切比雪夫不等式例题

合集下载

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。

切比雪夫不等式练习题

切比雪夫不等式练习题

切比雪夫不等式练习题第一章习题一1.4证由切比雪夫不等式及E|?|?0P?1?P?1?nE|?|?1故P?P?limP?1。

n?1n由切比雪夫不等式P?E|?|/n及E|?|??,得P?P与有相同的n阶自协方差矩阵。

故由平稳序列{Xt}的n阶自协方差矩阵退化知,对任给整数k?1,存在非零实向量b?使得 var[Tn?k?1i?k?{|?|?n})?limP?0。

n?1nbi?k?1]?0。

不妨假设bn?0,则有对任给整数k?1,Xn?k可由Xk,Xk?1,?,Xn?k?1线性表出。

对m?n?1,Xn可由X1,X2,?,Xn?1线性表出,Xn?1可由X2,X2,?,Xn线性表出,故Xn?1可由X1,X2,?,Xn?1线性表出。

假设对所有n?m?n?k,Xm可由X1,X2,?,Xn?1线性表出。

则对m?n?k?1,由于Xn?k?1可由Xk?1,Xk?2,?,Xn?k线性表出,由假设,Xn?k?1也可由X1,X2,?,Xn?1线性表出。

根据,,对任何m?n,Xm可由X1,X2,?,Xn?1线性表出,即存在常数a0,a1,?,an?1,使得Xm?a0??aiXn?i,i?1n?1a.s.。

习题四 .3解显然服从二维正态分布,且EXt?EXs?0。

记t?12k?l,s?12m?n,其中0?l?11,0?n?11,则Xt12i?l,Xs12j?n,这里?0?0。

i?0j?0km由于{?t}是正态白噪声WN,故当l?n,即t?s时, ?t,s?cov?0;当l?n?0,即t?s,t?12k 时, ?t,s?cov?min?2?[min2]?; 1212),t?12k时,当l?n?0,即t?s?min?所以2?]?1)?2。

12t,tt,s?~N,其中??T,Σ。

?s,s??t,s??第二章习题二1X2. tt?t?1,Xt??t?a?t?1习题三3. 提示:当{Xt}与{Yt}的特征多项式满足A?B时,是AR序列。

考研数学切比雪夫不等式证明及题型分析

考研数学切比雪夫不等式证明及题型分析

考研数学切比雪夫不等式证明及题型分析
在考研数学概率论与数理统计中,切比雪夫不等式是一个重要的不等式,利用它可以证明其它一些十分有用的结论或重要的定理,如切比雪夫大数定律等,然而有些同学对这个不等式不是很理解,也不太会利用该不等式去解决相关问题,另外,很多资料上也没有对该不等式进行完整的分析或证明,为此,在这里对比雪夫不等式及其典型例题做些分析总结,供各位2016考研的朋友和其它学习的同学参考。

一、切比雪夫不等式的分析证明
从上面的分析我们看到,利用切比雪夫不等式可以对随机变量在其均值附近的对称区间内取值的概率进行估计,它也说明了方差的基本特性,即随机变量的方差越小,随机变量取值越集中,方差越大,则取值越分散,不论对于什么随机变量,它在区间
内取值的概率基本都是约90%。

以上分析希望对大家理解和应用切比雪夫不等式有所帮助,最后预祝各位考生2016考研成功。

切比雪夫不等式例题

切比雪夫不等式例题

切比雪夫不等式例题
切比雪夫不等式的习题…求解答一通讯系统拥有50台相互独立起作用的交换机,在系统运行期间,每台交切比雪夫不等式的习题…求解答一通讯系统拥有50台相互独立起作用的交换机,在系统运行期间,每台交换机能清晰接收信号的概率为0.90,系统工作时,要求能清晰接收信号的交换机至少40台。

估计该通信系统能正常工作的概率。

求用切比雪夫不等式解答…蟹蟹
切比雪夫定理(chebyshev's theorem;切比雪夫不等式),内容为设X 是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设X α(α>0)的数学期望M(Xα)存在,a>0,则不等式成立。

19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理,其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。

对于m=2,m=3和m=5有如下结果:所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件概率作出估计。

基本定理设随机变量X具有数学期望。

切比雪夫不等式的反例

切比雪夫不等式的反例

切比雪夫不等式的反例切比雪夫不等式是概率论中的一个重要定理,它描述了一个随机变量与其期望值之间的距离。

然而,这个定理并非对所有情况都成立,存在一些特殊情况下的反例。

本文将介绍切比雪夫不等式的反例,并探讨这些反例出现的原因。

1. 引言切比雪夫不等式是概率论中的一种常用工具,它提供了一种衡量随机变量偏离其期望值的上界。

一般来说,对于任意一个随机变量X,以及一个给定的正实数ε,切比雪夫不等式可以表示为:P(|X-μ|≥ε) ≤ σ²/ε²其中,μ是X的期望值,σ²是X的方差。

这个不等式的意义在于,它告诉我们X偏离μ的概率至多为σ²/ε²。

2. 反例然而,切比雪夫不等式并非对所有情况都成立。

下面我们举一个反例来说明这一点。

假设我们有一个随机变量X,它服从正态分布,均值μ为0,方差σ²为1。

根据切比雪夫不等式,当ε=1时,P(|X-0|≥1) ≤ 1/1² = 1。

然而,在这个反例中,我们可以找到一个事件,使得它的概率远远大于1。

具体来说,考虑事件A={X≥2},即X大于等于2的情况。

根据正态分布的性质,可以计算出P(X≥2)≈0.0228。

显然,这个概率远大于1,与切比雪夫不等式的结果相矛盾。

3. 分析与讨论为什么在这个特殊情况下切比雪夫不等式失效呢?这是因为切比雪夫不等式是基于方差的测量,而方差无法完全反映随机变量在某个区间内的分布情况。

对于正态分布而言,它的尾部(即较大或较小的值)以指数形式衰减,而方差只是描述了分布的“中心部分”,无法准确刻画尾部的情况。

在这种情况下,我们可以借助其他的概率不等式来提供更为准确的估计。

例如,针对正态分布,我们可以使用切比雪夫不等式的加强版本--松本不等式。

4. 松本不等式松本不等式是对切比雪夫不等式的改进,它利用了随机变量的四阶矩来提供更加紧凑的上界估计。

针对符合正态分布的随机变量X,松本不等式可以表示为:P(|X-μ|≥ε) ≤ 6σ⁴/ε⁴通过这个不等式,我们可以更准确地估计随机变量X偏离其期望值的概率。

切比雪夫不等式例题

切比雪夫不等式例题

切比雪夫不等式例题
切比雪夫定理(chebyshev's theorem;切比雪夫不等式),内容为设X 是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设X α(α>0)的数学期望M(Xα)存在,a>0,则不等式成立。

1公式提出编辑19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理,其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。

对于m=2,m=3和m=5有如下结果:所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

2基本内容编辑切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件概率作出估计。

基本定理设随机变量X具有数学期望,方差则对任意正数ε,不等式或成立。

注意:应用切比雪夫不等式必须满足E(X)和D(X)存在且有限这一条件。

若对于任意的ε>O,当n很大时,事件“”的概率接近于1,则称随机变量序列{Xn}依概率收敛于a。

正因为是概率,所以不排除小概率事件“”发生。

所以,依概率收敛是不确定现象中关于收敛的一种说法,记为。

切比雪夫不等式例题

切比雪夫不等式例题

切比雪夫定理(切比雪夫理论;切比雪夫不等式)的内容是,令x为随机变量,取区间(0,∞)中的值,而F(x)是其分布函数。

如果存在Xα(α> 0)的数学期望M(Xα)并且a> 0,则不等式成立。

在19世纪,俄罗斯数学家切比雪夫(Chebyshev)研究统计定律时,他证明并表达了具有标准偏差的不等式。

这个不等式具有普遍意义,被称为切比雪夫定理。

它的一般含义是:在任何数据集中,其平均值的m个标准偏差内的比例(或部分)始终至少为1-1 / m2,其中m为大于1的任何正数。

对于m = 2,m = 3和m = 5 ,可获得以下结果:●所有数据中至少有3/4(或75%)在平均值的2个标准差之内。

●在所有数据中,至少有8/9(或88.9%)在平均值的3个标准差之内。

●在所有数据中,至少24/25(或96%)在平均值的5个标准差之内。

“概率接近1,则随机变量序列{Xn}在a中被称为概率收敛。

因为它是概率,所以不排除发生小概率事件”。

因此,概率收敛表示关于不确定现象的收敛,写为。

切比雪夫定理令X1,X2,...,Xn,...是独立的随机变量序列,并且数学期望E(Xi)和方差D(Xi)都存在(i = 1,2,…),并且D(Xi)<C(i = l,2,…),那么对于任何给定的ε> 0,有特别是:X1,X2,...,Xn,...是相互独立的随机变量序列,其数学期望为E(Xi)=μ,方差D(Xi)=σ2(i = 1,2,…),则对于任何给定ε> 0,有切比雪夫定理的推论为算术平均值定律提供了理论基础。

假设在恒定条件下重复测量了n次特定的物理量A,则结果X1,X2, (X)并不完全相同。

这些测量结果可以视为n个独立随机变量X1,X2,…,Xn的实验值,并且具有相同的数学期望a。

因此,根据大数定理j,当n足够大时,以下公式成立。

切比雪夫不等式

切比雪夫不等式
例1 已知正常男性成人血液中 ,每一毫升白细胞 数平均是7300,均方差是700 . 利用切比雪夫不等 式估计每毫升白细胞数在5200~9400之间的概率 .
解:设每毫升白细胞数为X 依题意,E(X)=7300,D(X)=7002 所求为 P(5200 X 9400)
P(5200 X 9400) = P(-2100 X-E(X) 2100) = P{ |X-E(X)| 2100}
在切比雪夫不等式中取
n,则
= P{ |X-E(X)| <0.01n}
依题意,取 解得
即n 取18750时,可以使得在n次独立重复试验中, 事件A出现的频率在0.74~0.76之间的概率至少为0.90 .
解:设X为n 次试验中,事件A出现的次数, 则 X~B(n, 0.75)
E(X)=0.75n, D(X)=0.75×0.25n=0.1875n
所求为满足
的最小的n .
可改写为
P(0.74n< X<0.76n )
=P(-0.01n<X-0.75n< 0.01n)= P{ 源自X-E(X)| <0.01n}
由切比雪夫不等式 P{ |X-E(X)| 2100}
即估计每毫升白细胞数在5200~9400之间的概率不 小于8/9 .
例2 在每次试验中,事件A发生的概率为 0.75, 利 用切比雪夫不等式求:n需要多么大时,才能使得在 n次独立重复试验中, 事件A出现的频率在0.74~0.76之 间的概率至少为0.90?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于切比雪夫不等式的题目现有一大批种子,其中良种占1/6,现从中任取6000颗种子,请用切比雪夫不等式计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率。

利用切比雪bai夫不等式回答下面du两个问题均值为zhi3,方差为dao4的随机变量X,利用切比雪夫专不等式确定P(-2 < X < 8)的下界属限.2 .均值为3,方差为4的随机变量X,且X的概率分布以均值3为中心对称,利用切比雪夫不等式确定P(X <= 0)的上界限|EX=9 DX=9,EY=9 DY=4E(X-Y)=9-9=0D(X-Y)=DX+DY-
2ρxy(DX*DY)^bai0.5=9+4-2*0.5*(9*4)^0.5=7P(|X−Y|≤du4)=1-P(|X−Y-E(X-Y)|≥4)而由切比zhi雪夫不等dao式P(|X−Y-E(X-Y)|≥4)≤D(X-Y)/4^2=7/16所以P(|X−Y|≤4)≥1-7/16=9/16切切比雪夫不等式:对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有
P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2
在你这题中,X~N(2,4)
所以EX=2 ε=3 DX=4
所以P{|X-2|>=3}<=4/(3^2)=4/9方法点拨: 设随机变量X的数学期望和方差都存在,有或
.切比雪夫不等式给出了在随机变量X的分布未知,而只知道和的情况下估计概率
的界限。

例1已知随机变量的密度函数为偶函数,$D(X)=1$,且用切比雪夫不等式估计得$P\left\{ \left| X
\right|<\varepsilon \right\}\ge 0.96$,则常数$\varepsilon =\_\_\_\_\_.$ 【答案】5 例2设随机变量和的数学期望分别-2和2,方差分别1和4,而相关系数为-0.5,则根据切比雪夫不等式有____ 【答案】^$的均bai值=10000*3/4=7500方差=10000*3/4*(1-3/4)=1625根据切比du雪夫不zhi等式P{0.74< $/10000 <0.76}=( P{|$/10000-0.75 |<0.01}>=1-(1625/10000^dao2)/0.01^2 =0.837519世纪俄国数学家bai切比雪夫研究统计规律中,du论证并用标准差表达zhi了一个不等式,这个不等式具有普遍的dao意义,被称作切比雪夫定理chebyshev's theorem 其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/㎡,其中m 为大于1的任意正数。

对于m=2,m=3和m=5有如下结果:所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。

所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。

所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。

其计算公式通常表示为:μ为X的均值,sigma为X的标准差。

若和则有它是由排序不等式而来。

切比雪夫不等式的积分形式如下:若f 和g 是区间[0,1]上的可积的实函数,并且两者都是递增(或递减)的,则有上式可推广到任意区间。

相关文档
最新文档