5三重积分(柱,球坐标)
三重积分在柱面及球坐标系下的计算
= ∫ dθ ∫
0
2π
R
0
1 2 1 4 2 ( R − ρ ) ρdρ = πR . 2 4
思考: 思考:是否可考虑用切片法来求解?
例2 计算三重积分I = ∫∫∫ ( x + y )dv,
2 2 (V )
z
其中(V )由z = x 2 + y 2 , z = h所围.
解 (V )在xoy面投影域(σ )为圆 : 0 ≤ ρ ≤ h , xy
π
4
θ
y
,0 ≤ ρ ≤ R.
x
∴ I = ∫ dθ
0
2π
∫
π /4
0
dϕ
∫
R
0
ρ 2 ⋅ ρ 2sinϕ dρ
2− 2 5 = πR . 5
练习 试用三种坐标系分别计算三重积分
z
2
σz
I = ∫∫∫ zdv, 其中(V ) : x 2 + y 2 + z 2 ≤ 2 z.
(V )
解法1 解法 直角坐标系(切片法)
1
= 2π ∫ ρ ⋅ 2 1 − ρ 2 dρ
1
4π = . 3
0
解法3 解法 球面坐标系计算
∫∫∫ zdv
(V )
z
2
x2 + y2 + z2 = 2z
球面为 : ρ = 2 cos ϕ , 其中
0 ≤ θ ≤ 2π ,0 ≤ ϕ ≤
ϕ
o
π
2
,0 ≤ ρ ≤ 2 cos ϕ .
θ
ρ cos ϕ ⋅ ρ 2 sin ϕdρ
z
• •
其中(V )由z = R 2 − x 2 − y 2 与 z = 0所围.
柱面坐标系和球面坐标系求三重积分
z x2 y2所围 .
分析 (V )为由半球面与锥面所围,
故可用球面坐标,
y
此 ,0 时 2 ,0 ,0R . x
4
2
I d
/4
d
R22sind
0
0
0
2 2 R5.
5
练习 试用三种坐标系算 分三 别重 计积分
I zdv,其中(V): x2 y2 z2 2z. (V)
解法1 直角坐标(切 系片法 )
x
则 (V )f(c o,s si,n z)d d dz ,
]d d
[ z2(,)f(co ,ssin,z)dz
( ) z1(,)
例1 计算三重积I分 (Vz)dv,
其中(V)由z R2 x2 y2与 z 0所围.
解 (V )向 xo 面 y 投 (x)y 为 影 :0 圆 R , 02 x
I d d
zdz
0
0 1 1 2
x
2012 12d
4 . 3
•1
xy
解法3 球面坐标系计算zdv (V) x2y2z22z
z
2
球面 : 为 2co,s其中
02 ,0,02co .s
2
o
y
I 2d /2d 2coscos2sxind
0
0
0
2/24co5ssind 4 .
0
3
z
h•
此,时 2zh.
I [ h 2dz ]dd ( xy ) 2
•
o•
x
y
( xy )
2d h(3h5)d
0
0
1 h3.
6
思考:本题是否也可考虑用切片法来求解?
4-2-2 球面坐标系下三重积分的计算
利用球坐标计算三重积分
(2)若空间区域具有轮换对称性,即
(x, y, z) V , ( y, z, x), (z, x, y) V ,
也就是三字母轮换积分区域不改变,
则
f (x, y, z) f1(x, y, z) f1( y, z, x) f1(z, x, y)
f (x, y, z)dxdydz 3 f1(x, y, z)dxdydz.
0
0
h
1
2
d
h
r2 d z
4
2
2
0
[(1
h 1 2
4h) ln(1
(h 2 ) d
4 4h) 4h]
4
o x
y
例3. 计算三重积分
(x2 y2 z2 )d xd yd z ,其中
为锥面 z x2 y2 与球面 x2 y2 z2 R2 所围立体.
V
当 f (x, y, z) f (x, y, z) 即被积函数关于z为偶函数时
f
(x,
y,
z)dxdydz
2
f
(x,
y,
,
z)dxdydz
V
V1
其中 V1 是V 位于 xoy平面上侧的部分.
积分区域关于其它坐标平面:yoz, zox 对称,且被积
函数分别是 x, y, 的奇、偶函数,也有上述类似的结论
一、利用空间区域的对称性或被积函数的奇偶性
计算三重积分
(1)若空间闭区域关于平面 xoy 对称, 即
(x, y, z)V ,(x, y, z) V , 则当 f (x, y, z) f (x, y, z)
柱坐标、球坐标下的三重积分
解:由图知:直角系:
D
y
x
2
4 x2
6x2 y2
I dx
dy
f (x, y, z)dz
2
4x2
x2 y2
柱标系: I
2
d
2
rdr
6r 2
f (r cos , r sin , z)dz
0
0
r
杂例
在三种坐标系下化三重积分 f (x, y, z)dv为三次积分,
z
其中:z 6 x2 y2, z x2 y2 z 6 x2 y2 6
四、柱坐标、球坐标下的三重积分
1. 柱坐标:(θ,r,z)
zz
变换为:x r cos , y r sin , z z
即:(x, y, z) (r cos , r sin , z),其中:
0 r ,0 2 ,| J || (x, y, z) | r ( , r, z)
x
注:柱坐标— 极坐标平面竖起一根Z轴。x
上顶: z 1 x2 y2
下底: z = 0
z
Dxy: x 2 y 2 1
x y
I dxdy
zdz
Dxy
用哪种坐标? 柱面坐标 .
.
2π
1
1r 2
I = 0 dθ 0 rdr0 zdz
Dxy 0
1
4
x
z0
1y
注:用柱坐标求 fdv分成两个步骤:
第一步:先一后二,对z积分后将二重积分化为极坐 标下的二重积分;
元素区域由六个坐标面围成:
半平面及+d ;
半径为r及 r+dr的园柱面;
平面 z及 z+dz;
dz
(简)3-5利用柱面坐标和球面坐标计算三重积分
0 ≤ r ≤ a,
0 ≤ θ ≤ 2π ,
2π a a
I = ∫∫∫ ( x + y )dxdydz = ∫ dθ ∫ rdr ∫ r 2dz
Ω
0
0
r
a4 a5 π 5 3 = 2π ∫ r (a − r )dr = 2π[a ⋅ − ] = a . 0 10 4 5
a
例 4 求曲面x2 + y2 + z2 ≤ 2a2 与z ≥ x2 + y2 所围 成的立体体积.
解 积分域关于三个坐标面都对称, 积分域关于三个坐标面都对称, 奇函数, 被积函数是 z 的奇函数
z ln( x 2 + y 2 + z 2 + 1) ∫∫∫ x 2 + y 2 + z 2 + 1 dxdydz = 0. Ω
例6
计算 ∫∫∫ ( x + y + z ) dxdydz 其中Ω 是由抛物
2
2
面 z = x + y 和球面 x + y + z = 2 所围成的空 间闭区域.
2 2 2
Ω 2
解
Q ( x + y + z)
2 2 2
2
= x + y + z + 2( xy + yz + zx )
的奇函数, 其中 xy + yz 是关于 y 的奇函数
面对称, 且 Ω 关于 zox 面对称 ∴
所围成的立体如图, 所围成的立体如图,
所围成立体的投影区域如图, 所围成立体的投影区域如图,
D1 : x 2 + y 2 = 16,
0 ≤ θ ≤ 2 π 0 ≤ r ≤ 4 , Ω1 : 2 r ≤ z ≤ 8 2
利用柱面坐标计算三重积分
z
j r
zdv
dvΒιβλιοθήκη zdvO
dv
a 2 0 2
.
q
x
a y
dv 2 dj dq
2
0
0
2a 3 , r sin jdr 3
a
1 a4 , zdv 2 dj dq r cos j r 2 sin jdr 2 0 0 0 2 4 3a 3a 因此`z .重心为(0,0, ). 8 8
§9.5 利用柱面坐标和球面坐标计算三重积分
一、利用柱面坐标计算三重积分
柱面坐标、 柱面坐标系的坐标面 直角坐标与柱面坐标的关系、柱面坐标系中的体积元素
柱面坐标系中的三重积分
二、利用球面坐标计算三重积分
球面坐标、球面坐标系的坐标面 直角坐标与球面坐标的关系、球面坐标系中的体积元素 球面坐标系中的三重积分
,r sin q ,z) rdrdqdz.
例1 例1 利用柱面坐标计算三重积分 zdxdydz,其中是由曲
面 zx2y2 与平面 z4 所围成的闭区域.
z 4 zx2y2 或 zr2
解 闭区域可表示为:
r 2z4,0r2,0q2. 于是
zdxdydz zrdrdqdz
2 r sin jdrdjdq dq sin j dj r 4 dr a 2 M , 0 0 0 5
4 3
2
3
a
4 3 其中 M a 为球体的质量. 3
一、利用柱面坐标计算三重积分
设M(x, y, z)为空间内一点,则点M与数 r、q 、z相对应, 其中P(r, q )为点M在xOy面上的投影的极坐标. 三个数 r、q 、z 叫做点M 的柱面坐标. z 这里规定r、q 、z的变化范围为: 0 r<, 0 q 2 , < z<. O x r y P(r, q ) y z
三重积分中的柱坐标与球坐标
三重积分中的柱坐标与球坐标在数学中,三重积分是一种用来计算三维空间内物体特定属性(例如体积、质量、质心等)的重要工具。
传统的笛卡尔坐标系在解决一些问题时并不总是方便,于是人们引入了柱坐标和球坐标系,这两种坐标系在三重积分中有着特殊的应用。
本文将介绍三重积分中的柱坐标与球坐标,以及它们的计算方法和在实际问题中的应用。
一、柱坐标中的三重积分柱坐标是一种常见的极坐标系,它由径向$r$、极角$\theta$和高度$z$三个变量构成。
在三重积分中,柱坐标系的转换公式为:$$x = r\cos\theta$$$$y = r\sin\theta$$$$z = z$$$$dV = r\,dr\,d\theta\,dz$$其中$dV$表示体积元素,$r$的范围为$r_1 \leq r \leq r_2$,$\theta$的范围为$\theta_1 \leq \theta \leq \theta_2$,$z$的范围为$z_1 \leq z \leq z_2$。
对于函数$f(x, y, z)$在柱坐标系下的三重积分,则有:$$\iiint\limits_{\Omega} f(x, y, z) dV = \int\limits_{z_1}^{z_2}\int\limits_{\theta_1}^{\theta_2} \int\limits_{r_1}^{r_2} f(r\cos\theta,r\sin\theta, z) r\,dr\,d\theta\,dz$$柱坐标系的三重积分常用于具有柱对称性的问题,例如计算柱体的体积、质心等属性。
它将空间问题简化为平面问题,使得计算更加便捷高效。
二、球坐标中的三重积分球坐标是另一种常见的极坐标系,它由径向$r$、极角$\theta$和方位角$\phi$三个变量构成。
在三重积分中,球坐标系的转换公式为:$$x = r\sin\phi\cos\theta$$$$y = r\sin\phi\sin\theta$$$$z = r\cos\phi$$$$dV = r^2\sin\phi\,dr\,d\theta\,d\phi$$其中$dV$表示体积元素,$r$的范围为$r_1 \leq r \leq r_2$,$\theta$的范围为$\theta_1 \leq \theta \leq \theta_2$,$\phi$的范围为$\phi_1 \leq \phi \leq \phi_2$。
三重积分的计算方法
关于三重积分,是数一的内容。
三重积分核心也就是选对三重积分三大类方法,做什么题适合什么样的方法比较简便。
先总结关于三重积分的方法三重积分的计算方法:总结三种坐标形式1.直角坐标法①先一后二(先对z求积分,再对xy求积分)需要注意的是,在对xy积分的时候,积分区域是在xoy上面的投影②先二后一(先对xy积分,再对z积分)这里对z的积分的时候,积分区域是垂直z轴平面所截的区域适合先二后一:①被积函数:只含有x,y,z其中一个②积分区域:用 z=z0 截取后面积易求直角坐标系下求三重积分“先二后一”2.柱坐标{x=rcosθy=rsinθz=z公式∭Ωf(x,y,z)=∭Ωf(rcosθ,rsinθ,z)rdrdθdzx2+y2=r2注意:什么时候适合柱坐标①被积函数:出现x2+y2②积分区域:积分区域在xoy面上能用极坐标表示用柱面坐标计算三重积分3.球坐标{x=rsinφcosθy=rsinφsinθz=zcosφ,公式∭Ωf(x,y,z)dv=∭Ωf(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdrdθdzx2+y2+z2=r2注意:什么时候适合球坐标①被积函数出现x2+y2+z2②积分区域是一个球或者是一个锥体θ就是投影在xoy的角度范围,φ就是过原点,引一条射线,向下转,转出积分区域范围就是φ的范围用球面坐标计算三重积分4.一些常见积分区域的几何图形① z=x2+y2② z=x2+y2③ z=a−x2−y2④ z=a−x2−y25.更换三重积分的次序这里常见的是两种问题,一种是累次积分交换次序,另一种是计箅累次积分,计算累次积分通常也是通过交换累次积分次序来进行.交换三重累次积分次序本应像二重累次积分一样,先画域,然后再重新定限,然而,这里画域往往比较困难,通常利用二重积分交换次序逐步实现三重累次积分交换次序。
谈谈三重积分的定限方法
谈谈三重积分的定限方法计算三重积分的基本方法是将三重积分化为三次积分来计算,而这里的一个关键问题是如何根据积分区域Ω来定限,下面分别介绍一下利用直角坐标,柱面坐标,球面坐标计算三重积分时如何定限的方法。
一、利用直角坐标计算三重积分时如何定限? 教材中将积分区域Ω表示为:}),()(:),(),,(),(),,{(2121b x a x y x y x y x z y x z y x yy D zz xy ≤≤≤≤∈≤≤=Ω(1)从而将三重积分化为三次积分为:⎰⎰⎰⎰⎰⎰Ω=D z z dz z y x f dxdy dv z y x f xyy x y x ),(),(21),,(),,(=dz y y z z z y x f dy dx x x y x y x ba ⎰⎰⎰)()(),(),(2121),,(这个公式也称为“先一后二”积分公式。
(上述公式是将Ω向xoy 平面投影得到的,将Ω向其他坐标平面投影可得到类似的公式)当积分区域的几何形体较简单时,容易写出Ω的集合表达式(1),但积分的区域的立方图形通常难以画出,因此确定Ω的集合表达式(1)较困难。
为了解决这个困难。
下面介绍一个所谓“求围定顶”的定限法:称(1)式中),(1y x z ,),(2y x z 分别为区域Ω的下顶和上顶,以D xy 的边界曲线为准线,母线平行于Z 轴的柱面,位于下顶和上顶之间的部分称为Ω的“围墙”,Dxy的边界曲线称为“围线”,(它是投影柱面与xoy 平面的交线),下面分三种情况来介绍“求围定顶”的定限法。
1.设Ω由曲面),(y x h z =与),(y x g z =围成,不出现“围墙”,此时两曲面的交线在xoy 平面上的投影即为“围线”。
例 1.化三重积分⎰⎰⎰Ωυd z y x f ),,(为三次积分,其中Ω为由曲面2222,2x z y x z -=+=围成的闭区域例:“求围” 由方程组{22222xz y x z -=+=消去z 得两曲面交线在xoy 平面上的投影,即“围线”:122=+y x ,因此1:22≤+y x D xy ,即 .11,11:22≤≤--≤≤--x x y x D xy“定顶” 在Dxy内任取一点代入两曲面方程),(y x h z =,),(y x g z =得到两个z 的值,大者为上顶,小者为下顶。
三重积分 柱坐标与极坐标
则二重积分应当考虑用极坐标计算.
这就等于用柱面坐标计算三重积分.
2. 利用柱坐标计算三重积分
设 M (x, y, z) R3,将x, y用极坐标, 代替, 则(, , z)
就称为点M 的柱坐标. 直角坐标与柱面坐标的关系:
x cos y sin
zz
坐标面分别为
例5. 计算三重积分
其中
与球面
所围立体.
解: 在球面坐标系下
0rR
z rR
:
0
π 4
0 2π
π 4
( x2 y2 z2 )dxdydz
2π
d
π
4 sin d
Rr4 dr
Oy x
0
0
0
1 π R5(2 2)
d v r2 sin drd d
圆锥面
球面 r+d r
半径为r及r + dr的球面;
圆锥面及+d rsind
r
圆锥面 + d
0
d
y
x
球面坐标下的体积元素
z
元素区域由六个坐标面围成:
半平面 及+d ;
半径为r及r+dr的球面;
rsind
圆锥面及 + d
d v r 2 sind rd d
常见曲面的柱面坐标方程
曲面 半球面
直角坐标方程 z a2 x2 y2
柱面坐标方程 z a2 r2
圆锥面 旋转抛物面
z x2 y2 z x2 y2
zr z r2
圆柱面 圆柱面 圆柱面
三重积分柱面球面坐标
0
d
.
y
rcos ) r 2 sin drdd
x
19
目录 上页 下页 返回 结束
f ( x, y, z)dxd ydz
F (r , , ) r 2 sin d r d d
其中 F (r , , ) f (r sin cos , r sin sin , r cos )
第三节 三重积分
一、三重积分的概念 二、三重积分的计算
第十章
1
目录 上页 下页 返回 结束
利用柱面坐标计算 三重积分。
2
目录 上页 下页 返回 结束
2. 利用柱面坐标计算三重积分。
回忆用投影法(先一后二)计算三重积分
z2 ( x , y )
1
f ( x, y, z)dV dxdyz ( x, y )
球面坐标下的体积元素
z
元素区域由六个坐标面围成: 半平面 及+d ; 半径为r及r+dr的球面; 圆锥面及+d
rsind
dV = r 2 sin drdd
dV
r
f ( x , y, z )dxdydz
f (r sin cos , r sin sin ,
适用范围:
1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离.
20
目录 上页 下页 返回 结束
下面介绍一些区域的球面 坐标的描述
21
目录 上页 下页 返回 结束
直角坐标 球体
球面坐标
: x 2 y 2 z 2 R2
: 0 2 0 0r R
课件:三重积分的计算(柱坐标和球面坐标)
9
旋转面方程为 x2 y2 2z,
I 28dz ( x2 y2 )dxdy
Dz
28dz ( x2 y2 )dxdy x2 y22z
28dz 02 d 0 2z r 3dr
282
4z2 dz 4
336。
例 3.一形体 是由平面yz4, z0和圆柱面
x2 y2 16 所围成,已知其上任一点的密度与该
点到 z 轴的距离 成正比,求其质量 m 。
解:密度函数 ( x, y,z)k x2 y2 (k0) ,则 z
m k x2 y2 dxdydz 。
x2 y2 16
yz4
4
在 xoy 平面上的投影区域为 Dxy {( x, y) x2 y2 16} ,
o 4y
x
10
在柱面坐标下
{(,,z) 02, 04, 0 z4sin } ,
x sincos rcoscos rsinsin
∵ J ( x, y,z) sinsin rcossin rsincos r 2sin
( r ,,)
cos rsin
0
∴ f (x, y,z)dxdydz
f (rsincos,rsinsin,rcos)r2 sindrdd
24
sincos rcoscos rsinsin
奇函数, 有 xdv 0.
( x z)dv zdv 利用球面坐标
2
d
4 d
1 r cos r2 sin dr
.
0
0
0
8
例6 计算 e z dv, : x2 y2 z2 1.
解 被积函数仅为 z 的函数,截面 D(z) 为圆域 x2 y2 1 z2,故采用"先二后一"法.
5三重积分计算柱面球面坐标系下-DrHuang
第7章 多元函数积分学
7.1 重积分
7.1.3 三重积分的计算(柱面和球面坐标系)
中南大学开放式精品示范课堂高等数学建设组
7.1 重积分
7.1.3 三重积分的计算 (柱面和球面坐标系)
柱
导学及问题讨论
面
柱面坐标介绍
球 面
柱面坐标下计算三重积分 柱面坐标下的三次积分
坐
习例1-4
标 系
计算步骤及适用范围
0
0
1r2
e r2 z2 dz
r2 z2
计算较繁琐甚至无法计算,怎么办?
人们确定航天器某一时刻的具体位置,
是根据某一时刻航天器到地球表面的距离,以
及航天器所处位置的经度 和纬度 ,从而
用有序数组(,, ) 表示航天器的具体位 置那么,如何建立坐标系才能方便得出
,, 的值,从而确定它的位置呢?
)
2d .
f (x, y, z)dxdydz
f ( sin cos, sin sin, cos) 2 sinddd.
y
r
sin
z z
r x2 y2
tan
y x
z z
由定义可知点M的柱面坐标r, , z 的取值范围分别是
r : 0 r , : 0 2, z : z .
z
三坐标面分别为
r 为常数
为常数
z 为常数
{( x, y, z) | x2 y2 z 1, x2 y2 1}
{(r, , z) | r z 2,0 r 2,0 2 }
{(r, , z) | r z 1,0 r 1,0 2 }
三重积分概念及其计算
三重积分概念及其计算三重积分是多重积分的一种,它用于计算三维空间中的体积、质量、质心等物理量。
在本文中,我们将详细介绍三重积分的概念和计算方法。
一、三重积分的概念三重积分是对三维空间中的函数进行求和的一种数学运算。
它可以用于计算空间中的体积、质量、质心等物理量。
三重积分通常表示为∭f(x,y,z)dV,其中f(x,y,z)是定义在三维空间中的函数,dV表示微小体积元素。
二、三重积分的计算方法1.直角坐标系中的三重积分在直角坐标系中,三重积分的计算可以采用分步积分的方法。
具体而言,首先需要确定积分区域的边界,然后分别对x、y、z进行积分。
设积分区域为V,边界为S。
根据积分的基本原理,三重积分可以表示为:∭f(x,y,z)dV=∫∫∫_Vf(x,y,z)dV其中V表示积分区域的体积,dV表示微小体积元素。
假设积分区域可以被表示为:V:a≤x≤b,g(x)≤y≤h(x),p(x,y)≤z≤q(x,y)那么,三重积分可以分步计算为:∭f(x,y,z)dV = ∫∫∫_V f(x,y,z)dxdydz= ∫_a^b∫_(g(x))^(h(x)) ∫_(p(x,y))^(q(x,y)) f(x,y,z) dzdydx依次对x、y、z进行积分即可得到结果。
2.柱坐标系中的三重积分在柱坐标系中,三重积分的计算可以采用柱坐标系下的坐标变换公式。
具体而言,用柱坐标r、θ、z替换直角坐标系中的x、y、z,然后对新的坐标进行积分。
设柱坐标系下的积分区域为V,边界为S。
根据柱坐标系下的坐标变换公式,三重积分可以表示为:∭f(x,y,z)dV = ∬∬∬_V f(rcosθ,rsinθ,z)rdzdrdθ其中 r 表示到原点的距离,θ 表示与正 x 轴的夹角,z 表示垂直于 xy 平面的坐标。
积分区域 V 在柱坐标系下的表示方式为:V:α≤θ≤β,g(θ)≤r≤h(θ),p(r,θ)≤z≤q(r,θ)根据这个表示,可以将三重积分计算为:∭f(x,y,z)dV = ∬∬∬_V f(rcosθ,rsinθ,z)rdzdrdθ= ∫_α^β ∫_(g(θ))^(h(θ)) ∫_(p(r,θ))^(q(r,θ))f(rcosθ,rsinθ,z) zdrdθ依次对θ、r、z进行积分即可得到结果。
三重积分的积分方法和积分公式
三重积分的积分方法和积分公式积分是数学中重要的一部分,它有许多不同的形式和方法。
三重积分作为三维空间上积分的一种形式,也有其独特的积分方法和积分公式。
一、 Cartesian 坐标系下的三重积分在 Cartesian 坐标系下,三重积分可以写作:$$ \iiint\limits_D f(x,y,z) dV $$其中 $D$ 是一个三维空间上的区域,$f(x,y,z)$ 是一个定义在$D$ 上的实函数,$dV$ 表示一个体积元素。
三重积分可以通过积分区域的划分来实现,比如将 $D$ 划分为小立方体,并在每个立方体中选取一个点作为积分点。
这样,三重积分可以近似计算为:$$ \iiint\limits_D f(x,y,z) dV \approx \sum_{i=1}^n f(x_i, y_i, z_i)\Delta V_i $$其中 $n$ 是被划分的立方体数量,$(x_i, y_i, z_i)$ 是第 $i$ 个立方体中的积分点,$\Delta V_i$ 是第 $i$ 个立方体的体积。
当立方体数量趋近于无限大时,上式将会趋近于真实值。
然而,这种方法的计算量非常大,而且精确度也不高。
因此,我们需要寻求更加高效和准确的计算方法。
二、柱坐标系下的三重积分柱坐标系下的三重积分可以写作:$$ \iiint\limits_D f(r,\theta,z) r dz dr d\theta $$其中 $D$ 是一个柱形体,$f(r,\theta,z)$ 是一个定义在 $D$ 上的实函数,$r$、$\theta$ 和 $z$ 分别表示极径、极角和高度。
柱坐标系下的三重积分可以通过区域的分割和替换坐标系来计算。
具体来说,我们将 $D$ 划分为小柱形体,并在每个柱形体中选择一个点作为积分点。
然后,使用下列公式来计算三重积分:$$ \iiint\limits_D f(r,\theta,z) r dz dr d\theta \approx \sum_{i=1}^nf(r_i, \theta_i, z_i) r_i \Delta r_i \Delta \theta_i \Delta z_i $$其中 $n$ 是被划分的柱形体数量,$(r_i, \theta_i, z_i)$ 是第$i$ 个柱形体中的积分点,$\Delta r_i$、$\Delta \theta_i$ 和 $\Delta z_i$ 分别是第 $i$ 个柱形体的半径、极角和高度。
9.5_三重积分计算2
一般地,先对 ,后对r, 一般地,先对z,后对 ,最后对 θ 积分
二、利用球面坐标计算三重积分
z
设 M ( x, y, z ) 为空间内一点, 则点 M 可用三个有次序的数r,
A
x
r
M ( x,
z
y, z )
o
P ,θ 来确定,其中 r 为原点 O 与 x 点 M 间的距离, 为有向线段 OM 与 z轴正向所夹的 角,θ 为从正 z 轴往下看自 x 轴按逆时针方向转到有
0
π 2 0
π 2 0
R
x
.
例 4、 求曲面 x2 + y2 + z2 ≤ 2a2与 z ≥ x2 + y2 成的立体体积. 所围 成的立体体积
解
由x
2
由锥面和球面围成, 采用球面坐标, 由锥面和球面围成, 采用球面坐标,
+ y + z = 2a
2 2
2 2
2
r = 2a ,
z=
π x + y = , 4
z
M ( x,
∞ < z < +∞ .
x = r cos θ , 直角坐标与柱面坐标的关系为 y = r sin θ , z = z.
o
θ
y, z )
r
P (r ,θ )
y
x
柱面坐标的坐标面 动点M( 动点 r, θ, z) z r =常数:圆柱面 常数: 常数 圆柱面S z =常数: 平面Π 常数: 常数 S
‘
= abc ∫ dθ ∫ sin d ∫ 1 r 2 dr =
0 0 0
2π
π
1
π2
4
例7、计算∫∫∫ ( x + y + z ) cos( x + y + z ) 2 dxdydz
三重积分的计算
三重积分的概念三重积分的性质三重积分的计算直角柱面球面回顾:讨论密度分布不均匀的物体的质量:(1) 一根细棒:ab 密度为i ξ=M ()b a x dx ρ=⎰()i ρξi x ∆∑=ni 10lim →λ(2)平面薄片:),(i i ηξ=M (,)i i ρξη∑=n i 10lim →λiσ∆(,)Dx y dxdy ρ=⎰⎰密度为y x D(3)设在空间有限闭区域Ω内分布着某种不均匀的物质,(,,),x y z C ρ∈求分布在Ω内的物质的质量M .密度函数为Ω(,,)k k k ξηζk v ∆(,,)x y z ρ➢分割:12,,,,,i n v v v v ∆∆∆∆把Ω分为➢取近似:(,,)k k k k kM v ρξηζ∆≈∆➢求和:1(,,)n k k k kk M v ρξηζ=≈∆∑➢取极限:01lim (,,)n k k k k k M v λρξηζ→==∆∑设f (x , y , z )是空间有界闭区域Ω上的有界函数,1、将闭区域Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅⋅⋅, ∆v n , 其中∆v i 表示第i 个小闭区域, 也表示它的体积,2、在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , ηi , ζi )∆v i ,3、求和∑=ni i i i i v f 1),,(∆ζηξ4、如果当各小闭区域的直径中的最大值λ趋近于零时, 该和式的极限存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 并记为d (,,)Ωf x y z v⎰⎰⎰三重积分的定义⚫注:(2)三重积分的物理意义:不均匀物体的质量(1)其中dv 称为体积元素, 其它术语与二重积分相同.(3)同样有: 有界闭区域上的连续函数一定可积.d 01.(,,)lim (,,)ni i i ii f x y z v f v λξηζ→=Ω=∆∑⎰⎰⎰将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数, 就得到三重积分的定义.三重积分的概念三重积分的性质三重积分的计算直角柱面球面➢线性性质[]d d d (,,)(,,)(,,)(,,)f x y z g x y z v f x y z v g x y z v αβαβΩΩΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢可加性d d d 12(,,)(,,)(,,)f x y z v f x y z v f x y z v ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢几何意义d v V Ω=⎰⎰⎰V 为Ω的体积➢不等式(,,)f g x y z ≤∈Ωd d (,,)(,,)f x y z v g x y z vΩΩ≤⎰⎰⎰⎰⎰⎰d d (,,)(,,)f x y z v f x y z vΩΩ≤⎰⎰⎰⎰⎰⎰(),Df x y d σ=⎰⎰曲顶柱体的体积➢估值定理(,,)m f M x y z ≤≤∈Ωd (,,)mV f x y z v MVΩ≤≤⎰⎰⎰➢中值定理(,,)f x y z 在Ω上连续,则存在(,,),ξηζ∈Ω使得d (,,)(,,)f x y z v f V ξηζΩ=⎰⎰⎰三重积分的概念三重积分的性质三重积分的计算直角柱面球面在直角坐标系中, 如果我们用三族(平行于坐标面的)平面x = 常数, y = 常数, z = 常数, 对空间区域进行分割那末每个规则小区域都是长方体. 其体积元素为:dv =dxdydz三重积分可写成:三重积分在直角坐标系中的计算法与二重积分类似, 三重积分可化成三次积分进行计算.具体可分为先单后重和先重后单两种类型.d (,,)f x y z v Ω=⎰⎰⎰(),,f x y z dxdydzΩ⎰⎰⎰(一)先单后重(先一后二)法假设:1(,,)f x y z Ω在有界闭区域上连续;2º过Ω内任一点M 且平行于某坐标轴的直线与Ω的边界曲面S 至多有两个交点.以下以z 轴的情形为例.),(2y x zz =),(1y x z z =),(2y x z z =),(1y x z z =xyzoΩD xy 1z 2z 2S 1S ),(1y x z z =),(2y x z z =ab),(y x ),,(:),,(:2211y x z z S y x z z S ==(,),xy x y D ∈过点作直线穿出.穿入,从从21z z Ω在xOy 面上的投影区域为D xy ,以D xy 的边界为准线作母线平行z 轴的柱面.这柱面与Ω的边界曲面S相交,并将S 分成上、下两部分:则Ω可以表示为12{(,,)(,)(,),(,)}.xy x y z z x y z z x y x y D Ω=≤≤∈()()12,(,,),,,x y f x y z z z x y z x y z ⎡⎤⎣⎦先将看作定值,将只看作的函数,在区间上对积分21(,)(,)(,,)(,)[(,,)].xyxyD z x y z x y D f x y z dv F x y d f x y z dz d σσΩ==⎰⎰⎰⎰⎰⎰⎰⎰从而原三重积分可表示为21(,)(,)(,,)xyz x y z x y D d f x y z dzσ=⎰⎰⎰这就化为一个定积分和一个二重积分的运算21(,)(,)(,,)z x y z x y f x y z dz⎰(,)xy F x y D 再计算在闭区间上的二重积分(,)F x y ==⎰⎰⎰Ωdvz y x f ),,(12:()(),,xy D y x y y x a x b ≤≤≤≤若得2()y y x =abD1()y y x =Dba2()y y x =1()y y x =先对z ,再对y ,最后对x 的三次积分dx ⎰dy ⎰(),,.f x y z dz ⎰()1,z x y ()2,z x y ()1y x ()2y x ab注:若将积分域Ω投影到yOz 或xOz 面上,则可把三重积分化为按其它顺序的三次积分.x y zyoz →→Ω积分次序为将投影到面21(,)(,)(,,)(,,)yzx y z x y z D f x y z dv d f x y z dxσΩ=⎰⎰⎰⎰⎰⎰21(,)(,)(,,)(,,)xzy x z y x z D f x y z dv d f x y z dyσΩ=⎰⎰⎰⎰⎰⎰y x z xoz →→Ω积分次序为将投影到面Ω:平面x =0, y = 0, z = 0,x+2y+ z =1所围成的区域x = 0, y = 0, x+2y =1 围成例1.计算三重积分x + 2y + z =1yx121()112y x =−D xyzy x x I d d d ⎰⎰⎰Ω=1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限分析:1xyz121解:d d d x x y zΩ⎰⎰⎰121(1)00d (12)d x x x x y y−=−−⎰⎰120d x y z−−⎰12301(2)d 4x x x x =−+⎰148=练习:将积分次序改为:先y 再z 后x将积分次序改为:先x 再z 后y1xyz121x + 2y + z =1()012101201z x yy x x ≤≤−−⎧⎪⎪Ω≤≤−⎨⎪≤≤⎪⎩:例2 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中 积分区域 Ω为由曲面22y x z +=,2x y =,1=y , 0=z 所围成的空间闭区域.2y x=1y =oxy-11xyD 11、画出(观察)积分区域分析:2、确定积分次序先z 再y 后x,3、确定z 的积分上下限4、将Ω向xoy 平面做投影得区域xyD ⎰⎰⎰−+=1101222),,(yx x dz z y x f dy dx I .例3 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中积分区域Ω为由曲面 222y x z +=及22x z −=所围成的闭区域.1、画出(观察)积分区域分析:2、确定积分次序先z , 再y 后x ,3、确定z 的积分上下限222z x=−下曲面21((0,0)2(0,0)0)z z =>=2212z x y=+上曲面=22222(,,)xyxx yD I d f x y z dz σ−+∴⎰⎰⎰xyD Oxy–1122222112112(,,).x x xx ydx dy f x y z dz −−−−−+=⎰⎰⎰22222x y z x⎧⎪Ω⎨⎪+≤≤−⎩:2211x y x −−≤≤−11x −≤≤由⎩⎨⎧−=+=22222xz y x z ,221,x y +≤:xyz xoy D Ω消去得在面上的投影区域4、将Ω向xoy 平面做投影得区域xyD 解:xy xoy D xoy Ω思考:在面上的投影区域是一个圆域,那么在平面进行的二重积分,可不可以利用极坐标系计算?需要注意些什么?2222,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例4计算其中是由曲面与平面所围成xyzo2z y x =−2z y x =−−分析:1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限yxo4y =2y x ==222222xyy x y x D x z dv d x z dzσ−−−Ω++⎰⎰⎰⎰⎰⎰-=22224222y x xy xdx dy x z dz−−−+⎰⎰⎰分析:1、画出(观察)积分区域2、确定积分次序先y 再z 后x,4、将Ω向xoz 平面做投影得区域xzD 3、确定y 的积分上下限=2242222xzx z D x z dv d x z dyσ+Ω++⎰⎰⎰⎰⎰⎰22224,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例计算其中是由曲面与平面所围成xyzΩ22y x z =+4y =xz2−2224x z +==2222422xzx zD x z dvd x z dyσΩ+++⎰⎰⎰⎰⎰⎰()=22222244x y xzx z d σ+≤−−+⎰⎰xz2−2224x z +=2r =()()=222224041282415d rr rdrr r dr πθππ−⋅=−=⎰⎰⎰解:1、确定了积分次序后,内层积分上下限至多包含两个变量,中层积分上下限至多包含一个变量,外层积分上下限必须是常数2、对于先单后重的次序,重积分部分可以根据积分区域的特点采用极坐标系计算(1)把积分区域Ω向某轴(例如 z 轴)投影,得投影区间],[21c c ;(3) 计算二重积分⎰⎰zD dxdy z y x f ),,(其结果为z 的函数)(z F ;(4)最后计算单积分⎰21)(c c dz z F 即得三重积分值.z(二)先重后单(先二后一)法先重后单, 就是先求关于某两个变量的二重积分再求关于另一个变量的定积分122,zz c c z xoy D ∈Ω⎡⎤⎣⎦()对用过轴且平行平面的平面去截,得截面21()zc cD g z dzdxdy=⎰⎰⎰V d z y x f ⎰⎰⎰Ω),,(即,若f (x, y, z )= g (z )21(,,).zc c D dz f x y z dxdy =⎰⎰⎰易见, 若内层的二重积分容易计算时,这个方法更显出优越性。
利用柱面坐标与球面坐标计算三重积分
f ( r cos , r sin , z )rdrddz.
rdrd
Dr
z2 ( r , ) z1 ( r , )
f ( r cos , r sin , z )dz .
通常化为先对 z、再对 r、后对θ 的三次积分.
先将Ω在xOy面上的投影域用极坐标不等式表示
设M(x, y, z)为空间内一点,记向量OM来自长为r , OM与z轴z
r
M ( x, y, z )
z
正方向间的夹角为 , 再将OM
A x
x
O
y
y
P
向xOy平面投影, 记投影向量与x轴正方向的 夹角为 , 称 ( r , , ) 为点M的球面坐标. 规定 0 r , 0 , 0 2 .
=常数: 半平面P
0
y
x
直角坐标与柱面坐标的关系为
x r cos , y r sin , z z.
在柱面坐标下 1. 若被积函数形如
x y r . 因此
2 2 2
f (x y ) ;
2 2
2. 积分区域Ω是由柱面、锥面、旋转抛物面、平 面或球面所围成.
y
球面坐标下的体积元素
z
元素区域由六个坐标面围成:
圆锥面
球面r+d r
半平面 及+d ; 圆锥面及+d
rsind
半径为r及r+dr的球面;
r
圆锥面+d
1
1
2 1dr 2 0 1 r
1
1 r
Dxy
0
1
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 在柱面坐标系下
原式 =
2
d
0
2 0
h r dr 1 r2
h
r2 d z
4
2
2 0
h
r 1 r2
(h
r2 4
)
d
r
oy x
机动 目录 上页 下页 返回 结束
3. 利用球坐标计算三重积分
适用范围: 1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离.
分部积分
(sin 2 2 cos2)
例3.
1
I
Ω
x2
y2
dxdydz 1
:锥面
x
y
z
,
用哪种坐标?柱面坐标 锥面化为: r = z
z
上顶:z = 1 下底: z r
z 所围
Dxy: r 1
11
I
D
rdrdθ
r
r2
dz 1
2π
1r
1
0
dθ
dr 0r2 1
dz
r
1 1 r
2π (
.
x
y
底面积 :r drd
机动 目录 上页 下页 返回 结束
柱面坐标下的体积元素 z
半平面及+d ;
半径为r及 r+dr的园柱面;
平面 z及 z+dz;
dz
dV = dxdydz rdrddz
f (x, y, z)dxdydz
z
f (r cos , r sin , z)rdrdθ dz0
d
z0
下底: z = 0
z
Dxy: x 2 y 2 1
x y
I dxdy
zdz
Dxy
用哪种坐标?柱面坐标
.
.
2π
1
1r 2
Dxy 0
1y
I = 0
dθ 0 rdr0
zdz
1
4
x
机动 目录 上页 下页 返回 结束
柱坐积标分下举例三例2重
I sin
x2 y2 zdv, : x2 y2 4, z 0, z 1围成
z
.
.
y
0
y
r
x
N
x
机动 目录 上页 下页 返回 结束
柱面坐标的坐标面
动点M(r, , z)
r =常数:柱面S
z =常数:平面
S
z
zr
M
机动 目录 上页 下页 返回 结束
柱面坐标的坐标面
动点M(r, , z)
r =常数:柱面S
z =常数:平面 =常数: 半平面P
S
z
zr
M
P
.
0
y
x
机动 目录 上页 下页 返回 结束
r
.
.
x
dV
y
底面积 :r drd
机动 目录 上页 下页 返回 结束
柱坐标计算适用范围:
1) 积分域表面用柱面坐标表示时方程简单 ;
仍然是“先一后二”化为三次积分。 二重积分用极坐标时方程和计算简单,
注:用柱坐标求 fdv分成两个步骤:
第一步:先一后二,对z积分后将三重积分化为极坐
标下的二重积分;
第三节 三重积分
二、三重积分的计算
2. 利用柱坐标计算三重积分
3. 利用球坐标计算三重积分
机动 目录 上页 下页 返回 结束
2. 利用柱坐标计算三重积分
设 M (x, y, z) R3, 将x, y用极坐标r, 代替,则(r, , z)
就称为点M 的柱坐标. 直角坐标与柱面坐标的关系:
x r cos y r sin
0 r 0 2
z z z
坐标面分别为
r 常数
圆柱面
常数
半平面
z 常数
平面
z z
M (x, y, z)
o
y
(x, y,0)
xr
机动 目录 上页 下页 返回 结束
柱面坐标
(x, y, z) (r, , z)
x r cos
y r sin
z
z=z
z
M(r,, z)
第二步:计算极坐标下的二重积分即可。
2) 被积函数用柱面坐标表示时变量互相分离.
3) 柱坐标: 当积分域为标准的圆柱面时用柱面 坐标化为累次积分的积分限都是常数。
机动 目录 上页 下页 返回 结束
例1.
计算 I zdxdydz : x 2 y 2 z 2 1 ,
上顶: z 1 x2 y2
1)dr
0 1 r2
(ln2 2 ) . .
2
. .
Dxy
x
1
0
1y
机动 目录 上页 下页 返回 结束
例4. 计算三重积分
其中为由
柱面 x2 y2 2x 及平面 z 0, z a (a 0), y 0 所围
成半圆柱体. 解: 在柱面坐标系下 :
0 r 2cos
0
2
0 z a
柱面坐标下的体积元素 z 元素区域由六个坐标面围成:
半平面及+d ;
半径为r及 r+dr的园柱面; 平面 z及 z+dz;
平面z
x
z
0 d
r
y
机动 目录 上页 下页 返回 结束
z
柱面坐标下的体积元素
平面z+dz
dz
半平面及+d ;
半径为r及 r+dr的园柱面;
平面 z及 z+dz;
z
0 d
r
原式 z r2 d r dd z
2
a
zdz 2 d
2cos r 2 d r
0
0
0
x
z a
o y
r 2cos
4a2 2 cos3 d 8 a3
30
9
机动 目录 上页 下页 返回 结束
例5. 计算三重积分
ห้องสมุดไป่ตู้其中由抛物面
x2 y2 4z 与平面 z h (h 0)所围成 .
z
h
球面
圆锥面
r+d r
半平面 及+d ;
半径为r及r+dr的球面;
rsind
圆锥面及+d
r
圆锥面+d
0
d
y
x
机动 目录 上页 下页 返回 结束
球面坐标下的体积元素
z
元素区域由六个坐标面围成:
半平面 及+d ;
半径为r及r+dr的球面;
rsind
球面坐标的坐标面
动点M(r,,)
r =常数: 球面S
=常数:
S
x
z
M
r
0 y
机动 目录 上页 下页 返回 结束
球面坐标的坐标面
动点M(r,,)
r =常数: 球面S
=常数: 锥面C =常数: 半平面P
S
.
x
z
C
M
P
0
y
机动 目录 上页 下页 返回 结束
球面坐标下的体积元素
z
元素区域由六个坐标面围成:
机动 目录 上页 下页 返回 结束
3. 利用球坐标计算三重积在分直角OxN中x ON cos
球面坐标
x ON cos rsin cos
y rsin si.n. .
在直角z ONM中ON r sin
z
M (r, , )
z rcos
r
0 r
0
0
0 2 x
y
y
N
x
机动 目录 上页 下页 返回 结束
z
1
解:为0 1间的柱体:
(1)Dxy PrjXY : x2 y2 4
Dr : 0 2 ,0 r 2 (2)(r, ) Dr ,0 z 1
y
-2
0
2
2
x
有:I
1
2
2
1
rdrd sin r zdz d r sin rdr zdz
0
0
0
0
Dr
注则:柱在坐柱2标坐02下标r s的下in累, rdr次如 12积果分是限02标都 r s准i是n r的常dr圆数柱。体区域,