2020年浙教版九年级数学上册第一章二次函数同步试题及答案
浙教版九年级上册数学第1章 二次函数含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.一、二、三、四象限.2、抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论是()A.③④B.②④C.②③D.①④3、二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象,则关于x的方程ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥5C.m≥0D.m>44、已知二次函数y=ax²-8ax(a为常数)的图象不经过第二象限,在自变量x 的值满足2≤x≤3时,其对应的函数值y的最大值为3,则a的值为()A. B. C. D.5、若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0 5B.0 1C.﹣4 5D.﹣4 16、把函数的图像向下平移2个单位长度,所得到的新函数的解析式是()A. B. C. D.7、已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.48、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A.1B.2C.3D.49、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④10、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是A.a>0B.3是方程ax 2+bx+c=0的一个根C.a+b+c=0D.当x <1时,y随x的增大而减小11、已知二次函数y=1﹣3x+5x2,则其二次项系数a,一次项系数b,常数项c分别是()A.a=1,b=﹣3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1 D.a=5,b=﹣3,c=112、关于二次函数的下列结论,不正确的是()A.图象的开口向上B.当时,y随x的增大而减小C.图象经过点D.图象的对称轴是直线13、下列结论中,不正确的有()①反比例函数y=的函数值y随x的增大而减小;②任意三点确定一个圆;③圆既是轴对称图形又是中心对称图形;④二次函数y=x2-2x-3(x≥1)的函数值y随x的增大而减小;⑤平分弦的直径垂直于弦;⑥相等的圆周角所对的弧相等.A.2个B.3个C.4个D.5个14、如图,在同一平面直角坐标系中,函数与的图象可能是().A. B. C. D.15、当a-1≤x≤a时,函数y=x2-2x+1的最小值为1,则a的值为( )A.1B.2C.1或2D.0或3二、填空题(共10题,共计30分)16、若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是________.17、函数y=2x2﹣3x+4经过第________象限.18、将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=________.19、形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________.20、已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式________.21、函数y=x2+2x-8与y轴的交点坐标是________.22、二次函数的图象如图所示,则y<0时自变量x的取值范围是________ .23、已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 …y … 3 ﹣2 ﹣5 ﹣6 ﹣5 …则关于x的一元二次方程ax2+bx+c=﹣2的根是________.24、若是二次函数,则m=________.25、二次函数y=ax2+bx+c (a≠0)(a≠0,a,b,C为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是________.三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA =﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?28、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P 是直线BC下方的抛物线上一动点。
2020年浙教版九年级数学上册第一章二次函数同步试题及答案
2020年浙教版九年级数学上册第一章二次函数同步试题及答案第1章测试卷一、选择题(每题3分,共30分)1.下列函数中是二次函数的是( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 2-12.对于二次函数y =3(x -2)2+1的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =-2C .顶点坐标是(2,1)D .与x 轴有两个交点3.抛物线y =x 2-1可由下列哪一个函数的图象向右平移1个单位,再向下平移2个单位得到?( )A .y =(x -1)2+1B .y =(x +1)2+1C .y =(x -1)2-3D .y =(x +1)2+34.二次函数y =x 2-2x +1的图象与x 轴的交点个数是( )A .0B .1C .2D .35.若A ? ????34,y 1,B ? ????-54,y 2,C ? ??14,y 3为二次函数y =x 2+4x -5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 26.在同一坐标系中,二次函数y =ax 2+bx 与一次函数y =bx -a 的图象可能是( )7.已知函数y=x2+bx+c的部分图象如图所示,若y<0,则x 的取值范围是() A.-1<x<4 B.-1<x<3C.x<-1或x>4 D.x<-1或x>38.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是()A.6 s B.4 s C.3 s D.2 s9.如图,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有()A.1个B.2个C.3个D.4个10.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D 作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()二、填空题(每题3分,共24分)11.抛物线y=-x2+15有最________点,其坐标是________.12.函数y=x2+2x+1,当y=0时,x=______;当1<x<2时,y随x的增大而________.(填“增大”或“减小”)13.如图,二次函数y=x2-x-6的图象交x轴于A,B两点,交y轴于C点,则△ABC的面积为________.14.已知抛物线y=ax2-4ax+c与x轴的一个交点的坐标为(-2,0),则一元二次方程ax2-4ax+c=0的根为______________.15.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则能使y1>y2成立的x的取值范围是______________.16.某涵洞的截面是抛物线形,如图所示,在图中建立的直角坐标系中,抛物线的表达式为y=-14x2,当涵洞水面宽AB为12 m时,水面到桥拱顶点O的距离为________m.17.对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个交点;②如果当x≤1时,y随x的增大而减小,则m=1;③若图象向左平移3个单位后过原点,则m=-1;④如果当x=4与x=100时,函数值相等,则当x=104时,函数值为-3,其中正确说法的序号是________.18.如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.(1)求该二次函数的表达式,写出该抛物线的对称轴及顶点;(2)若点P(m,m)在该函数的图象上,求m的值.20.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P,Q分别从A,B同时出发,点P在边AB上沿AB方向以每秒2 cm的速度匀速运动,点Q 在边BC上沿BC方向以每秒1 cm的速度匀速运动(点P,Q中有一点到达矩形顶点,则运动停止).设运动时间为x s,△PBQ的面积为y cm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的最大面积.21.如图,二次函数图象与y轴交于点A(0,-6),与x轴交于C,D两点,顶点坐标为B(2,-8).若点P是x轴上的一动点.(1)求此二次函数的表达式;(2)当PA+PB的值最小时,求点P的坐标.22.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,那么水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的表达式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).此船能否顺利通过这座拱桥?23.某工厂生产一种火爆的网红电子产品,每件产品成本16元.工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围.(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的表达式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出使|PM-AM|最大时点M的坐标,并直接写出|PM-AM|的最大值.答案一、1.B 2.C 3.B 点拨:根据“左加右减,上加下减”,可得B 选项正确.4.B 5.D 6.C7.B 点拨:y <0,表示取函数图象在x 轴下面的部分,1-(-1)=2,所以函数图象与x 轴的另一个交点为(3,0),故选B.8.A 9.C10.A 点拨:易知△DEB 为等边三角形,∴∠EDB =60°.又∵EF ⊥DE ,∴∠EFD =30°.∴DF =2DE =2BD =2(2-x ).在Rt △DEF 中,由勾股定理,得EF =DF 2-DE 2=4(2-x )2-(2-x )2=3(2-x ),∴y =12×3(2-x )×(2-x )=32(x -2)2(0≤x <2).故选A. 二、11.高;(0,15) 12.-1;增大13.1514.x 1=-2,x 2=6 15.x <-2或x >816.9 17.①④18.272点拨:由题意知抛物线m 的对称轴为直线x =-3,可设抛物线m 的表达式为y =12(x +3)2+h . ∵抛物线m 经过原点,∴0=12×32+h ,∴h =-92. ∴顶点P 的坐标为? ??-3,-92. 又∵点Q 的坐标为? ??-3,12×32,即? ??-3,92,∴点P 与点Q 关于x 轴对称,∴S 阴影=|-3|·92=3×92=272.三、19.解:(1)将A (-1,-1),B (3,-9)的坐标分别代入y =ax 2-4x +c ,得a +4+c =-1,9a -12+c =-9.解得a =1,c =-6.解得该二次函数的表达式为y =x 2-4x -6.∵y =x 2-4x -6=(x -2)2-10,∴该抛物线的对称轴为直线x =2,顶点为(2,-10).(2)∵点P (m ,m )在该函数的图象上,∴m 2-4m -6=m .∴m 1=6,m 2=-1.∴m 的值为6或-1.20.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =(18-2x )cm ,BQ =x cm ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-? ????x -922+814,∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ 的最大面积是20 cm2.21.解:(1)设二次函数的表达式为y =a (x -2)2-8.将A (0,-6)的坐标代入得4a -8=-6,∴a =12. ∴y =12(x -2)2-8,即y =12x 2-2x -6. (2)作点A 关于x 轴的对称点E (0,6),连结BE 交x 轴于点P ,连结PA ,此时PA +PB 最小.设直线BE 的表达式为y =kx +b ,则2k +b =-8,b =6.解得?k =-7,b =6. ∴y =-7x +6.当y =0时,x =67,∴点P 的坐标为? ??67,0. 22.解:(1)设抛物线的表达式为y =ax 2. ∵抛物线关于y 轴对称,AB =20米,CD =10米,∴点B 的横坐标为10.设点B (10,n ),则点D (5,n +3).将B ,D 两点的坐标分别代入表达式,得n =100a ,n +3=25a .解得?n =-4,a =-125.∴y =-125x 2. (2)∵货船经过拱桥时右侧的横坐标为x =3,∴当x =3时,y =-125×9=-925. ∵点B 的纵坐标为-4,又|-4|--925=3.64>3.6,∴当水位在正常水位时,此船能顺利通过这座拱桥.23.解:(1)当0<x ≤20且x 为整数时,y =40;当20<x ≤60且x 为整数时,y =-12x +50;当x >60且x 为整数时,y =20.(2)设所获利润为w 元.当0<x ≤20且x 为整数时,y =40,∴w 最大=(40-16)×20=480.当20<x ≤60且x 为整数时,y =-12x +50,∴w =(y -16)x =? ??-12x +50-16x =-12x 2+34x =-12(x -34)2+578. ∵-12<0,∴当x =34时,w 最大,最大值为578.答:一次性批发34件时,工厂获利最大,最大利润是578元.24.解:(1)设抛物线的表达式为y =ax 2+bx +c ,∵A (1,0),B (0,3),C (-4,0),∴a +b +c =0,c =3,16a -4b +c =0,解得a =-34,b =-94,c =3.∴经过A ,B ,C 三点的抛物线的表达式为y =-34x 2-94x +3. (2)存在.以CA ,CB 为邻边时,如图,∵OB =3,OC =4,OA =1,∴BC =AC =5,当BP 平行且等于AC 时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3);以AB ,AC 为邻边时,AC ≠AB ,∴不存在点P 使四边形ABPC 为菱形;以BA ,BC 为邻边时,BA ≠BC ,∴不存在点P 使四边形ABCP 为菱形.故符合题意的点P 的坐标为(5,3).(3)设直线PA 的函数表达式为y =kx +m (k ≠0),∵A (1,0),P (5,3),∴k +m =0,5k +m =3,解得k =34,m =-34,∴直线PA 的函数表达式为y =34x -34,当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系知|PM -AM |<PA ,当点M 与点P ,A 在同一直线上时,|PM -AM |=PA ,∴当点M 与点P ,A 在同一直线上时,|PM -AM |的值最大,即点M 为直线PA 与抛物线的交点,解方程组y =34x -34,y =-34x 2-94x +3,得x 1=1,y 1=0,x 2=-5,y 2=-92,∴当点M 的坐标为(1,0)或? ??-5,-92时,|PM -AM |的值最大,|PM -AM |的最大值为5.1、读书破万卷,下笔如有神。
2019-2020学年浙教版初三数学上册第1章二次函数单元测试卷(含答案)
2019-2020学年初三数学上册第1章测试卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是( ). A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=0 2.对于二次函数y=(x-1)2+3的图象,下列说法正确的是( ). A.开口向下B.对称轴是直线x=-1 C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是( ). A.16m 2B.12m 2C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于( ). A.0 B.1 C.2 D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有( ). A.abc >0 B.b <a+c C.a+b+c <0 D.c <2b(第5题)(第6题) (第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是( ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A′,则AA′的长度为( ).A.343 B.241C.3D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为( ). A.9m B.764m C.8.7m D.9.3m 9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为( ). A.m=21n B.m=41n C.m=21n 2D.m=41n 2 10.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ). A.25 B.2 C.23 D.21(第10题答图)二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是 (只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为 .(第12题)(第13题)(第14题) (第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是 .14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 .15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 . 16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 . 三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点, (1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a=21时,求点A 的坐标. (2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H . 【特例探究】(1)当m=0时,OP= 1 ,PH= 1 ;当m=4时,OP= 5 ,PH= 5 . 【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想. 【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离. ①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程. ②求m 的值及点N 的坐标.(第23题)2019-2020学年初三数学上册第1章测试卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C). A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=0 2.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C). A.开口向下B.对称轴是直线x=-1 C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C). A.16m 2B.12m 2C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C). A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D). A.abc >0B.b <a+cC.a+b+c <0D.c <2b(第5题)(第6题) (第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A′,则AA′的长度为(A).A.343B.241C.32D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B). A.9mB.764mC.8.7mD.9.3m 9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D). A.m=21nB.m=41nC.m=21n 2D.m=41n 2 10.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D).A.25B.2C.23D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m<0,∴此种情形不合题意.∴m+n=-2+25 =21.故选D. 二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是 y=3(x+2)2+3 (只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为 0 .(第12题)(第13题)(第14题) (第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是 (-2,0) . 14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 y=-34x 2+38x+1 . 15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 y=60+x . 16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略. (2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x -21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8). (2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A 的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点, (1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A,B 两点的坐标分别为(0,3),(1,4).(2)∵A,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23. (3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min. 21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a=21时,求点A 的坐标. (2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b<0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21(bx+1)2.当y=0时,x=-b1,∴A(-b 1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b 1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m≥2×(-1-41)2-81=3,即m ≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-kk 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1. 23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m=0时,OP= 1 ,PH= 1 ;当m=4时,OP= 5 ,PH= 5 .【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离. ①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程. ②求m 的值及点N 的坐标.(第23题)【答案】 (1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45. ∵GN=2+m=2-45=43,∴N (2,-43).。
浙教版九年级上册第一章 二次函数(含答案)
浙教版九年级上册第一章二次函数一、选择题1.下列函数中,是二次函数的是( )A .y =3x ﹣2B .y =1x 2C .y =x 2+1D .y =(x ﹣1)2﹣x 22.二次函数 y =k x 2−6x +3 的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3 且 k ≠0C .k ≤3D .k ≤3 且 k ≠03.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−24.已知二次函数y =a x 2+bx +c (a ≠0)的图象如图所示,在下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m ≠1的实数),其中正确的结论有( )A .1个B .2个C .3个D .4个5.如图,二次函数y =−x 2+x +2及一次函数y =x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数,当直线y =x +m 与新图象有4个交点时,m 的取值范围是( )A .14<m <−3B .254<m ≤1C .−2<m <1D .−3<m <−2二、填空题6.若y =(m−3)x m2−5m +8+2x−3是关于x 的二次函数,则m 的值是 .7.二次函数 y =−(x−6)2+8 的最大值是 .8.已知抛物线y =a x 2−2ax 经过A (m−1,y 1),B (m,y 2),C (m +3,y 3)三点,且y 1<y 3<y 2≤−a 恒成立,则m 的取值范围为 .9.飞机着陆后滑行的距离s (米)与滑行时间t (秒)的关系满足s =−32t 2+bt .当滑行时间为10秒时,滑行距离为450米,则飞机从着陆到停止,滑行的时间是 秒.10.如图,抛物线y =−87x 2+247x +2与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA +PC 取最小值时,点P 坐标是 .11.若定义一种新运算:m@n ={m−n(m ≤n)m +n−3(m >n),例如:1@2=1−2=−1,4@3=4+3−3=4.下列说法:(1)−7@9= ;(2)y =(−x +1)@(x 2−2x +1)与直线y =m(m 为常数)有1个交点,则m 的取值范围是 .三、单选题12. 已知y =(a−1)x 2−2x +a 2是关于x 的二次函数,其图象经过(0,1),则a 的值为( )A .a =±1B .a =1C .a =−1D .无法确定13.抛物线 y =−3x 2+6x +2 的对称轴是( )A .直线 x =2B .直线 x =−2C .直线 x =1D .直线 x =−114.已知二次函数y =3x 2+2x−1,把图象向右平移n 个单位长度后,使两个函数图象与x 轴的交点中,相邻的两个交点之间的距离都相等,则n 的值为( )A .43B .83C .23或83D .43或8315.已知一个二次函数y =a x 2+bx +c 的自变量x 与函数y 的几组对应值如下表,x …−4−2035…y…−24−80−3−15…则下列关于这个二次函数的结论正确的是( )A.图象的开口向上B.当x>0时,y的值随x的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x=116.直线y=ax+b与抛物线y=a x2+bx+b在同一坐标系里的大致图象正确的是()A.B.C.D.四、解答题17.已知二次函数过点A(0,−2),B(−1,0),C(2,0).(1)求此二次函数的解析式;(2)当x为何值时,这个二次函数取到最小值?并求出这个最小值.18.已知二次函数y=x2−4x+1.(1)将该二次函数化成y=a(x+ℎ)2+k的形式.(2)自变量x在什么范围内时,y随x的增大而增大?19.在平面直角坐标系中,已知抛物线y=a x2−2a2x−3(a≠0).(1)若a=1,当−2<x<3时,求y的取值范围;(2)已知点A(2a−1,y1),B(a,y2),C(a+2,y3)都在该抛物线上,若(y1−y3)(y3−y2)>0,求a 的取值范围.20.在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,求t的取值范围.21.若一个函数的解析式等于另两个函数解析式的和,则这个函数称为另两个函数的“生成函数”.现有关于x的两个二次函数y1,y2,且y1=a(x−m)2+4(m>0),y1,y2的“生成函数”为:y=x2+4x+14;当x=m时,y2=15;二次函数y2的图象的顶点在y轴上.(1)求m的值;(2)求二次函数y1,y2的解析式.22.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使得利润最大?小明同学,为了完成以上问题,小明分析:调整价格包括涨价和降价两种情况.小明先探索了涨价的情况,下面是小明的思路,请你帮助小明完善以下内容:(1)假设每件涨价x元,则所得利润y与x的函数关系式为 ;其中x的取值范围是 ;在涨价的情况下,定价 元时,利润最大,最大利润是 .(2)请你参考小明(1)的思路继续思考,在降价的情况下,求最大利润是多少?(3)在(1)(2)的讨论及现在的销售情况,回答商家如何定价能使利润能达到最大?23.在平面直角坐标系中,二次函数y=−x2+bx+c(b、c为常数)的图象经过点A(3,0)和点B(0,3 ).(1)求这个二次函数的表达式.(2)当0≤x≤m+1时,二次函数y=−x2+bx+c的最大值与最小值的差为1,求m的取值范围.(3)当m≤x≤m+1(m>0)时,设二次函数y=−x2+bx+c的最大值与最小值的差为ℎ,求ℎ与m之间的函数关系式.(4)点P在直线x=m上运动,若在坐标平面内有且只有两个点P使△PAB为直角三角形,直接写出m 的取值范围.答案解析部分1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】27.【答案】88.【答案】−12<m <09.【答案】2010.【答案】(32,87)11.【答案】(1)−16(2)−3<m <−112.【答案】C 13.【答案】C 14.【答案】D 15.【答案】D 16.【答案】D17.【答案】(1)y =x 2−x−2(2)当x =12时,y 的最小值为−9418.【答案】(1)y =(x−2)2−3(2)当x >2时,y 随x 的增大而增大19.【答案】(1)解:当a =1时,y =x 2−2x−3,抛物线开口向上,对称轴为直线x =1,x =−2比x =3距离对称轴远,∴x =1时,y =1−2−3=−4为函数最小值,当x =−2时,y =4+4−3=5为函数最大值,∴当−2<x <3时,−4≤y <5;(2)解:∵对称轴为直线x =a ,∴当a >0时,抛物线开口向上,函数有最小值y 2,∴y3−y2>0,∵(y1−y3)(y3−y2)>0,∴y1−y3>0,即y1>y3,∴|2a−1−a|>|a+2−a|,解得a>3,当a<0时,抛物线开口向下,函数有最大值y2,∴y3−y2<0,∵(y1−y3)(y3−y2)>0,∴y1−y3<0,即y1<y3,∴|2a−1−a|>|a+2−a|,解得a<−1,∴a的取值范围是a>3或a<−1.20.【答案】(1)(t,−t)(2)①2;②t<−12或t>32.21.【答案】(1)m=1(2)y1=−2(x−1)2+4;y2=3x2+1222.【答案】(1)y=−10x2+100x+6000;0⩽x⩽30;65;6250元(2)解:设每件降价x元,则每星期售出商品的利润w元,则w=(20−x)(300+20x)=−20x2+100x+6000,∵函数的对称轴为x=−1002×(−20)=2.5,∴当x=2.5(元)时,则w=−20×2.52+100×2.5+6000=6125(元);(3)解:∵6250>6125,∴用涨价方式比降价方式获得利润大,当定价为65元时,利润最大.23.【答案】(1)解:将A(3,0)、B(0,3)代入y=−x2+bx+c中,得{−9+3b+c=0,c=3.解得{b=2,c=3.∴y=−x2+2x+3.(2)解:∵函数图象的顶点坐标为(1,4),∴点B(0,3)关于对称轴直线x=1的对称点的坐标为(2,3),4−3=1.∴1≤m+1≤2,∴0≤m≤1(3)解:当0<m ≤12时,ℎ=4−(−m 2+2m +3)=m 2−2m +1.当12<m ≤1时,ℎ=4−(−m 2+4)=m 2.当m >1时,ℎ=−m 2+2m +3−(−m 2+4)=2m−1.(4)m =0或m =3或m <3−322或m >3+322.。
浙教版九年级上册数学第1章 二次函数 含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>52、抛物线的对称轴是直线()A. x=2B. x=-2C. x=1D. x=-13、对于二次函数y=﹣x2,下列说法不正确的是()A.开口向下B.对称轴为y轴C.顶点坐标是(0,0)D.y随x 增大而减小4、如图所示的是二次函数图象的一部分,其对称轴是且过点则下列选项中错误的是()A. B. C. D.5、将抛物线向左平移1个单位,再向下平移3个单位,得到的抛物线是( )A. B. C. D.6、已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5个7、已知二次函数的图象如图所示,则这个二次函数的表达式为()A. B. C. D.8、已知二次函数 y=ax2+bx+c(a≠0),过(1,y1)(2,y2).①若 y1>0 时,则 a+b+c>0②若 a=b 时,则 y1<y2③若 y1<0,y2>0,且a+b<0,则 a>0④若 b=2a﹣1,c=a﹣3,且 y1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有()个.A.1B.2C.3D.49、定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点 D.当m<0时,函数在x 时,y随x的增大而减小10、如图,抛物线y=与ax2+bx+c 与 x 轴交于点A(-1,0),B(5,0),给出下列判断:①ac<0;②;③b+4a=0;④4a-2b+c<0.其中正确的是()A.①②B.①②③C.①②④D.①②③④11、二次函数y=(x-1)2+2的最小值为()A.1B.-1C.2D.-212、二次函数y=a +bx+c的图象如图所示,则下列关系式错误的是()A.a<0B.b>0C. ﹣4ac>0D.a+b+c<013、如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.414、已知函数y=k(x+1)(x﹣),下列说法正确的是()A.方程k(x+1)(x﹣)=﹣3必有实数根B.若移动函数图象使其经过原点,则只能将图象向右移动1个单位C.若k>0,则当x>0时,必有y 随着x的增大而增大D.若k<0,则当x<﹣1时,必有y随着x的增大而增大15、将二次函数y=x2的图象向左平移3个单位,再向上平移3个单位,平移后的图象的函解析式是()A. y=(x+3)2 +3B. y=(x﹣3)2 +3C. y=(x+3)2﹣3 D. y=(x﹣3)2﹣3二、填空题(共10题,共计30分)16、二次函数y=ax2+2x﹣2,若对满足3<x<4的任意实数x都有y>0成立,则实数a的取值范围为________.17、如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE= .直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是________.18、将抛物线y=x2沿x轴向右平移2个单位后所得的抛物线解析式是________。
浙教版数学九年级上册 第一章 二次函数单元测试(含简单答案)
浙教版数学九年级上册第一章二次函数一、选择题1.要得到抛物线y=3(x+2)2+3,可以将抛物线y=3x2( )A.向左平移2个单位长度,再向上平移3个单位长度B.向左平移2个单位长度,再向下平移3个单位长度C.向右平移2个单位长度,再向上平移3个单位长度D.向右平移2个单位长度,再向下平移3个单位长度.2.在平面直角坐标系xOy中,抛物线y=a x2+bx+c如图所示,则关于x的方程a x2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断3.函数y=a x2−2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.4.函数y1=a x2+bx+c与y2=k的图象如图所示,当( )时,y1,y2均随着x的增大而减小.xA.x<−1B.−1<x<0C.0<x<2D.x>15.抛物线y=a x2+bx+c(a≠0)的图象如图所示,则下列四组中正确的是( )A.a>0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0D.a>0,b<0,c<06.某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=9(1+x)2B.y=9+9x+x2C.y=9+9(1+x)+9(1+x)2D.y=9(1+x)27.已知x=m是一元二次方程x2+3x−n=0的一个根,则m+n的最小值是( )A.−1B.−2C.3D.−48.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是( )A.小球的飞行高度不能达到15m B.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4s D.小球飞出1s时的飞行高度为10m9.如图,在矩形ABCD中,AB=3,BC=4,点P在直线AD上运动,以BP为直角边向右作Rt △PBQ ,使得∠BPQ =90°,BP =32PQ ,连接CQ ,则CQ 长的最小值为( )A .1213B .2513C .23913D .5131310.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.函数y =−x +c (c 为常数,c <0)的图象与x 轴交于点M ,其轴点函数y =a x 2+bx +c 与x 轴的另一交点为N .若ON =14OM ,则b 的值为( )A .±5B .5或−3C .±3D .−5或3二、填空题11.如果函数y =(k−1)x k2−k +2+kx−1是关于x 的二次函数,则k = .12.若抛物线y =x 2−2x +k−2与x 轴有公共点,则k 的取值范围是 .13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0),那么代数式a 2﹣a+2016的值为 .14.当0≤x ≤3时,二次函数y =x 2+2ax 的最大值是M ,最小值是m ,若M−m =4,则a 的值是 .15.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.16.二次函数 y =a x 2+bx +3的图象如图所示,其对称轴 x =1,且与x 轴交于(−1,0),点D (0,1),点P 为x 轴上一动点,则2PD +PC 的最小值为 .三、解答题17.如图,已知抛物线y =−x 2+mx +3经过点M (−2,3).(1)求出此抛物线的解析式;(2)当0≤x ≤1时,直接写出y 的取值范围.18.已知二次函数y =x 2+x−m 的部分图象如图所示,(1)求该二次函数图象的对称轴,并利用图象直接写出一元二次方程x 2+x−m =0的解.(2)向上平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.19.如图,正方形纸片ABCD 的边长为4,将它剪去四个全等的直角三角形,得到四边形EFGH .设AE 的长为x ,四边形EFGH 的面积为y .(1)求y 关于x 的函数表达式;(2)四边形EFGH 的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.20.如图所示,在平面直角坐标系Oxy 中,四边形OABC 为正方形,其中点A 、C 分别在x 轴负半轴,y 轴负半轴上,点B 在第三象限内,点A(t,0),点P(1,2)在函数y =kx(k >0,x >0)的图象上.(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S−2t2,求T的最大值.21.已知二次函数y=a x2+bx+c(a>0,b>0)的图象与y轴相交于点(0,1).(1)若a=1,b=4,求该二次函数的最小值;(2)若b=4a,点P(−3,y1),Q(3,y2)都在该函数的图象上,比较y1和y2的大小关系;(3)若点M(m,1),N(−m,m2+2)都在该二次函数图象上,分别求a,b的取值范围22.【综合探究】运用二次函数来研究植物幼苗叶片的生长状况在大自然里,有很多数学的奥秘.图1是一片美丽的心形叶片,图2是一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.【探究一】确定心形叶片的形状(1)如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=−a x2+4ax+4a+1图象的一部分,且过原点,求抛物线的解析式及顶点D的坐标;【探究二】研究心形叶片的宽度:(2)如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A,B两点,抛物线与x轴交于另一点C,点C,C1是叶片上的一对对称点,C C1交直线AB于点G.求叶片此处的宽度C C1;【探究三】探究幼苗叶片的长度(3)小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=−a x2+4ax+4a+1图象的一部分;如图4,幼苗叶片下方轮廓线正好对应任务1中的二次函数.已知直线PD (点P为叶尖)与水平线的夹角为45°,求幼苗叶片的长度PD.23.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y的取值范围是m≤y≤n,且满足n−m=t(b−a)则称此函数为“t系郡园函数”(1)已知正比例函数y=ax(1≤x≤4)为“1系郡园函数”,则a的值为多少?(2)已知二次函数y=−x2+2ax+a2,当1≤x≤3时,y是“t系郡园函数”,求t的取值范围;(3)已知一次函数y=kx+1(a≤x≤b且k>0)为“2系郡园函数”,P(x,y)是函数y=kx+1上的一点,若不论m取何值二次函数y=mx2+(m−2)x−2m+1的图象都不经过点P,求满足要求的点P的坐标.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】D10.【答案】D11.【答案】012.【答案】k≤313.【答案】201714.【答案】−1或−215.【答案】81016.【答案】417.【答案】(1)y=−x2−2x+3(2)0≤y≤318.【答案】(1)x=−1,x1=1,x2=−22(2)y=x2+x19.【答案】(1)y=2x2−8x+16;(2)当x=2时,y有最小值8,即四边形EFGH的面积最小为8.20.【答案】(1)解:∵点P(1,2)在函数y=k(k>0,x>0)的图象上,x∴2=k,1∴k=2,即k的值为2;(2)解:∵点A(t,0)在x轴负半轴上,∴OA=−t,∵四边形OABC为正方形,∴OC=BC=OA=−t,BC//x轴,∴△BCP的面积为S=12×(−t)×(2−t)=12t2−t,∴T=2S−2t2=2(12t2−t)−2t2=−t2−2t=−(t+1)2+1,∵−1<0,∴抛物线开口向下,∴当t=−1时,T有最大值,T的最大值是1.21.【答案】(1)−3(2)y1<y2(3)a>12,b≥122.【答案】(1)y=14(x−2)2−1,D坐标为(2,−1);(2)C C1=62;(3)PD=42 23.【答案】(1)±1.(2)t≥1 2(3)(1,3),(−2,−3),(0,1)。
浙教版2020-2021学年九年级数学上册第1章二次函数单元测试卷(含答案)
浙教版九年级数学上册第1章二次函数单元测试卷一、选择题(共10题;共30分)1.在平直角坐标系中,如果抛物线y=4x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=4(x﹣2)2+2B.y=4(x+2)2﹣2C.y=4(x﹣2)2﹣2D.y=4(x+2)2+22.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y= cx在同一平面直角坐标系中的图象可能是()A. B. C. D.3.抛物线y=﹣x2+bx+c与x轴的两个交点坐标如图所示,下列说法中错误的是()A.一元二次方程﹣x2+bx+c=0的解是x1=﹣2,x2=1B.抛物线的对称轴是x=−12C.当x>1时,y随x的增大而增大D.抛物线的顶点坐标是(−12,9 4 )4.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12x2C.y=(12−x)•xD.y=2•x•(12−x)5.已知0<x<1,10<y<20,且y随x的增大而增大,则y与x的关系式不可以是()A.y=10x+10B.y=﹣10(x﹣1)2+20C.y=10x2+10D.y=﹣10x+206.已知一个直角三角形的两边长分别为a和5,第三边长是抛物线y=x²-10x+21与x轴交点间的距离,则a的值为()A.3B.√41C.3或√41D.不能确定7.如图,将抛物线y=﹣x2+x+5的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线y=﹣5的交点个数为()A.1B.2C.3D.48.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(-1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=()A.8:1B.6:1C.5:1D.4:19.如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A-D-C的路径向点C 运动,同时点Q从点B出发以每秒2个单位长度的速度沿B-C-D-A的路径向点A运动,当点Q到达终点时,点P停止运动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是()A. B.C. D.10.如图,抛物线y=ax2+bx+c与x轴交于点A(−1,0),顶点坐标(1,n)与y轴交在(0,1),(0,2)之间(包含端点),则下列结论:① 3a+b<0;② −23≤a≤−13;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n−1有两个不等的实根. 其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6题;共24分)11.抛物线y=﹣x2+mx﹣3m的对称轴是直线x=1,那么m=________.12.抛物线y=(k+1)x2+k2−9开口向下,且经过原点,则k=________.13.如图,已知抛物线y=ax2+bx+4与x轴、y轴正半轴分别交于点A、B、D,且点B的坐标为(4,0),点C在抛物线上,且与点D的纵坐标相等,点E在x轴上,且BE=AB,连接CE,取CE的中点F,则BF的长为________.14.如图,在平面直角坐标系中,抛物线y=-x2+3x+2与y轴交于点A,点B是拋物线的顶点,点C与点A 是抛物线上的两个对称点,点D在x轴上运动,则四边形ABCD的两条对角线的长度之和的最小值为________。
浙教版九年级上册数学第1章 二次函数含答案完整版
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.2 1.3 1.4y ﹣1 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.32、二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.33、过点(1,0),B(3,0),C(﹣1,2)三点的抛物线的顶点坐标是()A.(1,2)B.(1,)C.(﹣1,5)D.(2,)4、已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论:①a<0,②b<0,③c<0,其中正确的判断是()A.①②B.①③C.②③D.①②③5、抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A 在点(﹣3,0)和点(﹣2,0)之间,其部分图象如图所示,则下列结论:①b2﹣4ac<0;②当x>﹣1时,y随x的增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0,其中正确结论的个数是()A.2 个B.3 个C.4 个D.5 个6、将y=3x2通过平移,先向上平移2个单位,再向左平移3个单位,可得到抛物线是( )A.y=3(x+3) 2-2B.y=3(x+ 3) 2+2C.y=3(x+2) 2-3D.y= 3(x-2) 2+37、二次函数的顶点坐标为,其部分图象如图所示.以下结论错误的是()A. B. C. D.关于x的方程无实数根8、已知抛物线y=-2(x-3)2+5,则此抛物线()A.开口向下,对称轴为直线x=-3B.顶点坐标为(-3,5)C.最小值为5D.当x>3时y随x的增大而减小9、如图抛物线(),下列结论错误的是()A. a、b同号B.C. 和时,y值相同 D.当时,10、已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴11、二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣12、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,若点P(2017,m)在第1009段抛物线C1009上,则m的值为()A.﹣1B.0C.1D.不确定13、要得到抛物线,可以将抛物线()A.向右平移6个单位长度,再向下平移3个单位长度B.向右平移6个单位长度,再向上平移3个单位长度C.向左平移6个单位长度,再向上平移3个单位长度D.向左平移6个单位长度,再向下平移3个单位长度14、如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x 2+1B.y=x 2﹣1C.y=(x+1)2D.y=(x﹣1)2.15、小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴 B.l2为x轴,l3为y轴 C.l1为x轴,l4为y轴 D.l2为x轴,l4为y轴二、填空题(共10题,共计30分)16、已知点A(-1,y1)、B(-2,y2)、C(3,y3)在抛物线y=-x2-2x+c上,则y1、y2、y3的大小关系是________.17、将y=2x2的函数图象向左平移3个单位,再向上平移2个单位,得到二次函数解析式为________.18、将抛物线,绕着点旋转后,所得到的新抛物线的解析式是________.19、二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下5个结论:①x≤1时,y随x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正确的结论有________(填上所有正确结论的序号).20、小明推铅球,铅球行进高度与水平距离之间的关系为,则小明推铅球的成绩是________ .21、我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是________.22、抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n 时,y的值为________.23、抛物线y=ax2+bx(a>0,b>0)的图象经过第________象限.24、当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=________.25、抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是________.三、解答题(共5题,共计25分)26、已知函数y=2x2-(3-k)x+k2-3k-10的图象经过原点,试确定k的值。
浙教版九年级上册数学第1章 二次函数含答案(精练)
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、将抛物线y=x2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣2)2+3B.y=(x+2)2+2C.y=(x﹣3)2+2D.y=(x+3)2+22、关于二次函数y=-2(x-3) +5的最大值,下列说法正确的是( )A.最大值是3B.最大值是-3C.最大值是5D.最大值是-53、抛物线y=x2﹣bx+8的顶点在x轴上,则b的值一定为()A.4B.﹣4C.2或﹣2D.4 或﹣44、抛物线y=x2-2x-1上有点P(-1,y1)和Q (m,y2),若y1>y2,则m的取值范围为( )A.m>-1B.m<-1C.-1<m<3D.-1≤m<35、二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x=﹣1或x=2时,y=0D.当x>0时,y随x的增大而增大6、抛物线y=-2x2+1的对称轴是()A.直线x=B.直线x=-C.直线x=2D.直线x=07、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.48、已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是().A.(1,0)B.(2,0)C.(-2,0)D.(-1,0)9、抛物线的顶点坐标是()A. B. C. D.10、抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=211、抛物线向左平移8个单位,再向下平移9个单位后,所得抛物线关系式是()A. (x+8)2-9B. (x-8) 2+9C. (x-8) 2-9D.(x+8) 2+912、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是()A.abc>0B.a+b+c>0C.c<0D.b<013、对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x 轴有两个交点14、小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4B.3.4C.2.4D.1.415、将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2﹣3x+2的图象,则a的值为()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、若抛物线y=ax2经过点A ( ,-9),则其解析式为________。
浙教版九年级上册数学第1章 二次函数含答案
浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、二次函数的大致图象如图所示,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x< ,y随x的增大而减小D.当 -1 < x < 2时,y>02、如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤3、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<04、抛物线y=x2, y=-3x2, y=x2的图象开口最大的是()A.y= x 2B.y=-3x 2C.y=x 2D.无法确定5、已知抛物线与x轴没有交点,过、、、四点,则的大小关系是( )A. B. C. D.6、已知二次函数y=﹣x2+2x﹣3,用配方法化为y=a(x﹣h)2+k的形式,结果是()A.y=﹣(x﹣1)2﹣2B.y=﹣(x﹣1)2+2C.y=﹣(x﹣1)2+4 D.y=﹣(x+1)2﹣47、关于x的二次函数y=a(x+1)(x﹣m),其图象的对称轴在y轴的右侧,则实数a、m应满足()A.a>0,m<﹣1B.a>0,m>1C.a≠0,0<m<1D.a≠0,m >18、抛物线y= x2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为()A.y = x 2+ 2x + 1B.y = x 2 + 2x - 2C.y = x 2 - 2x -1 D.y = x2 - 2x + 19、如图,抛物线与x轴交于点A和B,线段AB的长为2,则k的值是()A.3B.−3C.−4D.−510、如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD面积的最大值为()A.6B.12C.18D.2411、若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x2﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个12、已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )A.有最大值2,有最小值-2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值-2.5D.有最大值2,无最小值13、若抛物线y=x2-2x+m的最低点的纵坐标为n,则m-n的值是()A.-1B.C.1D.214、如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y 轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有()A. 4个B.3个C.2个D.1个15、抛物线y=(x-2)2+1是由抛物线影响y=x2平移得到的,下列对于抛物线y=x2的平移过程叙述正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位 D.先向左平移2个单位,再向下平移1个单位二、填空题(共10题,共计30分)16、如图,抛物线的对称轴为直线,与轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①;②方程的两个根是;③;④当时,的取值范围是;⑤当时,随增大而增大;其中结论正确有________.17、函数与的图象及交点如图所示,则不等式x2<x+2的解集是________.18、已知二次函数()图象的顶点在第二象限,且过点(1,0),则________0(用“<、>、、、=”填写).19、若二次函数(、为常数)的图象如图,则的值为________20、抛物线经过点A(0,3),B(2,3),抛物线的对称轴为________.21、若二次函数y=2x2经过平移后顶点的坐标为(﹣2,3),则平移后的解析式为________.22、把函数y=x2+3的图象向下平移1个单位长度得到的图象对应的函数关系式为________.23、已知二次函数y=m (x﹣1)( x﹣4)的图象与x轴交于A,B两点(点A 在点B的左边),顶点为C,将该二次函数的图象关于x轴翻折,所得图象的顶点为D.若四边形ACBD为正方形,则m的值为________.24、将抛物线y=-x2-4x(-4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b与这两条抛物线共有3个公共点,则b的取值范围为________。
2020年浙教版数学九年级上册 1.1 二次函数(含答案)
拓展训练 2020年浙教版数学九年级上册 1.1 二次函数基础闯关全练1.下列y 关于x 的函数中,属于二次函数的是 ( )A.y=x-1B.C.y=(x-1)²-x ²D.y=-2x ²+12.关于函数y=(500-10x )(40+x ),下列说法不正确的是( )A .y 是x 的二次函数B .二次项系数是-10C .一次项是100D .常数项是20 0003.二次函数y=x ²+2x-7的函数值是8,那么对应的x 的值是 ( )A .3B .5C .-3或5D .3或-5 x... -1 0 1 2 3 ... y ... 0 -3 -4 -3 m ... 则该二次函数的解析式为________ ;m 的值为___________.5.某自营书店销售某种图书,经过一段时间的销售发现,该书每天的销售利润w (元)与销售价x (元/本)有如下关系:w=ax ²+bx-3 000,当销售价为32元/本时,每天的销售利润为72元,当销售价为36元/本时,每天的销售利润为168元,则销售该书每天的销售利润w (元)与销售价x (元/本)的函数表达式是______ .6.某宾馆有40个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价为x 元,宾馆每天的利润为 y 元,则y 与x 的函数关系式为___________.能力提升全练1.已知x 是实数,且满足(x-2)(x-3)=0,则相应的函数y=x ²+x+1的值为 ( )A .13或3B .7或3C .3D .13或7或32.如图,四边形ABCD 中,∠BAD= ∠ACB=90°,AB=AD ,AC= 4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是 ( )A. B.C. D.3.若y 关于x 的二次函数的解析式为()mx x m y m +-=2,则m=_______.三年模拟全练一、选择题1.(2019浙江湖州四中教育集团开学考试,2,★☆☆)下列各式中,y 是x 的二次函数的是 ( )A .xy+x ²=2B .x ²-2y+2=0C .D .y ²-x=0二、解答题2.(2019浙江绍兴蕺山外国语学校月考,17,★☆☆)已知函数()12242-+-=-+x x m y m m 是一个二次函数,求该二次函数的解析式.3.(2018浙江宁波陆埠中学第一次质检,21,★★☆)如图所示的是某养殖专业户建立的一个矩形场地,一边靠墙,另三边除大门外用篱笆围成.已知篱笆总长为30 m ,门宽是2m ,设这块场地的宽为xm .(1)求场地的面积y( m ²)与宽x( m)之间的函数关系式;(2)求出自变量x 的取值范围.五年中考全练填空题(2017湖南常德中考,15.★☆☆)如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE=x ,正方形EFGH 的面积为y ,则y 关于x 的函数关系式为__________.核心素养全练如图①,在平面直角坐标系中,直线(m >0)与直线y= 2x 交于点A ,与x 轴交于点B ,O 为坐标原点,点C 在线段OB 上,且不与点B 重合,过点C 作垂直于x 轴的直线,交直线AB 于点D ,将△BCD 以CD 为对称轴翻折,得到△CDE.设点C 的坐标为(x ₀,0),△CDE 与△AOB 重叠部分的面积为S ,S 关于x ₀的函数图象如图②所示.(1)点A 的坐标是_____________,m=____;(2)求S 与x ₀之间的函数关系式.1.1 二次函数基础闯关全练1.D 选项A 中自变量x 的次数是1,属于一次函数;选项B 是反比例函数;选项C ,由已知函数关系式得到y= - 2x+1,属于一次函数;选项D ,符合二次函数的定义,故选D .2.C 原函数展开整理得y= -10x ²+100x+20 000,∴y 是x 的二次函数,故A 正确;二次项系数是- 10,故B 正确;一次项是100x ,故C 错误;常数项是20 000,故D 正确.故选C .3.D 根据题意,得x ²+2x-7=8,即x ²+2x-15=0,解得x=3或x= -5,故选D .4.答案y=x ²-2x-3;0解析 分别把点(-1,0),(2,-3),(0,-3)代入y=ax ²+bx+c 中,得解得∴二次函数的解析式为y=x ²-2x-3.把x=3代入,得y=0,即m=0.5.答案 w= -2x ²+160x-3 000解析 将(32,72),(36,168)代入w=ax ²+ bx -3 000,得解得所以该书每天的销售利润w (元)与销售价x (元/本)的函数表达式是w=-2x ²+160x-3 000.6.答案解析 ∵每个房间每天的定价为x 元,宾馆每天的利润为y 元,∴y 与x 的函数关系式为.能力提升全练1.C 由已知得x ≤1,∵(x-2) (x-3) =0,∴x=1,当x=1时,y=x ²+x+1= 1+1+1=3.故选C .2.C 作AE ⊥AC ,DE ⊥AE ,AE 、DE 交于点E ,作DF ⊥AC ,垂足为点F ,∵∠BAD=∠CAE= 90°,即∠BAC+ ∠CAD= ∠CAD+∠DAE= 90°,∴∠BAC=∠DAE ,又∵AB=AD ,∠ACB=∠E=90°,∴△ABC ≌△ADE ,∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF =AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得CF ²+DF ²= CD ².即(3a)²+(4a)²=x ²,解得(负值舍去), ∴.故选C.3.答案 -2解析 ∵y 关于x 的二次函数的解析式为()mx x m y m +-=2,∴|m| =2,且m-2≠0,∴m= -2.三年模拟全练一、选择题1.B 选项A 整理后为,右边不是整式且最高次也不是2次,故不是二次函数;选项B 整理后为,符合二次函数的特点;选项C 等号右边不是整式,故不是二次函数;选项D 整理后为y ²=x ,故y 不是x 的二次函数,故选B .二、解答题2.解析 由二次函数的定义得m ²+m-4=2,解得m ₁=2,m ₂=-3,又m-2≠0,即m ≠2,∴m= -3.3.解析 (1) y=x( 32-2x)= -2x ²+32x .(2)∵,∴2<x <16.五年中考全练填空题答案 y=2x ²-4x+4解析如图所示:∵四边形ABCD是边长为2的正方形,∴∠A=∠B=90°,AB=2,∴∠1+∠2=90°,∵四边形EFGH为正方形,∴∠HEF=90°,EH=EF,∴∠1+∠3=90°,∴∠2= ∠3,在△AHE与△BEF中,∵∴△AHE≌△BEF,∴BF=AE=x,AH=BE=2-x,在Rt △AHE中,由勾股定理得,EH²=AE²+AH²=x²+(2-x)²=2x²-4x+4,即y=2x²-4x+4(0<x<2).核心素养全练解析(1) y=x+m,当y=0时,,即x= 2m,∴B(2m,0),当x₀=m时,,此时C是线段OB的中点,如图,则E与O重合,OC=OB=m,CD=-m+m=m,∴,∵m>0,∴,∴直线AB的解析式为,令,得x=1,∴A(1,2).(2)分三种情况:①当0≤x₀≤1时,△CDE与△AOB的重叠部分是△OCF,如图,∴.②当时,△CDE与△AOB的重叠部分是四边形OFDC,如图,∵OC=x₀,∴BC= CE= 5-x₀,∴OE= 5-2x₀,将x=x₀代入,得,∴,设直线DE的解析式为,则,得,即,由得即,∴·.③当时,△CDE与△AOB的重叠部分是△CDE,如图,∴.综上,S与x₀之间的函数关系式为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章测试卷一、选择题(每题3分,共30分) 1.下列函数中是二次函数的是( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 2-1 2.对于二次函数y =3(x -2)2+1的图象,下列说法正确的是( ) A .开口向下 B .对称轴是直线x =-2 C .顶点坐标是(2,1) D .与x 轴有两个交点3.抛物线y =x 2-1可由下列哪一个函数的图象向右平移1个单位,再向下平移2个单位得到?( )A .y =(x -1)2+1B .y =(x +1)2+1C .y =(x -1)2-3D .y =(x +1)2+34.二次函数y =x 2-2x +1的图象与x 轴的交点个数是( )A .0B .1C .2D .35.若A ⎝ ⎛⎭⎪⎫34,y 1,B ⎝ ⎛⎭⎪⎫-54,y 2,C ⎝ ⎛⎭⎪⎫14,y 3为二次函数y =x 2+4x -5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 2 6.在同一坐标系中,二次函数y =ax 2+bx 与一次函数y =bx -a 的图象可能是( )7.已知函数y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是() A.-1<x<4 B.-1<x<3C.x<-1或x>4 D.x<-1或x>38.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是()A.6 s B.4 s C.3 s D.2 s9.如图,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有()A.1个B.2个C.3个D.4个10.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D 作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()二、填空题(每题3分,共24分)11.抛物线y=-x2+15有最________点,其坐标是________.12.函数y=x2+2x+1,当y=0时,x=______;当1<x<2时,y随x的增大而________.(填“增大”或“减小”)13.如图,二次函数y=x2-x-6的图象交x轴于A,B两点,交y轴于C点,则△ABC的面积为________.14.已知抛物线y=ax2-4ax+c与x轴的一个交点的坐标为(-2,0),则一元二次方程ax2-4ax+c=0的根为______________.15.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则能使y1>y2成立的x的取值范围是______________.16.某涵洞的截面是抛物线形,如图所示,在图中建立的直角坐标系中,抛物线的表达式为y=-14x2,当涵洞水面宽AB为12 m时,水面到桥拱顶点O的距离为________m.17.对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个交点;②如果当x≤1时,y随x的增大而减小,则m=1;③若图象向左平移3个单位后过原点,则m=-1;④如果当x=4与x=100时,函数值相等,则当x=104时,函数值为-3,其中正确说法的序号是________.18.如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.(1)求该二次函数的表达式,写出该抛物线的对称轴及顶点;(2)若点P(m,m)在该函数的图象上,求m的值.20.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P,Q分别从A,B同时出发,点P在边AB上沿AB方向以每秒2 cm的速度匀速运动,点Q 在边BC上沿BC方向以每秒1 cm的速度匀速运动(点P,Q中有一点到达矩形顶点,则运动停止).设运动时间为x s,△PBQ的面积为y cm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的最大面积.21.如图,二次函数图象与y轴交于点A(0,-6),与x轴交于C,D两点,顶点坐标为B(2,-8).若点P是x轴上的一动点.(1)求此二次函数的表达式;(2)当PA+PB的值最小时,求点P的坐标.22.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,那么水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的表达式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).此船能否顺利通过这座拱桥?23.某工厂生产一种火爆的网红电子产品,每件产品成本16元.工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围.(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的表达式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出使|PM-AM|最大时点M的坐标,并直接写出|PM-AM|的最大值.答案一、1.B 2.C3.B 点拨:根据“左加右减,上加下减”,可得B 选项正确. 4.B 5.D 6.C7.B 点拨:y <0,表示取函数图象在x 轴下面的部分,1-(-1)=2,所以函数图象与x 轴的另一个交点为(3,0),故选B. 8.A 9.C10.A 点拨:易知△DEB 为等边三角形,∴∠EDB =60°.又∵EF ⊥DE ,∴∠EFD =30°. ∴DF =2DE =2BD =2(2-x ).在Rt △DEF 中,由勾股定理,得EF =DF 2-DE 2=4(2-x )2-(2-x )2=3(2-x ),∴y =12×3(2-x )×(2-x )=32(x -2)2(0≤x <2).故选A.二、11.高;(0,15) 12.-1;增大 13.15 14.x 1=-2,x 2=6 15.x <-2或x >8 16.9 17.①④18.272 点拨:由题意知抛物线m 的对称轴为直线x =-3,可设抛物线m 的表达式为y =12(x +3)2+h .∵抛物线m 经过原点, ∴0=12×32+h ,∴h =-92.∴顶点P 的坐标为⎝ ⎛⎭⎪⎫-3,-92.又∵点Q 的坐标为⎝ ⎛⎭⎪⎫-3,12×32, 即⎝ ⎛⎭⎪⎫-3,92,∴点P 与点Q 关于x 轴对称, ∴S 阴影=|-3|·⎪⎪⎪⎪⎪⎪92=3×92=272.三、19.解:(1)将A (-1,-1),B (3,-9)的坐标分别代入y =ax 2-4x +c ,得⎩⎨⎧a +4+c =-1,9a -12+c =-9.解得⎩⎨⎧a =1,c =-6. 解得该二次函数的表达式为y =x 2-4x -6. ∵y =x 2-4x -6=(x -2)2-10,∴该抛物线的对称轴为直线x =2,顶点为(2,-10). (2)∵点P (m ,m )在该函数的图象上, ∴m 2-4m -6=m .∴m 1=6,m 2=-1. ∴m 的值为6或-1.20.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =(18-2x )cm ,BQ =x cm ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4). (2)由(1)知y =-x 2+9x , ∴y =-⎝ ⎛⎭⎪⎫x -922+814,∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ 的最大面积是20 cm2. 21.解:(1)设二次函数的表达式为y =a (x -2)2-8.将A (0,-6)的坐标代入得4a -8=-6,∴a =12.∴y =12(x -2)2-8,即y =12x 2-2x -6.(2)作点A 关于x 轴的对称点E (0,6),连结BE 交x 轴于点P , 连结PA ,此时PA +PB 最小.设直线BE 的表达式为y =kx +b ,则⎩⎨⎧2k +b =-8,b =6.解得⎩⎨⎧k =-7,b =6.∴y =-7x +6.当y =0时,x =67,∴点P 的坐标为⎝ ⎛⎭⎪⎫67,0. 22.解:(1)设抛物线的表达式为y =ax 2. ∵抛物线关于y 轴对称,AB =20米,CD =10米,∴点B 的横坐标为10.设点B (10,n ),则点D (5,n +3).将B ,D 两点的坐标分别代入表达式,得⎩⎨⎧n =100a ,n +3=25a .解得⎩⎪⎨⎪⎧n =-4,a =-125.∴y =-125x 2. (2)∵货船经过拱桥时右侧的横坐标为x =3,∴当x =3时,y =-125×9=-925. ∵点B 的纵坐标为-4, 又|-4|-⎪⎪⎪⎪⎪⎪-925=3.64>3.6, ∴当水位在正常水位时,此船能顺利通过这座拱桥.23.解:(1)当0<x ≤20且x 为整数时,y =40;当20<x ≤60且x 为整数时,y =-12x +50; 当x >60且x 为整数时,y =20.(2)设所获利润为w 元.当0<x ≤20且x 为整数时,y =40,∴w 最大=(40-16)×20=480.当20<x ≤60且x 为整数时,y =-12x +50, ∴w =(y -16)x =⎝ ⎛⎭⎪⎫-12x +50-16x =-12x 2+34x =-12(x -34)2+578. ∵-12<0, ∴当x =34时,w 最大,最大值为578.答:一次性批发34件时,工厂获利最大,最大利润是578元.24.解:(1)设抛物线的表达式为y =ax 2+bx +c ,∵A (1,0),B (0,3),C (-4,0),∴⎩⎨⎧a +b +c =0,c =3,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =-34,b =-94,c =3.∴经过A ,B ,C 三点的抛物线的表达式为y =-34x 2-94x +3. (2)存在.以CA ,CB 为邻边时,如图,∵OB =3,OC =4,OA =1, ∴BC =AC =5,当BP 平行且等于AC 时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3);以AB ,AC 为邻边时,AC ≠AB ,∴不存在点P 使四边形ABPC 为菱形;以BA ,BC 为邻边时,BA ≠BC ,∴不存在点P 使四边形ABCP 为菱形.故符合题意的点P 的坐标为(5,3).(3)设直线PA 的函数表达式为y =kx +m (k ≠0),∵A (1,0),P (5,3),∴⎩⎨⎧k +m =0,5k +m =3,解得⎩⎪⎨⎪⎧k =34,m =-34,∴直线PA 的函数表达式为y =34x -34,当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系知|PM -AM |<PA ,当点M 与点P ,A 在同一直线上时,|PM -AM |=PA ,∴当点M 与点P ,A 在同一直线上时,|PM -AM |的值最大,即点M 为直线PA 与抛物线的交点,解方程组⎩⎪⎨⎪⎧y =34x -34,y =-34x 2-94x +3,得⎩⎨⎧x 1=1,y 1=0,⎩⎪⎨⎪⎧x 2=-5,y 2=-92, ∴当点M 的坐标为(1,0)或⎝ ⎛⎭⎪⎫-5,-92时,|PM -AM |的值最大,|PM -AM |的最大值为5.1、读书破万卷,下笔如有神。