高三数学直线和圆练习
高考数学直线与圆的方程复习题及答案
高考数学直线与圆的方程复习题及参考答案:一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2009•重庆市高三联合诊断性考试)将直线l1:y=2x绕原点逆时针旋转60°得直线l2,则直线l2到直线l3:x+2y-3=0的角为 ( )A.30°B.60°C.120°D.150°答案:A解析:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=-1,l1⊥l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30°,选A.2.(2009•湖北荆州质检二)过点P(1,2),且方向向量v=(-1,1)的直线的方程为( )A.x-y-3=0B.x+y+3=0C.x+y-3=0D.x-y+3=0答案:C解析:方向向量为v=(-1,1),则直线的斜率为-1,直线方程为y-2=-(x-1)即x+y-3=0,故选C.3.(2009•东城3月)设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程x-y+1=0,则直线PB的方程为 ( )A.2x+y-7=0B.2x-y-1=0C.x-2y+4=0D.x+y-5=0答案:D解析:因kPA=1,则kPB=-1,又A(-1,0),点P的横坐标为2,则B(5,0),直线PB的方程为x+y-5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x轴上的截距为 ( )A.-32B.32C.3D.-3答案:A解析:由两点式,得y-31-3=x-0-1-0,即2x-y+3=0,令y=0,得x=-32,即在x轴上的截距为-32.5.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值是 ( )A.3B.0C.-1D.0或-1答案:D解析:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,-1a2=-a-23a,∴a=-1或a=3.而当a=3时,两直线重合,∴a=0或-1.6.两直线2x-my+4=0和2mx+3y-6=0的交点在第二象限,则m的取值范围是( )A.-32≤m≤2B.-32C.-32≤m<2D.-32答案:B解析:由2x-my+4=0,2mx+3y-6=0,解得两直线的交点坐标为(3m-6m2+3,4m+6m2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m-6m2+3<0且4m+6m2+3>0⇒-327.(2009•福建,9)在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为 ( )A.-5B.1C.2D.3答案:D解析:不等式组x+y-1≥0,x-1≤0,ax-y+1≥0所围成的区域如图所示.∵其面积为2,∴|AC|=4,∴C的坐标为(1,4),代入ax-y+1=0,得a=3.故选D.8.(2009•陕西,4)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为( )A.3B.2C.6D.23答案:D解析:∵直线的方程为y=3x,圆心为(0,2),半径r=2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=23.故选D.9.(2009•西城4月,6)与直线x-y-4=0和圆x2+y2+2x-2y=0都相切的半径最小的圆的方程是 ( )A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D.(x-1)2+(y+1)=4答案:C解析:圆x2+y2+2x-2y=0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x-y-4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,圆心(-1,1)到直线x-y-4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009•安阳,6)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA→+OB→|=|OA→-OB→|,其中O为原点,则实数a的值为 ( )A.2B.-2C.2或-2D.6或-6答案:C解析:由|OA→+OB→|=|OA→-OB→|得|OA→+OB→|2=|OA→-OB→|2,OA→•OB→=0,OA→⊥OB→,三角形AOB为等腰直角三角形,圆心到直线的距离为2,即|a|2=2,a=±2,故选C.11.(2009•河南实验中学3月)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是 ( )A.点在圆上B.点在圆内C.点在圆外D.不能确定答案:C解析:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则1a2+b2<1,a2+b2>1,点P(a,b)在圆C外部,故选C.12.(2010•保定市高三摸底考试)从原点向圆x2+(y-6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2C.arccos79D.arcsin229答案:C解析:如图,sin∠AOB=26=13,cos∠BOC=cos2∠AOB=1-2sin2∠AOB=1-29=79,∴∠BOC=arccos79,故选C.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
高考数学专题《直线与圆的位置关系》习题含答案解析
专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。
2020届高三文科数学总复习习题:9.1直线方程与圆的方程
A.-1
B.-2
C.-1 或 2
D.1 或 -2
答案 B 3.(2018 浙江金华模拟 ,4) 过点 (-10,10) 且在 x 轴上的截距是在 y 轴上截距的 4 倍的直线的方程为 ( )
A.x-y=0
B.x+4y-30=0
C.x+y=0 或 x+4y-30=0 D.x+y=0 或 x-4y-30=0
为
.
答案 4x-3y+9=0
和 x-3y+4=0 的交点 ,并且垂直于直线 3x+4y-7=0 的直线方程
方法 3 求圆的方程的方法
1.(2019 届广东七校 9 月联考 ,7) 以(a,1) 为圆心 ,且与两条直线 2x-y+4=0 与 2x-y-6=0 同时相切的圆的标准方程为 ( )
A.(x-1) 2+(y-1) 2=5
求直线的斜率及倾斜角范围的方法
1.(2019 届湖南长沙长郡中学 9 月月考 ,5) 已知点 (-1,2) 和
在直线 l:ax-y+1=0(a ≠ 0) 的同侧 ,则直线 l 的倾斜角的取值范围为
()
A.
B.
∪
C.
D.
答案 D 2.若直线 l:y=kx-3 与直线 2x+3y-6=0 的交点位于第一象限 ,则直线 l 的倾斜角的取值范围是 ( )
A.
B.
C.
D.
答案 C 3.直线 l 过点 A(1,2), 且不经过第四象限 ,则直线 l 的斜率的取值范围为 ( )
A.
B.[0,1]
C.[0,2]
D.
答案 C
方法 2 求直线方程的方法
1.(2018 天津学业考试 ,5) 平行于直线 l:x+2y-3=0, 且与 l 的距离为 2 的直线的方程为 ( )
高中数学选修一第二章 直线和圆的方程 章末测试(解析版)
第二章 直线和圆的方程章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1C .0D .1【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1C .-1D .1或-1【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( )A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=,故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B. 4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.(2020·黑龙江高一期末)若曲线y y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( )A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =,由图可知, ()3401422k -<≤=--,故选:A 6.(2020·浙江柯城。
专题12直线和圆(新高考地区专用)-2021届高三《新题速递·数学》(适用于高考复习)(解析版)
专题12直线和圆姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2020·河北省尚义县第一中学高二期中)直线)12y x +=-的倾斜角为( )A .30°B .120°C .60°D .150°2.(2020·福建高二期中)已知直线MN 的斜率为4,其中点()1,1N -,点M 在直线1y x =+上,则点M 的坐标为( )A .(2,3)B .(4,5)C .(2,1)D .(5,7)3.(2020·吕梁市贺昌中学高二期中)已知直线(2)a x -+1ay -=0与直线2x +3y +5=0平行,a 的值为( )A .-6B .6C .45-D .454.(2020·福建高二期中)两直线1:3260l x y --=,2:3280l x y -+=,则直线1l 关于直线2l 对称的直线方程为( )A .32240x y -+=B .32100x y --=C .32200x y --=D .32220x y -+=5.(2020·安徽宣城·高二期中(文))已知圆C 的方程为222610x y x y +-++=,点P 在圆C 上,O 是坐标原点,则||OP 的最小值为( )A .3B 3C .3-D .26.(2020·湖南高二期中)直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( )A .9B .4C .12D .147.(2020·安徽宿州·高二期中(理))若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .C D .8.(2018·安庆市第七中学高二期中(理))设点(3,4)M 在圆222(0)x y r r +=>外,若圆O 上存在点N ,使得3OMN π∠=,则实数r 的取值范围是( )A .5[,)2+∞ B .[,)2+∞ C .[2 D .5[,5)2二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·重庆市万州第二高级中学高二月考)下列说法正确的有( )A .若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B .直线32y ax a =-+过定点()32,C .过点()21-,斜率为的点斜式方程为)12y x +=-D .斜率为2-,在y 轴截距为3的直线方程为23y x =-±.10.(2020·湖南湘潭一中高二期末)已知直线l :(2)10mx m y m --+-=,圆C :22(1)1x y -+=,则下列结论中正确的是( )A .存在m 的一个值,使直线l 经过圆心CB .无论m 为何值时,直线l 与圆C 一定有两个公共点C .圆心C 到直线l 的最大距离是22D .当1m =时,圆C 关于直线l 对称的圆的方程为22(1)1y x +-=.11.(2020·河北承德第一中学高二月考)圆221:(2cos )(2sin )1C x y θθ-+-=与圆222:1C x y +=,下列说法正确的是( )A .对于任意的θ,圆1C 与圆2C 始终相切B .对于任意的θ,圆1C 与圆2C 始终有四条公切线C .当6πθ=时,圆1C 被直线310l x y --=3D .P ,Q 分别为圆1C 与圆2C 上的动点,则PQ 的最大值为412.(2020·山东高二期中)古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(1λ≠)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知()4,2A -,()2,2B ,点P 满足2PAPB =,设点P 的轨迹为圆C ,下列结论正确的是( )A .圆C 的方程是()()224216x y -+-=B .过点A 向圆C 引切线,两条切线的夹角为3π C .过点A 作直线l ,若圆C 上恰有三个点到直线l 距离为2,该直线斜率为155±D .在直线2y =上存在异于A ,B 的两点D ,E ,使得2PD PE= 三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·上海黄浦·格致中学高三期中)如果直线l 将圆:22240x y x y +--=平分,且不经过第四象限,则l 的斜率取值范围是_________.14.(2020·内蒙古包头一中高二期中(文))已知M ,N 是圆22:20A x y x +-=与圆22:240B x y x y ++-=的公共点,则线段MN 的长度为______.15.(2020·淮南第一中学高二期中(理))已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.16.(2020·浙江诸暨中学高二期中)已知直线:l 10mx y m -+-=,则此直线必过定点_________;设直线l 与圆22:(1)5C x y +-=交于,A B 两点,则弦AB 的中点M 的轨迹方程为____________四、解答题(本大题共6小题,共70分)17.(2020·上海徐汇·南洋中学高二期中)已知圆C 的圆心在直线2x -y -3=0上,且圆C 过点(1,6),(5,2). (1)求圆C 的标准方程;(2)过点P (3,2)的直线l 与圆C 交于A 、B 两点,当|AB |=6时,求直线l 的方程.18.(2020·重庆市江津中学校高二月考)已知圆C :()2234x y -+=,直线l :()()13130+--+-=m x m y m .(1)求直线l 所过定点A 的坐标及当直线l 被圆C 所截得的弦长最短时m 的值;(2)已知点()3,3M ,在直线MC 上存在定点N (异于点M ),满足对圆C 上任一点P 都有PM PN为常数,试求所有满足条件的点N 坐标及该常数. 19.(2020·福建高二期中)已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P .(1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.20.(2020·浙江台州·高二期中)已知直线20x y -+=和圆22:8120C x y x +-+=,过直线上的一点()00,P x y 作两条直线PA ,PB 与圆C 相切于A ,B 两点.(1)当P 点坐标为()2,4时,求以PC 为直径的圆的方程,并求直线AB 的方程;(2)设切线PA 与PB 的斜率分别为1k ,2k ,且127k k ⋅=-时,求点P 的坐标.21.(2020·山东高二期中)已知点A ,B 关于原点O 对称,点A 在直线0x y +=上,2AB =,圆M 过点A ,B 且与直线10x +=相切,设圆心M 的横坐标为a .(1)求圆M 的半径;(2)已知点()0,1P ,当2a <时,作直线l 与圆M 相交于不同的两点M ,N ,已知直线l 不经过点P ,且直线PM ,PN 斜率之和为1-,求证:直线l 恒过定点.22.(2020·四川高二期中(理))已知圆C :22(3)(4)16x y ++-=,直线l :(21)(2)340()m x m y m m R ++---=∈.(1)若圆C 截直线l 所得弦AB 的长为m 的值;(2)若0m >,直线l 与圆C 相离,在直线l 上有一动点P ,过P 作圆C 的两条切线PM ,PN ,切点分别13 45.求m的值,并证明直线MN经过定点.为M,N,且cos MPN的最小值为。
0809高三数学理第14周晚练(081202)---直线与圆1
0809高三数学(理)第14周晚练(081202)---直线与圆1班级:________姓名:______________座号:_______ 评分:一、选择题:(每小题8分) 1.下列说法正确的有( )①若两直线斜率相等,则两直线平行; ②若12//l l ,则k 1=k 2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交 ④若两直线斜率都不存在,则两直线平行。
A 、1个B 、2个C 、3个D 、4个2.直线1l ,2l 的斜率是方程2310x x --=的两根,则1l 与2l 的位置关系是( ) A 、平行 B 、重合 C 、相交但不垂直 D 、垂直3.如果00<<BC AC 且,那么直线0=++C By Ax 不通过( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限4.直线)(01cos R y x ∈=-+θθ的倾斜角的范围是( )A.[)π,0B.⎥⎦⎤⎢⎣⎡43,4ππC. ⎥⎦⎤⎢⎣⎡-4,4ππ D ⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,0 5.已经点)1,3(-P ,点Q 在y 轴上,若直线PQ 的倾斜角为 120,则Q 点的坐标为( )A .(0,2) B.(0,-2) C.(2,0) D.(-2,0)6.若点(4,a)到直线4x -3y = 1的距离不大于3,则a 的取值范围是( )A 、[0,10]B 、(0,10)C 、]133,131[ D 、),10[]0,(+∞-∞7.m ,n ∈R ,直线0)2()3(=-++-n y n m x n m 过定点( )A 、(-1,3)B 、)23,21(-C 、)53,51(-D 、)73,71(-二、填空题:(每小题8分)8、若直线1:260l ax y ++=与直线22:(1)10l x a y a +-+-=,则12//l l 时, a =12l l ⊥时,a =9.已知点(3,1)和(-4,6)分别在直线320x y a -+=的两侧,则a 的取值范围是____________10.已知△ABC 中A )1,4(-,B )3,2(-,C )1,3(,则△ABC 的垂心是 .三、解答题(20分)11、(1)求经过点(1,2),且倾斜角等于直线250x y --=的倾斜角的2倍的直线方程(2)求经过直线1:250l x y +-=与直线2:3240l x y --=的交点且和原点的距离为2的直线方程0809高三数学(理)第14周晚练(081202)---直线与圆1答案:一、选择题:ADCDB AD二、填空题:8、-1 32 9、-7<a<24 10、)34,316(-三、解答题:11(1)43100x y +-= (2)34100x y +-=或2=x。
(完整版)直线与圆的位置关系练习题
精品word完整版-行业资料分享专项训练:直线与圆的位置关系一、单选题1.直线截圆所得的弦长为A.B.C.D.2.直线与圆的位置关系是A.相切B.相交但不过圆心C.相交且过圆心D.相离3.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是A.B.C.D.4.若直线:与圆:相切,则直线与圆:的位置关系是A.相交B.相切C.相离D.不确定5.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是( )A.B.C.D.6.“”是直线与圆相切的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知集合,集合,若的概率为1,则的取值范围是()A.B.C.D.8.已知圆,直线,在上随机选取一个数,则直线与圆有公共点的概率为A.B.C.D.9.已知直线l:y=x+m与曲线y=有两个公共点,则实数m的取值范围是A.(-2,2)B.(-1,1)C.[1,)D.(-,)10.设圆x2+y2+2x+2y-5=0与x轴交于A,B两点,则|AB|的长是A .B . 2C . 2D . 311.圆与圆都关于直线对称,则圆C 与y 轴交点坐标为 A .B .C .D .12.(贵州省凯里市第一中学2018届高三下学期《黄金卷》第二套模拟考试)直线和圆的位置关系是A . 相交且过圆心B . 相交但不过圆心C . 相离D . 相切13.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为 A . (-,) B . [-,]C . (-,)D . [-,]14.(陕西省西安市八校2018届高三上学期第一次联考)若过点的直线与曲线有公共点,则直线斜率的取值范围为 A . B .C .D .15.(题文)若在区间上随机取一个数,则“直线与圆相交”的概率为A .B .C .D .16.动圆C 经过点,并且与直线相切,若动圆C 与直线总有公共点,则圆C的面积为( ) A . 有最大值B . 有最小值C . 有最小值D . 有最小值17.已知直线:与圆相交于两点,是线段的中点,则点到直线的距离的最大值为A . 2B . 3C . 4D . 518.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若,则k 的取值范围是( ).A .B . (-∞,]∪[0,+∞)C .D .19.已知直线0x y m -+=与圆22:1O x y +=相交于,A B 两点,且OAB ∆为正三角形,则实数m 的值精品word 完整版-行业资料分享为( ) A .32 B . 62 C . 32或32- D . 62或62- 20.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( ) A . []0,1 B . []1,1- C . 22,22⎡⎤-⎢⎥⎣⎦D . 20,2⎡⎤⎢⎥⎣⎦21.从直线30x y -+=上的点向圆224470x y x y +--+=引切线,则切线长的最小值( )A .322B . 142C . 324D .3212- 22.已知圆22()4x a y -+=截直线4y x =-所得的弦的长度为22,则a 等于 A .2 B .6 C .2或6 D .22 23.直线被圆所截得的最短弦长等于( ) A .B .C .D .24.过原点且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为( ) A . 23 B . 2 C . 6 D . 325.过点且被圆截得弦长最长的直线的方程为( ).A .B .C .D .26.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A . 3x +y -5=0B . x -2y =0C . x -2y +4=0D . 2x +y -3=027.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程为( ) A . x +y -2=0 B . x -y +2=0 C . x +y -3=0 D . x -y +3=028.经过圆22220x y x y +-+=的圆心且与直线20x y -=平行的直线方程是( ) A .230x y --= B .210x y --= C .230x y -+= D .210x y ++=二、填空题29.经过A (0,-1)和直线x +y =1相切,且圆心在直线y =-2x 上的圆的方程是______. 30.圆心为()1,0,且与直线1y x =+相切的圆的方程是____. 31.设(x -3)2+(y -3)2=6,则yx的最大值为________. 32.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是________.三、解答题33.已知圆C :x 2+y 2+2x -4y +3=0,(1)若圆C 的切线l 在x 轴、y 轴上的截距相等,求切线l 的方程; (2)若点是圆C 上的动点,求的取值范围.34.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.精品word完整版-行业资料分享参考答案1.D【解析】【分析】由题意,求得圆的圆心坐标和半径,利用圆的弦长公式,即可求解.【详解】由题意圆的方程,可知圆心,半径,则圆心到直线的距离为,所以弦长为,故选D.【点睛】本题主要考查了圆的弦长公式应用,其中解答中熟记直线与圆的位置关系和直线与圆的弦长公式是解答的关键,着重考查了推理与运算能力,属于基础题.2.B【解析】【分析】由条件求得圆心到直线2x+y-5=0的距离小于半径,可得直线和圆相交.【详解】圆(x-1)2+(y+2)2=6的圆心为(1,-2)、半径为,圆心到直线2x+y-5=0的距离为,小于半径,故直线和圆相交,故答案为:相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.3.A【解析】【分析】把圆的方程化为标准方程,找出圆心坐标和半径,由已知圆关于直线2ax-by+2=0对称,得到圆心在直线上,故把圆心坐标代入已知直线方程得到a与b的关系式,由a表示出b,设m=ab,将表示出的b代入ab中,得到m关于a的二次函数关系式,由二次函数求最大值的方法即可求出m的最大值,即为ab的最大值,即可写出ab的取值范围.【详解】把圆的方程化为标准方程得:(x+1)2+(y-2)2=4,∴圆心坐标为(-1,2),半径r=2,根据题意可知:圆心在已知直线2ax-by+2=0上,把圆心坐标代入直线方程得:-2a-2b+2=0,即b=1-a,则设m=ab=a(1-a)=-a2+a,∴当时,m有最大值,最大值为,即ab的最大值为,则ab的取值范围是.故选:A.【点睛】此题考查了直线与圆相交的性质,以及二次函数的性质.根据题意得到圆心在已知直线上是解本题的关键.4.A【解析】【分析】直线与圆相切转化为圆心到直线的距离等于半径,求出斜率,再根据圆的圆心到直线的距离,判断其与直线的关系.【详解】因为直线:与圆:相切,所以,解得,因为,所以,所以的直线方程为,圆D的圆心到直线的距离,所以直线与圆相交,故选A.【点睛】本题考查了直线与圆的位置关系及点到直线的距离,属于中档题. 判定直线与圆的位置关系可以联立方程组,利用方程组的解的个数判断位置关系,也可以转化为判断圆心到直线的距离与半径的大小关系来确定直线与圆位置关系.5.B精品word完整版-行业资料分享【解析】【分析】先求出圆心和半径,比较半径和;要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,用圆心到直线的距离公式,可求得结果.【详解】圆x2+y2﹣4x﹣4y﹣10=0整理为,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,∴,∴,∴,,∴,直线l的倾斜角的取值范围是,故选:B.【点睛】本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.6.C【解析】【分析】由圆的方程得到圆心坐标和半径,使得圆心到直线的距离等于圆的半径,得到的值,即可得到结论.【详解】由圆,可得圆心为,半径.∵直线与圆相切,∴,∴,∴“”是直线与圆相切的充要条件,故选C.【点睛】本题主要考查了充要条件的判定及应用,其中解答中涉及到直线与圆的位置关系的判定及应用,以及充要条件的判定,其中熟记直线与圆的位置关系的判定方法是解答的关键,着重考查了分析问题和解答问题的能力.7.B【解析】【分析】A表示圆上的点,B表示直线直线上的点,要使A∩B≠Φ的概率为1,则直线与圆必然有交点,利用圆心到直线的距离小于或等于半径即可求得a的取值范围【详解】A表示圆x2+y2=1上的点,圆心为(0,0),半径为1,B表示直线x+y+a=0上的点要使A∩B≠Φ的概率为1,则直线与圆必然相交,即圆心到直线的距离小于等于圆的半径:故有:d=≤1,解得:,故选:B.【点睛】本题考查了集合中的一种类型——点集,通常与平面几何相联系,从集合间的关系转化为直线与圆的位置关系,关键是理解A∩B≠Φ的概率为1与直线与圆必然相交的关系.8.C【解析】【分析】由有公共点这一条件,判断出直线和圆的位置关系,进而求得k的取值范围;由几何概型概率求解方法,可求得有公共点的概率值。
高三数学解析几何练习及答案解析
高三数学解析几何练习及答案解析1.圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,那么D与E的关系是()A.D+E=2 B.D+E=1C.D+E=-1 D.D+E=-2[来X k b 1 . c o m解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2.2.以线段AB:x+y-2=0(02)为直径的圆的方程为()A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8解析 B 直径的两端点为(0,2),(2,0),圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2.3.F1、F2是椭圆x24+y2=1的两个焦点,P为椭圆上一动点,那么使|PF1||PF2|取最大值的点P为()A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1)解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,|PF1||PF2||PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”.4.椭圆x216 +y225=1的焦点分别是F1、F2,P是椭圆上一点,假设连接F1、F2、P三点恰好能构成直角三角形,那么点P到y轴的间隔是()A.165 B.3 C.163 D.253解析 A 椭圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得F1PF22,PF1F2=2或PF2F1=2,点P到y轴的间隔d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,应选A.5.假设曲线y=x2的一条切线l与直线x+4y-8=0垂直,那么l的方程为()A.4x+y+4=0 B.x-4y-4=0C.4x-y-12=0 D.4x-y-4=0解析 D 设切点为(x0,y0),那么y|x=x0=2x0, 2x0=4,即x0=2,切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0.6.“m0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+y21n=1,假设焦点在y轴上,那么1n0,即m0.7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,那么双曲线的离心率为()A.54 B.5 C.52 D.5解析 D 双曲线的渐近线为y=bax,由对称性,只要与一条渐近线有一个公共点即可由y=x2+1,y=bax,得x2-bax+1=0.=b2a2-4=0,即b2=4a2,e=5.8.P为椭圆x24+y23=1上一点,F1、F2为该椭圆的两个焦点,假设F1PF2=60,那么PF1PF2=()A.3 B.3C.23 D.2解析D ∵S△PF1F2=b2tan602=3tan 30=3=12|PF1||PF2|sin 60,|PF1||PF2|=4,PF1PF2=412=2.9.设椭圆x2m2+y2n2=1(m0,n0)的右焦点与抛物线y2=8x 的焦点相同,离心率为12,那么此椭圆的方程为()A.x212+y216=1B.x216+y212=1C.x248+y264=1D.x264+y248=1解析 B 抛物线的焦点为(2,0),由题意得c=2,cm=12,m=4,n2=12,方程为x216+y212=1.10.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,那么C的离心率为()A.2B.3C.2 D.3解析 B 设双曲线C的方程为x2a2-y2b2=1,焦点F(-c,0),将x=-c代入x2a2-y2b2=1可得y2=b4a2,|AB|=2b2a=22a,b2=2a2,c2=a2+b2=3a2,e=ca=3.11.抛物线y2=4x的准线过双曲线x2a2-y2b2=1(a0,b0)的左顶点,且此双曲线的一条渐近线方程为y=2x,那么双曲线的焦距为()A.5 B.25C.3 D.23解析B ∵抛物线y2=4x的准线x=-1过双曲线x2a2-y2b2=1(a0,b0)的左顶点,a=1,双曲线的渐近线方程为y=bax=bx.∵双曲线的一条渐近线方程为y=2x,b=2,c=a2+b2=5,双曲线的焦距为25.12.抛物线y2=2px(p0)上一点M(1,m)(m0)到其焦点的间隔为5,双曲线x2a-y2=1的左顶点为 A,假设双曲线的一条渐近线与直线AM平行,那么实数a的值为()A.19B.14C.13D.12解析 A 由于M(1,m)在抛物线上,m2=2p,而M到抛物线的焦点的间隔为5,根据抛物线的定义知点M到抛物线的准线x=-p2的间隔也为5,1+p2=5,p=8,由此可以求得m=4,双曲线的左顶点为A(-a,0),kAM=41+a,而双曲线的渐近线方程为y=xa,根据题意得,41+a=1a,a=19.13.直线l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(aR),那么l1l2的充要条件是a=.解析 l1l2a2a-1=-1,解得a=13.【答案】 1314.直线l:y=k(x+3)与圆O:x2+y2=4交于A,B两点,|AB|=22,那么实数k=.解析∵|AB|=22,圆O半径为2,O到l的间隔d=22-2=2.即|3k|k2+1=2,解得k= 147.【答案】 14715.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,那么线段的长为.解析如图,圆的方程可化为(x-3)2+(y-4)2=5,|OM|=5,|OQ|=25-5=25.在△OQM中,12|QA||OM|=12|OQ||QM|,|AQ|=2555=2,||=4.【答案】 416.在△ABC中,|BC|=4,△ABC的内切圆切BC于D点,且|BD|-|CD|=22,那么顶点A的轨迹方程为.解析以BC的中点为原点,中垂线为y轴建立如下图的坐标系,E、F分别为两个切点.那么|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.|AB|-|AC|=22,点A的轨迹为以B,C为焦点的双曲线的右支(y0),且a=2,c =2,b=2,方程为x22-y22=1(x2).【答案】 x22-y22=1(x2)17.(10分)在平面直角坐标系中,圆心在直线y=x+4上,半径为22的圆C经过原点O.(1)求圆C的方程;(2)求经过点(0,2)且被圆C所截得弦长为4的直线方程.解析 (1)设圆心为(a,b),那么b=a+4,a2+b2=22,解得a=-2,b=2,故圆的方程为(x+2)2+(y-2)2=8.(2)当斜率不存在时,x=0,与圆的两个交点为(0,4),(0,0),那么弦长为4,符合题意;当斜率存在时,设直线为y-2=kx,那么由题意得,8=4+-2k1+k22,无解.综上,直线方程为x=0.18.(12分)(xx合肥一模)椭圆的两个焦点坐标分别为F1(-3,0)和F2(3,0),且椭圆过点1,-32.(1)求椭圆方程;(2)过点-65,0作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断MAN的大小是否为定值,并说明理由.解析 (1)设椭圆方程为x2a2+y2b2=1(a0),由c=3,椭圆过点1,-32可得a2-b2=3,1a2+34b2=1,解得a2=4,b2=1,所以可得椭圆方程为x24+y2=1.(2)由题意可设直线MN的方程为:x=ky-65,联立直线MN和椭圆的方程:x=ky-65,x24+y2=1,化简得(k2+4)y2-125ky-6425=0.设M(x1,y1),N(x2,y2),那么y1y2=-6425k2+4,y1+y2=12k5k2+4,又A(-2,0),那么AMAN=(x1+2,y1)(x2+2,y2)=(k2+1)y1y2+45k(y1+y2)+1625=0,所以MAN=2.19.(12分)椭圆C的中心为直角坐标系xOy的原点,焦点在x 轴上,它的一个顶点到两个焦点的间隔分别为7和1.(1)求椭圆C的方程;(2)假设P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,|OP||OM|=e(e为椭圆离心率),求点M的轨迹方程,并说明轨迹是曲线.解析 (1)设椭圆长半轴长及半焦距分别为a,c,由,得a-c=1,a+c=7,解得a=4,c=3.椭圆方程为x216+y27=1.(2)设M(x,y),P(x,y1),其中x[-4,4],由得x2+y21x2+y2=e2,而e=34,故16(x2+y21)=9(x2+y2),①由点P在椭圆C上,得y21=112-7x216,代入①式并化简,得9y2=112.点M的轨迹方程为y=473(-44),轨迹是两条平行于x轴的线段.20.(12分)给定抛物线y2=2x,设A(a,0),a0,P是抛物线上的一点,且|PA|=d,试求d的最小值.解析设P(x0,y0)(x00),那么y20=2x0,d=|PA|=x0-a2+y20=x0-a2+2x0=[x0+1-a]2+2a-1.∵a0,x00,(1)当01时,1-a0,此时有x0=0时,dmin=1-a2+2a-1=a;(2)当a1时,1-a0,此时有x0=a-1时,dmin=2a-1.21.(12分)双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为2,且过点(4,-10),点M(3,m)在双曲线上.(1)求双曲线方程;(2)求证:点M在以F1F2为直径的圆上;(3)求△F1MF2的面积.解析(1)∵双曲线离心率e=2,设所求双曲线方程为x2-y2=(0),那么由点(4,-10)在双曲线上,知=42-(-10)2=6,双曲线方程为x2-y2=6.(2)假设点M(3,m)在双曲线上,那么32-m2=6,m2=3,由双曲线x2-y2=6知F1(23,0),F2(-23,0),MF1MF2=(23-3,-m)(-23- 3,-m)=m2-3=0,MF1MF2,故点M在以F1F2为直径的圆上.(3)S△F1MF2=12|F1F2||m|=233=6.22.(12分)实数m1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为-1m2.(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;(2)当m=2时,问t取何值时,直线l:2x-y+t=0(t0)与曲线C有且只有一个交点?(3)在(2)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的间隔与到直线x=2的间隔之比的最小值等于曲线C的离心率.解析 (1)设S(x,y),那么kSA=y-0x+m,kSB=y-0x-m.由题意,得y2x2-m2=-1m2,即x2m2+y2=1(xm).∵m1,轨迹C是中心在坐标原点,焦点在x轴上的椭圆(除去x轴上的两顶点),其中长轴长为2m,短轴长为2.(2)当m=2时,曲线C的方程为x22+y2=1(x2).由2x-y+t=0,x22+y2=1,消去y,得9x2+8tx+2t2-2=0.令=64t2-362(t2-1)=0,得t=3.∵t0,t=3.此时直线l与曲线C有且只有一个公共点.(3)由(2)知直线l的方程为2x-y+3=0,设点P(a,2a+3)(a2),d1表示P到点(1,0)的间隔,d2表示P 到直线x=2的间隔,那么d1=a-12+2a+32=5a2+10a+10,d2=2-a,d1d2=5a2+10a+102-a=5a2+2a+2a-22.令f(a)=a2+2a+2a-22,那么f(a)=2a+2a-22-2a2+2a+2a-2a-24=-6a+8a-23.令f(a)=0,得a=-43.∵当a-43时,f(a)0;当-432时,f(a)0.f(a)在a=-43时取得最小值,即d1d2取得最小值,d1d2min=5f-43=22,又椭圆的离心率为22,d1d2的最小值等于椭圆的离心率.。
高三数学《直线与圆》专题测试题含答案
高三数学《直线与圆》专题测试题含答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0 D .x -3y -4=03.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C.3D .24.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条5.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 6.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0C .x +y +1=0 D .x +y =07.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.438.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=59.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]10.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .26B .4 C.6D .211.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离12.已知两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49第Ⅱ卷(非选择题 共90分)二、填空题:本大题共四小题,每小题5分。
历年高三数学高考考点之直线与圆必会题型及答案
历年高三数学高考考点之<直线与圆>必会题型及答案体验高考1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x +y +5=0或2x +y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题意有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( ) A.26B.8C.46D.10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.3.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k , 则反射光线所在直线的方程为y +3=k (x -2), 即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.4.已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为______. 答案255解析 d =|1+1|22+12=255. 5.已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( ) A.2x +y -3=0 B.x -2y +1=0 C.x +2y -3=0 D.2x -y -1=0答案 D解析 由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,∠B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程. 解 设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,∴B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0,y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴y -57-5=x -101-10,故BC 边所在直线的方程是2x +9y -65=0. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2, 故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2,则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0.题型二 圆的方程例2 (1)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝ ⎛⎭⎪⎫|AB |22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切. ①求圆C 的方程;②求以圆C 内一点B ⎝ ⎛⎭⎪⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧(2-a )2+(-1-b )2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎨⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2), 则k CB =-52-(-2)2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2. 故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0.点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A.2B.42C.6D.210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 ①圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. ②假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0,故所求的直线m 存在,方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45B.25C.255 D.105 答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|1+22=255, 所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A.32B.22C.33D.4 2 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.5.与圆x 2+y 2=1和圆x 2+y 2-8x +7=0都相切的圆的圆心轨迹是( ) A.椭圆B.椭圆和双曲线的一支C.双曲线和一条直线(去掉几个点)D.双曲线的一支和一条直线(去掉几个点) 答案 D解析 设所求圆圆心为M (x ,y ),半径为r , 圆x 2+y 2-8x +7=0⇒(x -4)2+y 2=9,圆心设为C (4,0),由题意得当动圆与两定圆外切时, 即|MO |=r +1,|MC |=r +3,从而|MC |-|MO |=2<|OC |, 因此为双曲线的一支,当动圆与两定圆一个外切一个内切时, 必切于两定圆切点,即M 必在x 轴上, 但需去掉O ,C 及两定圆切点,因此选D.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.43 答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233,其到原点的距离为12+⎝ ⎛⎭⎪⎫2332=213.故选B.7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________. 答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆, 设过点(-2,0)的直线的斜率为k , 则直线方程为y =k (x +2), 则点到直线距离等于圆的半径1, 有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24, 然后可知此时有一个交点,那么当满足题意的时候, 可知斜率的取值范围是(-24,24),故答案为(-24,24). 11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1,得4-73<k <4+73.(2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,∴4k (1+k )1+k 2=4,解得k =1.12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m 2+1=1,∴m =-43或0,∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA | =|MQ |2-|MA |2=|MQ |2-1 ≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝ ⎛⎭⎪⎫2232=13.在Rt △MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |,∴|MQ |=3.设Q (x ,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.。
高三数学专题训练-圆的方程及直线与圆、圆与圆的位置关系
高三数学专题练习29 圆的方程及直线与圆、圆与圆的位置关系小题基础练○29一、选择题1.方程|2-x |=2y -y 2表示的曲线是( )A .一个圆B .两个半圆C .两个圆D .半圆答案:A解析:由方程|2-x |=2y -y 2(0≤y ≤2),两边平方得|2-x |2=(2y -y 2)2,即(x -2)2=2y -y 2,配方得(x -2)2+(y -1)2=1,所以方程表示的曲线为一个圆,故选A.2.[2019·湖北七校联考]已知a >1,过P (a,0)作⊙O :x 2+y 2=1的两条切线P A ,PB ,其中A ,B 为切点,则经过P ,A ,B 三点的圆的半径为( ) A.2a -12 B.a +12C .a D.a 2答案:D解析:经过P ,A ,B 三点的圆为以OP 为直径的圆,所以半径为a 2,故选D.3.圆心为(1,1)且过原点的圆的方程是( )A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y +1)2=2D .(x -1)2+(y -1)2=2答案:D解析:因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.故选D.4.已知圆C :x 2+y 2-2x -2my +m 2-3=0关于直线l :x -y +1=0对称,则直线x =-1与圆C 的位置关系是( )A .相切B .相交C .相离D .不能确定答案:A解析:由已知得C :(x -1)2+(y -m )2=4,即圆心C (1,m ),半径r =2,因为圆C 关于直线l :x -y +1=0对称,所以圆心(1,m )在直线l :x -y +1=0上,所以m =2.由圆心C (1,2)到直线x =-1的距离d =1+1=2=r 知,直线x =-1与圆心相切.故选A.5.[2019·贵阳监测]经过三点A (-1,0),B (3,0),C (1,2)的圆与y 轴交于M ,N 两点,则|MN |=________.( )A .2 3B .2 2C .3D .4答案:A解析:根据A ,B 两点的坐标特征可知圆心在直线x =1上,设圆心为P (1,m ),则半径r =|m -2|,所以(m -2)2=22+m 2,解得m =0,所以圆心为P (1,0),所以圆的方程为(x -1)2+y 2=4,当x =0时,y =±3,所以|MN |=2 3.故选A.6.[2019·西安八校联考]若过点A (3,0)的直线l 与曲线(x -1)2+y 2=1有公共点,则直线l 斜率的取值范围为( )A .(-3,3)B .[-3,3]C.⎝ ⎛⎭⎪⎫-33,33D.⎣⎢⎡⎦⎥⎤-33,33 答案:D 解析:数形结合可知,直线l 的斜率存在,设直线l 的方程为y =k (x -3),则圆心(1,0)到直线y =k (x -3)的距离应小于等于半径1,即|2k |1+k2≤1,解得-33≤k ≤33,故选D. 7.已知直线y =kx +3与圆x 2+y 2-6x -4y +5=0相交于M ,N 两点,若|MN |=23,则k 的值是( )A .1或 2B .1或-1C .-2或12 D.2或12答案:C解析:由已知得圆的标准方程为(x -3)2+(y -2)2=8,则该圆的圆心为(3,2),半径为2 2.设圆心到直线y =kx +3的距离为d ,则23=28-d 2,解得d =5,即|3k -2+3|1+k2=5,解得k =-2或12.故选C.8.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3),则n -3m +2的最大值为( ) A .3+ 2 B .1+ 2C .1+ 3D .2+ 3答案:D解析:由题意可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k ,将圆C 化为标准方程得(x -2)2+(y -7)2=8,C (2,7),r =22,由直线MQ 与圆C 有交点,得|2k -7+2k +3|1+k2≤22,得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,故选D. 二、非选择题9.[2019·合肥调研]圆x 2+y 2+2x -2y =0的半径为________. 答案: 2解析:由x 2+y 2+2x -2y =0,得(x +1)2+(y -1)2=2,所以所求圆的半径为 2.10.过点A (5,2),B (3,-2),圆心在直线2x -y -3=0上的标准方程是________.答案:(x -2)2+(y -1)2=10解析:解法一 因为圆过A (5,2)、B (3,-2)两点,所以圆心一定在线段AB 的垂直平分线上.可求得线段AB 的垂直平分线的方程为y =-12(x -4).设所求圆的圆心坐标为C (a ,b ),则有⎩⎪⎨⎪⎧ 2a -b -3=0,b =-12(a -4),解得⎩⎪⎨⎪⎧a =2,b =1.所以C (2,1),r =|CA |=(5-2)2+(2-1)2=10.所以所求圆的标准方程为(x -2)2+(y -1)2=10.解法二 设所求圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧ 25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得D =-4,E =-2,F =-5.所以所求圆的方程为x 2+y 2-4x -2y -5=0.化为标准方程为(x -2)2+(y -1)2=10.11.[2019·上海徐汇模拟]已知圆O :x 2+y 2=1与圆O ′关于直线x +y =5对称,则圆O ′的方程是________.答案:(x -5)2+(y -5)2=1解析:因为点O 关于直线x +y =5的对称点为O ′(5,5),所以圆O ′的方程是(x -5)2+(y -5)2=1.12.[2019·陕西模拟]若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是________.答案:x -y -3=0解析:记题中圆的圆心为O ,则O (1,0),因为P (2,-1)是弦AB 的中点,所以直线AB 与直线OP 垂直,易知直线OP 的斜率为-1,所以直线AB 的斜率为1,故直线AB 的方程为x -y -3=0.课时增分练○29一、选择题1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A .(-∞,-2) B.⎝ ⎛⎭⎪⎫-23,0 C .(-2,0) D.⎝ ⎛⎭⎪⎫-2,23 答案:D解析:a 2+(2a )2-4(2a 2+a -1)>0,化简得3a 2+4a -4<0,解得-2<a <23.故选D.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定答案:A解析:解法一 由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交.故选A.解法二 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.故选A.解法三 直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.故选A.3.若圆x 2+y 2+4x -2y -a 2=0截直线x +y +5=0所得的弦长为2,则实数a 的值为( )A .±2B .-2C .±4D .4答案:A解析:圆x 2+y 2+4x -2y -a 2=0化为标准方程(x +2)2+(y-1)2=a 2+5,则圆心(-2,1)到直线x +y +5=0的距离d =42=22,则弦长2a 2+5-8=2,化简得a 2=4,故a =±2.故选A.4.[2019·柳州模拟]若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是( )A .x 2+(y -1)2=2B .(x -1)2+y 2=2C .x 2+(y -1)2=4D .(x -1)2+y 2=4答案:A解析:抛物线x 2=4y 的焦点为(0,1),则圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,故r =|2|2=2,故该圆的标准方程是x 2+(y -1)2=2.故选A. 5.[2019·嘉定模拟]过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14答案:B解析:圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.6.设P ,Q 分别为圆O 1:x 2+(y -6)2=2和圆O 2:x 2+y 2-4x =0上的动点,则P ,Q 两点间的距离的最大值是( )A .210+2+ 2 B.10+2+ 2C .210+1+ 2 D.10+1+ 2答案:A解析:圆O 1的圆心O 1(0,6),半径r 1=2,圆O 2化为标准方程为(x -2)2+y 2=4,圆心O 2(2,0),半径r 2=2.则|O 1O 2|=22+62=4+36=210>r 1+r 2=2+2,所以两圆相离,则|PQ |max =210+2+ 2.故选A.7.[2019·福建福州外国语学校适应性考试]已知点A (-2,0),B (2,0),若圆(x -3)2+y 2=r 2(r >0)上存在点P (不同于点A ,B )使得P A ⊥PB ,则实数r 的取值范围是( )A .(1,5)B .[1,5]C .(1,3]D .[3,5]答案:A解析:根据直径所对的圆周角为90°,结合题意可得以AB 为直径的圆和圆(x -3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3,故|r -2|<3<r +2,解得1<r <5,故选A.8.圆x 2+y 2+4x =0与圆x 2+y 2-8y =0的公共弦长为( ) A.255 B.455C.855D.1655答案:C解析:解法一 联立方程,得⎩⎪⎨⎪⎧x 2+y 2+4x =0,x 2+y 2-8y =0,得x +2y =0,将x +2y =0代入x 2+y 2+4x =0,得5y 2-8y =0,解得y 1=0,y 2=85,故两圆的交点坐标是(0,0),⎝ ⎛⎭⎪⎫-165,85,则所求弦长为 ⎝⎛⎭⎪⎫-1652+⎝ ⎛⎭⎪⎫852=855,故选C. 解法二 联立方程,得⎩⎪⎨⎪⎧x 2+y 2+4x =0,x 2+y 2-8y =0,得x +2y =0,将x 2+y 2+4x =0化为标准方程得(x +2)2+y 2=4,圆心为(-2,0),半径为2,圆心(-2,0)到直线x +2y =0的距离d =|-2|5=255,则所求弦长为222-⎝ ⎛⎭⎪⎫2552=855,故选C. 二、非选择题9.[2019·常州八校联考]若圆C 1:x 2+y 2=m 2(m >0)内切于圆C 2:x 2+y 2+6x -8y -11=0,则m =________.答案:1解析:由x 2+y 2=m 2(m >0),得圆心C 1(0,0),半径r 1=m .圆C 2的方程化为(x +3)2+(y -4)2=36,则圆心C 2(-3,4),半径r 2=6,∵圆C 1内切于圆C 2,∴|C 1C 2|=6-m .又|C 1C 2|=5,∴m =1.10.[2019·湖南师大附中摸底]已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,则直线l 的方程是________.答案:x +4=0和4x +3y +25=0解析:由已知条件知圆心(-1,-2),半径r =5,弦长m =8.设弦心距是d ,则由勾股定理得r 2=d 2+⎝ ⎛⎭⎪⎫m 22,解得d =3.若l 的斜率不存在,则直线l 的方程为x =-4,圆心到直线的距离是3,符合题意.若l 的斜率存在,设为k ,则直线l 的方程为y+3=k (x +4),即kx -y +4k -3=0,则d =|-k +2+4k -3|k 2+1=3,即9k 2-6k +1=9k 2+9,解得k =-43,则直线l 的方程为4x +3y+25=0.所以直线l 的方程是x +4=0和4x +3y +25=0.11.过点P (1,-3)作圆C :(x -4)2+(y -2)2=9的两条切线,切点分别为A ,B ,求:(1)切线方程;(2)直线AB 的方程;(3)线段AB 的长度.解析:(1)当切线的斜率存在时,设直线方程为y +3=k (x -1),即kx -y -k -3=0, 由|4k -2-k -3|k 2+1=3,解得k =815. ∴切线方程为8x -15y -53=0.当切线斜率不存在时,易知直线x =1也是圆的切线, ∴所求切线方程为8x -15y -53=0或x =1.(2)以PC 为直线的圆D 的方程为⎝⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y +122=172. ∵圆C 与圆D 显然相交,∴直线AB 就是圆D 与圆C 公共弦所在直线.∴直线AB 方程为3x +5y -13=0.(3)设AB 与PC 相交于点Q ,在Rt △P AC 中,AQ ⊥PC ,S △P AC =12|P A ||AC |=12|PC ||AQ |=12×3×5=12×34×12|AB |,得|AB |=153417.。
高三数学解析几何压轴题训练——直线与圆
高三数学解析几何压轴题训练——直线与圆一、选择题1.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=18,过圆心(6,6)作直线x +y -2=0的垂线,垂线所在直线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上.又(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为2,圆心坐标为(2,2),所以半径最小的圆的标准方程为(x -2)2+(y -2)2=2.2.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径r =2,因此2+a -1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(2+4)2+(1+1)2-4=6.3.若曲线y =1+4-x 2与直线kx -y -2k +4=0有两个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞ 解析:选C 注意到y ≥1,曲线y =1+4-x 2是圆x 2+(y -1)2=4在直线y =1的上方部分的半圆.又直线kx -y -2k +4=0⇒y -4=k (x -2)知恒过定点A (2,4).如图,由B (-2,1),知k AB =4-12-(-2)=34,当直线与圆相切时,|-1-2k +4|k 2+(-1)2=2,解得k =512,故实数k 的取值范围是⎝⎛⎦⎤512,34.4.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6D .2解析:选B 根据约束条件画出可行域如图中阴影部分所示.设点P 到圆心的距离为d ,求|AB |的最小值等价于求d 的最大值,易知d max =12+32=10,所以|AB |min =214-10=4.5.已知P 是过三点O (0,0),A (1,1),B (4,2)的圆M 上一点,圆M 与x 轴、y 轴的交点(非原点)分别为S ,T ,则|PS |·|PT |的最大值为( )A .25B .50C .75D .100解析:选B 设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得D =-8,E =6,F =0.所以圆M 的方程为x 2+y 2-8x +6y =0, 即(x -4)2+(y +3)2=25.令y=0,得x2-8x=0,解得x=0或x=8.令x=0,得y2+6y=0,解得y=0或y=-6.所以S(8,0),T(0,-6).而圆心(4,-3)在直线ST上,所以PS⊥PT.即|PS|2+|PT|2=(2r)2=100.所以|PS|·|PT|≤12(|PS|2+|PT|2)=50.所以(|PS|·|PT|)max=50.6.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0解析:选B当直线l的斜率不存在时,直线l的方程为x=0,计算出弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23可知,圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,所以直线l的方程为3x+4y-12=0.综上,直线l的方程为x=0或3x+4y-12=0.7.若过点P(2,1)的直线l与圆C:x2+y2+2x-4y-7=0相交于两点A,B,且∠ACB =60°(其中C为圆心),则直线l的方程是()A.4x-3y-5=0 B.x=2或4x-3y-5=0C.4x-3y+5=0 D.x=2或4x-3y+5=0解析:选B由题意可得,圆C的圆心为C(-1,2),半径为23,因为∠ACB=60°,所以△ABC为正三角形,边长为23,所以圆心C到直线l的距离为3.若直线l的斜率不存在,则直线l的方程为x=2,与圆相交且圆心C到直线l的距离为3,满足条件;若直线l的斜率存在,不妨设l:y-1=k(x-2),则圆心C到直线l的距离d=|3k+1|k2+1=3,解得k=43,所以此时直线l 的方程为4x -3y -5=0. 8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2.当k >2时,|OA ―→+OB ―→|>33|AB ―→|.又直线与圆x 2+y 2=4有两个不同的交点,故k <22,综上,k 的取值范围为[2,22).9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0间距等于1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求的圆的半径的取值范围是(4,6).10.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13解析:选C 法一:(排除法)由圆心在x 轴上,可排除A 、B ,又圆过(0,1)点,故圆的半径大于1,排除D ,选C.法二:(待定系数法)设圆的方程为(x -a )2+y 2=r 2,圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43.11.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.解析:如图,圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则∠APO =30°,在Rt △PAO 中,|PO |=2,又圆M 的半径等于1,圆心坐标M (a ,a -4), ∴|PO |min =|MO |-1,|PO |max =|MO |+1, ∵|MO |=a 2+(a -4)2,∴由a 2+(a -4)2-1≤2≤a 2+(a -4)2+1,解得2-22≤a ≤2+22. 答案:⎣⎡⎦⎤2-22,2+22 12.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:选D 当直线l 的斜率不存在时,则l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12,则圆心到直线PQ 的距离d =|1-2k |1+k 2,又|PQ |=29-d 2,所以S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.二、填空题13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:法一:由题意,设M (2+cos θ,2+sin θ),则N (2+cos θ,-2-sin θ),将N 的坐标代入kx +y +3=0,可得sin θ-k cos θ=2k +1.因为sin θ-k cos θ=k 2+1sin(θ-φ),其中tan φ=k ,所以|2k +1|≤k 2+1,即3k 2+4k ≤0,解得-43≤k ≤0,故k 的最小值为-43. 法二:圆(x -2)2+(y -2)2=1关于x 轴对称的圆的方程为(x -2)2+(y +2)2=1. 问题转化为直线kx +y +3=0与圆(x -2)2+(y +2)2=1有公共点N . 所以|2k -2+3|k 2+1≤1,即|2k +1|≤k 2+1,解得-43≤k ≤0,故k 的最小值为-43.答案:-4314.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中, ∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:415.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝⎛⎭⎫-k 2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的距离为322,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎫1+322=3+ 2.答案:3+ 216.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两条平行直线和圆有一个,两个或三个不同的公共点,则称两条平行线和圆“相切”,已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆x 2+y 2+2x -4=0相切,则a 的取值范围是________.解析:圆的标准方程为(x +1)2+y 2=5, 圆心(-1,0),r =5,两直线分别与圆相切时对应的a 的边界值为:|-2+a 2+1|5=5时,a =±6; |a -2|5=5时,a =-3或a =7, 所以a 的边界值分别为-3,7,±6.由题意可知,两平行直线中必有一条与圆相切,另一条与圆相离,相切,相交三种情况都满足题意,故a ∈[]-3,-6∪[]6,7.答案:[]-3,-6∪[]6,7。
高三数学直线与圆的位置关系试题
高三数学直线与圆的位置关系试题1.如图,在圆上任取一点,过点作轴的垂线段,为垂足.设为线段的中点.(1)当点在圆上运动时,求点的轨迹的方程;(2)若圆在点处的切线与轴交于点,试判断直线与轨迹的位置关系.【答案】(1);(2)相切【解析】(1)由于点在圆上运动, 为线段的中点,根据两点坐标的关系,以及点P在圆上,即可得到结论.(2)由(1)得到轨迹的方程为椭圆方程.切线PE的斜率有两种情况:斜率不存在则可得直线与轨迹的位置关系为相切.直线斜率存在则假设点P的坐标,写出切线方程,以及点N的坐标,再写出直线MN的方程.联立椭圆方程,根据判别式的值即可得到结论.(1)设,则.点在圆上,,即点的轨迹的方程为. 4分(2)解法一:(i)当直线的斜率不存在时,直线的方程为或.显然与轨迹相切;(2)当直线的斜率存在时,设的方程为,因为直线与圆相切,所以,即. 7分又直线的斜率等于,点的坐标为.所以直线的方程为,即. 9分由得..故直线与轨迹相切.综上(i)(2)知,直线与轨迹相切. 13分解法二:设(),则. 5分(i)当时,直线的方程为或,此时,直线与轨迹相切;(2)当时,直线的方程为,即.令,则.,又点,所以直线的方程为,即. 9分由得即..所以,直线与轨迹相切.综上(i)(2)知,直线与轨迹相切. 13分【考点】1.待定系数法求椭圆的方程.2.直线与圆的位置关系.3.直线与椭圆的位置关系.2.在平面直角坐标系中,圆C的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是.【答案】【解析】圆C的方程为.解题中要体会转化思想的运用:先将“圆的两条切线相互垂直”转化为“点到圆心的距离为”,再将“直线上存在点到圆心的距离为”转化为“圆心到直线的距离小于等于”,再利用点到直线的距离公式求解.即【考点】圆的方程、圆和直线的位置关系、点到直线的距离公式3.在平面直角坐标系中,直线(为参数)与圆(为参数)相切,切点在第一象限,则实数的值为.【答案】.【解析】直线的一般式方程为,圆的圆心坐标为,半径长为,则有,解得或,由于切点在第一象限,则直线必过第一象限,则,因此.【考点】1.参数方程与普通方程间的转化;2.直线与圆的位置关系4.过直线x+y-2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.【答案】(,)【解析】本题主要考查数形结合的思想,设P(x,y),则由已知可得PO(O为原点)与切线的夹角为30°,则|PO|=2,由可得5.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是____________.【答案】【解析】∵圆C的方程可化为(x-4)2+y2=1,∴圆C的圆心为(4,0),半径为1.由题意知,直线y=kx-2上至少存在一点A(x0,kx-2),以该点为圆心,1为半径的圆与圆C有公共点,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.∵ACmin即为点C到直线y=kx-2的距离,∴≤2,解得0≤k≤.∴k的最大值是.6.已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k-1)x+2的倾斜角α=.【答案】【解析】r=≤1,当有最大半径时有最大面积,此时k=0,r=1,∴直线方程为y=-x+2,设倾斜角为α,则由tanα=-1且α∈[0,π)得α=.7.已知点和曲线,若过点A的任意直线都与曲线至少有一个交点,则实数的取值范围是.【答案】.【解析】把曲线方程化为:,知它是以为圆心,为半径的圆.如图所示,点在直线上,任意过的直线与圆有交点,则.【考点】直线和圆的位置关系.8.在平面直角坐标系xOy中,设点P为圆C:(x-1)2+y2=4上的任意一点,点Q(2a,a-3)(a∈R),则线段PQ长度的最小值为________.【答案】-2【解析】点Q在直线x-2y-6=0上,圆心(1,0)到该直线的距离为d==,因此线段PQ长度的最小值为-2.9.动圆C经过点,并且与直线相切,若动圆C与直线总有公共点,则圆C的面积()A.有最大值B.有最小值C.有最小值D.有最小值【答案】D【解析】设圆心为,半径为,,即,即,∴圆心为,,圆心到直线的距离为,∴或,当时,,∴.【考点】1.点到直线的距离;2.圆与直线的位置关系.10.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是________.【答案】(x-2)2+2=【解析】∵圆C经过原点O(0,0)和点P(4,0),∴线段OP的垂直平分线x=2过圆C的圆心,设圆C的方程为(x-2)2+(y-b)2=r2,又圆C与直线y=1相切,∴b2+22=r2,且|1-b|=r,解之得b=-,r=,∴圆C的方程为(x-2)2+2=.11.直线x+y-2=0与圆x2+y2=4交于A,B两点,则=().A.4B.3C.2D.-2【答案】C【解析】由解得或,即A(,1),B(0,2),所以=212.已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.【答案】(1)见解析(2)(x-2)2+(y-1)2=5(3)2,坐标为【解析】(1)证明由题设知,圆C的方程为(x-t)2+2=t2+,化简得x2-2tx+y2-y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B,∴S=|OA|·|OB|=|2t|·=4为定值.△AOB(2)解∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k===,∴t=2或t=-2.∴圆心为C(2,1)或C(-2,-1),∴圆C的方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y-4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x-2)2+(y-1)2=5.(3)解点B(0,2)关于直线x+y+2=0的对称点B′(-4,-2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|-r==3-=2.所以|PB|+|PQ|的最小值为2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为.13.已知圆的半径为,、为该圆的两条切线,、为两切点,那么的最小值为.【答案】-3+2【解析】.【考点】圆的切线长,向量数量积,基本不等式14.直线将圆分割成的两段圆孤长之比为( )A.B.C.D.【答案】B【解析】圆心到直线的距离为直线被圆所截得的弦长为,所以圆心角为,故分割成的两段圆孤长之比为.【考点】直线与圆的位置关系,弦长公式.15.过原点且倾斜角为的直线被圆所截得的弦长为()A.B.C.D.【答案】【解析】圆心到直线的距离为,所以弦长为.选A.【考点】直线与圆.16.已知双曲线的渐近线与圆有公共点,则该双曲线离心率的取值范围是__________.【答案】【解析】将圆的方程配方得:.双曲线的渐近线方程为.由于双曲线的渐近线与圆有公共点,所以,即,所以离心率的取值范围为.【考点】1、双曲线的离心率;2、直线与圆的位置关系.17.过点P(0,1)与圆相交的所有直线中,被圆截得的弦最长时的直线方程是()A.B.C.D.【答案】D【解析】配方得,依题意,被圆截得的弦最长时的直线过圆心,由因为过点,故所求的直线方程为.【考点】1、直线和圆的位置关系;2、直线和圆的方程.18.已知实数满足,则的最小值是()A.B.C.D.【答案】A【解析】将化为,,,从几何意义讲,表示在圆上的点到直线的距离的倍,要使其值最小,只需最小即可,由直线和圆的位置关系可知,所以的最小值为,选A.【考点】直线和圆的位置关系、点到线的距离公式.19.已知直线与直线平行且与圆相切,则直线的方程为()A.B.或C.D.或【答案】D【解析】设直线的方程为,将圆的方程化为标准式为,圆心坐标为,半径长为,由于直线与圆相切,则有,整理得,解得或,故直线的方程为或,故选D.【考点】1.两直线的位置关系;2.直线与圆的位置关系20.若直线始终平分圆的周长,则的最小值为()A.B.C.D.【答案】D【解析】直线平分圆周,则直线过圆心,则,.【考点】直线与圆的位置关系;基本不等式.21.若直线与圆相交于、两点,则的值为()A.B.C.D.与有关的数值【解析】对于直线,令,可得,,故直线过定点,而此定点恰为圆圆心,故为圆的一条直径,.【考点】直线过定点,直线与圆相交所形成的弦长的计算22.直线与圆相交于M,N两点,若,则k的取值范围是()A.B.C.D.【答案】A【解析】若,则根据圆心到直线的距离、圆半径和半弦长组成一个直角三角形可以得到,圆心到直线的距离等于1,若,则圆心到直线的距离小于等于1,根据点到直线的距离公式可知,解得k的取值范围是.【考点】本小题主要考查直线与圆的位置关系、点到直线的距离公式的应用.点评:遇到直线与圆相交的题目,常常用到圆心到直线的距离、圆半径和半弦长组成一个直角三角形,进而用点到直线的距离公式或数形结合解决问题.23.已知点P的坐标,过点P的直线l与圆相交于A、B两点,则的最小值为【答案】4【解析】画出可行域(如图),P在阴影处,为使弦长|AB|最小,须P到圆心即原点距离最大,即直线过P(1,3)时,取到最小值为=4.【考点】本题主要考查简单线性规划问题,直线与圆的位置关系。
高三数学高考复习:直线和圆的方程专项练习
高考数学复习:直线和圆的方程专项练习一.选择题1.已知直线l1:y=x+2,直线l2过点P(-2,1)且l2到l1的角为45°,则l2的方程是()A.y=x-1B.y=x+C.y=-3x+7 D .y=3x+72.a、b、c分别是△ABC中A、B、C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+ay+c=0的位置关系是( )A.平行B.重合C.垂直 D.相交但不垂直3.原点O和点P(1,1)在直线x+y-a=0的两侧,则a的取值范围是()A.a<0或a>2B.a=0或a=2C.0<a<2D.0≤a≤24.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是( )A.(0,1)B.(,)C.(,1)∪(1,)D.(1,)5.点P在平面上作匀速直线运动,速度向量v=(4,-3)(即点P的运动方向与v相同,且每秒移动的距离为|v|个单位).设开始时,P的坐标为(-10,10),则5秒后,点P的坐标为()A.(-2,4)B.(-30,25)C.(10,-5)D.(5,-10)6.直线经过原点和点(-1,-1),则它的倾斜角是( )A.45°B.135°C.45°或135° D.0°7.已知点M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q的坐标为( )A.(a,b)B.(b,a)C.(-a,-b)D.(-b,-a)8.已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为()A.(x+1)2+y2=1B.x2+y2=1C.x2+(y+1)2=1D.x2+(y-1)2=19.在直角坐标系中,满足不等式x2-y2≥0的点(x,y)的集合所对应的阴影部分是( )10.方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示圆方程,则t的取值范围是()A.-1<t<B.-1<t<C.-<t<1 D.1<t<211.集合M={(x,y)|y=,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N等于( )A.{(1,0)}B.{y|0≤y≤1}C.{1,0}D.12.如果点P(x,y)在曲线x=(θ为参数)上,则x2+y2的最大值是( )A.10B.16C.25D.100二.填空题1.若实数x、y满足①则不等式组①表示的区域面积为_________,的取值范围是_________.2.圆心为(a,b),半径为r的圆的标准方程为_________.3.从点A(-1,3)所引圆x2+y2+4x+14y+49=0的两条切线所夹的劣弧对应的圆心角的余弦是_______________.4.不论m为何实数,直线(m-1)x-y+2m+1=0恒过定点___________________.三.解答题1.一圆经过A(2,1)点和直线x-y-1=0相切,且圆心在2x-y=0上.(1)求该圆的标准方程;(2)已知点B(,1),求过B点且有最短弦长的直线l的方程.2.某工厂家具车间造A、B两类型桌子,每张桌子需木工和漆工两道工序完成,已知木工做一张A型和B型的桌子分别需要1小时和2小时,漆工油漆一张A型和B型的桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 型和B型桌子分别获得利润2千元和3千元,试问工厂每天应生产A型和B型的桌子各多少张时,才能获得利润最大?3.求与直线3x+4y+2=0平行,且与坐标轴构成的三角形的面积为24(平方单位)的直线l的方程.4.设直线l的方程是2x+By-1=0,倾斜角为α.(1)试将α表示为B的函数;(2)若<α<,试求B的取值范围;(3)若B∈(-∞,-2)∪(1,+∞),求α的取值范围.5.求通过直线l:2x+y+4=0及圆C:x2+y2+2x-4y+1=0的交点,并且有最小面积的圆的方程. 6.求直线a:2x+y-4=0关于直线l:3x+4y-1=0对称的直线b的方程.直线和圆的方程专项练习参考答案一.选择题1.解析:因=1,故k2=3.答案:D2.解析:因-·=-1,故两直线垂直.答案:C3.解析:(0+0-a)(1+1-a)<00<a<2.答案:C4.解析:已知k1=1,倾斜角α=45°,斜率k2=a,设l2的倾斜角为β,依题意0<|β-α|<,得:<β<且β≠α=45°,∴l2的斜率tan<a<tan且α≠tan45°=1,即<a<且a≠1.答案:C5.解析:经过t秒动点P的位移为t(4,-3),即经过t秒动点P(x,y)所在位置为(*)所以t=5时,P点坐标为(10,-5),应选C.答案:C6.解析:tanα=k==1,∴α=45°.选A.答案:A7.解析:N(a,-b),P(-a,-b),则Q(b,a)答案:B8.解析:由M(x,y)关于y=-x的对称点为(-y,-x),即得x2+(y+1)2=1.答案:C9.解析:x2-y2≥0(x+y)(x-y)≥0或答案:B10.解析:由D2+E2-4F>0,得7t2-6t-1<0,即-<t<1.答案:C11.解析:y=表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0). 答案:A12.解析:易知是圆(x-3)2+(y+4)2=25上的点到原点的距离.答案:D二.填空题1.解析:(1)如图,(x,y)在上图阴影区域内,则S=×1×3=.则z为区域内点与定点(1,-2)所在直线的斜率.则z∈[1,+∞)∪(-∞,-2].答案:(-∞,-2]∪[1,+∞)2.(x-a)2+(y-b)2=r23.解析:圆C:(x+2)2+(y+7)2=4,故|AC|=,∴cos=,cosα=2cos2-1=-.答案:-4.解析:(m-1)x-y+2m+1=0y-3=(m-1)(x+2),即过点(-2,3).答案:(-2,3)三.解答题1.解:(1)设圆心(a,2a),半径为r,则有r=,∴a2-2a+1=0,a=1,r=,∴圆的标准方程为(x-1)2+(y-2)2=2.(2)记圆心为M(1,2),当直线l与MB垂直时弦长最短,k MB=2,∴k l=-,∴l的方程为2x+4y-5=0.2.解:设工厂每天生产A型桌子x张、B型桌子y张,获利为z(千元).可行域为四边形ABCO内部及边界.∴即为动直线在y轴上的截距,将动直线在可行域内移动,可知:B点处直线截距最大,此时z有最大值.∴z max=2×2+3×3=13(千元).∴工厂每天应生产A型桌子2张、B型桌子3张,可获利最大,为1.3万元.3.解:设所求直线l的方程为3x+4y+m=0, ①因为直线交x轴于A(-,0),交y轴于B(0,-),故由得m=±24.代入①,得所求直线方程为3x+4y±24=0.4.解:(1)若B=0,则直线l的方程是2x-1=0,∴α=;若B≠0,则方程即为y=-x+,∴当B<0时,->0,α=arctan(-),而当B>0时,-<0,α=π+arctan(-),即α=f(B)=(2)若α=,则B=0,若α≠,则tanα<-或tanα>,即-<-(B>0)或->(B<0=,∴-2<B<0或0<B<.综上,知-2<B<.(3)若B<-2,则-<1,∴0<tanα<1,0<α<;若B>1,则->-2,∴0>tanα>-2,π-arctan2<α<π.综上,知π-arctan2<α<π或0<α<.5.解:法一:圆的方程为(x+1)2+(y-2)2=4.设直线l与圆C交于A、B两点,D为AB的中点,则直线CD的方程为x-2y+5=0,x-2y+5=0,2x+y+4=0.故D∴以D为圆心,AB为直径的圆是面积最小的圆.法二:设圆的方程是(x2+y2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2]+圆面积=πR2,而时,圆面积最小,此时圆的方程是5x2+5y2+26x-12y+37=0.法三:设A(x1,y1),B(x2,y2),则以AB为直径的圆方程可设为(x-x1)(x-x2)+(y-y1)(y-y2)=0,即x2+y2-(x1+x2)x-(y1+y2)y+x1x2+y1y2=0.然后用韦达定理求出圆的方程.6.剖析:由平面几何知识可知若直线a、b关于直线l对称,它们具有下列几何性质:(1)若a、b相交,则l是a、b交角的平分线;(2)若点A在直线a上,那么A关于直线l的对称点B 一定在直线b上,这时AB⊥l,并且AB的中点D在l上;(3)a以l为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程.解:由解得a与l的交点E(3,-2),E点也在b上.方法一:设直线b的斜率为k,又知直线a的斜率为-2,直线l的斜率为-.则=.解得k=-.代入点斜式得直线b的方程为y-(-2)=-(x-3),即2x+11y+16=0.方法二:在直线a:2x+y-4=0上找一点A(2,0),设点A关于直线l的对称点B的坐标为(x0,y0), 由解得B(,-).由两点式得直线b的方程为=,即2x+11y+16=0.方法三:设直线b上的动点P(x,y)关于l:3x+4y-1=0的对称点Q(x0,y0),则有解得x0=,y0=.Q(x0,y0)在直线a:2x+y-4=0上,则2×+-4=0,化简得2x+11y+16=0是所求直线b的方程.方法四:设直线b上的动点P(x,y),直线a上的点Q(x0,4-2x0),且P、Q两点关于直线l:3x+4y-1=0对称,则有消去x,得2x+11y+16=0或2x+y-4=0(舍).。
高考数学专题重组卷第1部分专题15直线与圆的方程 含解析 (2)
专题十五 直线与圆的方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间60分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·广东七校联考)若过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a 的取值范围是( )A .(-2,1)B .(-1,2)C .(-∞,0)D .(-∞,-2)∪(1,+∞)答案 A解析 解法一:∵过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,∴直线的斜率小于0,即2a -a -13-1+a <0,即a -12+a<0,解得-2<a<1,故选A.解法二:当a =0时,P(1,1),Q(3,0),因为k PQ =0-13-1=-12<0,此时过点P(1,1),Q(3,0)的直线的倾斜角为钝角,排除C,D ;当a =1时,P(0,2),Q(3,2),因为k PQ =0,不符合题意,排除B,故选A.2.(2019·河南天一大联考)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5 B .(x +1)2+(y +1)2=5 C .(x -1)2+y 2=5 D .x 2+(y -1)2=5答案 A解析 由题意,得圆心在直线2x -y -1=0上,将点(a,1)代入可得a =1,即圆心为(1,1),半径为r =|2-1+4|5=5,∴圆的标准方程为(x -1)2+(y -1)2=5,故选A. 3.(2019·大庆质检)已知⊙O 1:(x +3)2+y 2=4,⊙O 2:x 2+(y -4)2=r 2(r>0),则“r=3”是“⊙O 1与⊙O 2相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知,⊙O 1的圆心为O 1(-3,0),半径为2,⊙O 2的圆心为O 2(0,4),半径为r.若⊙O 1与⊙O 2相切,则|O 1O 2|=r +2或|O 1O 2|=|r -2|,解得r =3或7,所以“r=3”是“⊙O 1与⊙O 2相切”的充分不必要条件.故选A.4.(2019·景德镇二模)一条光线从点A(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 点A(-2,-3)关于y 轴的对称点为A(2,-3),故可设反射光线所在直线的方程为y +3=k(x -2),即kx -y -2k -3=0.∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得24k 2+50k +24=0,解得k =-43或-34.故选D. 5.(2019·凌源联考)已知直线l :x +y -1=0截圆Ω:x 2+y 2=r 2(r>0)所得的弦长为14,点M,N 在圆Ω上,且直线l′:(1+2m)x +(m -1)y -3m =0过定点P,若PM ⊥PN,则|MN|的取值范围为( )A .[2-2,2+3]B .[2-2,2+2]C .[6-2,6+3]D .[6-2,6+2]答案 D 解析 依题意得2r 2-12=14,解得r =2.因为直线l′:(1+2m)x +(m -1)y -3m =0过定点P,所以P(1,1),设MN 的中点为Q(x,y),则OM 2=OQ 2+MQ 2=OQ 2+PQ 2,即4=x 2+y 2+(x -1)2+(y -1)2,化简可得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32,所以点Q 的轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,62为半径的圆,所以|PQ|的取值范围为⎣⎢⎡⎦⎥⎤6-22,6+22,|MN|的取值范围为[6-2,6+2].故选D.6.(2019·济宁市高三期末)圆C 1:x 2+(y -1)2=1与圆C 2:(x +4)2+(y -1)2=4的公切线的条数为( )A .4B .3C .2D .1 答案 A 解析 ∵|C 1C 2|=0+42+1-12=4,r 1=1,r 2=2,r 1+r 2=1+2=3,∴|C 1C 2|>r 1+r 2,所以圆C 1与圆C 2相离,有4条公切线.故选A.7.(2019·广州市三校联考)已知点P(a,b)(ab≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l,且l 与圆相交B .m ⊥l,且l 与圆相切C .m ∥l,且l 与圆相离D .m ⊥l,且l 与圆相离 答案 C解析 ∵点P(a,b)(ab≠0)在圆内,∴a 2+b 2<r 2,∵k OP =b a ,直线OP ⊥直线m,∴k m =-ab ,∵直线l 的斜率k l =-ab =k m ,∴m ∥l,∵圆心O 到直线l 的距离d =r2a 2+b 2>r2r =r, ∴l 与圆相离.故选C.8.(2019·惠州市高三第三次调研)已知直线l 过点P(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围为( )A .(-22,22) B.⎝ ⎛⎭⎪⎫-24,24 C .(-2,2) D.⎝ ⎛⎭⎪⎫-18,18 答案 B解析 直线l 为kx -y +2k =0,又直线l 与圆x 2+y 2=2x 有两个交点,故|k +2k|k 2+1<1,得-24<k<24.故选B.9.(2019·宝鸡中学高三一模)平面直角坐标系xOy 中,动点P 到圆(x -2)2+y 2=1上的点的最小距离与其到直线x =-1的距离相等,则P 点的轨迹方程是( )A .y 2=8x B .x 2=8y C .y 2=4x D .x 2=4y 答案 A解析 设动点P(x,y),∵动点P 到直线x =-1的距离等于它到圆:(x -2)2+y 2=1的点的最小距离, ∴|x +1|=x -22+y -02-1,化简得6x -2+2|x +1|=y 2, 当x≥-1时,y 2=8x,当x<-1时,y 2=4x -4<-8,不符合题意. ∴点P 的轨迹方程为y 2=8x.故选A.10.(2019·广州市高三调研)若点P(1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线方程为( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0 答案 D解析 圆方程为(x -3)2+y 2=9,圆心O(3,0), 因为P 为弦MN 的中点,所以OP ⊥MN, 又k OP =1-01-3=-12,所以k MN =2,所以直线MN 的方程为y -1=2(x -1),化简, 得2x -y -1=0.故选D.11.(2019·陕西四校联考)直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定 答案 B解析 将圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,∴圆心坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,半径r =a 2+b 22,∵圆心到直线ax -by =0的距离d =a 2+b22a 2+b 2=a 2+b22=r,∴圆与直线的位置关系是相切.故选B. 12.(2019·黄冈市高三元月调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,则k 的值为( )A .-1B .1C .±1 D.0 答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1.则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不符合题意,∴k =-1.故选A.第Ⅱ卷 (非选择题,共40分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·汉中市高三第一次检测)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的最大值是________.答案 43解析 圆C :x 2+y 2-8x +15=0化为标准式为(x -4)2+y 2=1.问题“若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点”可转化为“直线y =kx -2到点(4,0)的距离小于等于2”,则根据点到直线距离公式有d =|4k -2|1+k2≤2,解得0≤k≤43,则k 的最大值为43.14.(2019·安徽淮北、宿迁一模)已知圆O :x 2+y 2=1,定点M(3,0),过点M 的直线l 与圆O 交于P,Q 两点,P,Q 两点均在x 轴的上方,如图,若OP 平分∠MOQ,则直线l 的方程为________.答案 y =-57(x -3) 解析 设∠MOQ =2θ,由S △MOQ =S △POQ +S △POM 得32sin2θ=12sinθ+32sinθ,得cosθ=23,进而得直线的斜率k =-57,故直线方程为y =-57(x -3). 15.(2019·浙江高考)已知圆C 的圆心坐标是(0,m),半径长是r.若直线2x -y +3=0与圆C 相切于点A(-2,-1),则m =________,r =________.答案 -25解析 根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则AB =-2-02+-1-32=25, AC =-2-02+-1-m2=4+m +12,BC =|m -3|.∵直线2x -y +3=0与圆C 相切于点A, ∴∠BAC =90°,∴AB 2+AC 2=BC 2. 即20+4+(m +1)2=(m -3)2, 解得m =-2.因此r =AC =4+-2+12= 5.16.(2019·河北联考)在平面直角坐标系xOy 中,已知A(0,a),B(3,a +4),若圆x 2+y 2=9上有且仅有四个不同的点C,使得△ABC 的面积为5,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-53,53 解析 如图,AB 的斜率k =a +4-a 3-0=43,|AB|=3-02+a +4-a2=32+42=5,设△ABC 的高为h,∵△ABC 的面积为5, ∴S =12|AB|h =12×5h=5,即h =2,直线AB 的方程为y -a =43x,即4x -3y +3a =0.若圆x 2+y 2=9上有且仅有四个不同的点C,则圆心O 到直线4x -3y +3a =0的距离d =|3a|42+-32=|3a|5,则应该满足d <R -h =3-2=1, 即|3a|5<1,得|3a|<5,得-53<a<53. 三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·绵阳二模)已知两圆C 1:x 2+y 2-2x -6y -1=0和C 2:x 2+y 2-10x -12y +45=0.(1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.解 (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11,圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11,∴|r 1-r 2|<d<r 1+r 2,∴圆C 1和圆C 2相交.(2)圆C 1和圆C 2的方程左、右分别相减,得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.18.(本小题满分10分)(2019·湖北稳派教育联考)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线x -3y +2=0均与圆C 相切.(1)求圆C 的标准方程;(2)设点P(0,1),若直线y =x +m 与圆C 相交于M,N 两点,且∠MPN 为锐角,求实数m 的取值范围.解 (1)设圆C 的标准方程为(x -a)2+(y -b)2=r 2(r>0),由题意,得⎩⎪⎨⎪⎧a >0,b =0,|a|=r ,|a -3b +2|2=r ,解得⎩⎪⎨⎪⎧a =2,b =0,r =2,∴圆C 的标准方程为(x -2)2+y 2=4.(2)由⎩⎪⎨⎪⎧y =x +m ,x -22+y 2=4,消去y 整理,得2x 2+2(m -2)x +m 2=0.∵直线y =x +m 与圆C 相交于M,N 两点, ∴Δ=4(m -2)2-8m 2>0, 解得-2-22<m<-2+22, 设M(x 1,y 1),N(x 2,y 2), 则x 1+x 2=2-m,x 1x 2=m 22.∴PM →=(x 1,y 1-1),PN →=(x 2,y 2-1),依题意,得PM →·PN →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(x 1+m -1)(x 2+m -1)=2x 1x 2+(m -1)(x 1+x 2)+(m -1)2>0,∴m 2+(m -1)(2-m)+(m -1)2>0, 整理,得m 2+m -1>0,解得m<-1-52或m>-1+52.又-2-22<m<-2+22,∴-2-22<m<-1-52或-1+52<m<-2+2 2.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-2-22,-1-52∪⎝ ⎛⎭⎪⎫-1+52,-2+22.。
高三数学二轮复习 1.6.1 直线与圆课时巩固过关练 理 新人教版-新人教版高三全册数学试题
课时巩固过关练十五直线与圆(30分钟55分)一、选择题(每小题5分,共20分)1.(2016·某某一模)已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=( ) A.±2 B.± C. D.【解析】选B.抛物线的准线为y=-1,将圆化为标准方程+y2=,圆心到直线的距离为1=⇒m=±.2.(2016·某某一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离的最小值为( )A. B.2 C.3 D.4【解析】选C.由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.l1,l2间的距离为=.原点到l2的距离为=,所以点M到原点的距离最小值为+=3.3.(2016·某某二模)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+ (y-2)2=1相切,则反射光线所在直线的斜率为( )A.-或-B.-或-C.-或-D.-或-【解析】选D.由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线方程为:y+3=k(x-2),即kx-y-2k-3=0.又因为光线与圆相切,圆心为(-3,2),所以=1.整理得12k2+25k+12=0,解得:k=-或k=-.4.(2016·某某二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b ∈R且ab≠0,则+的最小值为( )A.1B.3C.D.【解析】选A.x2+y2+2ax+a2-4=0即(x+a)2+y2=4,x2+y2-4by-1+4b2=0即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9,所以+==≥=1,当且仅当=,即a=±2b时取等号.二、填空题(每小题5分,共10分)5.(2016·某某高考)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.【解析】设C(a,0)(a>0),由题意知=,解得a=2,所以r==3,故圆C的方程为(x-2)2+y2=9.答案:(x-2)2+y2=96.(2016·某某二模)若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.【解析】由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.答案:18三、解答题(7题12分,8题13分,共25分)7.(2016·某某一模)已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程.(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.【解析】(1)由圆C:x2+y2-4x-6y+12=0,配方,得(x-2)2+(y-3)2=1,圆心C(2,3).当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.又斜率不存在时直线x=3也与圆相切,故所求切线方程为x=3或3x-4y+11=0.(2)直线OA的方程为y=x,即5x-3y=0,点C到直线OA的距离为d==,又|OA|==,所以S=|OA|d=.8.(2016·某某一模)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程.(2)求过P点的圆C的弦的中点的轨迹方程.【解析】(1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4.C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:=2,得k=.故直线l的方程为3x-4y+20=0.直线l的斜率不存在时,也满足题意,此时方程为x=0.所以所求直线l的方程为x=0或3x-4y+20=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即·=0,所以(x+2,y-6)·(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.【误区警示】在本题(1)的求解中不可忽视直线l斜率的存在性,在由距离公式求出一个k 时应考虑直线斜率不存在的情况,否则会造成漏解.【加固训练】(2016·某某二模)已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.(1)求圆O的方程.(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求·的取值X围.【解析】(1)圆M的方程可整理为(x-1)2+(y-1)2=8,故圆心M(1,1),半径R=2.圆O的圆心为O(0,0),因为|MO|=<2,所以点O在圆M内,故圆O只能内切于圆M.设圆O的半径为r,因为圆O内切于圆M,所以|MO|=R-r,即=2-r,解得r=.所以圆O的方程为x2+y2=2.(2)不妨设E(m,0),F(n,0),且m<n.由解得或故E(-,0),F(,0).设D(x,y),由|DE|,|DO|,|DF|成等比数列,得|DE|·|DF|=|DO|2,即·=x2+y2,整理得x2-y2=1.而=(--x,-y),=(-x,-y),所以·=(--x)(-x)+(-y)(-y)=x2+y2-2=2y2-1.由于点D在圆O内,故有得y2<,所以-1≤2y2-1<0,即·∈[-1,0).(30分钟55分)一、选择题(每小题5分,共20分)1.直线l1:ax-y-3=0,l2:2x+by+c=0,则ab=-2是l1∥l2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.当ab=-2且c=3时,l1与l2重合,而l1∥l2时一定有ab-2×(-1)=0,即ab=-2,所以ab=-2是l1∥l2的必要不充分条件.【加固训练】设向量a=(a,1),b=(1,b)(ab≠0),若a⊥b,则直线b2x+y=0与直线x-a2y=0的位置关系是( )A.平行B.相交且垂直C.相交但不垂直D.重合【解析】选B.由题意知两直线都经过点(0,0),因为a⊥b,所以a·b=a+b=0,所以a=-b,由于直线b2x+y=0的斜率为-b2,直线x-a2y=0的斜率为,则(-b2)·=-1,故两直线垂直.2.已知直线l:x·cosα+y·sinα=2(α∈R),圆C:x2+y2+2cosθ·x+2sinθ·y=0(θ∈R),则直线l与圆C的位置关系是( )A.相交B.相切C.相离D.相切或相离【解析】选D.x2+y2+2cosθ·x+2sinθ·y=(x+cosθ)2+(y+sinθ)2=1,所以圆的圆心坐标为(-cosθ,-sinθ),半径为1,则直线到圆心的距离为d==|2+cos(α-θ)|∈[1,3],所以直线l与圆C的位置关系是相切或相离.3.命题p:0<r<4,命题q:圆(x-3)2+(y-5)2=r2(r>0)上恰好有两个点到直线4x-3y=2的距离等于1,则q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题导引】先求出圆心到直线的距离,因为到直线4x-3y=2的距离等于1有两条,数形结合可得答案.【解析】选A.因为圆心(3,5)到直线4x-3y=2的距离等于1,所以圆(x-3)2+(y-5)2=r2上恰好有两个点到直线4x-3y=2的距离等于1时,0<r<2,所以q是p充分不必要条件.【加固训练】动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C与直线y=x+2+1总有公共点,则圆C的面积( )A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π【解析】选D.由题意圆C的圆心在以F为焦点,以x=-1为准线的抛物线上,抛物线方程为y2=4x.因为与直线y=x+2+1总有公共点,所以圆C的面积有最小值,最小半径为抛物线上的点到直线的距离的最小值.设与直线y=x+2+1平行且与抛物线相切的直线方程为y=x+t,由得y2-4y+4t=0,由Δ=0得t=1.所以直线y=x+1与y=x+2+1间的距离=2即为最小半径.所以圆C的最小面积为4π.4.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O为坐标原点,且有|+|≥||,则k的取值X围是( )A.(,+∞)B.[,2)C.[,+∞)D.[,2)【解析】选B.由已知得圆心到直线的距离小于半径,即<2,由k>0得0<k<2. ①如图,又由|+|≥||得|OM|≥|BM|⇒∠MBO≥,因为|OB|=2,所以|OM|≥1,故≥1⇒k≥, ②综合①②得≤k<2.二、填空题(每小题5分,共10分)5.已知直线x+y-a=0与圆x2+y2=2交于A,B两点,O是坐标原点,向量,满足|2-3|=|2+3|,则实数a的值为________.【解析】由|2-3|=|2+3|得·=0,即OA⊥OB,则直线x+y-a=0过圆x2+y2=2与x轴、y轴正半轴或负半轴的交点,故a=±.答案:±【加固训练】已知直线l1与圆x2+y2+2y=0相切,且与直线l2:3x+4y-6=0平行,则直线l1的方程是________.【解析】依题意,设所求直线l1的方程是3x+4y+b=0,则由直线l1与圆x2+(y+1)2=1相切,可得圆心(0,-1)到直线3x+4y+b=0的距离为1,即有=1,解得b=-1或b=9.因此,直线l1的方程是3x+4y-1=0或3x+4y+9=0.答案:3x+4y-1=0或3x+4y+9=06.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且=6,则圆C的方程为________.【解题导引】先求圆心坐标,再利用点到直线的距离公式求圆心到直线的距离,最后根据勾股定理求圆的半径.【解析】设所求圆的半径为r,抛物线y2=4x的焦点坐标为(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,故圆C的方程是x2+(y-1)2=10.答案:x2+(y-1)2=10【加固训练】已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,则△PAB面积的最大值是________.【解析】依题意得圆x2+y2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是-+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,△PAB面积的最大值为×2×=3+.答案:3+三、解答题(7题12分,8题13分,共25分)7.已知半径为2,圆心在直线y=-x+2上的圆C.(1)当圆C经过点A(2,2),且与y轴相切时,求圆C的方程.(2)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值X 围.【解析】(1)因为圆心在直线y=-x+2上,半径为2,所以可设圆的方程为(x-a)2+[y-(-a+2)]2=4,其圆心坐标为(a,-a+2).因为圆C经过点A(2,2),且与y轴相切,所以有解得a=2,所以圆C的方程是(x-2)2+y2=4.(2)设Q(x,y),由|QF|2-|QE|2=32,得(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,解得y=3,所以点Q在直线y=3上.又因为点Q在圆C:(x-a)2+[y-(-a+2)]2=4上,所以圆C与直线y=3必须有公共点.因为圆C的圆心的纵坐标为-a+2,半径为2,所以圆C与直线y=3有公共点的充要条件是1≤-a+2≤5,即-3≤a≤1.所以圆心的横坐标a的取值X围是[-3,1].8.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为☉H.(1)若直线l过点C,且被☉H截得的弦长为2,求直线l的方程.(2)对于线段BH上的任意一点P,若在以点C为圆心的圆上都存在不同的两点M,N,使得点M 是线段PN的中点,求☉C的半径r的取值X围.【解析】(1)线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y-3=0,所以外接圆圆心为H(0,3),半径为=,☉H的方程为x2+(y-3)2=10.设圆心H到直线l的距离为d,因为直线l被☉H截得的弦长为2,所以d==3.当直线l垂直于x轴时,显然符合题意,即x=3为所求;当直线l不垂直于x轴时,设直线l的方程为y-2=k(x-3),则=3,解得k=,直线l的方程为4x-3y-6=0.综上,直线l的方程为x=3或4x-3y-6=0.(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y),因为点M是线段PN的中点,所以M,又M,N都在半径为r的☉C上,所以即因为此关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2≤(3-6+m)2+(2-4+n)2≤(r+2r)2,又3m+n-3=0,所以r2≤10m2-12m+10≤9r2对∀m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为,故r2≤且10≤9r2.又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对∀m∈[0,1]成立,即r2<.故☉C的半径r的取值X围为.【加固训练】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线l:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值X 围;若不存在,说明理由.【解析】方法一:(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),因为点M为弦AB的中点,即C1M⊥AB,所以·k AB=-1,即·=-1,所以线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,r=为半径的部分圆弧EF(如图所示,不包括两端点),且E,F,又直线l:y=k(x-4)过定点D(4,0),当直线l与圆C相切时,由=得k=±,又k DE=-k DF=-=,结合上图可知当k∈∪[-,]时,直线l:y=k(x-4)与曲线C只有一个交点.方法二:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,所以圆C1的圆心坐标为C1(3,0).(2)设M(x,y),因为A,B为过原点的直线l与圆C1的交点,且M为AB的中点,所以由圆的性质知:MC1⊥MO,所以·=0.又因为=(3-x,-y),=(-x,-y),所以由向量的数量积公式得x2-3x+y2=0.易知直线l的斜率存在,所以设直线l的方程为y=mx,当直线l与圆C1相切时,d==2,解得m=±.把相切时直线l的方程代入圆C1的方程化简得9x2-30x+25=0,解得x=.当直线l经过圆C1的圆心时,M的坐标为(3,0).又因为直线l与圆C1交于A,B两点,M为AB的中点,所以<x≤3.所以点M的轨迹C的方程为x2-3x+y2=0,其中<x≤3,其轨迹为一段圆弧.(3)由题意知直线l表示过定点(4,0),斜率为k的直线,把直线l的方程代入轨迹C的方程x2-3x+y2=0,其中<x≤3,化简得(k2+1)x2-(3+8k2)x+16k2=0,其中<x≤3,记f(x)=(k2+1)x2-(3+8k2)x+16k2,其中<x≤3.若直线l与曲线C只有一个交点,令f(x)=0.当Δ=0时,解得k2=,即k=±,此时方程可化为25x2-120x+144=0,即(5x-12)2=0,解得x=∈,所以k=±满足条件.当Δ>0时,①若x=3是方程的解,则f(3)=0⇒k=0⇒另一根为x=0<,故在区间上有且仅有一个根,满足题意.②若x=是方程的解,则f=0⇒k=±⇒另外一根为x=,<≤3,故在区间上有且仅有一个根,满足题意.③若x=3和x=均不是方程的解,则方程在区间上有且仅有一个根,只需f·f(3)<0⇒-<k<.故在区间上有且仅有一个根,满足题意.综上所述,k的取值X围是-≤k≤或k=±.。
高三数学专题练习圆(九)
高三数学专题练习----圆(九)一基础知识(1)圆的定义与方程,(2)圆和直线的位置关系,(3)圆和圆的位置关系二例题1、设曲线C的方程为(x-3)2+(y-2)2=2,直线的方程为x+y-3=0,点P的坐标为(2,1),那么 ( )(A)点P在直线上,但不在曲线C上(B)点P在曲线C上,但不在直线上(C)点P即在直线上又在曲线C上(D)点P即不在直线上又不在曲线C上2、圆x2+y2=2的经过点P(,2-)的切线方程是( )(A)x+y=2 (B)x+y=(C)x=或x+y=2 (D)x=或x+y=3、一个圆经过三点(-8, -1), (5, 12), (17, 4),则此圆的圆心坐标是()(A)(14/3, 5) (B)(5, 1) (C)(0, 0) (D)(5, -1)4、如果圆x2+y2+Dx+Ey+F=0与x轴相切与原点,那么D,E,F的取值情况是()(A)F=0, D≠0, E≠0 (B)E=0, F=0, D≠0(C)D=0, F=0, E≠0, (D)D=0, E=0, F≠05、直线3x+4y+12=0与圆(x-1)2+(y+1)2=9的位置关系是()(A)过圆心(B)相切(C)相离(D)相交但不过圆心6、直线ax+by+c=0和圆x2+y2+ax+by+c=0(其中c<0)的位置关系是()(A)相交(B)相切(C)相离(D)以上都有可能7、圆x2+y2=25截直线4x-3y=20所得的弦的中垂线的方程是()(A)y=x (B)y=-x (C)y=-x (D)y=x8、圆C:x2+y2+2x+4y-3=0上到直线x+y+1=0的距离为的点有()(A)1个(B)2个(C)3个(D)4个9、若圆(x-3)2+(y+5)2=r2有且只有两个点到直线4x-3y=2的距离等与1,则半径r的取值范围是()(A)(4,6)(B)[4,6)(C)(4,6)(D)[4,6]10、直线过点P(0, 2), 且被圆x2+y2=4所截得的线段长为2,那么的斜率为()(A)或-(B)或-(C)或-(D)或-11、将直线x+y-1=0绕点(1,0)顺时针旋转90°后,再向上平移1各单位,这时恰好与圆x2+(y-1)2=R2相切,则正数R等与()(A)1(B)(C)(D)12、如果一条直线经过点M(-3, -), 且被圆x2+y2=25所截得的弦长为8,这条直线的方程是()(A)x=-3(B)x=-3或x=-(C)3x+4y+15=0(D)3x+4y+15=0或x=-313、已知圆x2+y2+2x-6y-14=0关于直线y=x对称的圆的方程是()(A)x2+y2-2x-6y-14=0 (B)x2+y2+2x+6y-14=0(C)x2+y2-2x+6y-14=0 (D)x2+y2+2y-6x-14=014、过点(2, 1)的直线中,被圆x2+y2-2x+4y=0截得的弦长为最大的直线方程是()(A)3x-y-5=0 (B)3x+y-5=0 (C)x+3y-5=0 (D)x -3y+5=015、圆x2+y2+2ax-2y+1=0的图形都在x轴上方,那么a的取值范围是()(A)|a|<1 (B)|a|≤1 (C)0<|a|<1 (D)0<|a|≤116、若点(5a+1,12a)在圆(x-12+y2=1的内部,则a的取值范围是()(A)a<1 (B)a< (C)a< (D)a<17、圆x2+y2=9与圆x2+y2-8x+6y+9=0的位置关系是()(A)相交(B)内切(C)外切(D)相离18、两圆方程分别为x2+y2-8x-4y+11=0及x2+y2+2y-3=0,两圆的公切线有()条(A)1 (B)2 (C)3 (D)419、两圆x2+y2-6x+4y+4=0与x2+y2-12x-4y=0的公切线长为()(A)3 (B)7 (C)10 (D)以上都不对20、曲线y=1+与直线y=k(x-2)+4有两个交点时,实数k的取值范围是( )(A)(,+∞) (B) (, ) (C)(0,) (D)(, )21、已知A(-1, 0)、B(5, 0), P是圆x2+y2-4x-5=0上的点,且和A、B不重合,那么k AP·k BP= 。
高三数学单元练:直线和圆的方程4理科
直线和方程4 单元测试 理科一、选择题:1.直线1)1(02322=+-=-+y x y x 被圆所截得的线段的长为( )A .1B .2C .3D .22. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( ) A .充分必要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为( )A .πB .2πC .4πD .6π4.从原点向圆0271222=+-+y y x 作两条切线,则这两条切线的夹角的大小为( )A .6πB .3π C .2π D .32π 5.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]6.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-87. “a =b ”是“直线相切与圆2)()(222=++-+=b y a x x y ”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件8.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为( )A .5)2(22=+-y x B .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x二、填空题: 9. 若圆04122=-++mx y x 与直线1-=y 相切,且其圆心在y 轴的左侧,则m 的值为__________.10.将参数方程⎩⎨⎧=+=θθsin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________.11.若y x ,满足条件⎩⎨⎧≤≤+xy y x 23,则y x z 43+=的最大值是__________. 12.直线x y 21=关于直线1=x 对称的直线方程是__________. 13.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .14.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35 千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少 要花费 元. 三、解答题:15、某人在一山坡P 处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平地面的夹角为α , 21tan =α试问此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)16、如图,圆1O 与圆2O 的半径都是1,1O 2O =4,过动点P 分别作圆1O 、圆2O 的切线PM 、PN (M 、N 分别为切点),使得PN 2PM =,试建立适当的坐标系,并求动点P 的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学直线和圆练习
【南通市】
10.若圆C :22()(1)1x h y -+-=在不等式10x y ++≥所表示的平面区域内,则h 的最小值
为 ▲ .
2
【南通市】18.(本题满分15分)
如图,已知椭圆22:11612
x y C +=的左、右顶点分别为A 、B ,右焦点为F ,直线l 为椭圆的
右准线,N 为l 上一动点,且在x 轴上方,直线AN 与椭圆交于点M . (1)若AM =MN ,求∠AMB 的余弦值;
(2)设过A ,F ,N 三点的圆与y 轴交于P ,Q 两点,当
线段PQ 的中点坐标为(0,9)时,求这个圆的方程.
解:(1)由已知,(4,0),(4,0),(2,0)A B F -,直线8l x =的方程为.
设N (8,t )(t >0),因为AM =MN ,所以M (4,
2
t
). 由M 在椭圆上,得t =6.故所求的点M 的坐标为M (4,3).……………4分 所以(6,3),(2,3)MA MB =--=-
,1293MA MB ⋅=-+=- .
cos ||||MA MB AMB MA MB ⋅∠=== .…………………………7分
(用余弦定理也可求得)
(2)设圆的方程为220x y Dx Ey F ++++=,将A ,F ,N 三点坐标代入,得
2
2,
1640,72420,
,6480,8.
D D F D F
E t t t D Et
F F =⎧⎧-+=⎪⎪⎪
++=⇒=--⎨⎨⎪⎪++++=⎩⎪=-⎩ ∵
圆方程为
2272
2()80x y x t y t
++-+
-=,令
0x =,得
272
()80y t y t
-+
-=.…11分 设12(0,),(0,)P y Q y
,则12y 、.
(第18题)
由线段PQ的中点坐标为(0,9),得
1218
y y
+=,
72
18
t
t
+=.
此时所求圆的方程为2221880
x y x y
++--=.…………………………15分(本题用韦达定理也可解)
(2)(法二)由圆过点A、F得圆心横坐标为-1,由圆与y轴交点的纵坐标为(0,9),得圆心的纵坐标为9,故圆心坐标为(-1,9).…………………………… 11分
易求得圆的半径为13分
所以,所求圆的方程为22
1)(9)90
x y
++-=
(.…………………………… 15分【苏州市】
【常州市】
【镇江市】
【扬州市】
7.直线022=+-y ax 与直线01)3(=+-+y a x 平行, 则实数a 的值为 。
【泰州市】
18. ⑴由题意可得点P 的轨迹1C 是以,A B 为焦点的椭圆. ……………………(2分)
且半焦距长c m =,长半轴长3a m =,则2C 的方程为
22
22198x y m m +=.………(5分) ⑵若点(,)x y 在曲线
1C 上,则2222
198x y m m +=.设03x x =0y =,则03x x =,
0y =. …………………………………………………………………………(7分)
代入22
22198x y m m +=,得222
00x y m +=,所以点(3x 一定在某一圆2C 上. ………………………………(10分) ⑶由题意(3,0)C m . ………………………………………………………………(11分)
设11(,)M x y ,则2
2211x y m +=.┈┈┈①
因为点N 恰好是线段CM 的中点,所以11
3(
,)22
x m y N +. 代入2C 的方程得222113(
)()22
x m y
m ++=.┈┈┈② 联立①②,解得1x m =-,10y =.…………………………………………………(15分) 故直线l 有且只有一条,方程为0y =. ……………………………………………(16分) (若只写出直线方程,不说明理由,给1分)
【盐城市】9.已知点(,)P a b 关于直线l 的对称点为(1,1)'+-P b a ,
则圆22:+C x y 620--=x y 关于直线l 对称的圆'C 的方程为 ▲ 答案 22(2)(2)10-+-=x y
【连云港市、宿迁市、徐州市】
22.(1)根据抛物线的定义,可得动圆圆心P 的轨迹C 的方程为2x y =…………4分
(2)证明:设22
1122(,),(,)A x x B x x , ∵2y x =, ∴ 2y x '=,
∴ ,AN BN 的斜率分别为122,2x x ,故AN 的方程为
21112()y x x x x -=-,BN 的方程为22222()y x x x x -=- …7分
即2
11
2
22
22y x x x y x x x ⎧=-⎪⎨=-⎪⎩,两式相减,得122N x x x +=,又122M x x x +=, ∴ ,M N 的横坐标相等,于是MN x ⊥………………10分
【苏北四市】
7.已知直线1l :310ax y ++=,2l :2(1)10x a y +++=,若1l ∥2l ,则实数a 的值是 ▲ 答案 -3
18.(本小题满分16分)已知椭圆E :22
184x y +=的左焦点为F ,左准线l 与x 轴的交点是圆
C 的圆心,圆C 恰好经过坐标原点O ,设G 是圆C 上任意一点.
(1)求圆C 的方程;
(2)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长;
(3)在平面上是否存在一点P ,使得
1
2GF GP =?若存在,求出点P 坐标;若不存在,请说明理由.
第22题
18.解(1)由椭圆E :22
184x y +=,得l :4x =-,(4,0)C -,(2,0)F -,
又圆C 过原点,所以圆C 的方程为
22
(4)16x y ++=.………………………………4分 (2)由题意,得
(3,)G G y -,代入22(4)16x y ++=
,得G y =
所以FG
的斜率为k =,FG
的方程为2)y x =+, …………………8分 (注意:若点G 或FG 方程只写一种情况扣1分) 所以(4,0)C -到FG
的距离为
d =
,直线FG 被圆C
截得弦长为7
=.
故直线FG 被圆C 截得弦长为7.…………………………………………………………10分
(3)设(,)P s t ,00(,)G x y ,则由12GF GP =
12=,
整理得
2222
00003()(162)2160x y s x ty s t +++++--=①,…………………………12分 又00(,)G x y 在圆C :22
(4)16x y ++=上,所以
2200080x y x ++=②, ②代入①得
22
00(28)2160s x ty s t -++--=, …………………………14分 又由
00(,)G x y 为圆C 上任意一点可知,
22280,20,160,s t s t -=⎧⎪
=⎨
⎪--=⎩
解得4,0s t ==.
所以在平面上存在一点P ,其坐标为(4,0). …………………………16分。