sin(2x﹣)的值不小于0的区间为[],区间长度为,所以由几何概型的公式得到所求概率为;故答案为:.14. 观察下列等式23=3+5,33=7+9+11,43=13+15+17+19,53=21+23+25+27+29,…,若类似上面各式方法将m3分拆得到的等式右边最后一个数是131,则正整数m等于_________.参考答案:11略15. 设,则四个数,,,中最小的是__________.参考答案:【分析】根据基本不等式,先得到,,再由作商法,比较与,即可得出结果.【详解】因为,所以,,又,所以,综上,最小.故答案为【点睛】本题主要考查由不等式性质比较大小,熟记不等式的性质,以及基本不等式即可,属于常考题型.16. 判断与的大小关是:。

河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题(含答案解析)

河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题(含答案解析)

河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知20211i z =+,则2z i -=()AB .C .2D2.用反证法证明“若a ,b ∈R ,220a b +≠,则a ,b 不全为0”时,假设正确的是()A .a ,b 中只有一个为0B .a ,b 至少一个不为0C .a ,b 至少有一个为0D .a ,b 全为03.下列运算正确的个数是()①(sin )cos 88ππ'=;②1(3)3x x x '-=⋅;③2()1log ln 2x x '=;④561()5x x -'-=-.A .1B .2C .3D .44.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于A .110B .18C .16D .155.记n S 为等差数列{}n a 的前n 项和.若218a =,580S =,则数列{}n a 的通项公式为n a =()A .222n +B .222n -C .202n-D .()21n n -6.若直线y x a =+和曲线ln 2y x =+相切,则实数a 的值为()A .12B .2C .1D .327.函数()cos sin f x x x x =-的导函数为()f x ',则函数()f x '的大致图象为()A .B .C .D .8.已知数列{n a }为等差数列,且1815πa a a ++=,()412cos a a +的值为a ,则1d ax x =⎰()A .1B .2C .-1D .39.某校开设了素描、摄影、剪纸、书法四门选修课,要求每位同学都要选择其中的两门课程.已知甲同学选了素描,乙与甲没有相同的课程,丙与甲恰有一门课程相同,丁与丙没有相同课程.则以下说法错误..的是()A .丙有可能没有选素描B .丁有可能没有选素描C .乙丁可能两门课都相同D .这四个人里恰有2个人选素描10.已知定义在()0,+¥上的函数()f x ,()f x ¢是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x xf e e ->的解集是()A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布()2,30N μ和()2280,40N ,则下列选项不正确的是()附:若随机变量X 服从正态分布()2,N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在()30,280μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在()280,320的概率约为0.341312.一件刚出土的珍费文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积为0.5立方米,其底部是直径为0.9米的圆(如图),要求文物底部与玻璃罩底边间隔0.3米,文物顶部与玻璃罩上底面间隔0.2米,气体每立方米1000元,则气体费用为()A .4500元B .4000元C .2880元D .2380元二、填空题13.已知函数()f x x =,则1()f x dx ⎰=_______.14.已知数列{}n a 为各项均为正数的等比数列,n S 是它的前n 项和,若174a a =.且47522a a +=,则5S =______.15.已知函数()||x x f x e=,若关于x 的方程2()()10f x mf x m -+-=有四个不相等的实数根,则实数m 的取值范围是_________.三、双空题16.从分别标有1,2,…,5的5张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的奇偶性不同的概率是______,记随机变量X 为两张卡片的数字和,则EX =______.四、解答题17.设ABC 的内角A B C ,,所对边分别为a b c ,,,且有2sinBcosA sinAcosC cosAsinC+=(1)求角A 的大小;(2)若21b c =,=,D 为BC 中点,求AD 的长.18.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.19.甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率为23外,其余每局甲队获胜的概率都是12,假设每局比赛结果相互独立.(1)求甲队分别以3:0,3:2获胜的概率;(2)若比赛结果为3:0,胜方得3分,对方得0分,比赛结果为3:1,胜方得3分,对方得1分,比赛结果为3:2,胜方得3分,对方得2分,求甲队得分的分布列和数学期望.20.已知椭圆E :()222210x y a b a b +=>>经过点()0,1A -,(1)求椭圆E 的方程;(2)过点()2,1P 的直线与椭圆E 交于不同两点B 、C .求证:直线AB 和AC 的斜率之和为定值.21.已知函数()(1),()a f x x a lnx a R x=--+∈.(1)当2a =时,求()f x 的极值;(2)若0a >,求()f x 的单调区间.22.在平面直角坐标xOy 中,已知曲线C 的参数方程为3cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()74πθ+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 上的两个动点M ,N 满足MN =P 在曲线C 上,以M ,N ,P 为顶点构造平行四边形MNPQ ,求平行四边形MNPQ 面积的最大值.参考答案:1.D【分析】化简得1z i =+,即得解.【详解】由题得1z i =+,所以21,z i i -=-所以|2||1|z i i -=-=故选:D 2.D【分析】把要证的结论否定之后,即得所求的反设.【详解】由于“a ,b 不全为0”的否定为:“a ,b 全为0”,所以假设正确的是a ,b 全为0.故选:D .3.A【分析】直接利用初等函数的导数公式运算判断得解.【详解】①(sin )08π'=,所以该运算错误;②3l 3)n (3'=x x ,所以该运算错误;③2()1log ln 2x x '=,所以该运算正确;④56()5x x -'-=-,所以该运算错误.所以正确的个数为1.故选:A.【点睛】易错点睛:(sin )cos 808ππ'=≠,因为sin 8π是一个实数,所以要代公式0C '=,不能代公式(sin )cos x x '=.所以代导数公式时,要看清函数的类型.4.D【详解】考点:古典概型及其概率计算公式.分析:从正六边形的6个顶点中随机选择4个顶点,选择方法有C 64=15种,且每种情况出现的可能性相同,故为古典概型,由列举法计算出它们作为顶点的四边形是矩形的方法种数,求比值即可.解:从正六边形的6个顶点中随机选择4个顶点,选择方法有C 64=15种,它们作为顶点的四边形是矩形的方法种数为3,由古典概型可知它们作为顶点的四边形是矩形的概率等于315=15故选D .5.B【分析】联立218a =,580S =,求出首项和公差,按照公式求通项即可.【详解】设等差数列{}n a 的公差为d ,则21511851080a a d S a d =+=⎧⎨=+=⎩,解得1202a d =⎧⎨=-⎩,所以()()2012222n a n n =+-⨯-=-.故选:B .6.C【分析】先求导1()f x x'=,再设切点坐标为00(,)x x a +,求出0x 即得解.【详解】因为()=ln 2y f x x =+,所以1()f x x'=,设切点坐标为00(,)x x a +,所以0001()=1,1f x x x '=∴=.所以00()=ln12=2=1,1f x x a a a ++=+∴=.故选:C【点睛】结论点睛:函数()y f x =在点00(,())x f x 处的切线方程为000()()()y f x f x x x '-=-.7.B【解析】先求出()f x ',判断()f x '的奇偶性可排除AD ,再判断0,2x π⎛⎫∈ ⎪⎝⎭时sin 0x >可排除C.【详解】 ()cos sin cos sin f x x x x x x x '=--=-,显然()()()=sin =sin f x x x x x f x '---=,故()f x '为偶函数,排除AD .又0,2x π⎛⎫∈ ⎪⎝⎭上,sin 0x >,()0f x '∴<,排除C.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.8.B【分析】由{}n a 为等差数列,且1815πa a a ++=,利用等差数列的性质得到412a a a =+的值,然后求定积分即可.【详解】因为{}n a 为等差数列,由等差数列的性质,得181583πa a a a ++==,即8π3a =.所以41282π23a a a +==,所以()4122π1cos cos 32a a a =+==-,所以()11111220d d 22102a x x x x x-===-=⎰⎰.故选:B 9.C【解析】根据题意合理推理,并作出合理的假设,最终得出正确结论.【详解】因为甲选择了素描,所以乙必定没选素描.那么假设丙选择了素描,则丁一定没选素描;若丙没选素描,则丁必定选择了素描.综上,必定有且只有2人选择素描,选项A ,B ,D 判断正确.不妨设甲另一门选修为摄影,则乙素描与摄影均不选修,则对于素描与摄影可能出现如下两种情况:由上表可知,乙与丁必有一门课程不相同,因此C 不正确.故选:C.【点睛】本题主要考查学生的逻辑推理能力,属于中档题.10.C【解析】由导数公式得出2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,从而得出函数()f x x 的单调性,将不等式()0xxf ee->可化为()(2)2x xf e f e >,利用单调性解不等式即可.【详解】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间()0,+¥上单调递减不等式()0xxf e e->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C【点睛】关键点睛:解决本题的关键是由导数公式得出函数()f x x的单调性,利用单调性解不等式.11.C【分析】求出μ的值,可判断A 选项的正误;比较红玫瑰日销售量和白玫瑰日销售量方差的大小,可判断BC 选项的正误;计算()280320P X <<的值,可判断D 选项的正误.【详解】若红玫瑰的日销售量范围在()30,280μ-的概率是0.6826,则30280μ+=,解得250μ=,A 对;红玫瑰日销售量的方差为21900σ=,白玫瑰日销售量的方差为221600σ=,且2212σσ<,故红玫瑰日销售量比白玫瑰日销售量更集中,B 对C 错;因为32028040=+,所以,()()0.6826280320280280400.34132P X P X <<=<<+==,D 对.故选:C.12.B【分析】根据题意,先求得正四棱柱的底面棱长和高,由体积公式即可求得正四棱柱的体积,减去文物的体积,即可求得罩内的气体体积,进而求得所需费用.【详解】由题意可知,文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米所以由正方形与圆的位置关系可知:底面正方形的边长为0.920.3 1.5m +⨯=文物高1.8,文物顶部与玻璃罩上底面至少间隔0.2米所以正四棱柱的高为1.80.22m +=则正四棱柱的体积为231.52 4.5m V =⨯=因为文物体积为30.5m 所以罩内空气的体积为34.50.54m -=气体每立方米1000元所以共需费用为410004000⨯=元故选:B 13.142π+【分析】先利用数形结合求出4π=⎰,再利用定积分的运算和微积分基本原理求解.【详解】令221),+1(0,01)y x x y y x =≤≤∴=≥≤≤,它表示单位圆在第一象限的14个圆,因为⎰表示14个圆的面积,所以21144ππ=⨯⨯=⎰.所以1121000011()|4242f x dx xdx x ππ=+=+=+⎰⎰⎰.故答案为:142π+【点睛】方法点睛:定积分的计算常用的方法有:(1)利用微积分基本原理求解;(2)数形结合转化为几何图形的面积求解.要根据已知条件灵活选择方法求解.14.31【解析】化简得到42a =,714a =,故12q =,116a =,在计算5S 得到答案.【详解】21744a a a ==,故42a =,47522a a +=,故714a =,故37418a q a ==,故12q =,116a =.551121631112S ⎛⎫- ⎪⎝⎭==-.故答案为:31.【点睛】本题考查了等比数列基本量的计算,求和,意在考查学生对于等比数列公式的灵活运用.15.1(1,1)e+【分析】方程2()()10f x mf x m -+-=有四个不相等的实数根,即方程()[]()1()10f x m f x ⎡⎤---=⎣⎦有四个不相等的实数根,则()()=1f x m -或()=1f x 有四个不相等的实数根,结合图象利用分类讨论()=1f x 与()()=1f x m -的根的情况,其中当0x >时分别构造函数()xg x e x =-与()()1x h x m e x =--分析,最后由转化思想将函数()h x 有两个零点转化为()min h x 小于0构造不等式求得答案.【详解】方程2()()10f x mf x m -+-=有四个不相等的实数根,即方程()[]()1()10f x m f x ⎡⎤---=⎣⎦有四个不相等的实数根,则()()=1f x m -或()=1f x 有四个不相等的实数根,因为函数()||0101xx f x m m e =≥⇒-≥⇒≥,对方程()=1f x 的根分析,令||1||x x x x e e=⇒=,由图象分析可知,当0x <时,必有一根,当0x >时,令()xg x e x =-,则()10x g x e '=->,所以函数()g x 单调递增,故()()00010g x g e >=-=>,所以当0x >时,方程()=1f x 无根,故方程()=1f x 只有1个根,那么方程()()=1f x m -应有3个根,对方程()()=1f x m -的根分析,令()||1||1x x x m x m e e=-⇒=-,由图象分析可知,当0x <时,必有一根,当0x >时,方程()||1x x m e =-应有2两个不等的实根,其等价于方程()1||0x m e x --=有2个不等的实根,令()()1x h x m e x =--,则()()11x h x m e '=--,且其在0x >内有两个零点,显然当()()()211020x m h x m e h m ''≥⇒=-->=-≥,函数()h x 单调递增,不满足条件,则2m <;令()()110110ln 011x x h x m e e x m m '=⇒--=⇒=⇒=>--,则函数()h x 在区间10,ln 1m ⎛⎫ ⎪-⎝⎭上单调递减,在区间1ln ,1m ⎛⎫+∞ ⎪-⎝⎭单调递增;所以函数()h x 在1ln 1x m =-取得极小值,同时也为最小值,()()()1ln 1min 11ln 1ln ln 111m h x h m e e m m m -⎛⎫==--=-⎡⎤ ⎪⎣⎦--⎝⎭,函数()h x 若要有两个零点,则()()()min 10ln 10111h x e m e m m e<⇒-<⇒-<⇒<+⎡⎤⎣⎦,综上所述,实数m 的取值范围是1(1,1)e+.故答案为:1(1,1)e+【点睛】本题考查了函数与方程的数学思想,还考查了由函数零点个数求参数取值范围与利用导数分析方程的根的个数,属于难题.16.356【分析】结合组合的思想分别求出抽取2次的组合数以及奇偶性不同的组合数,即可求出概率;写出X 的可能取值,并且求出每种取值下的概率,即可求出EX .【详解】解:5张卡片中不放回地随机抽取2次共有25C 种可能,其中奇偶性不同共有3211C C 种,所以2张卡片上的奇偶性不同的概率是11322535C C C =;由题意知,3,4,5,...,9X =,则()1310P X ==,()1410P X ==,()215105P X ===,()216105P X ===,()217105P X ===,()1810P X ==,()1910P X ==,所以11111113456789610105551010EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,故答案为:35;6.【点睛】本题考查了组合数的计算,考查了古典概型概率的求解,考查了离散型随机变量的数学期望的求解.17.(1)A =3π;(2)2.【分析】(1)对等式右边使用正弦两角和公式,化简可得;(2)用余弦定理求出a ,利用已知数据得2B π=,在直角三角形中利用勾股定理求解.【详解】解(1)由题设知,)2(sinBcosA sin A C sinB=+=因为sinB 0≠,所以1cos 2A =由于0A π<<,故3A π=(2)因为222124122132a b c bccosA 创=+-=+-,所以222a c b +=,所以2B π=.因为D 为BC中点,所以12BD AB ==,所以AD =【点睛】本题考查平面几何中解三角形问题.其求解思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理、勾股定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.18.(1)证明详见解析;(2)证明详见解析.【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.19.(1)甲队分别以3:0,3:2获胜的概率分别为11,84;(2)分布列见解析;期望为178.【分析】(1)根据相互独立事件的概率公式计算可得;(2)由题意知,随机变量X 的所有可能的取值,根据事件的互斥性计算概率值,从而写出X 的分布列,求出所对应的数学期望.【详解】解:(1)甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,记“甲队以3:0获胜”为事件A ,记“甲队以3:2获胜”为事件B ,3223234111121(),()1282234P A C P B C ⎛⎫⎛⎫⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⋅⋅ ⎪⎝⎭⎝⎭⎭⎝⎭,所以甲队分别以3:0,3:2获胜的概率分别为11,84.(2)若甲队得3分,则甲胜,结果可以为3:0,3:1,3:2,若甲队得0分,1分,2分,则甲败,结果可以为0:3,1:3,2:3,设甲队得分为X 则X 的可能取值为0、1、2、3,0303111(0)1228P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⋅⎭⋅⎝,12131113(1)1122216P X C ⋅⋅⋅⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2224111(2)1122382P X C ⎛⎫⎛⎫⎛⎫==⋅--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⋅⋅302122322334111111129(3)112222222316P X C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⋅⎝⎭⎝⎭⋅⋅⋅⋅⋅⋅⋅X 的分布列为:X0123P 1831618916甲队得分的数学期望31917()123168168E X =⨯+⨯+⨯=20.(1)2214x y +=;(2)证明见解析.【分析】(1)利用a b c 、、的关系直接求解即可;(2)设出BC 的方程为()()210y k x k =-+>,联立椭圆方程,再表示出AB 和AC 的斜率,最后说明之和为定值.【详解】解:(1)由椭圆E 经过点()0,1A -得,1b =.设半焦距为c ,由离心率为2得,2c a =又因为222a b c =+,所以22314a a =+,解得2a =故椭圆E 的方程为2214x y +=.(2)因为直线BC 过点()2,1P 且与轨迹E 有两个不同交点所以直线BC 的斜率一定存在且大于零.于是可设直线BC 的方程为()()210y k x k =-+>.代入2244x y +=并整理得()()()22418211610k x k k x k k +--+-=.()()()222=8124141616640k k k k k k ∆--+-=>⎡⎤⎣⎦设()11,B x y ,()22,C x y ,则()12282141k k x x k -+=+,()12216141k k x x k -=+.设直线AB 和AC 的斜率分别为1k 和2k ,则()()1212121212222211k x k x y y k k x x x x -+-++++=+=+()()()()()1212211612122161k x x k k k k k x x k k -+--=-=--()2211k k =--=为定值,此题得证.【点睛】考查椭圆方程的求法以及根据直线和椭圆的位置关系求两条直线的斜率之和为定值.直线和椭圆相交时,采用设交点坐标而不求出的方法,一定注意判别式大于零,同时用上韦达定理,可使解题简单;难题.21.(1)极大值1-;极小值132ln -;(2)答案不唯一,具体见解析.【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间.【详解】解:(1)因为当2a =时,2()3f x x lnx x =--,所以2232()(0)x x f x x x -+'=>,由()0f x '=得1x =或2x =,当x 变化时,()f x ',()f x 的变化情况列表如下:x(0,1)1(1,2)2(2,)+∞()f x '+0-0+()f x 单调递增1-单调递减132ln -单调递增所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -.(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .22.(1)221916x y +=;70x y --=;(2)【分析】(1)曲线C 的参数方程消去参数θ,即可求出C 的普通方程,再把极坐标化为直角坐标即可求出直线l 的直角坐标方程;(2)设曲线C 上的点坐标为(3cos ,4sin )P αα,利用点到直线的距离公式和辅助角公式求出d 的最大值,再利用求面积的公式代入即可.【详解】解:(1)曲线C 的参数方程为3cos 4sin x y θθ=⎧⎨=⎩,消去参数θ,可得曲线C 的标准方程为221916x y +=.直线l cos()74πθ+=,化简可得cos sin 7ρθρθ-=,∵cos ,sin x y ρθρθ==,∴70x y --=.(2)设(3cos ,4sin )P αα,则点P 到直线70x y --=的距离d =所以max d =当且仅当cos()1αϕ+=-,即2,k k Z αϕππ+=+∈取到最大值,所以平行四边形MNPQ 面积的最大值max S ==.。

2020-2021学年高二数学下学期4月月考试题

2020-2021学年高二数学下学期4月月考试题

2020-2021学年高二数学下学期4月月考试题一.选择题:(每小题5分,共计60分)1.已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .9 B .8 C .6 D .32.若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m = ( ) A. 3 B.32 C. 83 D. 233.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A .[-1,3] B .(-1,3) C .(-∞,-1]∪[3,+∞) D .(-∞,-1)∪(3,+∞)4.设z =11+i +i ,则|z |=( )A. 2 B .32 C. 22 D .125.根据如下样本数据x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <06.设变量,x y 满足10,30,230,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数23z x y =+的最小值为( ) A .7 B .8 C .22 D .237.当5n =时,执行如图所示的程序框图, 输出的S 值为 ( ).2A .4B .7C .11D8.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .(0,34]B .[0,34)C .[0,34]D .(0,34)9.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A .-5 B .5 C .4i -+ D .4i -- 10.一个球与一个正三棱柱的三个侧面和两个底面均相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A. 963B. 163C. 243D. 48311.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-34,0B .⎣⎢⎡⎦⎥⎤-33,33C .[-3,3]D .⎣⎢⎡⎦⎥⎤-23,0 12.过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则p 的值是( ).A .1 B.2 C.1或2 D.-1或2 二、填空题(每小题5分,共20分) 13.()211111= ()1014.已知向量(1,)a m =,(,2)b m =, 若a //b , 则实数m 等于15.某程序框图如右图所示,该程序运行后, 输出的x 值为31,则a 等于__ ___ 16.以下三个关于圆锥曲线的命题中:①设,A B 为两个定点,k 为非零常数,若PA PB k -=,则动点P 的轨迹是双曲线。

河南省高二下学期2月月考数学试题(解析版)

河南省高二下学期2月月考数学试题(解析版)

一、单选题1.,其中,,,每一个值都是0或2这两个值中的某一个,则一100122100333=++⋯+a a a x 1a 2a ⋯100a x 定不属于 ()A .,B .,C .D . [01)(01]12,33⎡⎫⎪⎢⎣⎭12,33⎛⎤ ⎥⎝⎦【答案】C【分析】运用特殊值法,逐个排除、、,即可得出答案为.A B D C 【详解】解:本题可以用特殊值法进行排除,其中,,,每一个值都是0或2这两个值中的某一个,1a 2a ⋯100a 当得,,故错误,1231000a a a a ===⋯==0x =A 当,,,故、错误, 12a =231000a a a ==⋯==23x =B D 故选:.C 【点睛】本题根据选择题的特点,可以运用特例法进行排除得出结论,考查学生灵活运用数学方法解决问题的能力,属于基础题.2.已知公差不为0的等差数列,前项和为,满足,且成等比数列,则{}n a n n S 3110S S -=124,,a a a ( )3a =A .B .C .或D .265612【答案】B【解析】将题设条件转化为基本量的方程组,求出基本量后可求. 3a 【详解】设等差数列的公差为,则 , d ()()11211133103a d a a d a a d +-=⎧⎪⎨+=+⎪⎩解得或(舍),故, 122a d =⎧⎨=⎩150a d =⎧⎨=⎩()322316a =+⨯-=故选:B.【点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.3.已知等比数列满足,,则 {}n a 118a =35421a a a =-2a =A . B . C .1 D .21412【答案】A【分析】根据等比数列的通项公式及,代入首项即可求得公比q ,进而求得的值.35421a a a =-2a 【详解】由等比数列通项公式及,可得 ,代入 35421a a a =-24311121a q a q a q ⋅=-118a =化简得 ,即 6316640q q -+=()2380q -=所以2q =由等比数列通项公式可得 2111284a a q ==⨯=所以选A【点睛】本题考查了等比数列通项公式的简单应用,属于基础题.4.已知等差数列与等差数列的前项和分别为和,且,那么的值为{}n a {}n b n n S n T 1n n S n T n =+87a b ( )A .B .C .D . 1312141315141615【答案】C【分析】设等差数列、的公差分别为、,由题意利用等差数列的性质求出它们的首{}n a {}n b 1d 2d 项、公差之间的关系,可得结论. 【详解】设等差数列的公差分别为和{}{},n n a b 1d 2.d ,即 11111,12n n S S a n T n T b =∴==+1112a b =,即 ① 2112122223S a d T b d +∴==+11232b d d =-,即 ② 311312333334S a d T b d +∴==+21143d d b =-由①②解得1211,.d d b d == 11811712111771526614d d a a d b b d d d ++∴===++故选:C5.已知为等差数列,公差,,则( ){}n a 2d =24618a a a ++=57a a +=A .8B .12C .16D .20【答案】D【解析】利用等差数列的性质求解.【详解】, 24618a a a ++=,4318a ∴=解得,46a =,64210a a d ∴=+=.576220a a a ∴+==故选:D6.四棱锥中,底面ABCD 是平行四边形,点E 为棱PC 的中点,若P ABCD -,则等于( )23AE x AB yBC z AP =++ x y z ++A .1B .C .D .21112116【答案】B 【解析】运用向量的线性运用表示向量,对照系数,求得,代入可111222AE AB BC AP =++ ,,x y z 得选项.【详解】因为, ()AE AB BC CE AB BC EP AB BC AP AE =++=++=++- 所以,所以,所以 , 2AE AB BC AP =++ 111222AE AB BC AP =++ 111,2,3222x y z ===解得,所以, 111,,246x y z ===11111++24612x y z ++==故选:B.7.九连环是我国从古至今广泛流传的一种益智游戏,在某种玩法中,用表示解下(n a n )个圆环所需的最少移动次数,满足,且,则解下4*9,≤∈n n N {}n a 11a =1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数个圆环所需的最少移动次数为 ( )A .7B .10C .12D .22【答案】A【分析】由递推式依次计算.【详解】由题意知,,, 21212111=-=⨯-=a a 32222124=+=⨯+=a a 43212417=-=⨯-=a a 故选:A.【点睛】本题考查由递推式求数列的项,解题时按照递推公式依次计算即得.8.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( )A .545B .547C .549D .551【答案】C【解析】观察数阵可得出数阵从左到右从上到下顺序是正奇数顺序排列,要求出某一个位置的数,只要求出这个位置是第几个奇数即可,而每一行有个数,可求出前行共有个数,根据12m -m 21m -以上特征,即可求解.【详解】由题意可得该数阵中第行有个数,m 12m -所以前行共有个数,所以前8行共255个数.m 21m -因为该数阵中的数依次相连成等差数列,所以该数阵中第9行,从左往右数的第20个数是.()127512549+-⨯=故选:C.【点睛】本题以数阵为背景,考查等差、等比数列通项与前项和,认真审题,注意观察找出规律n 是解题的关键,属于中档题.二、多选题9.设、分别是双曲线:的左右焦点,过作轴的垂线与交于,两点,1F 2F C 221y x b -=2F x C A B 若为正三角形,则下列结论正确的是( )1ABF AA .B .的焦距是2b =CC .D .的面积为C1ABF A 【答案】ACD【分析】设,则,根据双曲线的定义和离心率的公式可求得离心2||AF t =1||2AF t =率,从而对选项进行逐一判断即可得出答案.【详解】设,则,离心率C 正确, 2||AF t =1||2AF t =1212||||F F e AF AF ==-∴,,选项A正确,e =2b =,选项B 错误,12F F ==设,将,()AA A x y ,A x =的面积为D 正确,1ABF A 12122A S F F y =⋅⋅=故选:ACD.10.已知数列满足,下列说法中正确的有(){}n a ()*,01N n n a n k n k =⋅∈<<A .当时,数列为递减数列12k ={}n a B .当时,数列不一定有最大项112k <<{}n a C .当时,数列为递减数列 102k <<{}n a D .当为正整数时,数列必有两项相等的最大项1kk -{}n a 【答案】CD【分析】由于,再根据k 的条件讨论即可得出. ()()1111n n n n n kn k a a n k n +++⋅+==⋅【详解】选项A ,当时,,12k =12nn a n ⎛⎫=⋅ ⎪⎝⎭∴,当时,,()111112212n n n n n a n a n n ++⎛⎫+⋅⎪+⎝⎭==⎛⎫⋅ ⎪⎝⎭1n =12a a =因此数列不是递减数列,故A 不正确.{}n a 选项B ,当时,,112k <<()()1111n n n n n k n ka a n k n +++⋅+==⋅∵随n 的增大逐渐减小,当时,, 111n n n +=+1n =()121n kk n +⋅=>当时,,且小于1, n →+∞()1n k k n+⋅→∴数列一定有最大项,故B 不正确. {}n a 选项C .当时,,102k <<()()1111112n n n n n k n k a n a n k n n +++⋅++==<≤⋅∴,因此数列为递减数列,故C 正确.1n n a a +<{}n a 选项D ,∵为正整数,∴,∴. 1k k -1k k ≥-112k ≤<, ()()1111n n n n n k n k a a n k n+++⋅+==⋅当时,, 12k =1234a a a a =>>> 当时,令,则, 112k <<()*N 1k m m k =∈-1m k m =+∴,又,,总有成立, ()()111n n n m a a n m ++=+*N m ∈*N n ∈m n =∴, 11n na a +=因此数列必有两项相等的最大项,故D 正确.{}n a 综上可知,只有CD 正确.故选:CD.11.“中国剩余定理”又称“孙子定理”.此定理讲的是关于整除的问题,现将1到2021这2021个数中,能被2除余1且被5除余1的数按从小到大的顺序排成一列,构成数列,其前项和为{}n a n n S ,则下面对该数列描述正确的是( )A .B .C .D .共有202项11a =333S =437a a -=【答案】AB【分析】利用等差数列的定义、通项公式、前项和公式进行逐一判断即可.n 【详解】将1到2021这2021个数中,能被2除余1且被5除余1的数按从小到大的顺序排成一列为:1,11,21,31 ,2021,该数列是以1为首项,10为公差的等差数列, L 所以,所以,因此选项A 正确;109n a n =-11a =,因此选项B 正确; 31313210332S =⨯+⨯⨯⨯=,所以选项C 不正确;4310a a -=,∴.∴共有203项,所以选项D 不正确,1092021n -≤203n ≤故选:AB12.斐波那契数列又称黄金分割数列,因数学家列昂纳多•斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用表示斐波那契数列的第项,则n a n 数列满足:,记,则下列结论正确的是( ){}n a 12211,n n n a a a a a ++===+121ni n i a a a a ==+++∑ A .B .C .D .1055a =()2233n n n a a a n -+=+≥201920211i i a a ==∑20212202120221i i a a a ==∑A 【答案】ABD【分析】根据给定条件逐项分析、推理计算即可判断作答.【详解】依题意,的前10项依次为:1,1,2,3,5,8,13,21,34,55,即,A 正{}n a 1055a =确;依题意,当时,,得,B 正3n ≥12n n n a a a --=+21213n n n n n n n n a a a a a a a a ---+=+++=++22n n a a -+=+确;由给定的递推公式得:,,…,,累加得321a a a -=432a a a -=202120202019a a a -=,20212122019a a a a a -=+++ 于是有,即,C 错误;1220192021220211a a a a a a +++=-=- 2019202111i i a a ==-∑,,,…,2121a a a =⋅()222312321a a a a a a a a =⋅-=⋅-⋅()233423432a a a a a a a a =⋅-=⋅-⋅ ()22021202120222020a a a a =⋅-,因此,,D 正确.2021202220212020a a a a =⋅-⋅22212202120212022a a a a a +++=⋅ 故选:ABD【点睛】思路点睛:涉及给出递推公式探求数列性质的问题,认真分析递推公式并进行变形,可借助累加、累乘求通项的方法分析、探讨项间关系而解决问题.三、填空题13.记为等差数列的前n 项和,已知,,则______n S {}n a 40S =510a =n n a S +=【答案】22410n n --【分析】设等差数列的公差为,然后由已知条件列方程组可求出,从而可求出答案.d 1,a d 【详解】设等差数列的公差为,d 因为,,40S =510a =所以,解得, 1143402410a d a d ⨯⎧+=⎪⎨⎪+=⎩164a d =-⎧⎨=⎩所以, 2(1)64(1)6424102n n n n a S n n n n -+=-+--+⨯=--故答案为: 22410n n --14.已知数列满足则___.{}n a 111,2(1),n n a na n a +==+8a =【答案】1024【分析】由可得,从而可得数列是以2为公比,1为首项的111,2(1),n n a na n a +==+121n n a a n n +=⋅+n a n ⎧⎫⎨⎬⎩⎭等比数列,可求出通项公式,进而可求出8a 【详解】因为111,2(1),n n a na n a +==+所以, 121n n a a n n+=⋅+所以数列是以2为公比,1为首项的等比数列, n a n ⎧⎫⎨⎬⎩⎭所以,所以, 112n n a n-=⨯12n n a n -=⋅所以,8137108822221024a -=⨯=⨯==故答案为:102415.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:“有依次为第一等,第二等,第三等,第四等,第五等的5个诸侯分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,可以得到第二等诸侯分得的橘子个数是______.【答案】9【分析】由橘子个数组成等差数列,且公差为3求解.【详解】设第一等,第二等,第三等,第四等,第五等的5个诸侯分得的橘子个数组成数列,{}n a 其公差为3,所以,解得, 515453602S a ⨯=+⨯=16a =所以,即第二等诸侯分得的橘子个数是9.29a =故答案为:916.已知数列的首项,则_________. {}n a 1111,12n na a a +==-2021a =【答案】1-【分析】根据题意,分别求得,得出数列是以为周期的周期数列,结合周期1234,,,,a a a a {}n a 3性,即可求解.【详解】由,则, 1111,12n n a a a +==-234123111111,12,1,2a a a a a a =-=-=-==-= 以此类推可知,对任意的,都有,*n ∈N 3n n a a +=即数列是以为周期的周期数列,{}n a 3因为,所以.202136732=⨯+202121a a ==-故答案为:.1-四、解答题17.记是等差数列的前项和,若,n S {}n a n 535S =-721S =-(1)求的通项公式,{}n a (2)求的最小值n S 【答案】(1)419n a n =-(2)-36【分析】(1)设的公差为d ,由等差数列的前项和公式建立方程组,然后可得公差和首项,{}n a n 从而根据等差数列的通项公式即可得答案;(2)由解得,再根据等差数列的前项和公式及二次函数的性质即可求解. 0n a ≥194n ≥n 【详解】(1)解:设的公差为d ,则,, ()1{}n a 1545352a d ⨯+=-1767212a d ⨯+=-,,;115a ∴=-4d =()1541419n a n n ∴=-+-=-(2)解:由得, 4190n a n =-≥194n ≥,,,时,时,,1n ∴=2340n a <5n ≥0n a >的最小值为. n S ∴41434362S a d ⨯=+=-18.已知数列是等差数列,且,求:{}n a 11a =1028a a -=(1)的通项公式;{}n a (2)设数列的前项和为,若对任意恒成立,求的最小值. 21n n a a +⎧⎫⎨⎬⎩⎭n n S ()12n m S m N +≤∈n N +∈m 【答案】(1)n a n =(2)9【分析】(1)根据等差数列的定义以及题中所给条件求出公差,即求出了通项公式; d (2)写出数列的前项和,再通过裂项相减法化简,放缩法求出的范围,最后结合所给条件n n S n S 数轴法求出的取值范围并求得最小值.m 【详解】(1)设数列公差为,则,{}n a d 1019a a d =+21a a d =+则,解得.102119()8a a a d a d -=+-+=1d =∴的通项公式为:{}n a 1(1)1n a n n =+-⋅=(2)根据题意, 1324221111111324n n n n n a a a a a a S a a ++=+++=+++⨯⨯ 21111111111111112324223342n n a a n n +⎛⎫⎡⎤⎛⎫⎛⎫=⨯-+-++-=⨯++++-+++ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦⎝⎭ . ()()111132331221242124n n n n n ⎡⎤+⎛⎫=⨯+-+=-< ⎪⎢⎥++⋅+⋅+⎝⎭⎣⎦若对任意恒成立,则,解得. ()12n m S m N +≤∈N n +∈3124m ≥9m ≥∴的最小值为9.m 19.在数列中,,对,.{}n a 11a =*n N ∀∈1(1)(1)n n na n a n n +-+=+(1)求数列的通项公式;{}n a (2)若,求数列的前项和. n b ={}n b n n S 【答案】(1);(2) . 2n a n =1n n +【解析】(1)先由,进而说明数列是首项、公差均为11(1)(1)11n n n n a a na n a n n n n ++-+=+⇒-=+n a n ⎧⎫⎨⎬⎩⎭1的等差数列,求出,即可求得; n a n n a (2)先由(1)中求得的求出,再利用裂项相消法即可求得其前项和.n a n b n n S 【详解】(1),1(1)(1)n n na n a n n +-+=+ ,又, ∴111n n a a n n +-=+111a =数列是首项、公差均为1的等差数列. ∴{)n a n ,所以; ∴()111n a n n n=+-⨯=2n a n =(2)由(1)得,2n a n =, 111(1)1n b n n n n ∴===-++. 111111(1()()1223111n n S n n n n ∴=-+-+⋯+-=-=+++【点评】本题主要考查等差数列的定义、通项公式及裂项相消法在数列求和中的应用,属于中档题.20.在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为{}n a 13a =n n S {}n b 11b =,且. (1)≠q q 222212S b S q b +==,(1)求与;n a n b (2)证明:. 1211123n S S S +++< 【答案】(1);13,3n n n a n b -==(2)证明见解析.【分析】(1)根据给定条件,列出关于公差d ,公比q 的方程组,解方程组即可计算作答. (2)由(1)的结论,求出,再利用裂项相消法求和推理作答.n S 【详解】(1)设的公差为,因,,,则,而,解{}n a d 13a =11b =222212b S S q b +=⎧⎪⎨=⎪⎩6126q d d q q ++=⎧⎪+⎨=⎪⎩0q >得:,,3q =3d =于是得,3(1)33n a n n +-⨯==11133n n n b --=⨯=所以,.3n a n =13n n b -=(2)由(1)知,则,, (33)3(1)22n n n n n S ++==12211()3(1)31n S n n n n ==-++*N n ∈于是得, 12111211111111[()((()]31223341n S S S n n +++=-+-+-++-+ 212(1)313n =-<+所以. 1211123n S S S +++< 21.已知数列的前项和满足,.{}1n a +n n S 3n n S a =*n ∈N (1)求证数列为等比数列,并求关于的表达式;{}1n a +n a n (2)若,求数列的前项和. ()32log 1n n b a =+(){}1n n a b +n n T 【答案】(1)证明详见解析;;(2).312n n a ⎛⎫=- ⎪⎝⎭13366222n n n T n +⎛⎫⎛⎫=-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭【分析】(1)因为,即,当时()()()1211...13n n n S a a a a =++++++=12...3n n a a a n a ++++=2n ≥,两式相减再配凑得到数列是首项为,公比为的等比数1211...13n n a a a n a --++++-={}1n a +3232列,即可计算出数列的通项公式,然后计算出数列的通项公式;{1}n a +{}n a (2)根据(1)的结果计算出数列的通项公式,进一步计算出数列的通项公式,根据{}n b {(1)}n n a b +通项公式的特点运用错位相减法计算出前项和.n n T 【详解】(1)由题设,()()()1211...13n n n S a a a a =++++++=即①12...3n n a a a n a ++++=当时,,解得, 1n =1113a a +=112a =当时②2n ≥1211...13n n a a a n a --++++-=①-②得,即 1133n n n a a a -+=-13122n n a a -=+又 ()()131122n n a a n -+=+≥1312a +=所以数列是首项为,公比为的等比数列,所以 {}1n a +3232312n n a ⎛⎫+= ⎪⎝⎭故. 312nn a ⎛⎫=- ⎪⎝⎭(2)由(1),则, ()33223log 1log 2n n n b a n ⎛⎫=+== ⎪⎝⎭()312n n n a b n ⎛⎫+=⨯ ⎪⎝⎭ ()123133333123...+122222n n n T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+-⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2341333333123...1222222n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+-⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得123111333333...+2222222n n n n T n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=++++-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1333122n n n -⎛⎫⎛⎫⎛⎫=---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13366222n n n T n +⎛⎫⎛⎫=-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭【点睛】本题主要考查数列求通项公式,以及运用错位相减法求前项和,考查学生逻辑推理能力n 和数学运算能力.属中档题.22.已知为等差数列的前项和,,.n S {}n a n 5134a a a =+416S =(1)求的通项公式;{}n a (2)求数列的前项和. 11n n a a +⎧⎫⎨⎬⎩⎭n n T 【答案】(1);(2). 21n a n =-21n n T n =+【分析】(1)设数列的首项为,公差为.代入已知条件解得后可得通项公式; {}n a 1a d 1,a d (2)用裂项相消法求和.n T 【详解】(1)设数列的首项为,公差为.{}n a 1a d 由题意得 11141442,4616,a d a a d S a d +=++⎧⎨=+=⎩解得 11,2.a d =⎧⎨=⎩∴数列的通项公式{}n a ()121n a n =+-.21n =-(2)由(1)得, ()()()111111221212121n n a a n n n n +==--+-+∴. 1111111...23352121⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦n T n n 111221n ⎛⎫=- ⎪+⎝⎭21n n =+【点睛】本题考查求等差数列的通项公式,考查裂项相消法求和.数列求和除需掌握等差数列和等比数列的前项和公式外还需掌握错位相减法、裂项相消法、分组(并项)求和法、倒序相加法等n 求和方法.。

2020-2021学年江苏省扬州市仪征二中高二(下)学情检测数学试卷(解析版)

2020-2021学年江苏省扬州市仪征二中高二(下)学情检测数学试卷(解析版)

2020-2021学年江苏省扬州市仪征二中高二(下)学情检测数学试卷一、选择题(共8小题).1.下列命题中,真命题是()A.∃x0∈R,使得e≤0B.∀x>0,且x≠1,则C.a>1,b>1是ab>1的充分不必要条件D.“”的必要不充分条件是“”2.在平面直角坐标系xOy中,已知动点P(x,y)到两定点F1(﹣4,0),F2(4,0)的距离之和是10,则点P的轨迹方程是()A.B.C.D.3.下列说法中正确的个数是()①f'(x0)与[f(x0)]'表示的意义相同;②求f'(x0)时,可先求f(x0)再求f'(x0);③曲线的切线不一定与曲线只有一个公共点;④与曲线只有一个公共点的直线一定是曲线的切线;⑤函数的导数是f′(x)=﹣+1.A.1B.2C.3D.44.在等比数列{a n}中,a1+a2=10,a3+a4=60,则a7+a8=()A.110B.160C.360D.21605.设f(x)=xlnx,若f′(x0)=2,则x0等于()A.e2B.e C.D.ln26.已知点F是抛物线x2=2py(p>0)的焦点,O为坐标原点,若以F为圆心,|FO|为半径的圆与直线x﹣y+3=0相切,则抛物线的准线方程为()A.y=﹣1B.y=C.y=2D.y=7.过曲线y=e x上一点P(x0,y0)作曲线的切线,若该切线在y轴上的截距小于0,则x0的取值范围是()A.(0,+∞)B.(,+∞)C.(1,+∞)D.(2,+∞)8.已知正数a,b满足+=1,若不等式a+b≥﹣x2+4x+18﹣m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(﹣∞,3]C.(﹣∞,6]D.[6,+∞)二、不定项选择题(共4小题).9.设a,b,c∈R,则下列结论正确的有()A.若a<b,c<0,则ac>bc B.a+≥2C.若a<b<0,则D.()2≤10.已知双曲线C:的左、右焦点分别为F1,F2,若P为C上一点,且|PF1|=5,则()A.C的虚轴长为6B.|PF2|的值可能为3C.C的离心率为2D.|PF2|的值可能为711.已知平面α的法向量为,点A(x2,2x+1,2)为α内一点,若点P (0,1,2)到平面α的距离为4,则x的值为()A.2B.1C.﹣3D.﹣612.已知x>0,y>0,且2x+y=2,则下列说法中正确的()A.xy的最大值为B.4x2+y2的最大值为2C.4x+2y的最小值为4D.的最小值为4三、填空题(本大题共4小题,共20分)13.若f(x)=x2+2xf'(1),则f'(0)等于.14.过抛物线方程为y2=4x的焦点作直线l交于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=.15.已知曲线y1=2﹣与y2=x3﹣x2+2x在x=x0处切线的斜率的乘积为3,则x0=.16.已知双曲线,F1,F2是双曲线的左、右两个焦点,P在双曲线上且在第一象限,圆M是△F1PF2的内切圆.则M的横坐标为,若F1到圆M上点的最大距离为,则△F1PF2的面积为.二、解答题(本大题共6小题,共70.0分)17.已知命题p:|x﹣1|<c(c>0);命题q:|x﹣5|>2,且p是q的充分条件,求c的取值范围.18.已知函数f(x)=x+alnx(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若曲线y=f(x)在x=2处的切线方程为y=2x+b,求a,b的值.19.运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.20.已知数列{a n}的前n项和为S n,a1=1,条件①:a n+1=a n+2n﹣1;条件②:S n+1=a n+1.请在上面的两个条件中任选一个,补充在下面的横线上,完成下列两问的解答:(1)求数列{a n}的通项公式;(2)设b n=log2a2n+1,记数列{a n•b n}的前n项和为T n,求T n.21.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,AC与BD交于点G,PB=PD.(1)求证:平面PAC⊥平面ABCD;(2)若∠ABC=60°,PA=PC=AB=2,E为PD的中点,求二面角E﹣AC﹣D的大小.22.已知椭圆的离心率为,右准线方程为x=2.(1)求椭圆方程;(2)P(0,1),A、B为椭圆的左、右顶点,过A作斜率为k1的直线交椭圆于E,连接EP并延长交椭圆于F,记直线BF的斜率为k2,若k1=3k2,求直线EF的方程.参考答案一、选择题(共8小题).1.下列命题中,真命题是()A.∃x0∈R,使得e≤0B.∀x>0,且x≠1,则C.a>1,b>1是ab>1的充分不必要条件D.“”的必要不充分条件是“”解:对于A:∀x0∈R,使得e>0,故A错误;对于B:对∀x>1时,,故B错误;对于C:当a>1,b>1时,ab>1,但是当ab>1时,得到a>1,b>1不一定成立,故a>1,b>1是ab>1的充分不必要条件,故C正确;对于D:当“”时,“”,当“”时,“x=或(k∈Z)”,故“”充分不必要条件是“”,故D错误.故选:C.2.在平面直角坐标系xOy中,已知动点P(x,y)到两定点F1(﹣4,0),F2(4,0)的距离之和是10,则点P的轨迹方程是()A.B.C.D.解:由已知可得动点P的轨迹E为椭圆,焦点在x轴上,c=4,2a=10,所以a=5故b2=a2﹣c2=9,故E的方程为:.故选:A.3.下列说法中正确的个数是()①f'(x0)与[f(x0)]'表示的意义相同;②求f'(x0)时,可先求f(x0)再求f'(x0);③曲线的切线不一定与曲线只有一个公共点;④与曲线只有一个公共点的直线一定是曲线的切线;⑤函数的导数是f′(x)=﹣+1.A.1B.2C.3D.4解:对于①,f'(x0)与[f(x0)]'表示的意义不相同,f'(x0)表示x在x0处的切线的斜率,而[f(x0)]'表示的是函数f(x0)的导数,故①错误;②求f'(x0)时,可先求f′(x)再求f'(x0),故②错误;③曲线的切线不一定与曲线只有一个公共点,可能有两个交点,故③正确;④与曲线只有一个公共点的直线一定是曲线的切线,不一定正确,例如过抛物线上的点且平行于对称轴的直线,不叫切线,故③错误;⑤函数=的导数是,故④正确.故选:B.4.在等比数列{a n}中,a1+a2=10,a3+a4=60,则a7+a8=()A.110B.160C.360D.2160解:设等比数列{a n}的公比为q,∵a1+a2=10,a3+a4=60,∴q2(a1+a2)=10q2=60,解得:q2=6.则a7+a8=q6(a1+a2)=10×63=2160.故选:D.5.设f(x)=xlnx,若f′(x0)=2,则x0等于()A.e2B.e C.D.ln2解:∵f(x)=xlnx,∴f′(x)=lnx+1,由f′(x0)=2,得lnx0+1=2,即lnx0=1,则x0=e,故选:B.6.已知点F是抛物线x2=2py(p>0)的焦点,O为坐标原点,若以F为圆心,|FO|为半径的圆与直线x﹣y+3=0相切,则抛物线的准线方程为()A.y=﹣1B.y=C.y=2D.y=解:由抛物线的方程可得焦点F(0,),半径r=,由题意=,解得:p=2,所以抛物线的方程为:x2=4y,所以准线的方程为:y=﹣1,故选:A.7.过曲线y=e x上一点P(x0,y0)作曲线的切线,若该切线在y轴上的截距小于0,则x0的取值范围是()A.(0,+∞)B.(,+∞)C.(1,+∞)D.(2,+∞)解:根据题意,曲线y=e x,则y′=e x,在点P(x0,y0)处切线的斜率k=,则切线的方程为y﹣y0=(x﹣x0),即y﹣=(x﹣x0),变形可得:y=x+(1﹣x0),其在y轴上的截距为(1﹣x0),若该切线在y轴上的截距小于0,则有(1﹣x0)<0,解可得:x0>1,则x0的取值范围是(1,+∞);故选:C.8.已知正数a,b满足+=1,若不等式a+b≥﹣x2+4x+18﹣m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(﹣∞,3]C.(﹣∞,6]D.[6,+∞)解:∵a>0,b>0,且+=1,∴a+b=(a+b)()=10+.当且仅当3a=b,即a=4,b=12时,(a+b)min=16.若不等式a+b≥﹣x2+4x+18﹣m对任意实数x恒成立,则﹣x2+4x+18﹣m≤16,即m≥﹣x2+4x+2对任意实数x恒成立,∵﹣x2+4x+2=﹣(x﹣2)2+6≤6,∴m≥6.∴实数m的取值范围是[6,+∞).故选:D.二、不定项选择题(本大题共4小题,共20.0分)9.设a,b,c∈R,则下列结论正确的有()A.若a<b,c<0,则ac>bc B.a+≥2C.若a<b<0,则D.()2≤解:对于A:若a<b,c<0,则ac>bc,故A正确;对于B:当a为正数时,才成立,故B错误;对于C:由于a<b<0,所以,故,故C正确,对于D:根据平方平均值和算数平均值的关系,≥0,所以,故D正确;故选:ACD.10.已知双曲线C:的左、右焦点分别为F1,F2,若P为C上一点,且|PF1|=5,则()A.C的虚轴长为6B.|PF2|的值可能为3C.C的离心率为2D.|PF2|的值可能为7解:双曲线C:的左、右焦点分别为F1,F2,可知a=1,b=,c=2,若P为C上一点,且|PF1|=5,如果P在双曲线左支上,则|PF2|=7,然后P在右支上,则|PF2|=3,双曲线的离心率为:e=2,虚轴长为2,故选:BCD.11.已知平面α的法向量为,点A(x2,2x+1,2)为α内一点,若点P (0,1,2)到平面α的距离为4,则x的值为()A.2B.1C.﹣3D.﹣6解:点P(0,1,2)到平面α的距离,即在平面α的法向量上的投影的绝对值,,平面α的法向量为,则,即,解得x=2或x=﹣6.故选:AD.12.已知x>0,y>0,且2x+y=2,则下列说法中正确的()A.xy的最大值为B.4x2+y2的最大值为2C.4x+2y的最小值为4D.的最小值为4解:x>0,y>0,且2x+y=2,由基本不等式得,2=2x+y,当且仅当2x=y且2x+y=2,即y=1,x=时取等号,解得,xy,此时xy取得最大值,A正确;4x2+y2=(2x+y)2﹣4xy=4﹣4xy≥4﹣2=2,当且仅当2x=y且2x+y=2,即y=1,x=时取等号,此时4x2+y2的最小值2,B错误;4x+2y==4,当且仅当2x=y且2x+y=2,即y=1,x=时取等号,此时4x+2y的最小值4,C正确;==2=4,当且仅当且2x+y=2即x=y=时取等号,此时取得最小值4,D正确.故选:ACD.三、填空题(本大题共4小题,共20分)13.若f(x)=x2+2xf'(1),则f'(0)等于﹣4.解:根据题意,f(x)=x2+2xf'(1),则f′(x)=2x+2f'(1),令x=1可得:f′(1)=2+2f'(1),解可得f′(1)=﹣2,则f′(x)=2x﹣4,则f′(0)=﹣4;故答案为:﹣4.14.过抛物线方程为y2=4x的焦点作直线l交于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=8.解:抛物线y2=4x(p>0)中p=2,∵x1+x2=6,∴由抛物线的定义可知,|PQ|=|PF|+|QF|=x1++x2 +=(x1+x2)+p=6+2=8,故答案为:8.15.已知曲线y1=2﹣与y2=x3﹣x2+2x在x=x0处切线的斜率的乘积为3,则x0=1.解:由题意可得,y1′=,y2′=3x2﹣2x+2设曲线y1=2﹣与y2=x3﹣x2+2x在x=x0处切线的斜率分别为k1,k2由导数的几何意义可知,k1k2==3,解得x0=1故答案为:116.已知双曲线,F1,F2是双曲线的左、右两个焦点,P在双曲线上且在第一象限,圆M是△F1PF2的内切圆.则M的横坐标为1,若F1到圆M上点的最大距离为,则△F1PF2的面积为24.解:记△PF1F2的边PF1、PF2、F1F2上的切点分别为K、N、D,易见M、D横坐标相等,|PK|=|PN|,|F1K|=|F1D|,|F2N|=|F2D|,由|PF1|﹣|PF2|=2a,即:|PK|+|KF1|﹣(|PN|+|NF2|)=2a,得|KF1|﹣|NF2|=2a即|F1D|﹣|F2D|=2a,记M的横坐标为x0,则D(x0,0),于是:x0+c﹣(c﹣x0)=2a,得x0=a,双曲线的a=1,b=2,c=3,所以M的横坐标为1;设M(1,r),而F1(﹣3,0),由题意可得|F1M|+r=4,即有+r=4,解得r=,则tan∠MF1F2==,可得∠MF1F2=30°,即有∠PF1F2=60°,cos∠PF1F2==,解得|PK|=12,所以△PF1F2的面积为S=×6×16×=24.故答案为:1,24.二、解答题(本大题共6小题,共70.0分)17.已知命题p:|x﹣1|<c(c>0);命题q:|x﹣5|>2,且p是q的充分条件,求c的取值范围.解:由p:|x﹣1|<c(c>0)得1﹣c<x<1+c;由q:|x﹣5|>2得x>7或x<3,∵p是q的充分条件,则1+c≤3或1﹣c≥7,∴c≤2或c≤﹣6,又c>0,∴0<c≤2.∴c的取值范围是(0,2].18.已知函数f(x)=x+alnx(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)若曲线y=f(x)在x=2处的切线方程为y=2x+b,求a,b的值.解:(1)当a=1时,f(x)=x+lnx,所以f′(x)=1+,当x=1时,f(1)=1,f′(1)=1=1+1=2,切点为(1,1),则切线方程y﹣1=2(x﹣1),即y=2x﹣1.(2)因为f′(x)=1+(x>0),所以f′(2)=1+=2,解得a=2,则f(x)=x+2lnx,所以f(2)=2+2ln2.则2+2ln2=4+b,解得b=2ln2﹣2.19.运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.解:(1)行车所用时间为,根据汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元,可得行车总费用:y==(50≤x≤100)(2)y=≥26,当且仅当,即时,等号成立∴当时,这次行车的总费用最低,最低费用为元.20.已知数列{a n}的前n项和为S n,a1=1,条件①:a n+1=a n+2n﹣1;条件②:S n+1=a n+1.请在上面的两个条件中任选一个,补充在下面的横线上,完成下列两问的解答:(1)求数列{a n}的通项公式;(2)设b n=log2a2n+1,记数列{a n•b n}的前n项和为T n,求T n.解:a1=1,(1)选择条件①:a n+1=a n+2n﹣1;则a n+1﹣a n=2n﹣1,n≥2时,a n﹣a n﹣1=2n﹣2.∴a n=a1+(a2﹣a1)+……+a n﹣a n﹣1=1+1+2+……+2n﹣2=1+=2n﹣1.n=1时也成立,∴a n=2n﹣1.选择条件②:S n+1=a n+1.n≥2时,S n﹣1+1=a n,相减可得:a n=a n+1﹣a n,即a n+1=2a n,n=1时,a1+1=a2=2,∴a2=2a1.∴数列{a n}是等比数列,首项为1,公比为2,∴a n=2n﹣1.(2)b n=log2a2n+1=+1=2n,∴a n•b n=2n•2n﹣1=n•2n.∴数列{a n•b n}的前n项和T n=2+2×22+3×23+……+n•2n,∴2T n=2×2+2×23+……+(n﹣1)•2n+n•2n+1,∴﹣T n=2+22+23+……+2n﹣n•2n+1=﹣n•2n+1=2n+1﹣2﹣n•2n+1,∴T n=(n﹣1)•2n+1+2.21.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,AC与BD交于点G,PB=PD.(1)求证:平面PAC⊥平面ABCD;(2)若∠ABC=60°,PA=PC=AB=2,E为PD的中点,求二面角E﹣AC﹣D的大小.解:(1)证明:连结PG,∵底面ABCD为菱形,∴G为BD的中点,又PB=PD,∴BD⊥PG,又BD⊥AC,AC,PG⊂平面PAC,AC∩PG=G,∴BD⊥平面PAC,又BD⊂平面ABCD,∴平面PAC⊥平面ABCD.(2)解:连结EG,∵PA=PC,且G为AC的中点,∴PG⊥AC,又BD⊥AC,BD,PG⊂平面PBD,BD∩PG=G,∴AC⊥平面PBD,∵EG⊂平面PBD,∴AC⊥EG,∴∠EGD是二面角E﹣AC﹣D的平面角,由题意PG=DG=,在Rt△PGD中,GE=DE=,∴tan∠EGD==1,∵∠EGD∈(0,),∠EGD=,∴二面角E﹣AC﹣D的大小为.22.已知椭圆的离心率为,右准线方程为x=2.(1)求椭圆方程;(2)P(0,1),A、B为椭圆的左、右顶点,过A作斜率为k1的直线交椭圆于E,连接EP并延长交椭圆于F,记直线BF的斜率为k2,若k1=3k2,求直线EF的方程.解:(1)根据题意可得=,=2,解得a2=4,c2=2,所以b2=a2﹣c2=4﹣2=2,所以椭圆的方程为+=1.(2)由(1)可得A(﹣2,0),B(2,0),所以过点A的直线方程为y=k1(x+2),联立,得(1+2k12)x2+8k12x+8k12﹣4=0,所以(﹣2)•x E=,解得x E=,所以y E=k1(+2)=,所以E(,),同理可得F(,),又因为k1=3k2,所以F(,),由点E,F,P三点共线可得=,即4k14+8k13+12k1﹣9=0,所以(2k12+3)(2k12+4k1﹣3)=0,所以2k12+4k1﹣3=0,所以直线EF的斜率为===1,所以直线EF的方程为y=x+1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学下学期第二次月考试题一、选择题:1.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为 ( ) A .11 B .12 C .13 D. 14 2、已知函数()()x e f x x f ln 2+'=,则()=e f ( )A 、e -B 、eC 、1-D 、13.在8件同类产品中,有5件正品,3件次品,从中任意抽取4件,下列事件中的必然事件是( )A .4件都是正品B .至少有一件次品C .4件都是次品D .至少有一件正品4、函数a ax x y +-=23在()1,0内有极小值,则实数a 的取值范围( )A 、()3,0B 、()3,∞-C 、()+∞,0D 、)23,0( 5.已知x 与y 之间的一组数据:x 0 1 2 3 ym35.57已求得关于y 与x 的线性回归方程y =2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7 D .0.56、已知函数()223a bx ax x x f +++=在1=x 处的极值为10,则()=2f ( )A 、11或18B 、11C 、18D 、17或187.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和 不小于10的概率为( )A .31 B .185 C .92 D .168.设函数f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f′(x )的图象可能是( )A .B .C .D .9.若,{1,0,1,2}a b ∈-,则函数2()2f x ax x b =++有零点的概率为( ) A .1316 B .78 C .34 D .5810、某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的的中位数大于乙运动员得分的的中位数 C .甲运动员的得分平均值大于乙运动员的得分平均值 D .甲运动员的成绩比乙运动员的成绩稳定11、已知定义在R 上的函数()f x 满足(2)1f =,且()f x 的导函数()1f x x '>-,则不等式21()12f x x x <-+的解集为( ) A .{}22x x -<< B .{}2x x > C .{}2x x < D .{|2x x <-或2}x >12、已知函数()c bx ax x x f +++=221323的两个极值分别为()1x f 和()2x f ,若1x 和2x 分别在区间()0,2-与()2,0内,则12--a b 的取值范围为( ) A 、)32,2(- B 、⎥⎦⎤⎢⎣⎡-32,2 C 、),32()2,(+∞⋃--∞ D 、),32[]2,(+∞⋃--∞二、填空题:13.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.41,摸出白球的概率是0.27,那么摸出黑球的概率是14.已知函数y=f (x )的图象在点M (1,f (1))处的切线方程是y= x+3,则:f (1)+f ′(1)= .15.若点P 是曲线y=x 2﹣lnx 上任意一点,则点P 到直线y=x ﹣2的最小距离为 16. 已知函数)(x f 是定义在R 上的偶函数,0)2(=f ,,0)()('02<->x x f x xf x 时,则不等式0)(<x xf 的解集__________三、解答题:17、(本小题满分10分)已知函数2()ln f x a x bx =-,,a b R ∈.若()f x 在1x =处与直线12y =-相切. (1)求b a ,的值;(2)求()f x 在1[,]e e上的极值.18. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1221,ni ii nii x y nx yb a y b x xnx∧∧∧==-==--∑∑)(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程$ˆy bx a =+$;(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤? 19.已知f (x )=e x ﹣ax ﹣1. (1)求f (x )的单调递增区间;(2)若f (x )在定义域R 内单调递增,求a 的取值范围.20.(本小题满分12分)在我校进行的选修课结业考试中,所有选修 “数学与逻辑”的同学都同时也选修了“阅读与表达”的课程,选修“阅读与表达”的同学都同时也选修了“数学与逻辑”的课程.选修课结业成绩分为A,B,C,D,E 五个等级. 某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人,(1)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(2)现在从“数学与逻辑”科目的成绩为A 和D 的考生中随机抽取两人,则求抽到的两名考生都是成绩为A 的考生的概率.21.某校有1400名考生参加市模拟考试,现采取分层抽样的方法从 文、理考生中分别抽取20份和50份数学试卷,进行成绩分析, 得到下面的成绩频数分布表:分数分组 [0,30) [30,60) [60,90) [90,120) [120,150] 文科频数 2 4 8 3 3 理科频数3712208(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线); (2)在试卷分析中,发现概念性失分非常严重,统计结果如下:文理失分 文理概念 15 30 其它520 问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)P ()2k K ≥ 0.5 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.22. (本小题满分12分)已知函数2ln )(x x a x f += (R a ∈) . (1)当4-=a 时,求函数)(x f 在[]1,e 上的最大值及相应的x 值; (2)当()e x ,1∈时,0)(≥x f 恒成立,求实数a 的取值范围数学答案一、选择题:BCDDD CDDAD CC 二、填空题:13. 0.32 14. 5 15 2 16 ()2,0(2,)-+∞U 三、解答题: 17、(1)'()2af x bx x=-. 由函数()f x 在1x =处与直线12y =-相切,得'(1)01(1)2f f ⎧=⎪⎨=-⎪⎩,即2012a b b -=⎧⎪⎨-=-⎪⎩,解得:112a b =⎧⎪⎨=⎪⎩. (2)由(1)得:21()ln 2f x x x =-,定义域为(0,)+∞. 此时,2'11()x f x x x x-=-=,令'()0f x >,解得01x <<,令'()0f x <,得1x >.所以()f x 在1(,1)e 上单调递增,在(1,)e 上单调递减, 所以()f x 在1[,]e e上的极大值为1(1)2f =-.无极小值。

18. (1)0.70.35y x ∧=+(2)19.6519解:(1)f ′(x )=e x ﹣a ,令f ′(x )≥0,解得e x ≥a .当a ≤0时,有f ′(x )>0在R 上恒成立,此时函数f (x )在R 上单调递增; 当a >0时,x ≥lna ,此时函数f (x )在[lna ,+∞)上单调递增. (2)f (x )在定义域R 内单调递增,∴f ′(x )=e x﹣a ≥0恒成立,即a ≤e x,x ∈R 恒成立. ∵x ∈R ,∴e x ∈(0,+∞),∴a ≤0. 当a=0时,f ′(x )=e x >0在R 上恒成立. 故当a ≤0时,f (x )在定义域R 内单调递增.20.解:(1)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人 ………2分 所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯= 人 ………4分(2)因为“数学与逻辑”科目中成绩等级为B 的考生有10人,所以该考场有100.2540÷=人,则成绩为A 的考生有400.0753⨯=人 …………6分 成绩为D 的考生有40(10.20.3750.250.075)4⨯----=人 …………8分 设成绩为A 的考生为a 、b 、c ,成绩为D 的考试为d 、e 、f 、g.随机抽取两人进行访谈,基本事件共有21个,分别为(a,b )(a,c)(a,d)(a,e)(a,f)(a,g)(b,c)(b,d)(b,e)(b,f)(b,g)(c,d)(c,e)(c,f)(c,g)(d,e)(d,f)(d,g)(e,f)(e,g)(f,g) 设事件N :抽到的两名考生都是成绩为A 的考生 则事件N 包含(a,b )(a,c)(b,c) 则31()217P N ==21.解: (1)∵1524547581053135376.520⨯+⨯+⨯+⨯+⨯=∴估计文科数学平均分为76.5. 5 ∴理科考生有560人及格.(2)(i )()22701520530 1.4 2.70620502545k ⨯⨯-⨯==<⨯⨯⨯, 故没有90%的把握认为概念失分与文、理考生的不同有关.22. 解:(1))0(42)(2>-='x xx x f ,当)2,1[∈x 时,0)(<'x f .当(]ex ,2∈时,0)(>'x f ,又014)1()(2>-+-=-e f e f ,故4)()(2max -==e e f x f ,当e x =时,取等号(2))当()e x ,1∈时,0ln >x ,0)(≥x f 恒成立,等价于x x a ln 2-≥()x g 设=xx ln 2-()e x ,1∈,xx x xx x x x x g 222ln )1ln 2(ln 1ln 2)(--=--='当()e x ,1∈时,0)(>'x g ,函数)(x g 递增,当),(e e x ∈时,0)(<'x g ,函数)(x g 递减 又e e g 2-)(=,所以e a 2-≥时,0)(≥x f 恒成立。

相关文档
最新文档