一次函数的练习3

合集下载

一次函数图像练习题及答案

一次函数图像练习题及答案

一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。

掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。

在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。

练习题一:已知函数f(x) = 2x + 3,求出函数的图像。

解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。

根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。

根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。

2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。

根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。

首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。

练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。

解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。

根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。

为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。

将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。

因此,函数g(x)的表达式为g(x) = 0。

练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。

解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。

CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。

12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。

13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。

方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。

22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。

一次函数经典例题与习题

一次函数经典例题与习题

一次函数经典例题与习题
一次函数是指函数的最高次数为一次,即为形如y=mx+b的函数,其中m和b为常数。

以下是一些经典的一次函数例题和习题:
例题1:已知一次函数的图像经过点(2,4)和(-1,1),求函数的解析式。

解:设该函数的解析式为y=mx+b。

由题意,可得到以下两个方程:4=2m+b(1)
1=-m+b(2)
解这个方程组,可以使用常见的线性方程组的解法。

首先用(2)式减去(1)式,得到:
-3=-3m
解得m=1
将m=1代入(2)式,得到:
1=-1+b
解得b=2
因此,该函数的解析式为y=x+2
例题2:若一次函数的解析式为y=3x-2,求该函数的图像与x轴交点的横坐标。

解:将y=0代入解析式,得到:
0=3x-2
解得x=2/3
因此,该函数的图像与x轴交点的横坐标为2/3
习题1:已知一次函数图像上两点的坐标分别为(-3,4)和(1,2),求
该函数的解析式。

习题2:已知一次函数的图像与x轴的交点坐标分别为(-1,0)和
(3,0),求该函数的解析式。

习题3:设一直线上两不同点的横坐标之差为3,纵坐标之差为5,
求该直线的斜率和截距。

习题4:已知一次函数的图像与x轴的交点坐标为(1,0),截距为2,
求该函数的斜率。

以上是一些经典的一次函数例题和习题。

通过解这些问题,可以加深
对一次函数的理解,并熟练掌握解析式与图像之间的关系。

通过反复练习,可以提高解一次函数问题的能力。

完整版)一次函数专项练习题

完整版)一次函数专项练习题

完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。

1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。

题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。

任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。

1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。

一次函数的应用练习题及答案

一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。

在现实生活中,我们经常会遇到一次函数的应用场景。

本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。

练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。

已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。

求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。

根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。

因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。

a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。

b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。

练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。

已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。

求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。

根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。

一次函数练习题(大题30道)

一次函数练习题(大题30道)

一次函数练习题(大题30道)1.已知一次函数y=ax+b的图象经过点A(2,k)与B(m,4)。

1) 求一次函数的解析式,并在直角坐标系画出这个函数的图象;2) 如果(1)中所求的函数y的值在-4≤y≤4围,求相应的x的取值范围。

2.已知y=p+kx,这里p是一个常数,k与x成正比例,且x=2时,y=1;x=3时,y=-1.1) 写出y与x之间的函数关系式;2) 如果x的取值范围是1≤x≤4,求y的取值范围。

3.一次函数的图象经过点(2,1)和(-1,-3)。

1) 求此一次函数表达式;2) 求此一次函数与x轴、y轴的交点坐标;3) 求此一次函数的图象与两坐标轴所围成的三角形的面积。

4.已知一次函数y=kx+b的图象经过点(-1.-5),且与正比例函数y=x的图象相交于点(2,a)。

1) 求a的值;2) 求k和b的值;3) 求这两个函数图象与x轴所围成的三角形面积。

5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位。

求正比例函数和一次函数的解析式。

6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长度。

7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.直角坐标系xOy中,一次函数y=2x+2的图象与x轴、y 轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式。

9.已知:如图一次函数y=(1/2)x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。

10.已知直线y=(4/3)x+4与x轴、y轴的交点分别为A、B。

又P、Q两点的坐标分别为P(0,-1),Q(k,m),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,圆与直线AB相切?11.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台。

一次函数复习与练习题(专题练习)

一次函数复习与练习题(专题练习)

一次函数专题复习一、一次函数解析式问题1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。

2.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .3.若一次函数y=kx+b 的自变量x 的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9, 求此函数的解析式。

4.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数的关系式.5.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.6.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图象. ①根据图象,写出该图象的函数关系式;②某人乘坐2.5km ,应付多少钱?③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?二、次函数平移问题1. 直线y=2x+1向上平移4个单位得到直线 ;直线y=-3x+5向下平移6个单位得到直线 .1l 33y x =-+1l x D 2l AB ,1l 2lCD 2l ADC △2l C P ADP △ADC △P2. 直线y=5x-3向左平移2个单位得到直线 ; 直线y=-x-2向右平移3个单位得到直线 .3.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得函数是____________; 规律总结:“上加下减在末梢,左加右减在括号”.4. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.5.已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案1. 某超市每天固定开销为200元,每卖出一个商品,能够获得5元的利润。

设售出商品的数量为x个,利润为y元,则利润与售出商品的数量之间的关系可以表示为以下的一次函数:y = 5x - 2002. 一辆汽车以每小时60公里的速度行驶,行驶x小时后所走的距离可以表示为以下的一次函数:y = 60x3. 小明妈妈提醒小明,每晚洗碗时间不得超过30分钟。

设小明每晚洗碗时间为x分钟,洗完碗后剩余时间为y分钟,则剩余时间与洗碗时间之间的关系可以表示为以下的一次函数:y = 30 - x4. 一包含有n个人的旅行团,每人缴纳团费250元,另外还需要支付每人40元的交通费。

设团费总支出为y元,旅行团的人数为x人,则团费总支出与旅行团的人数之间的关系可以表示为以下的一次函数: y = 250x + 405. 某商店推出打折活动,折扣力度为8折,原价为x元的商品,在活动期间的售价为y元。

则售价与原价之间的关系可以表示为以下的一次函数:y = 0.8x6. 一个数增加了7倍后变成了48,设原数为x,增加后的数为y,则原数与增加后的数之间的关系可以表示为以下的一次函数: y = 7x7. 一块面积为x平方米的正方形花坛,边长可以表示为以下的一次函数:y = √x8. 一个图形的周长与边长之间的关系为一次函数。

设该图形的周长为y,边长为x,则周长与边长之间的关系可以表示为以下的一次函数: y = Kx以上是一些关于一次函数的练习题和答案,通过这些题目的练习,可以帮助同学们巩固和深入理解一次函数的概念和性质。

希望同学们能够通过大量的练习,熟练掌握一次函数的相关知识,提高数学解题能力。

在真实的应用中,一次函数是非常常见的数学模型,掌握一次函数的概念和运用对数学学习和实际生活都非常有帮助。

祝同学们在数学学习中取得更好的成绩!。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中最基本的函数之一,它的图像呈现出直线的特点。

通过学习一次函数的图像和性质,我们可以更好地理解和应用数学知识。

下面是一些关于一次函数图像和性质的练习题,帮助我们巩固所学的知识。

练习题一:给定一次函数y = 2x + 3,求解以下问题。

1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。

解答:1. 当x为0时,代入函数表达式得到y = 2(0) + 3 = 3,所以当x为0时,y的值为3。

2. 当y为0时,代入函数表达式得到0 = 2x + 3,解方程得到x = -1.5,所以当y为0时,x的值为-1.5。

3. 函数的斜率即为函数中x的系数,所以斜率为2。

截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为3。

4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。

根据斜率和截距,我们可以选择点(0,3)和(1,5)。

连接这两个点,得到一条斜率为2,截距为3的直线。

练习题二:给定一次函数y = -0.5x + 2,求解以下问题。

1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。

解答:1. 当x为0时,代入函数表达式得到y = -0.5(0) + 2 = 2,所以当x为0时,y的值为2。

2. 当y为0时,代入函数表达式得到0 = -0.5x + 2,解方程得到x = 4,所以当y为0时,x的值为4。

3. 函数的斜率即为函数中x的系数,所以斜率为-0.5。

截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为2。

4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。

根据斜率和截距,我们可以选择点(0,2)和(4,0)。

连接这两个点,得到一条斜率为-0.5,截距为2的直线。

一次函数的认识练习题

一次函数的认识练习题

一次函数的认识练习题一、选择题1. 下列哪个选项表示一次函数的一般形式?()A. y = ax² + bx + cB. y = ax + bC. D. y = x² + 12. 一次函数的图像是一条()A. 折线B. 曲线C. 椭圆D. 双曲线3. 一次函数y = 3x + 2的斜率为()A. 2B. 3C. 3D. 24. 一次函数y = x + 5的截距为()A. 5B. 5C. 1D. 1二、填空题1. 一次函数的图像是一条__________。

2. 一次函数y = 2x 3的斜率为__________,截距为__________。

3. 当x = 0时,一次函数y = 4x + 7的值为__________。

4. 一次函数的图像与x轴、y轴的交点分别为(__________,0)和(0,__________)。

三、判断题1. 一次函数的图像可以是一条水平线。

()2. 一次函数的斜率表示图像的倾斜程度,斜率越大,图像越陡峭。

()3. 一次函数y = x的图像经过原点。

()4. 两个一次函数的图像如果平行,则它们的斜率一定相等。

()四、简答题1. 请解释一次函数的定义及其图像特征。

2. 如何求一次函数的斜率和截距?3. 举例说明一次函数在实际生活中的应用。

五、应用题1. 某商店进行促销活动,满100元减20元。

请用一次函数表示顾客消费金额x(元)与实际支付金额y(元)之间的关系。

2. 小明从家出发,以每分钟60米的速度跑步,用一次函数表示小明跑步时间t(分钟)与跑步距离s(米)之间的关系。

3. 一辆汽车以恒定速度行驶,行驶了2小时后,路程为120公里。

请用一次函数表示汽车行驶时间t(小时)与行驶路程s(公里)之间的关系。

六、作图题1. 请在坐标系中作出一次函数y = 4x 2的图像。

2. 请画出一次函数y = x + 5和y = x 3的图像,并标出它们的交点。

七、计算题1. 已知一次函数的图像经过点(3, 5)和(6, 9),求该一次函数的表达式。

2020-2021学年人教版八年级数学下册 第19章 《一次函数》实际应用 解答题综合练习(三)

2020-2021学年人教版八年级数学下册 第19章 《一次函数》实际应用 解答题综合练习(三)

人教版八年级数学下册第19章《一次函数》实际应用解答题综合练习(三)1.甲、乙两人从同一点出发,沿着跑道训练400米速度跑,甲比乙先出发,并且匀速跑完全程,乙出发一段时间后速度提高为原来的3倍.设甲跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发s,乙提速前的速度是每秒米,m=,n =;(2)当x为何值时,乙追上了甲?(3)在乙提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过20米时,请你直接写出x的取值范围.2.某校的甲、乙两位老师住同一个小区,该小区与学校相距3000米.甲从小区步行去学校,出发10分钟后乙才出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点,立即步行走回学校,结果甲、乙两位老师同时到了学校.设甲步行的时间为x(分),图中线段OA和折线B﹣C﹣A分别表示甲、乙与小区的距离y(米)与甲的步行时间x (分)的函数关系的图象,根据图象解答下列问题:(1)乙出发时甲离开小区的的路程为米;(2)求乙骑公共自行车和乙步行的速度分别为每分钟多少米?(3)当10≤x≤25时,求乙与小区的距离y与x的函数关系式;(4)直接写出乙与小区相距3150米时,乙用时分钟.3.为落实“精准扶贫”精神,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图示,直接写出日销售量的最大值为.(2)根据图示,求李大爷家百香果的日销售量y与上市时间x的函数解析式,并求出第15天的日销售量.4.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),按照方案二所需费用为y2(元),其函数图象如图所示.(1)求方案一所需费用y1与x之间的函数关系式;(2)中学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.5.某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?6.某班为了丰富学生的课外活动,计划购买一批“名著经典”,河南省某市A、B两家书店分别推出了自己的优惠方案:A书店:每套“名著经典”标价120元,若购买超过20套,超过部分按每套标价的八折出售;B书店:每套“名著经典”标价120元,若购买超过15套,超过部分按每套标价的九折出售,然后每套再优惠10元.若用字母x表示购买“名著经典”的数量,字母y表示购买的价格,其函数图象如图所示.(1)分别写出选择购买A、B书店“名著经典”的总价y与数量x之间的函数关系式;(2)请求出图中点M的坐标,并简要说明点M表示的实际意义;(3)根据图象直接写出选择哪家书店购买“名著经典”更合算?7.甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)A,B两城相距千米,乙车比甲车早到小时;(2)甲车出发多长时间与乙车相遇?(3)若两车相距不超过30千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?8.用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量y(单位:%)与充电时间x(单位:h)的函数图象分别为图②中的线段AB、AC.根据以上信息,回答下列问题:(1)在目前电量20%的情况下,用充电器给该手机充满电时,快速充电器比普通充电器少用小时.(2)求线段AB、AC对应的函数表达式;(3)已知该手机正常使用时耗电量为每小时10%,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a的值.9.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x(min)后,到达距离甲地y(m)的地方,图中的折线表示的是y与x之间的函数关系.(1)甲、乙两地的距离为,a=;(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?10.已知小明家与学校在一条笔直的公路旁,学校离小明家2200m.一天,小明从家出发去上学,匀速走了400m时看到路旁有一辆共享单车,此时用了5min、小明用1min开锁后骑行6min到达学校,给出的图象反映了这个过程中小明离家的距离ym与离开家的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开小明家的时间/min2 4 5 6离小明家的距离/m160400(Ⅱ)填空:①小明骑车的速度为m/min;②当小明离家的距离为1900m时,他离开家的时间为min;(Ⅲ)当0≤x≤12时,直接写出y关于x的函数解析式.11.敦煌到格尔木铁路开通后,l1与l2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象,两车同时出发,设动车离敦煌北的距离为y1(千米),高铁离敦煌北的距离为y2(千米),行驶时间为t(小时),y1和y2与t的函数关系如图所示:(1)高铁的速度为km/h;(2)动车的速度为km/h;(3)动车出发多少小时与高铁相遇?(4)两车出发经过多长时间相距50千米?12.已知A,B两地相距200km,甲、乙两辆货车装满货物分别从A,B两地相向而行,图中l1,l2分别表示甲、乙两辆货车离A地的距离s(km)与行驶时间t(h)之间的函数关系.请你根据以上信息,解答下列问题:(1)分别求出直线l1,l2所对应的函数关系式;(2)何时甲、乙货车行驶的路程之和超过220km?13.某校学生食堂共有座位3600个,某天午餐时,食堂中学生人数y(人)与时间x(分钟)变化的函数关系图象如图中的折线OAB.(1)试分别求出当0≤x≤20与20≤x≤38时,y与x的函数关系式;(2)已知该校学生数有6000人,考虑到安全因素,学校决定对剩余2400名同学延时用餐,即等食堂空闲座位不少于2400个时,再通知剩余2400名同学用餐.请结合图象分析,这2400名学生至少要延时多少分钟?14.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?15.如图1,小明与妈妈购物结束后,同时从超市(点A)出发,沿AB步行回家(点B),小明先把部分物品送回家,然后立即沿原路返回,帮妈妈拿余下的物品,已知两人的速度大小均保持不变,设步行x(min)时两人之间的距离为y(m),从出发到再次相遇,y与x的函数关系如图2所示,根据图象,解决下列问题.(1)图2中点P的实际意义为;(2)小明与妈妈的速度分别为多少?(3)当x为何值时,两人相距100m?参考答案1.解:(1)由图象可得,乙比甲晚出发10s,乙提速前的速度是每秒40÷(30﹣10)=2(米),m=30+[(400﹣40)÷(2×3)]=90,n=400÷(360÷90)=100,故答案为:10,2,90,100;(2)由题意可得,甲的速度为360÷90=4(m/s),4x=40+6(x﹣30),解得x=70,即当x为70s时,乙追上了甲;(3)由题意可得,|4x﹣[40+6(x﹣30)]|=20,解得x=60或x=80,即60≤x≤80时,甲、乙之间的距离不超过20米;当4x=400﹣20时,解得x=95,即95≤x≤100时,甲、乙之间的距离不超过20米;由上可得,当甲、乙之间的距离不超过20米时,x的取值范围是60≤x≤80或95≤x≤100.2.解:(1)由题意,得甲步行的速度为:3000÷30=100(米/分钟),因为甲从小区步行去学校,出发10分钟后乙才出发,所以出发时甲离开小区的的路程为:100×10=1000(米),故答案为:1000;(2)根据题意,得乙骑公共自行车的速度为:100×18÷(18﹣10)=225(米/分钟),225×(25﹣10)=3375(米),所以点C的坐标为(25,3375),故乙步行的速度为:(3375﹣3000)÷(30﹣25)=75(米/分钟);(3)当10≤x≤25时,设乙与小区的距离y与x的函数关系式为y=kx+b,则,解得,所以当10≤x≤25时,乙与小区的距离y与x的函数关系式为y=225x﹣2250;(4)乙与小区相距3150米时,乙用时为:3150÷225=14(分钟)或15+(3375﹣3150)÷75=18(分钟),故答案为:14或18.3.解:(1)由图象可得,日销售量的最大值为960千克,故答案为:960千克;(2)当0≤x≤12时,设y与x的函数关系式为y=kx,12k=960,得k=80,即当0≤x≤12时,y与x的函数关系式为y=80x;当12<x≤20时,设y与x的函数关系式为y=ax+b,,得,即当12<x≤20时,y与x的函数关系式为y=﹣120x+2400,由上可得,y与x的函数关系式为y=;当x=15时,y=﹣120×15+2400=600,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.4.解:(1)设y1=k1x+b,根据题意,得:,解得,∴方案一所需费用y1与x之间的函数关系式为y1=15x+30;(2)设y2与x之间的函数关系式为y2=k2x,∵打折前的每次健身费用为15÷0.6=25(元),∴k2=25×0.8=20;∴y2=k2x,当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.5.解:(1)由图可得,降价前苹果的销售单价是:640÷40=16(元/千克),故答案为:16;(2)降价后销售的苹果千克数是:(760﹣640)÷(16﹣4)=10(千克).∴销售的苹果总数为40+10=50(千克).设降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=kx+b,∵该函数过点(40,640),(50,760),∴,解得:.即降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=12x+160(40<x≤50);(3)该水果店这次销售苹果盈利了:760﹣8×50=360(元).答:该水果店这次销售苹果盈利了360元.6.解:(1)由题意可知,当0≤x≤20,当y A=120x;当x>20时,y A=120×20+(x﹣20)×120×0.8=96x+480;∴y A与数量x之间的函数关系式为y A=,当0≤x≤15时,y B=120x,当x>15时,y B=120×15+(x﹣15)×(120×0.9﹣10)=98x+330,∴y B与数量x之间的函数关系式为y B=;(2)由96x+480=98x+330,得x=75,此时y=96×75+480=7680,∴点M的坐标为(75,7680),点M表示的实际意义为当买75套“名著经典”,在A、B两家书店所付的钱数相同,均为7680元;(3)观察图象可知:当0≤x≤15或x=75时,在A、B两家书店所付的钱数相同;当15<x<75时,选择B书店更合算;当x>75时,选择A书店更合算.7.解:(1)由图象可得,A,B两城相距300千米,乙车比甲车早到5﹣4=1(小时),故答案为:300,1;(2)由图象可得,甲车的速度为300÷5=60(千米/时),乙车的速度为300÷(4﹣1)=100(千米/时),设甲车出发a小时与乙车相遇,60a=100(a﹣1),解得a=2.5,即甲车出发2.5小时与乙车相遇;(3)设甲车出发b小时时,两车相距30千米,由题意可得,|60b﹣100(b﹣1)|=30,解得b=或b=,=(小时),即两车都在行驶过程中可以通过无线电通话的时间有小时.8.解:(1)由图象可知快速充电器给该手机充满电需2小时,普通充电器给该手机充满电需6小时,∴用充电器给该手机充满电时,快速充电器比普通充电器少用4小时;故答案为:4;(2)设线段AB的函数表达式为y1=k1x+b1,将(0,20),(2,100)代入y1=k1x+b1,,∴,∴线段AB的函数表达式为:y=40x+20;设线段AC的函数表达式为y2=k2x+b2,将(0,20),(6,100)代入y2=k2x+b2,∴,∴,∴线段AC的函数表达式为:y2=+20;(3)根据题意,得×(6﹣2﹣a)=10a,解得a=.答:a的值为.9.解:(1)由图象可知,甲、乙两地的距离为2000m;a=24﹣10=14;故答案为:2000m;14;(2)设y=kx+b,把(14,2000)与(24,0)代入得:,解得:k=﹣200,b=4800,则y=﹣200x+4800;(3)小明骑自行车的速度为:2000÷10=200(m/min),根据题意,得(200+100)x=2000﹣200或(200+100)x=2000+200或200(x﹣4)=4000﹣200,解得x=6或x=或x=23,答:小明从甲地出发6分钟或分钟或23分钟,与小红相距200米.10.解:(Ⅰ)当x=4时,y=400÷5×4=320;当x=6时,y=400;故答案为:320;400;(Ⅱ)①小明骑车的速度为:(2200﹣400)÷(12﹣6)=300(m/min);②当小明离家的距离为1900m时,他离开家的时间为:6+(1900﹣400)÷300=11(min),故答案为:①300;②11;(Ⅲ)当0≤x≤5时,y=80x;当5<x≤6时,y=400;当6<x≤12时,设y关于x的函数解析式为y=kx+b,根据题意,得:,解得,∴y=300x﹣1400.11.解:(1)由图象可得,高铁的速度为300÷1.5=200(km/h),故答案为:200;(2)由图象可得,动车的速度为300÷2=150(km/h),故答案为:150;(3)设动车出发a小时与高铁相遇,200a+150a=300,解得a=,即动车出发小时与高铁相遇;(4)设两车出发经过b小时相距50千米,200b+150b=300﹣50或200b+150b=300+50,解得b=或b=1,即两车出发经过小时或1小时相距50千米.12.解:(1)设l1对应的函数关系式为s1=k1t,∵l1过点(6,200),∴200=6k,得k1=,即l1对应的函数关系式为s1=;设l2对应的函数关系式为s2=k2t+200,∵l2过点(5,0),∴0=5k2+200,得k2=﹣40,即l2所对应的函数关系式为s2=﹣40t+200;(2)由题意可得,,解得t>3,答:3小时后,甲、乙货车行驶的路程之和超过220km.13.解:(1)当0≤x≤20时,设y与x的函数关系式为y=kx,20k=3600,得k=180,即当0≤x≤20时,y与x的函数关系式为y=180x,当20≤x≤38时,设y与x的函数关系式为y=ax+b,,得,即当20≤x≤38时,y与x的函数关系式为y=﹣200x+7600;(2)∵空闲座位不少于2400个时,∴有人坐的座位不大于1200个,∵y=﹣200x+7600,∴当y=1200时,﹣200x+7600=1200,解得,x=32,答:至少要延时32分钟.14.解:(1)由图象可知,甲车速度为:(100﹣60)÷(1.5﹣0.5)=40÷1=40(km/h),乙车的速度为:60÷0.5﹣40=120﹣40=80(km/h),故答案为:40,80;(2)①由题意可得,S=80×0.5+40x﹣80(x﹣1.5)=﹣40x+160,当80×0.5+40x=80(x﹣1.5)时,解得x=4,即S与x的函数表达式是S=﹣40x+160(1.5≤x≤4),补全的函数图象如右图所示;②当0.5≤x≤1.5时,60+40(x﹣0.5)=80,解得x=1,当1.5≤x≤4时,40x+80×0.5﹣80(x﹣1.5)=80,解得x=2,即从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离在1小时或2小时时为80km.15.解:(1)由题意可得,图2中点P的实际意义为小明从超市出发步行8min时,正好将部分物品送到家,故答案为:小明从超市出发步行8min时,正好将部分物品送到家;(2)由图可得,小明的速度为:800÷8=100(m/min),妈妈的速度为:[800﹣(10﹣8)×100]÷10=60(m/min),即小明与妈妈的速度分别为100m/min、60m/min;(3)当0<x≤8时,100x﹣60x=100,解得x=2.5,当8<x≤10时,100(x﹣8)+60x=800﹣100,解得x=,当x>10时,小明再次到家以前,100(x﹣10)﹣60(x﹣10)=100,解得x=12.5,∵小明再次回到家用时为[800﹣60×10]÷100=2(min),∵10+2=12<12.5,∴x=12.5时不合实际,舍去;由上可得,当x为2.5或时,两人相距100m.。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。

一次函数,也叫线性函数,是初中数学中的重要知识点之一。

希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。

一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。

答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。

答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。

答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。

解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。

因此,交点坐标为(4,7)。

2.已知函数y=3x+b经过点(2,−1),求b的值。

解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。

3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。

如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。

解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。

高中数学《一次函数》练习题

高中数学《一次函数》练习题

高中数学《一次函数》练习题【小编寄语】查字典数学网小编给大家整理了高中数学《一次函数》练习题,希望能给大家带来帮助!【知识梳理】1.正比例函数与一次函数的关系:正比例函数是当y=kx+b 中b=0时特殊的一次函数。

2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。

3.一次函数的图像:正比例函数y=kx(k&ne;0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k&ne;0)是过(0,b),(,0)两点的一条直线。

4.直线y=kx+b(k&ne;0)的位置与k、b符号的关系:当k&gt;0是直线y=kx+b过第一、三象限,当k&lt;0时直线过第二、四象限;b 决定直线与y轴交点的位置,b&gt;0直线交y轴于正半轴,b&lt;0直线交y轴于负半轴。

5.直线L1与L2的位置关系由k、b来确定:当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y轴同一点时,k不同b相同。

6.一次函数经常与一次方程、一次不等式相联系。

【能力训练】1.一次函数y=x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2019&middot;福州)已知正比例函数y=kx(k&ne;0)的图像过第二、四象限,则( )A.y随x的增大而减小B.y随x的增大而增大C.当x&lt;0时,y随x的增大而增大;当x&gt;0时,y随x 的增大而减小D.不论x如何变化,y不变3.(2019&middot;甘肃)结合正比例函数y=4x的图像回答:当x&gt;1时,y的取值范围是( )A.y=1B.1&le;y&lt;4C.y=4D.y&gt;44.(2019&middot;哈尔滨)直线y=x-1与坐标轴交于A、B 两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个5.某地的电话月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是,某居民某月的电话费是38.7元,则通话时间是分钟,若通话时间62分钟,则电话费为元.6.如图,表示商场一天的家电销售额与销售量的关系,表示一天的销售成本与销售量的关系.①当时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售件时,销售额等于销售成本.对应的函数表达式是 .④写出利润与销售量间的函数表达式.7.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y1元,出租车公司的月费用是y2元,y1、y2分别与x 之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?8.在直角坐标系中,有以A(-1,-1),B(1,-1),C(1,1),D(—1,1)为顶点的正方形.设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为S.(1)求a=时,S的值.(2)当a在实数范围内变化时,求S关于a的函数关系式.9.已知一次函数y=x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=的图像在第一象限交于点C(4,n),CD&perp;x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P、Q分别从A、C两点同时出发,以相同的速度分别沿线段AD、CA向D、A运动,设AP=k.问k为何值时,以A、P、Q为顶点的三角形与△AOB相似?10.如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图像分别求出L1、L2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置, 我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v&gt;0,表示汽车向数轴正方向行驶;速度c&lt;0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s&gt;0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s&lt;0,表示汽车位于零千米路的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图像的形式画在了同一直角坐标系中,如图.请解答下列问题:(1)就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格.行驶方向速度的大小(km)h出发前的位置甲车乙车(2)甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.参考答案:1.B2.A3.D4.C5.y =0.15x+24,98,33.36.①,亏损②3 ③y1=x ④y=x—27.(1)超过3000千米,(2)3000千米(3)个体8.(1)(2)当a&le;—1时,S=2;当—1或10.(1)设直线L1的解析式为y1=k1x+2,由图像得17=500k1+2,解得k1=0.03.&there4;y1=0.03x+2(0&le;x&le;2 000).设直线L2的解析式为y2=k2x+20,由图像得26=500k2+20,解得k2=0.012,y=0.012x+20(0&le;x&le;2 000).(2)当y1=y2时,两种灯的费用相等.0.03x+2=0.012x+20,解得x=1 000.&there4;当照明时间为1 000小时时,两种灯的费用相等.(3)节能灯使用2 000小时,白炽灯使用500小时.11.解:(1)甲车:x轴负方向(向左),40,零千米路标右侧190千米;乙车:x轴正方向(向右),50,零千米路标左侧80千米处.(2)甲乙两车相遇设经过t小时两车相遇,由得所以经过3小时两车相遇,相遇在零千米路标右侧70千米处.。

期末复习一次函数大题练习

期末复习一次函数大题练习

一次函数大题练习1.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?2.某市举行“迷你马拉松”长跑比赛,运动员从起点甲地出发,跑到乙地后,沿原路线再跑回点甲地.设该运动员离开起点甲地的路程s (km)与跑步时间t (min)之间的函数关系如图所示.已知该运动员从甲地跑到乙地时的平均速度是0.2 km/min ,根据图像提供的信息,解答下列问题:(1)a = km ;(2)组委会在距离起点甲地3km 处设立一个拍摄点P ,该运动员从第一次过P 点到第二次过P 点所用的时间为24min .①求AB 所在直线的函数表达式; ②该运动员跑完全程用时多少min ?3.为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,其中A 种型号的设备每台价格为12万元,B 种型号的设备每台价格为10万元;A 种型号的设备每台每月可以处理污水240吨,B 种型号的设备每台每月可以处理污水200吨,经预算,该企业购买设备的资金不高于..........105...万元....(1)写出购买设备的资金y 万元与购买A 型设备的台数x 之间的函数关系(不需要写出自变量的取值范围(2)该企业有几种购买方案,写出每种方案,并说明理由(3)若该企业每月产生的污水量为2040吨,利用函数的知识.....说明,应该选哪种购买方案? 4.A 市和B 市分别有库存的某联合收割机12台和6台,现决定开往C 市10台和D 市8台,已知从A 市开往C 市、D 市的油料费分别为每台400元和800元,从B 市开往C 市和D 市的油料费分别为每台300元和500元.(1)设B 市运往C 市的联合收割机为x 台,求运费w 关于x 的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.5.某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:()2140(4060),{806070x x y x x -+≤<=-+≤≤⋅(1)若企业销售该产品获得的利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.6.如图,直线l 1:y 1=−34x+m 与y 轴交于点A (0,6),直线l 2:y 2=kx+1分别与x 轴交于点B (-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .(1)求两直线交点D 的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.7.李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.8.如图,已知一次函数y=x+2与y=-2x+6的图象相交于点A,函数y=-2x+6的图象分别交x轴、y轴于点B、C,函数y=x+2的图象分别与x轴、y轴交于点E、D.(1)求点A的坐标;(2)求△ABE的面积.9某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?10.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元(1) 求甲、乙两种商品每件的进价分别是多少元?(2) 商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润11.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D.直线l2经过点A、B,直l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)在直线l2上存在异于点C的另一个点P,使得△ADP与△ADC的面积相等,求P点的坐标.12.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)15 20 30 …y(件)25 20 10 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?13.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.14.济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?15.如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+b≥mx-n;(2)不等式kx+b<0的解集是;(3)交点P的坐标(1,1)是一元二次方程组:的解;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M 的坐标和四边形OMPN的面积.16.(2016湖南衡阳第23题)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/台)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.17.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.18.如图,已知直线y 1=﹣21x+1与x 轴交于点A ,与直线y 2=﹣23x 交于点B .(1)求△AOB 的面积;(2)求y 1>y 2时x 的取值范围.19.甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是 千米/时,t= 小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.20.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y 与x 之间的关系式?(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?21.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.23.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是m/分,点B的坐标是;(2)线段AB所表示的y与x的函数关系式是;(3)试在图中补全点B以后的图象.24.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=2x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=2x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.参考答案1.(1)10;30(2)乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y=()()1502{3030211x x x x ≤≤-≤≤. (3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.2.(1)5千米.(2)直线AB 解析式为s =-t +.60分. 3.(1)y =2x +100;(2)有三种购买方案:①购A 型0台,B 型10台;②购A 型1台,B 型9台;③购A 型2台,B 型8台;(3)为节约资金,应选购A 型1台,B 型9台4.(1)2008600W x =+(06x ≤≤);(2)有三种方案;(3)总运费最低的方案是, A C →10台, A D →2台, B C →0台, B D →6台,此时总运费为8600元.5.(1)年利润W(万元)关于售价x(元/件)的函数解析式为()2222004200(4060),{11024006070.x x x W x x x -+-≤<=-+-≤≤; (2)当该产品的售价定为50元/件时,销售该产品的年利润最大,最大利润为800万元;(3)要使企业销售该产品的年利润不少于750万元,该产品的销售价x(元/件)的取值范围为45≤x ≤55.6.(1)D 点坐标为(4,3)(2)15;(3)x <47.(1)a=20,b=1100,c=50;(2)李老师从学校到家的共用60分钟.8.(1)A (410,33);(2)2539.(1)A 种足球单价为120元/个,B 足球单价为200元/个.(2)本次购买A 种足球6个,B 种足球12个,才能使购买费用W 最少.10.(1) 甲种商品每件的进价为30元,乙种商品为70元;(2) 购进甲种商品80件,则购进乙种商品20件时获利最大,为1200元.11.(1)、(1,0);(2)、y=1.5x﹣6;(3)、(6,3).12.(1)一次函数的关系式为y=﹣x+40;(2)产品的销售价应定为25元,此时每日的销售利润为225元.13.(1)18;(2)有6种购买方案,每月最多处理污水量的吨数为2000吨.14.(1)y1=0.15x+58,y2=0.19x;(2)1450分钟时;(3)当月通话时间多于1450分钟时.15.(1)x≤1(2)x>3;(3)y mx ny kx b=-⎧⎨=+⎩,(4)1.16.(1)y=﹣8x+2560,x的取值范围是30≤x≤80;(3)1920,方案为把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.17.(1)、y=2x-2;(2)、(2,2).18.(1)1.5;(2)x>﹣1.19.(1)60,3;(2)y=﹣120x+840(4<x≤7);(3)乙车出发83小时、4小时、6小时后两车相距120千米.20.(1)、5元;(2)、y=12x+5;(3)、12元;(4)、45kg.21.(1)D(1,0);(2)y=32x-6;(3)92;(4)P(6,3)22.(1)当x>2时,y1>y2;(2)3;(3)P(1,1)或(,1).23.(1)60,120;(2)y=kx+b,(3)24.(1)(6,0);(2)425.见解析.。

一次函数分类练习题(打印)

一次函数分类练习题(打印)

一次函数分类练习题一、正比例函数的定义1、下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高2.下列函数中,y 是x 的正比例函数的是( ) x D .A .y=4x+1B .y=2x2C .y=-3.下列说法中不成立的是( )A .在y=3x -1中y+1与x 成正比例;B .在y=-中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例4.若函数y=(2m+6)x2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-3 5、若是关于x 的正比例函数,则m=二、一次函数的定义1、已知一次函数kx k y )1(-=+3,则k = . 2.下列函数中一定为一次函数的是( ) A .y =x2+1 B .y =0 C .y =kx+b D .3.下列函数中,是一次函数的是( )A .y =1﹣xB .y =C .y =kx+1D .y =x2+1 4.下列函数中,是一次函数的是( )A .y =+1B .x+3y =1C .y =x2﹣1D .y =25.若函数y =(m+2)x|m|﹣1﹣5是一次函数,则m 的值为( ) A .±2 B .2 C .﹣2 D .±1 6、在下列函数中:①y =﹣8x ;②;③;④y =﹣8x2+5;⑤y =﹣0.5x ﹣1,一次函数有( ) A .1个 B .2个 C .3个 D .4个 三、一次函数的图象1、一次函数y =(k+3)x+b (k >0,b <0)在平面直角坐标系中的图象大致是( )A .B .C .D .2.一次函数y =3x ﹣2的图象大致是( )A .B .C .D .3.若实数k ,m 满足k+m =0,且k ﹣m >0,则函数y =kx+m 的图象可能是( )A .B .C .D .4.若式子有意义,则关于x 的一次函数y =(1﹣m )x+m ﹣1的图象可能是( )A .B .C .D .5.一次函数y =3x ﹣2的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 四、正比例函数的图象2)1(m xm y -=2x1、一次函数y=ax+b与y=x在同一个平面直角坐标系中的图象可能是()A.B.C.D.2.已知正比例函数y=kx(k≠0)的函数图象如图所示,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.3.关于x的正比例函数y=kx与一次函数y=kx+x﹣k的大致图象不可能是()A.B.C.D.4.正比例函数y=kx(k≠0)与一次函数y=kx﹣k在同一坐标系中的图象大致是()A.B.C.D.五、一次函数的性质1、一次函数y=kx+b(k<0,b<0)的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)3.若点A(x1,﹣1),B(x2,﹣2),C(x3,3)在一次函数y=﹣2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2 D.x3>x2>x14.一次函数y=mx+n的图象经过第一、三、四象限,则化简所得的结果是()A.m B.﹣m C.2m﹣n D.m﹣2n5.当1≤x≤2时,关于x的一次函数y=kx+2(k<0)的最大值是()A.k+2B.2k+2C.2k﹣2D.k﹣26.一次函数y=kx+3(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限六、正比例函数的性质1、下列函数中,y随x的增大而增大的是()A.y=﹣3x B.y=2x﹣1C.y=﹣3x+10D.y=﹣2x ﹣12.已知正比例函数y=mx(m≠0)中,y随x的增大而减小,那么一次函数y=mx﹣m的图象大致是()A.B.C.D.3.正比例函数y=(m2+1)x的图象经过的象限是()A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限4.对于正比例函数y=kx,当自变量x的值增加3时,对应的函数值y减少6,则k的值为()A.2B.﹣2C.﹣3D.﹣0.55、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.6.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时y1>y2,则m的取值范围是.七、一次函数图象与系数的关系1、若一次函数y=﹣2x+b的图象经过第二、三、四象限,则b的取值范围是()A.b>2B.b>0C.b≤0D.b<02.一次函数y=kx﹣b与y=﹣x(k,b为常数,且kb≠0),它们在同一坐标系内的图象可能为()A.B.C.D.3.若一次函数y=(k+1)x﹣2的图象从左向右下降,则k的值可以是()A.1B.﹣1C.﹣2D.04.函数y=(m+2)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.B.C.m<﹣2D.m>﹣2 5.在一次函数y=(m﹣1)x+m+1中,如果y随x的增大而增大,那么常数m的取值范围是()A.m>1B.m<1C.m>﹣1D.m<﹣16.已知关于x的一次函数y=(2﹣m)x+2的图象如图所示,则实数m的取值范围为()A.m>2B.m<2C.m>0D.m<0八、一次函数图象上点的坐标的特征1、正比例函数y=3x的图象必经过点()A.(﹣1.﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)2.已知直线y=x+3,则()A.该直线与x轴的交点坐标为(﹣6,0),与y轴的交点坐标为(0,3)B.该直线与x轴的交点坐标为(﹣,0),与y轴的交点坐标为(0,3)C.该直线与x轴的交点坐标为(0,3),与y轴的交点坐标为(﹣6,0)D.该直线与x轴的交点坐标为(0,3),与y轴的交点坐标为(﹣,0)3.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象经过一、二、三象限B.y随x的增大而增大C.当x<时,y>0D.图象过点(1,﹣1)4.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定九、一次函数图象与几何变换1、将直线y=2x﹣2向上平移4个单位长度后所得的直线的解析式为()A.y=2x B.y=2x﹣4C.y=2x+2D.y=2x﹣62.将直线y=﹣2x﹣6向上平移6个单位长度,可得直线的解析式为()A.y=2x B.y=﹣2x﹣6C.y=﹣2x D.y=﹣2x+6 3.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.64.在平面直角坐标系中,将一次函数y=2x+1的图象向左平移1个单位长度,得到的图象对应的函数表达式是()A.y=2x+2B.y=2x+3C.y=2x D.y=2x﹣15.把一次函数y=2x﹣3先关于x轴对称,再向左移2个单位,所得的直线表达式为()A.y=﹣2x﹣1B.y=2x﹣7C.y=2x﹣10D.y=﹣2x+7十、待定系数法求一次函数解析式1、已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点,则k,b的值分别为()A.﹣1,﹣2B.1,2C.﹣2,﹣1D.2,12.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m 的值为()A.3B.2C.﹣2D.2或﹣23.一次函数y=kx+b,经过(1,1),(2,4),则k与b 的值为()A.B.C.D.4.在直角坐标系中,点A(2,﹣3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()A.﹣6B.6C.6或3D.6或﹣65.某个一次函数的图象与直线y═x+6平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为()A.y=﹣x﹣5B.y=x+3C.y=x﹣3D.y=﹣2x ﹣86.如图,一次函数y=x+6的图象与x轴,y轴分别交于点A,B,过点B的直线l平分═ABO的面积,则直线l 相应的函数表达式为()A.y=x+6B.y=x+6C.y=x+6D.y=x+6十一、待定系数法求正比例函数解析式1.一个正比例函数的图象经过点(2,﹣1),则它的解析式为()A.y=B.y=﹣C.y=2x D.y=﹣2x2、已知y与x成正比例,且x=1时,y=﹣2,则当x=﹣1时,y=.3.已知正比例函数的图象经过点P(a,3a)(其中a为常数,a≠0),则该正比例函数解析式为4、已知y=y1﹣y2,y1与x成正比例,y2与x﹣1反比例,当x=2时,y=4;当x=3时,y=8.求y关于x的函数解析式.十二、一次函数的应用(一)、交点问题及直线围成的面积问题1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)

1 / 8一次函数练习〔一〕1.51x y x +=+中,自变量x 的取值X 围是。

2.y x=x 的取值X 围是。

3.点P 〔-2,m 〕在函数y=2x+1的图象上,如此m=。

4.函数y=2x-1的图象经过点〔1,〕和点〔,2〕,它与x 轴的交点坐标为,与y 轴的交点坐标为。

5.函数224y mx m =+-的图象经过原点,如此m=。

6.如下哪个点在函数112y x =+的图象上〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,0〕 D 、〔-2,0〕 7.三角形的面积为8,高为x ,底为y ,如此y=。

8.如下各图象中,y 不是x 的函数的是〔 〕9.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧剩下的长度y 与燃烧时间x 的函数关系式为。

10.函数y=kx+5与y=2x-b 的交点为〔1,6〕,如此k=,b=。

一次函数练习〔一〕1.51x y x +=+中,自变量x 的取值X 围是。

2.y x=x 的取值X 围是。

3.点P 〔-2,m 〕在函数y=2x+1的图象上,如此m=。

4.函数y=2x-1的图象经过点〔1,〕和点〔,2〕,它与x 轴的交点坐标为,与y 轴的交点坐标为。

5.函数224y mx m =+-的图象经过原点,如此m=。

6.如下哪个点在函数112y x =+的图象上〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,0〕 D 、〔-2,0〕 7.三角形的面积为8,高为x ,底为y ,如此y=。

8.如下各图象中,y 不是x 的函数的是〔 〕9.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧剩下的长度y 与燃烧时间x 的函数关系式为。

10.函数y=kx+5与y=2x-b 的交点为〔1,6〕,如此k=,b=。

2 / 8一次函数练习〔二〕1.假如(1)ny n x =-是正比例函数,如此n=。

2.23(21)my m x -=-是正比例函数,且y 随x 的增大而减小,如此这个函数的解析式为。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中的基础概念之一,也是高中数学中的重要内容。

它的图像和性质是我们学习一次函数的关键,通过练习题的形式,我们可以更好地理解和掌握一次函数的图像和性质。

1. 练习题一:给定一次函数y = 2x + 3,求出它的图像和性质。

首先,我们可以根据一次函数的一般式y = kx + b,确定该函数的斜率和截距。

斜率k表示函数图像的倾斜程度,截距b表示函数图像与y轴的交点。

对于给定的一次函数y = 2x + 3,斜率k = 2,截距b = 3。

根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为2,截距为3的直线。

其次,我们可以绘制该函数的图像。

选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。

例如,当x = 0时,y = 2*0 + 3 = 3;当x = 1时,y = 2*1 + 3 = 5;当x = -1时,y = 2*(-1) + 3 = 1。

我们可以选择更多的x值,计算出对应的y值,然后将这些点连接起来,就得到了一次函数y = 2x + 3的图像。

最后,我们可以分析该函数的性质。

根据斜率的正负,我们可以知道当x增大时,y也随之增大,表示该函数是递增的。

根据截距的正负,我们可以知道该函数与y轴的交点在正半轴,表示该函数在y轴右侧。

2. 练习题二:给定一次函数y = -0.5x + 2,求出它的图像和性质。

根据一次函数的一般式y = kx + b,我们可以得到该函数的斜率k = -0.5,截距b = 2。

根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为-0.5,截距为2的直线。

绘制该函数的图像,选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。

例如,当x = 0时,y = -0.5*0 + 2 = 2;当x = 1时,y = -0.5*1 + 2 = 1.5;当x = -1时,y = -0.5*(-1) + 2 = 2.5。

一次函数基础知识练习

一次函数基础知识练习

一次函数基础知识练习一、一次函数的定义1、下列函数(1)y=πx(2)y=2x-1 (3)y = 1x (4)y =21-3x (5)y =x 2-1中,是一次函数有( ) 2、已知一次函数k x k y )1(-=+3,则k =. 如果函数3)2(1+-=-k xk y 是一次函数,则=k 3、已知函数32)2(3--+=m x m y 是一次函数,则m =;此图象经过第象限。

4、28(3)1my m x m -=-++是一次函数,则m =二、单调性应用 1、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1与y 2大小关系是( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能比较2、已知点A (-1,a )与B (2,b )都在直线332+=x y 上,试用两种以上的方法比较a 与b 的大小; 3、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,• 则k____0,b______0.4、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是5、点P 1(x 1,y 1)点p 2(x 2,y 2)是一次函数=-4x+3图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是6、点A (5-,1y )和B (2-,2y )都在直线112y x =-+上,则1y 与2y 的关系是 三、图像的基本识别1、已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( )(A)k >0,b >0 (B)k >0,b <0 (C)k <0,b >0 (D)k <0,b2、已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<23、直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0,b>0C . k<0, b<0;D . k<0, b>04、一次函数y=-(m 2+1)x -(m 2+2)的图象(m 为常数)不经过第象限5、已知一次函数4)2(-+-=m x m y 不经过第二象限,则m 的取值范围是6、若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限四、与不等式的关系1、如图,直线b kx y +=与x 轴的交点为(-3,0)则y >0时x 的取值范围是( )A.x >-3B.x >0C.x <-3D.x <02、对于一次函数32--=x y ,当x _______时,图象在x 轴下方.3、一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是4、根据一次函数y=-3x-6的图像,当函数值大于零时,x 的范围是______________.5、根据函数33y x =-+的图象,回答下列问题:(1)y 的值随x 的增大而.(2)图象与x 轴的交点坐标是,与y 轴的交点坐标是.(3)当x 时,y >0;当x 时,y <0;当x 时,y =0.五、直线的平移(一)上下平移1、把直线32+-=x y 向下平移2个单位长度所得直线的解析式为2、将直线14+=x y 的图象向下平移3个单位长度,得到直线____________.3、已知一次函数b kx y +=的图象与43-=x y 的图象平行,而且经过点(1,1),则该一次函数的解析式为_________________5、若在同一坐标系中作出下列直线:①112y x =--;②21y x =-;③112y x =-+;④1y x =-.那么互相平行的直线是 7、已知直线y =(5-3m )x +32m -4与直线y =21x +6平行,求此直线的解析式. 8、直线(1)y k x b =-+与32y x =-平行,且过点(1,-2),请问直线y bx k =-不经过 象限9、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是(二)、左右平移1、把一次函数12-=x y 沿着x 轴向左平移1个单位,得到的直线的解析式为__________.2、直线21y x =+向右平移2个单位后的解析式是;3、已知直线:y=3x -12,将直线向右平移5个单位长度得到直线,则直线的解析式. 4、已知直线:y=3x -12,将直线向左平移5个单位长度得到直线,则直线的解析式.5、直线y=-5x -12向左平移2个单位长度后得到的直线解析式是___;直线y=向右平移3个单位长度后得到的直线解析式是___.(三)、综合应用1、直线y=8x +13既可以看作直线y=8x -3向___平移(填“上”或“下”)___单位长度得到;也可以看作直线y=8x -3向___平移(填“左”或“右”)___单位长度得到.2、要由直线y=2x +12得到直线y=2x -6,可以通过平移得到:先将直线y=2x +12向___平移(填“上”或“下”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“上”或“下”)得到直线y=2x -6;当然也可以这样平移:先将直线y=2x +12向___平移(填“左”或“右”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“左”或“右”)得到直线y=2x -6;以上这两种方法是分步平移.也可以一次直接平移得到,即将直线y=2x +12向___平移(填“上”或“下”)直接得到直线y=2x -6,或者将直线y=2x +12向___平移(填“左”或“右”)直接得到直线y=2x -6.六、直线与坐标轴围成的三角形的面积1、一次函数y=-2x+4的图象与x 轴交点坐标 是,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .2、一次函数y=2x -4的图象与x 轴交点坐标是,与y 轴交点坐标是.3、一次函数y=2x+b 与两坐标轴围成三角形的面积为4,则b=________________.4、直线443--=x y 与两坐标轴围成的三角形面积是 5、如果一次函数4+=kx y 与两坐标轴围成的三角形面积为4,则=k _____6、函数25+-=x y 与x 轴的交点是,与y 轴的交点是,与两坐标轴围成的三角形面积是。

一次函数练习题与答案

一次函数练习题与答案

一次函数练习题与答案一次函数练习题与答案一次函数是初中数学中的重要知识点,也是解决实际问题中常用的数学模型。

它的一般形式为y=ax+b,其中a和b为常数,x为自变量,y为因变量。

一次函数的图像是一条直线,具有许多有趣的性质和应用。

下面,我们将通过一些练习题来加深对一次函数的理解,并给出详细的答案解析。

练习题1:已知一次函数y=2x+1,求当x=3时的函数值。

解析:将x=3代入函数中,得到y=2×3+1=7。

所以当x=3时,函数值为7。

练习题2:已知一次函数y=-3x+5,求使得函数值等于0的x的值。

解析:当函数值等于0时,即-3x+5=0。

解这个方程得到x=5/3。

所以使得函数值等于0的x的值为5/3。

练习题3:已知一次函数y=4x-2和y=-2x+6,求它们的交点坐标。

解析:当两个函数的函数值相等时,即4x-2=-2x+6。

解这个方程得到x=1。

将x=1代入其中一个函数中,得到y=4×1-2=2。

所以它们的交点坐标为(1, 2)。

练习题4:已知一次函数的图像通过点(2, 3)和(-1, 1),求这个函数的解析式。

解析:设这个函数的解析式为y=ax+b。

将点(2, 3)代入函数中,得到3=2a+b;将点(-1, 1)代入函数中,得到1=-a+b。

解这个方程组,得到a=2,b=-1。

所以这个函数的解析式为y=2x-1。

练习题5:已知一次函数的图像与x轴交于点(3, 0),求这个函数的解析式。

解析:当函数与x轴交于点(3, 0)时,即y=a×3+b=0。

解这个方程得到a=-b/3。

所以这个函数的解析式为y=(-b/3)x+b。

通过以上练习题,我们可以看到一次函数的一些基本特点和求解方法。

一次函数的图像是一条直线,它的斜率决定了直线的倾斜程度。

当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线平行于x 轴。

截距则决定了直线与y轴的交点。

一次函数的应用非常广泛,可以用来解决许多实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是 ( )A.沙漠 B.体温 C.时间 D.骆驼
2.下面两个变量是成正比例变化的是 ( )
A . 正方形的面积和它的边长.
B . 变量x 增加,变量y 也随之增加;
C . 矩形的一组对边的边长固定,它的周长和另一组对边的边长.
D . 圆的周长与它的半径.
3. 下面哪个点不在函数y=-2x+3的图象上 ( )
A .(-5,13)
B .(0.5,2)
C .(3,0)
D .(1,1)
5.已知点(-4,y 1),(2,y 2)都在直线y= - 12
x+2上,则y 1 y 2大小关系是( ) A . y 1 > y 2 B . y 1 = y 2 C .y 1 < y 2 D . 不能比较
6.下列各图给出了变量x 与y 之间的函数是 ( )
7.直线y=kx +b 经过一、二、四象限,
则k 、b 应满足
( )
A . k>0, b<0
B . k>0, b>0
C . k<0, b<0;
D . k<0, b>0
8.关于函数12+-=x y ,下列结论正确的是( )
A .图象必经过点(﹣2,1)
B .图象经过第一、二、三象限
C .当2
1>x 时,0<y D .y 随x 的增大而增大 9.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点,则
b
a 的值是 ( ) A .4 B .-2 C . 12 D . - 12 10.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象

A .
B .
C .
D .
A B D
11.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停
下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是
行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )
A B C D
A .
B .
C .
D .
12.已知函数y= -x+m 与y= mx- 4的图象的交点在x 轴的负半轴上那么m 的值为
( )A .±2 B .±4 C .2 D . -2
13.若一次函数()12+-=k kx y 是正比例函数,则k 的值为 。

14.一次函数y=-3x+6的图象与x 轴的交点坐标是 ,与y 轴的交点坐标
是 。

15.设地面(海拔为0km )气温是200C ,如果每升高1km ,气温下降60C , 则某地
的气温t (0C )与高度h (km )的函数关系式是 。

16.根据右图所示的程序计算变量y
的值,若输入自变量x 的值为32
, 则输出的结果是_______。

17.小明根据某个一次函数关系式填写
了右表:其中有一格不慎被墨汁遮住了,
想想看,该空格里原来填的数是__________。

18.若函数y=-x-4与x 轴交于点A ,直线上有一点M ,若△AOM 的面积为8,则点M 的坐标 .
18. (本题6分)在同一坐标系内画出一次函数y 1=-x+1 与y 2=2x-2的图象, 并根据图象
回答下列问题:
(1).写出直线y 1=-x+1 与y 2=2x-2的
交点坐标
(2).直接写出,当x 取何值时
y 1 <y 2
19.(本题5分)已知直线b kx y +=平行于直线y=-3x+4,且与直线y=2x-6的交点在x 轴
上,求此一次函数的解析式。

20.(本题5分)已知函数y=(2m+1)x+m -3
(1)若这个函数的图象经过原点,求m 的值
(2)若这个函数的图象不经过第二象限,求m 的取值范围.
21.(本题6分) 如图是某汽车行驶的路程S (km)与时间t
的函数关系图.观察图中所提供的信息, 解答下列问题:
(1)汽车在前9分钟内的平均速度是多少?
(2)汽车在中途停了多长时间? (3)当16≤t ≤30时,求S 与t 的函数关系式.
22.(本题6分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,
解答问题:
(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x (个)之间的一次函数解析式(不要求
写出自变量x 的取值范围);
(2 )若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度。

/min 15 cm
10.5cm。

相关文档
最新文档