固体物理第三章2
固体物理-第三章 金属自由电子论讲解
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
《固体物理·黄昆》第三章
氢键结合的情况可写成通式:
X-H…Y。 式中 X 、 Y 代表 F 、 O 、 N 等电负 性大而原子半径较小的非金属原 子, X 和 Y 可以是两种相同的元 素,也可以是两种不同的元素。 d F l H F H F
归纳起来,氢键形成的条件是:
A)有与电负性大(X)的原子相结合的氢原子;
B) 有一个电负性也很大,含有孤对电子并带有部分负 电荷的原子(Y); C)X与Y的原子半径都要较小。
氯化钠型 —— NaCl、KCl、AgBr、PbS、MgO (配位数6) 氯化铯型 —— CsCl、 TlBr、 TlI(配位数8)
离子结合成分较大的半导体材料ZnS等(配位数4)
2. 离子晶体结合的性质
1) 系统内能的计算 晶体内能 : 1)所有离子库仑相互作用能(吸引作用)
2) 和重叠排斥能之和(排斥作用)
具体晶体的内聚能(晶格能)参见周期表,有一定的规律性: 惰性气体晶体<碱金属<过渡族金属(共价晶体)
两粒子间的相互作用 相互作用能.
f(r) 和u(r)分别表示相互 作用力和相互作用势 则:
u (r ) f (r ) r
U 排斥 r
f (r )
B rn
u (r )
pij A12= j'
12
12.13188
pij A6= j'
6
14.45392
物理意义:
晶体总的势能:
—— 非极性分子晶体的晶格常数、结合能和体变模量 晶格常数
平衡状态体变模量
晶体的结合能
分子晶体: 常温下是气态的物质如:Cl2,SO2,HCl, H2, O2, He, Ne, Ar, Xe等在低温下依靠范德瓦耳斯力结合成的晶体.
(完整版)固体物理胡安第三章课后答案
3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21。
试证明在这样的系统中,格波仍存在着声频支和光频支,其格波频率为21221221212)2(sin 411M)(qa 证明:第2n 个原子所受的力121122221212121222)()()(n nn n nn nnuu u u u u u F 第2n+1个原子所受的力nn n n nn nnu u u u u u u F 22121122112221222112)()()(这两个原子的运动方程:212222112121122112222()()n n n n nn n nmu u u u mu u u u &&&&方程的解qan t inqan t in Beu Aeu 2)12(122)2(2代入到运动方程,可以得到BA e eBmAB eeAmqaiqa iq a i q a i )()(21222122122212经整理,有)()(22122212221221B mA eeB eeAmqa iqa iqa iq ai 若A ,B 有非零解,系数行列式满足22212122221212,,aai q i q a a i q i q me eee m根据上式,有21221221212)2(sin 411M)(qa 3.3(a) 设单原子链长度L=Na波矢取值2qhNa每个波矢的宽度2qNa,状态密度2Na dq 间隔内的状态数2Nadq ,对应±q ,ω取相同值因此22Na dqdq一维单原子链色散关系,4sin 2aqm 令4,sin2aq m两边微分得到cos22aaq ddq将220cos12aq 代入到0cos22aaq ddq22222,2a dq ddq da频率分布函数2222122122Na NaN dadq3.4三维晶格振动的态密度为3(2)V 根据态密度定义3()(2)|()|qV dS q r =对2qAq两边微分得到2d q Aqdq在球面上2qd Aq dq,半径01qA代入到态密度函数得到21/23323/2144,2422qV qV AV AAAq最小截止频率m001/223/234mmV dd NA可得2/32min 06N AV所以1/2min 023/2,4VA在0min或时,是不存在频率ω的分布的,也就不会有频率分布的密度。
固体物理第三章1-2
小振动,U(r)与U(a) 差别不大,在平衡位置泰勒级数展开:
3 1 d 2U 1 d U dU 2 3 U ( r ) U a r a 2 r a 3 r a ...... 2 dr a 6 dr a dr a
A 2 1 2 2 Mm 2 1 2 O 2 Mm
1 2 16 Mm qa 2 2 1 2 ( M m ) ( M m ) sin 2 ( ) 2 1 2 1 2 16 Mm qa 2 2 1 2 ( M m ) ( M m ) sin 2 ( ) 2 1 2
与单原子一维晶格类似:上述方程具有下述格波形式解
2n i q a t 2
u2 n Ae
Ae
i ( qnat )
u2 n1 B' e
2n i q( )a qbt 2
Be
i ( qnat )
U2n / u2n+1表示同一原胞中两种不等价原子的位移
相互作用力:
r = un+1 + a -un
2 1 d 3U dU d U 2 r a r a ...... f ( r ) 2 3 2 dr a dr a dr a
= 0
(d2U/dr2)a =
玻恩—卡门边界条件下平衡位置运动方程组的通解:
un Ae
i ( qnat )
A为振幅,是圆频率,qna是第n个 原子在t=0时刻的振动相位
《固体物理基础》晶格振动与晶体的热学性质
一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
固体物理 第三章_ 晶体中的缺陷
4
由以上讨论可知: 刃位错: 外加切应力的方向、原子的滑移方向和位错 线的运动方向是相互平行的。 螺位错: 外加切应力的方向与原子的滑移方向平行, 原子的滑移方向与螺位错的运动方向垂直。 在左右两部分受到向上和向下的切应力的作 用时,位错线向前移动,直到位错线移动到 尽头表面,这时左右两部分整个相对滑移b 的距离,晶体产生形变。
固体物理第三章
1. 热缺陷:由热起伏的原因所产生的空位和填隙原 子,又叫热缺陷,它们的产生与温度直接有关
(a) 肖脱基缺陷
(b)弗伦克耳缺陷
(c) 间隙原子
固体物理第三章
( a )肖特基缺陷 (vacancy) :原子脱离正常格点 移动到晶体表面的正常位置,在原子格点位置 留下空位,称为肖特基缺陷。 (b)弗伦克尔缺陷(Frenkel defect),原子脱离格 点后,形成一个间隙原子和一个空位。称为弗 伦克尔缺陷。 (c)间隙原子(interstitial):如果一个原子从正常 表面位置挤进完整晶格中的间隙位置则称为间 隙原子,由于原子已经排列在各个格点上,为 了容纳间隙原子,其周围的原子必定受到相当 大的挤压。
固体物理第三章 固体物理第三章
产生位错的外力: 机械应力:挤压、拉伸、切割、研磨 热应力:温度梯度、热胀冷缩 晶格失配: 晶体内部已经存在位错,只用较小的外力就 可推动这些位错移动,原来的位错成为了位错 源,位错源引起位错的增殖,有位错源的晶体 屈服强度降低。 晶体的屈服强度强烈地依赖于温度的变化。 T升高,原子热运动加剧,晶体的屈服强度下 降,容易产生范性形变。
固体物理第三章
在实际晶体中,由于存在某种缺陷,所以晶 面的滑移过程,可能是晶面的一部分原子 先发生滑移,然后推动同晶面的另一部分 原子滑移。按照这样的循序渐移,最后使 上方的晶面相对于下方的晶面有了滑移。 1934 年, Taylor( 泰勒 ), orowan( 奥罗万 ) 和 Polanyi( 波拉尼)彼此独立提出滑移是借助 于位错在晶体中运动实现的,成功解释了 理论切应力比实验值低得多的矛盾。
固体物理 第三章 晶格振动
1 2 T = ∑q 2 i =1 i
3N •
3.1晶体中原子的微振动 3.1晶体中原子的微振动 声子 晶体振动势能U (qi ) 按 qi 的幂将势能在平衡位置附近展开为泰勒级数 ∂U 1 ∂ 2U U = U0 + ∑ ( ) 0 qi + ∑ ( ) 0 qi q j + 高阶项 ∂q i 2 ij ∂qi ∂q j i 其中 U 0 = 0 平衡位置处的势能为零势能点
xn = x N + n
又 : xn = Ae
i ( kna − ωt )
又 − π < k ≤ π s = − N + 1,− N + 2⋯⋯ N 共有N个取值 : a a 2 2 2
=1 e ⇒ 2π ⋅ s, = N+ 2π ,− π + 2 2π ,..., π 有N种均匀分布的分立取值 种均匀分布的分立取值 a L a L a 2π L 间隔∆k = ,密度 ,第一布里渊区倒格点数N。 L 2π
, ( l =1, 2, ⋯ 3N )
Ql = Ql0 sin(ωl t + α 1 )
1 ε l = (Q l + ωl2Ql2 ) 2
• 2
能量量子化
1 εl = (nl + )hυl 2
3.2 一维布拉菲格子的晶格振动 一、简谐近似
du 1 d 2u u( x) ≈ u( x0 ) + ∆x + (∆x)2 2 dx r0 2 dx x
3.1晶体中原子的微振动 声子 3.1晶体中原子的微振动 晶格振动模式
质量加权坐标下: 质量加权坐标下:
•• 3N
↔
独立的谐振子
↔
声子
固体物理课后习题解答(黄昆版)第三章
固体物理课后习题解答(黄昆版)第三章黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知⼀维单原⼦链,其中第j个格波,在第个格点引起的位移为,µ= anj j sin(ωj_j+ σj) ,σj为任意个相位因⼦,并已知在较⾼温度下每个格波的平均能量为,具体计算每个原⼦的平⽅平均位移。
解:任意⼀个原⼦的位移是所有格波引起的位移的叠加,即µn= ∑ µnj=∑ a j sin(ωj t naq j+σj)j j(1)µ2 n =∑µjnj∑µj*nj=µj2nj+ µ µnj*nj′j j′由于µ µnj?nj数⽬⾮常⼤的数量级,⽽且取正或取负⼏率相等,因此上式得第2 项与第⼀项µ相⽐是⼀⼩量,可以忽略不计。
所以2= ∑ µ 2njn j由于µnj是时间的周期性函数,其长时间平均等于⼀个周期内的时间平均值为µ 2 = 1 T∫0 2 ω+σ 1 2 j aj sin( t naqjj j)dt a=j(2)T0 2已知较⾼温度下的每个格波的能量为KT,µnj的动能时间平均值为1 L T ?1 ?dµ 2 ?ρw a2 T 1= ∫∫dx0?ρnj?= j j∫0 2 ω+ σ= ρ 2 2 T??dt L a sin( t naq)dt w Lanj T0 0 0 ? 2 ?dt??2T0 j j j j 4 j j其中L 是原⼦链的长度,ρ使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2µKT因此将此式代⼊(2)式有nj2 = ρωL 2 jµ所以每个原⼦的平均位移为2== ∑ µ 2= ∑KT= KT∑1n njρωL2ρLω2j j j j j3.2 讨论N 个原胞的⼀维双原⼦链(相邻原⼦间距为a),其2N 格波解,当M=m 时与⼀维单原⼦链的结果⼀⼀对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所⽰,质量为M 的原⼦位于2n-1,2n+1,2n+3 ……质量为m 的原⼦位于2n,2n+2,2n+4 ……⽜顿运动⽅程:..mµ2n= ?βµ(22n?µ2n+1 ?µ2n?1)..Mµ2n+1 = ?βµ(22n+1 ?µ2n+2 ?µ2n)体系为N 个原胞,则有2N 个独⽴的⽅程i na q⽅程解的形式:iµ2n=Ae[ωt?(2 ) ] µ2n+1=Be[ω?(2n+1)aq]na qµ=将µ2n=Ae[ωt?(2 ) ]2n+1 Be i[ωt?(2n+1) aq]代回到运动⽅程得到若A、B 有⾮零的解,系数⾏列式满⾜:两种不同的格波的⾊散关系:——第⼀布⾥渊区解答(初稿)作者季正华- 2 -第⼀布⾥渊区允许 q 的数⽬黄昆固体物理习题解答对应⼀个 q 有两⽀格波:⼀⽀声学波和⼀⽀光学波。
《固体物理基础教学课件》第3章
n1 n
平衡位置 非平衡位置
a 3
3-1 原子作用力的处理:简谐近似
忽略高阶项,简谐近似考虑原子 V 振动,相邻原子间相互作用势能
v(a)12(ddr2v2)a2
相邻原子间作用力
O
a
r
f ddv, (d dr2v2)a
只考虑相邻原子的作用,第n个原
第2n+1个M原子的方程 M d2 dt2 2n1(22n12n22n)
ቤተ መጻሕፍቲ ባይዱ 第2n个m原子的方程 mdd 2t22n(22n2n12n1)
解也具有平面波 的形式
两种原子振动的 振幅(m取A, M取B)一般来说 是不同的
a 13
3-2 声学波与光学波
色散关系有不同的两种
2(m m M M ) 11(m 4 m M M )2sin2aq12
a 2
3-1 一维单原子链模型
一维单原子链:最简单的晶格模型
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的研究方法:
计算原子之间的相互作用力 根据牛顿定律写出原子运动方程,并求解方程
一维单原子链模型:
平衡时相邻原子间距为a (即原胞体积为a)
原子质量为m 原子限制在沿链方向运动
声子
0.1
1 100 10000
a 11
3-2 一维双原子链模型
一维双原子链模型 声学波与光学波 声学波与光学波的长波极限 长光学波的特性
a 12
3-2 一维双原子链模型
两种原子m和M (M > m) 构成一维复式格子 M原子位于2n-1, 2n+1, 2n+3 … m原子位于2n, 2n+2, 2n+4… 晶格常数、同种原子间的距离:2a
固体物理(第3章)解析
1 3N ( 2V
2 i, j1 i j
)0 i j
—— 含有坐标的交叉项
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
引入简正坐标
—— 原子的坐标和简正坐标通过正交变换联系起来
假设存在线性变换 系统的哈密顿量
拉格朗日函数
T
1 2
3N i 1
Qi 2
V
1 2
3N
Q 2 2
ii
i 1
正则动量
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
系统的哈密顿量
正则方程
pi
H Qi
正则动量
pi
L Q i
Qi
Qi i2Qi 0, i 1, 2, 3, 3N —— 3N个独立无关的方程 简正坐标方程解 Qi Asin(it )
简正振动 —— 所有原子参与的振动,振动频率相同 振动模 —— 简正坐标代表所有原子共同参与的一个振动
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
只考察某一个振动模
系统能量本征值计算
i
aij mi
Qj
aij mi
Asin( jt )
正则动量算符
系统薛定谔方程
(1
2
3N i 1
pi2
1 2
3N
i2Qi2 ) (Q1, Q3N )
i 1
E (Q1,
Q3N )
§3-1 简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
E
3N
i
i 1
3N i 1
(ni
1 2
)
i
3N
系统本征态函数 (Q1, Q2, Q3,Q3N ) ni (Qi )
固体物理第三章
2
m
1
2
sin
qa 2
m
1
2
a
q
v q
v
m
1
2
a
q20, (q)0 色散关系的格波称为声频支格波。
编辑版pppt
14
格波的波速
在长波区域,波矢 q
2
0
波速是常数
v q
v
m
1
2
a
un1unun1
某一原子周围若干原子都以相同的振幅和位相振动。
编辑版pppt
15
格波的波速
(2) 波矢 qπ a
对应格波的截止频率
ωm
a
x
2
β m
1
2
un1unun1
相邻原子以相同的振幅作相对振动。
编辑版pppt
16
周期性边界条件(玻恩-卡门边界条件):
实际情况:N个原子构成的一维晶体,边界上原子受力的情况有别于 体内原子。
近似考虑:N非常大,边界上原子数目极少,在考虑晶体大块性质时 将边界上原子视如体内原子不至于带来误差。
2 O
2(mM)
m
而
coqsa )(0
固体物理第三章 晶格振动与晶体热学性质
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
固体物理讲义第三章
1 第三章 晶体的结合主要内容:● 大量原子聚合在一起形成晶体的原因● 晶体结合的类型内聚能和原子间的相互作用力内聚能是指在绝对零度下将晶体分解为相距无限远、静止的自由原子所需要的能量 原子间相互作用力:● 吸引力:不同的结合方式有不同的机理● 排斥力:库仑排斥+量子效应● 原子核之间的库仑排斥力● 电子壳层交叠时,由泡利不相容原理而产生的排斥力内聚能的计算设晶体中任意两个粒子的相互作用能可表示为:其中a 、b 、m 、n 均为大于零的常数,由实验确定,r 为两粒子之间的距离。
晶体内聚能视为粒子对间的互作用,设晶体中有N 个粒子,则晶体内聚能:这里,相互作用能视为粒子对间的互作用。
先计算两个粒子之间的互作用势,然后再把考虑晶体结构的因素,总和起来可以得到晶体的总结合能。
只有离子晶体和分子晶体可以这样处理。
此思想称为双粒子模型。
晶体结合的类型⏹ 根据化学键的性质,晶体可以分为离子晶体、原子晶体(共价晶体)、金属晶体、分子晶体。
⏹ 对于大多数晶体,结合力的性质是属于综合性的。
固体结合的性质取决于组成固体的原子结构。
离子晶体和离子键● 离子晶体:由正离子和负离子组成。
● 离子键:正、负离子间的静电相互作用产生● 晶体结构:氯化钠结构、氯化铯结构● 离子-离子相互作用能有两项:① 库仑相互作用能,正比于: ② 相临离子间排斥能,正比于: 离子晶体的内聚能 由N 对离子组成的离子晶体的内聚能:相邻离子间的最短距离 马德隆常数 最邻近离子数 n m r b r a r u +-=)((2)(2)(11∑∑--+-==N j n j m j N j j r b r a N r u N r U r1-nr 1)(N )4()4()(02'102'1n n jj n j j r B r A r Nz r a q N r r q N r U j +-=+±=+±=∑∑λπελπεr )1('∑±=j j a μz r a r j j =1λπεμz B q A ==0242分子晶体:● 基元:分子● 结合力:范德瓦尔斯力● 晶体结构:密积结构,惰性气体:面心立方● 结合能:相距为R 的一对分子间的总的相互作用势能为(称为Lennard-Jones 势)共价晶体和共价键:● 原子靠共价键结合。
固体物理第三章 晶格振动与晶体的热学性质.
方程了,方程解为: nq Aei( tnaq )
2. 格波—解的物理意义 连续介质波的解:
i (t 2
Ae
x)
Ae i(t qx )
格波:上述原子振动方程的解与一般连续介质的波有完全类似
的形式,所不同的是只在格点位置上有原子的振动。我们称原
子振动的波为“格波”。
格波与连续介质波的区别:
(1)连续介质中x表示空间任意一点,而格波中空间位置只能取
将包含N个原胞的有限原子链首位相连, 呈封闭环,使链上所有原(胞)子等价。
第n个原(胞)子与第n+N个原子情况完 全相同。B-K边界条件也
称周期性边界条件。nq Aei(tnaq)
边界条件要求:eiNaq 1 即:Nqa=2 π h, q 2 h (h为 整 数)
Na
q
a
a
N h N , h取N个整数值 2 / a N
(Qi
)
i (Qi
)
解出:
i
(ni
1 2
)hi
ni
i
h
exp(
22)Hni来自()其中
i
h
Qi
系统的本征能量:
,Hni(ξ)是厄米尔多项式。
E
3N i 1
(ni
1 2
)hi
3N
系统的本征函数:
(Q1 ,Q2 ...Q3N )
ni (Q1 )
i 1
只要找出系统的简正坐标,或说是振动模, 晶格振动问题就解决
4. 简正坐标代表所有原子的一种集体运动(而不是哪个原子的位移) 因为原子位移和简正坐标之间存在正交变换关系:
mi i
aij Q j
假设只存在某一个Qi,j 其它的都为0 (即只考察一个Qj振动),那么,
固体物理(第3章)讲解
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
方程解和振动频率 设方程组的解 naq — 第n个原子振动相位因子
得到 应用三角公式
4 2 aq sin ( ) m 2
—— 常数
—— 平衡条件
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
dv 1 d v v (a ) v (a ) ( )a ( 2 )a 2 High items dr 2 dr
简谐近似 —— 振动很微弱,势能展式中只保留到二阶项
2 1 2 2 任意一个简正坐标 [ 2 i Qi ] (Qi ) i (Qi ) 2 2 Qi
1 能量本征值 i ( ni ) i 2
本征态函数
—— 谐振子方程
n (Qi )
i
i
exp(
2
2
) H ni ( )
— 厄密多项式
§3-1 简谐近似和简正坐标 ——
格波 波矢的取值和布里渊区 相邻原子相位差 格波1的波矢
—— 原子的振动状态相同
相邻原子相位差
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
格波 格波2的波矢
aq1 / 2
相邻原子的位相差
—— 两种波矢q1和q2的格波中,原子的振动完全相同
原子位移宗量
N个原子的位移矢量 —— 体系的势能函数在平衡位置按泰勒级数展开
固体物理学课件第三章
10
3.1 一维单原子链的晶格振动
将:
un1 Aei[t(n1)aq] un1 Aei[t(n1)aq] un Aei[tnaq]
代入到运动方程:
m
d 2un dt 2
(un1 un1 2un )
消去共同因子,得到:
m 2 (eiap eiaq 2)
《固体物理学》 微电子与固体电子学院
14
3.1 一维单原子链的晶格振动
格波的波长: 2
q
格波的波矢:q 2 n
n 代表沿格波传播方向的单位
矢量。
格波的相速度:v p
q
不同原子间的位相差:
n’aq-naq = (n’-n)aq
《固体物理学》 微电子与固体电子学院
15
3.1 一维单原子链的晶格振动
a
2
f
U
U R
a
2U R2
a
第一项与振动无关,为常数项,第二项中因为平衡位置处,
势能为极小值,互作用力为零。
《固体物理学》 微电子与固体电子学院
4
3.1 一维单原子链的晶格振动
引入弹性系数
2U R 2
(un1 un1 2un )
《固体物理学》 微电子与固体电子学院
5
3.1 一维单原子链的晶格振动
最近邻近似下一维单原子振动可 简化为质量为m的小球被用弹性系
数为的弹簧连起来的弹性链。处
理微小振动一般都采取这种简谐 近似。在有些物理问题需要考虑 高阶项的效应,称为非简谐效应。
固体物理学第三章
x 2
m
y
2
2 E k 2 y
m
z
2
2 E 2 kz
2 1 2 cos kz a 2a J1
在能带底和能带顶电子的有效质量是各向同性的,
k , 0, 0 a
m 2 0, 2a J 1
分量形式:
dv d 1 E 1 3 dk a dt dt k 1 dt k
E k
x,y,z 原因:在三维情形,沿k空间的不同方向一般有不同的色散关系, 电子的有效质量比较复杂,表现为一个二级张量。
2 E k x k y 2 E 2 k y 2 E k z k y
2 E k x k z Fx 2 E Fy k y k z Fz 2 E k z2
牛顿定律:
1 a F m
响应写成类似于经典牛顿定律的形式。这时,有效质量
在电子运动中所起的作用就类似于粒子质量的作用。这 就是电子的有效质量m*为何与电子的真实质量m可以有
很大差别的物理原因。
有效质量m*既可以小于m,也可以大于m,甚至还
可以为负值。这都取决于晶格力的大小与方向,即周期 场对电子运动的影响。这种影响主要通过在布里渊区边 界附近发生Bragg反射,而在电子与晶格之间交换动量 这种形式反映出来的。 在能带底:电子的能量取极小值,
在周期场中电子的有效质量m*与k有关 在能带底:
d 2E E(k)取极小值, 0 2 dk
在能带顶:
m*>0;
d 2E 0 E(k)取极大值, 2 dk
m*<0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U U U0 i 1 ui
3N
2 1 3N U ui 2 u u i , j 1 i j 0
ui u j , 0
因在平衡位置势能取极小值,所以上式右端第二项为零,若取U0为能 量零点,并略去二次以上的高次项,得到
上一节关于晶格的运动方程之所以能够化成线性齐次方程组,是
简谐近似的结果,即忽略原子相互作用的非线性项得到的。
处理小振动问题的理论方法和主要结果--做为晶格振动这部分
内容的理论基础。
在第二章已经讨论过,当原子处于平衡位置时,原子间的相互
作用势能
1 A B ' U0 m n 2 i j r r ij ij
用独立简谐振子来表述。
下面根据分析力学原理,引入简正坐标,直接过渡到量子理论, 并引入声子概念--晶格振动中的简谐振子的能量量子。
数学处理:通过引入简正坐标,将晶格振动总能量(哈密顿量)= 动能 +
势能(化成)= 独立简谐振子能量之和
一、简谐近似和简正坐标
从经典力学的观点,晶格振动是一个典型的小振动问题,凡是力 学体系自平衡位置发生微小偏移时,该力学体系的运动都是小振动。
(9)
代表q空间均匀分布的点子。 若 K 是倒格矢,则 q q' q K h h
u
l p
不变。
因此q的取值可限制在第一布里渊区之内。
h3 h1 h2 q b1 b2 b3 (10) N1 N2 N3
波矢q的点阵具有周期性,均匀分布。 其中
b1 b2 b3 是波矢q的基矢,最小重复单元的体积为 , , N1 N 2 N3
对于有N个原胞的三维晶体,每个原胞有n个原子,每个原子有3个
自由度,所以晶体的总自由度数也是3nN。 概括起来,得到以下结论: • 波矢q增加一个倒格矢,原子的位移保持不变。--第一布里渊区。
• 晶格振动的波矢数目Nq等于晶体的原胞数N;
• 格波振动模式数目Nω等于晶体中所有原子的自由度数之和3nN 。
倒空间原 胞体积
b1 b2 b3 ( 2 ) 3 ( 2 ) 3 N1 N 2 N 3 N N V
原胞体积
一个重复单元对应一个波矢点,单位波矢空间内的波矢数目,
即波矢密度为
波矢密度: q
1
(2 ) 3 V N N h , 另由边界条件: 2 2
l X p Rl rp
l X p Rl rp
rp :原胞内第p个原子的位置矢量。
l 该原子相对于平衡点的位移为 u p 它沿坐标轴的分量为 u l p
x, y, z; Rl l1a1 l2a2 l3a3
(3)
Ap 有非零解的条件是系数行列式等于零,可解出3n个实根。
由此可得到3n个色散关系
j j (q), j 1,2,3n
每个色散关系代表一支格波,共有3n支格波。
格波的色散关系中,有3支当 q 0, 0,
ω- Ai v- Ai (q) q (i 1,2,3)
即
e
iq N i ai
1(8)
也就是说
h1 q N1a1 2 h1 , x1 N1 h2 q N 2a2 2 h2 , x2 N2 h3 q N 3 a3 2 h3 , x3 N3
应用到关系
(9)
ai bj 2 ij
b1 / 2 , b2 / 2 , b3 / 2 ,
b1 / 2 b1
b2 / 2 b3
b2 / 2 b2
Vq b1 b2 b3
* • •
此即倒空间原胞体积 可见第一布里渊区的体积(q的取值范围)即为倒空间原胞体积
V N N q q Vq N 3 3 (2 ) (2 )
1 3 N 2U U 2 i , j 1 ui u j
ui u j 0
上式即为简谐近似下,势能的表示式,包含了位移交叉项。
处理小振动问题一般都取简谐近似。 对于一个具体的物理问题是否可以采用简谐近似,要看在简谐 近似条件下得到的理论结果是否与实验相一致。 在有些物理问题中就需要考虑高阶项的作用,称为非谐作用。
简正坐标与原子的位移坐标之间的正交变换关系:
m i ui a ij Q j
j 1
3N
在简正坐标中,势能和动能化成:
1 3N 2 2 U i Qi , 2 i 1
1 3N 2 T Qi 2 i 1
1 3N 2 2 U i Qi , 2 i 1
1 3N 2 T Qi 2 i 1
l l1 u u p
l l1 u u p
l l1 u u p
l2 p
l2 p
l2 p
l3 l1 N1 l2 u p
l3 l1 u
l3 l1 u
l l u u 1 p l l u u 1 p
l l u u 1 p
l2 p l2 p
l2 p
l3 l1 N1 l2 u p l3 l1 u
l3 l1 u
§3.3 简正振动
声子
理论考虑:前面根据牛顿定理用直接解运动方程的方法,求解一维 链的振动模,得出如下结论: 晶体中原子的集体振动-----格波,可展开成简谐平面波的线性 迭加。 当振动微弱时(即相当于简谐近似情况),每个格波就是一个简 谐波,格波之间的相互作用可忽略,形成独立格波模式。 在玻恩-卡门周期性边界条件下,得到分立的独立格波模式,可
l3 l2 N 2 l3 (5) p l2 l3 N 3 p
或写成
u Rl N 1 a 1 u Rl u Rl N 2 a 2 u Rl (6) u Rl N 3 a 3 u Rl
N1 N h1 1 2 2 N N 2 h2 2 2 2 N N 3 h3 3 2 2
q hi bi (i 1,2,3) Ni
V (2 ) 3
1, 2, 3
则q在三个基矢方向上 的长度为:
b1 b q 1 2 2 b b 2 q 2 2 2 b b 3 q 3 2 2
是原子(l,p)与原 子(l’,p’)之间的准 弹性力系数
l , l ' 1, 2 N ;
p, p' 1, 2n; x, y, z
上式是3nN个相耦合的运动方程组。
把一维晶格动力学方程的试解加以推广,设三维晶格行波试解为:
l i Rl rp q t u A e p p i q Rl t Ap e (2)
q x1b1 x2b2 x3b3 (4)
Hale Waihona Puke h1 , h2 , h3 为整数。代回(4)式:
q x1b1 x2b2 x3b3 (4)
q h h1 h b1 2 b2 3 b3 (10) N1 N2 N3
h1 N1 h x2 2 N2 h3 x3 N3 x1
N个原子体系的势能函数为:
3N 1 2 N个原子体系的动能函数为:T m u i i 2 i 1
为了消去势能中的交叉项,使问题简化,引入简正坐标:
Q1,Q2 , , Q3 N
ui ui (Q Q3 N ) 1 , Q2 ,......, i 1 ,2,........, 3N
e
如果q改变一个倒格子矢量 K h b h b h b m 1 1 2 2 3 3 由于 R K 2 h l h l h l l h 1 1 2 2 3 3 不影响位相因子,因而对格波的描述没有任何区别。将波矢q的
取值限制在一个倒格原胞范围内—简约布里渊区。
对每一个波矢q,有3n个 j (q) 与之对应,每一组 , q 表示 晶格的一种振动模式,由此可知三维晶体中振动模式数目为3nN个。
每个原胞中,n个不同原子平衡位置的相对坐标为: r 1, r 2 , r n
第p个原子在 方向的运动方程为:
' ' l l, l l l uα u β (1) α m pu φαβ p p p, p' p' ' ' l pβ
3 (2) *
即:第一布里渊区里共有 N N1 N 2 N 3 个q值。
从三维晶格行波试解:
l i q Rl t u A e ( 2) p p
可以看出,q的作用只在于确定不同原胞之间振动位相的联系, 具体表现在位相因子:
i q Rl
取最小值。 相互作用势能是原子偏离平衡位置位移的函数。N个原子的位移
矢量共有3N个分量,写成
ui ( i 1, 2, 3 N )
原子相互作用势能是这些位移分量的函数,即
U U ( u1 , u2 , , u3 N )
将
U U ( u1 , u2 , , u3 N )
在平衡位置展开成泰勒级数
振动系统的拉格朗日函数为:
1 3N 2 1 3N 2 2 L T U Qi i Qi 2 i 1 2 i 1
Ap A p e
iq r p
na
振幅Apα与指标l 无关,因为它对于一个确定的q,任意元胞中第p 个原子在α方向上的运动有相同的振幅。