反比例函数的图像和性质同步练习(答案)
专题01 反比例函数的概念、图像和性质(课后小练)-解析版

专题01 反比例函数的概念、图像和性质(课后小练)满分100分 时间:45分钟 姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共24分)1.(本题4分)(2022·河南三门峡·九年级期末)下列四个关系式中,y 是x 的反比例函数的是( )A .yx =B .21y x =C .6y x =+D 1y=2.(本题4分)(2022·安徽·九年级期末)下列四个点中,不在反比例函数2y x=图象上的是( )A .()1,2--B .()2,1C .1,42æö--ç÷D .33,2æöç÷3.(本题4分)(2022·重庆市育才中学二模)按如图所示的运算程序,能使输出y 值为3的是( )A .1x =B .2x =C .3x =D .4x =4.(本题4分)(2021·江苏淮安·一模)定义运算:a ⊕b =(0)(0)ab ba b b ì>ïïíï<ï-î,例如:4⊕5=45,4⊕(-5)=45,那么函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【答案】D【分析】根据题干中新运算定义,分两种情况分别求出y =2⊕x 的解析式,进而求解.5.(本题4分)(2022·全国·九年级单元测试)在平面直角坐标系中,点A (1,2)-、B (2,3)、C (6,)m -分别在三个不同的象限,若反比例函数(0)ky k x=¹的图象经过其中两点,则k 的值为( )A .2-B .6C .2-或6D .6-6.(本题4分)(2022·全国·九年级课时练习)反比例函数的图象如图所示,则这个反比例函数的表达式可能是( )A .2y x=-B .83y x=-C .3y x=-D .5y x=-【答案】B【分析】根据点A 、B 的坐标结合函数图象以及反比例函数图象上点的坐标特征,即可得出32k -<<-,再对照四个选项即可得出结论.【详解】解:观察函数图象可知:3(1)21k ´-<<-´,即32k -<<-.故选:B .【点睛】本题考查了反比例函数的图象以及反比例函数图象上点的坐标特征,观察函数图象利用反比例函数图象上点的坐标特征找出k 的取值范围是解题的关键.第II 卷(非选择题)二、填空题(共20分)7.(本题5分)(2022·浙江宁波·八年级期末)已知反比例函1k y x-=,在每个象限内y 随x 的增大而增大,则k 的取值范围为______.【答案】k <1##1>k8.(本题5分)(2022·河南·辉县市城北初级中学一模)从-1,2,-3,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图像在第二,四象限的概率是________.9.(本题5分)(2022·湖南·长沙市开福区青竹湖湘一外国语学校三模)若点M (3m -,1y )、N (2m +,2y )在双曲线ky x=(0k >)上,且12y y <,则m 的取值范围是________.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.10.(本题5分)(2022·江苏泰州·八年级期末)如图,在平面直角坐标系xOy中,点A为反比例函数y=-4 x(x>0)的图象上一动点,AB⊥y轴,垂足为B,以AB为边作正方形ABCD,其中CD在AB上方,连接OA,则OA2-OC2=_______.三、解答题(共56分)11.(本题10分)(2021·广东·广州市黄埔区华实初级中学二模)如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.12.(本题10分)(2022·江苏·苏州市吴江区铜罗中学八年级期中)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.13.(本题12分)(2022·河南南阳·八年级期中)如图,一次函数y=﹣x+b的图象与x轴交于A点,与y轴交于B点,与反比例函数kyx=的图象交于点E(1,5)和点F(5,1).(1)求k,b的值;(2)求△EOF的面积;(3)请根据函数图象直接写出反比例函数值大于一次函数值时x的范围.反比例函数值大于一次函数值时x的范围为:【点睛】本题考查了反比例函数与一次函数综合,待定系数法求解析式,求直线围成的三角形面积,根据函数图象交点求不等式的解集,数形结合是解题的关键.14.(本题12分)(2022·河北唐山·一模)已知反比例函数y=3mx-(m为常数,且m≠3)(1)若在其图象的每一个分支上,y随x增大而减小,求m的取值范围;(2)若点A(2,32)在该反比例函数的图象上;①求m的值;②当x<﹣1时,直接写出y的取值范围.15.(本题12分)(2022·江苏扬州·八年级期末)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.。
初中数学反比例函数图像与性质练习题(附答案)

初中数学反比例函数图像与性质练习题一、单选题1.函数14y x=-的比例系数是( ) A.4 B.4- C.14 D.14- 2.若22(1)a y a x -=+是反比例函数,则a 的取值为( )A.1B.1-C.1±D.任意实数3.若2(1)m y m x -=-是反比例函数,则m 的取值为( )A.1B.1-C.1±D.任意实数4.点()1,1A -是反比例函数1m y x +=的图象上一点,则m 的值为( ) A .1- B .2- C .0 D .15.下列函数中,表示y 是x 的反比例函数的是( )A.y =B.a y x =C.21y x =D.13y x = 6.若反比例函数k y x =的图象经过点1(,2)2A -,则一次函数y kx k =-+与在同一坐标系中的大致图象是( )A. B. C. D.7.已知反比例函数3k y x +=的图象位于第二、四象限,则k 的取值范围是( ) A.3k >-B.3k ≥-C.3k <-D.3k ≤- 8.反比例函数k y x =图象经过()()122A B n -,,,两点,则n =( ) A. 1 B. 3 C.1- D. 3-9.已知(1)A y 1,、2(3)B y ,是反比例函数9y x=图象上的两点,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .不能确定二、填空题10.判断下面哪些式子表示y 是x 的反比例函数:①12xy =-;②3y x =+;③34y x -=;④5a y x=(a 为常数且0a ≠). 其中 是反比例函数(填序号).11.把一个长、宽、高分别为3cm 、2cm 、1cm 的长方体铜块铸成一个圆柱体铜块, 则该圆柱体铜块的底面积()2cm S 与高()cm h 之间的函数关系式为________.12.已知y 是x 的函数,用列表法给出部分x 与y 的值,表中“▲“处的数可以是 .(填一个符合题意的答案)x 12 3 y▲ 6 4 参考答案1.答案:D 解析:1111444y x x x -=-=-⋅= 所以比例系数是14-.故选D. 2.答案:A解析:由题意得221a -=-,解得21a =,1a =±10a +≠,1a ∴≠-,1a ∴=,故选A.3.答案:B 解析:由题意得2110m m ⎧-=-⎪⎨-≠⎪⎩,解得1m =-,故选B. 4.答案:B解析:把点()1,1A -代入函数解析式,即可求得m 的值.解:把点()1,1A -代入函数解析式得:111m +=-, 解得:11m +=-, 2m =-. 5.答案:D解析:6.答案:D解析:7.答案:C解析:由题意知30k +<,解得3k <-8.答案:C 解析:解:反比例函数k y x=图象经过()()122A B n -,,,两点,122k n ∴=⨯=-.解得1n =-.故选:C .9.答案:A解析:0k >,图象在一三象限,0x >时,y 随x 增大而减小.故选A.10.答案:①③④ 解析:①可得12y x =-;②是一次函数;③符合题意;④符合题意,故答案是①③④. 11.答案:()60S h h=> 解析:由题意得321Sh =⨯⨯,即6Sh =,∴6S h =∴底面积S 与高h 之间的函数关系式为()60S h h=>. 12.答案:12 解析:设解析式为k y x =, 将()2,6代入解析式得12k =, 这个函数关系式为:12y x=, 把1x =代入得12y =,∴表中“▲”处的数为12,故答案为:12.。
第11章 11.2 反比例函数的图像和性质(解答题)

11.2 反比例函数的图像和性质(解答题)1.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.2.(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.3.(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.4.(2017•株洲)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA 的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.5.(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.6.(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?7.(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.8.(2017•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.9.(2017•安顺)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.10.(2017•巴彦淖尔)如图,反比例函数y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.11.(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.12.(2017•广元)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.13.(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.14.(2017•广安)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.15.(2017•巴中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.16.(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.17.(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.18.(2017•常州)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.19.(2017•黄冈)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A (﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.20.(2017•菏泽)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B 两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.(2017•宜宾)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22.(2017•吉林)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.23.(2017•柳州)如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(﹣1,m),B(m,﹣1)两点,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,(1)求m,n的值及反比例函数的解析式;(2)请问:在直线y=﹣x+2上是否存在点P,使得S△PAC=S△PBD?若存在,求出点P的坐标;若不存在,请说明理由.24.(2017•襄阳)如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.25.(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.26.(2017•湘西州)如图所示,一次函数y1=x+b(b为常数)的图象与反比例函数y2=的图象都经过点A(2,m).(1)求点A的坐标及一次函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时y1<y2.27.(2017•六盘水)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.28.(2017•资阳)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x<0时,比较y1与y2的大小.29.(2017•百色)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.30.(2017•攀枝花)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.31.(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.32.(2017•葫芦岛)如图,直线y=3x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.33.(2017•来宾)如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于点A(﹣2,1),B(1,﹣2).(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式ax+b≤的解集.34.(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.35.(2017•兰州)如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数y=(k<0)的图象于点D,y=(k<0)的图象过矩形OABC的顶点B,矩形OABC 的面积为4,连接OD.(1)求反比例函数y=的表达式;(2)求△AOD的面积.36.(2017•恩施州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.37.(2017•天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B (﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.38.(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.39.(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.40.已知直线y=x上点C,过点C作CD∥y轴交x轴于点D,交双曲线y=于点B,过点C作NC∥x轴交y轴于点N,交双曲线y=于点E,若B是CD的中点,且四边形OBCE 的面积为.(1)求k的值;(2)若A(3,3),M是双曲线y=第一象限上的任一点,求证:|MC|﹣|MA|为常数6.(3)现在双曲线y=上选一处M建一座码头,向A(3,3),P(9,6)两地转运货物,经测算,从M到A,从M到P修建公路的费用都是每单位长度a万元,则码头M应建在何处,才能使修建两条公路的总费用最低?(提示:利用(2)的结论转化)参考答案与解析1.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【分析】(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.【解答】解:(1)将A(3,m)代入y=x﹣2,∴m=3﹣2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x﹣2,x﹣2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),n>0点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∵PN=|﹣n|,||≥2∴0<n≤1或n≥3【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.2.(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.3.(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC 的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.4.(2017•株洲)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA 的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA﹣S可得答案;△PAB(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴k=3×4=12,在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.5.(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.【分析】(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•2•3k+•2•k=,解方程即可解决问题;【解答】解:(1)由题意A(1,2),把A(1,2)代入y=,得到3k=2,∴k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴•2•3k+•2•k=,解得k=,∴直线l的解析式为y=x+.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.7.(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【分析】(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第四象限.利用反比例函数的性质即可解决问题;【解答】解:(1)由题意B(﹣2,),把B(﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.(2)结论:P在第二象限,Q在第四象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第四象限.【点评】此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2017•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.【分析】(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.【解答】解:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为y=,∵A(4,m),∴m==1;(2)∵当x=﹣3时,y=﹣;当x=﹣1时,y=﹣4,又∵反比例函数y=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质以及代数式的变形能力.9.(2017•安顺)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)由A在反比例函数图象上,把A的坐标代入反比例解析式,即可得出反比例函数解析式,又B也在反比例函数图象上,把B的坐标代入确定出的反比例解析式即可确定出m的值,从而得到B的坐标,由待定系数法即可求出一次函数解析式;(2)根据题意,结合图象,找一次函数的图象在反比例函数图象上方的区域,易得答案.【解答】解:(1)∵A(1,4)在反比例函数图象上,∴把A(1,4)代入反比例函数y1=得:4=,解得k1=4,∴反比例函数解析式为y1=的,又B(m,﹣2)在反比例函数图象上,∴把B(m,﹣2)代入反比例函数解析式,解得m=﹣2,即B(﹣2,﹣2),把A(1,4)和B坐标(﹣2,﹣2)代入一次函数解析式y2=ax+b得:,解得:,∴一次函数解析式为y2=2x+2;(2)根据图象得:﹣2<x<0或x>1.【点评】此题主要考查了反比例函数和一次函数的图象性质及待定系数法求解析式,要掌握它们的性质才能灵活解题.10.(2017•巴彦淖尔)如图,反比例函数y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.【分析】(1)利用待定系数法即可解决问题;(2)直线y=x+2,交y轴与D(0,2),可以根据S△AOB=S△BOD+S△AOD计算即可;(3)利用图象法解决问题即可;【解答】解:(1)∵y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点∴k1=8,m=﹣2,∴B(﹣4,﹣2),则有解得,∴k1=8,k2=1,b=2;(2)∵直线y=x+2,交y轴与D(0,2),∴S△AOB=S△BOD+S△AOD=×2×6=6.(3)观察图象可知,点M在第三象限,点N在第四象限;【点评】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.12.(2017•广元)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.故直线AB的解析式为y=﹣x+2.∵反比例函数y=的图象过C,∴3=,∴k=﹣6.∴该反比例函数的解析式为y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.13.(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.【点评】本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m 表示出个点的坐标是关键.14.(2017•广安)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.【分析】(1)把点A(4,2)代入反比例函数y=,可得反比例函数解析式,把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得一次函数解析式;(2)根据C(3,0),可得CO=3,设P(a,),根据S△POC=9,可得×3×=9,解得a=,即可得到点P的坐标.【解答】解:(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,﹣6),把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣6;(2)在y=2x﹣6中,令y=0,则x=3,即C(3,0),∴CO=3,设P(a,),则由S△POC=9,可得×3×=9,解得a=,∴P(,6).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足两个函数解析式.15.(2017•巴中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.【分析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(3)将△AOB的面积转化为S△AON﹣S△BON的面积即可.【解答】解:(1)∵点A 在反比例函数y=上,∴=4,解得m=1,∴点A的坐标为(1,4),又∵点B也在反比例函数y=上,∴=n,解得n=2,∴点B的坐标为(2,2),又∵点A、B在y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=﹣2x+6.(2)x的取值范围为1<x<2;(3)∵直线y=﹣2x+6与x轴的交点为N,∴点N的坐标为(3,0),S△AOB=S△AON﹣S△BON=×3×4﹣×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.16.(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x M=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或5<x<6,方法1:x﹣5=m,则x=m+5,<m+5,反比例函数y=与一次函数y=m+5的交点是(﹣6,﹣1),(1,6),函数y=与函数y=x的交点是(﹣1,﹣1),(6,6),综上,原不等式的解集是:x<﹣1或5<x<6.方法:2:由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键17.(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.。
反比例函数的图像与性质训练卷

反比例函数的图像与性质训练卷一.选择题(共15小题)1.如图,正比例函数y=k1x与反比例函数y=的图象交于A(1,m)、B两点,当k1x ≤时,x的取值范围是()A.﹣1≤x<0或x≥1B.x≤﹣1或0<x≤1C.x≤﹣1或x≥1D.﹣1≤x<0或0<x≤12.已知反比例函数y=(k≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A.(4,2)B.(1,8)C.(﹣1,8)D.(﹣1,﹣8)3.若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.如图,等边三角形OAB,点B在x轴正半轴上,S△OAB=4,若反比例函数y=(k ≠0)图象的一支经过点A,则k的值是()A.B.C.D.6.如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3B.﹣3C.D.7.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.﹣1D.﹣28.点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y49.如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为()A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>110.若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3 11.如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A 作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1B.C.2D.12.反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限13.一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.14.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁15.已知一次函数y=kx+b的图象如图所示,则y=﹣kx+b与y=的图象为()A.B.C.D.二.填空题(共8小题)16.如图,反比例函数y=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x 轴上,△OCE的面积为6,则k=.17.如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.18.反比例函数y=的图象分布情况如图所示,则k的值可以是(写出一个符合条件的k值即可).19.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S (m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.20.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.21.在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.22.如图,正比例函数y=k1x和反比例函数y=图象相交于A、B两点,若点A的坐标是(3,2),则点B的坐标是.23.在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是.三.解答题(共12小题)24.已知反比例函数y=(k为常数,k≠0)的图象经过点A(﹣2,).(1)求这个函数的解析式;(2)若点B(m+2,m)在这个函数的图象上,求m的值.25.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(4,1),B(﹣2,n)两点,与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D在y轴上,且S△ABD=12,求点D的坐标;(3)当y1>y2时,自变量x的取值范围为.26.如图,一次函数y=﹣x+3的图象与反比例函数y=(x>0)的图象交于A(1,a),B两点,与x轴交于点C.(1)求反比例函数的解析式和点B的坐标;(2)根据图象,直接写出关于x的不等式﹣x+3<的解集;(3)若点P在x轴上,且S△APC=5,求点P的坐标.27.已知一次函数y=kx+b(k≠0)与反比例函数(m≠0)的图象交于A(2,3),B (﹣6,n)两点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.28.如图,一次函数y=x+5的图象与反比例函数的图象交于A、B两点,其中A(﹣1,a).(1)求k的值及点B的坐标;(2)请根据图象直接写出不等式的解集.29.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.30.如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图象与反比例函数y=(k2≠0)的图象相交于A(3,4),B(﹣4,m)两点.(1)求一次函数和反比例函数的解析式;(2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.31.如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.(1)求k的值;(2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.32.已知反比例函数y=(k≠0)的图象的一支如图所示,它经过点(3,﹣2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.33.如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.34.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.35.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
反比例函数的图像与性质测试题2及答案解析

1.(人教版.八下.反比例函数.16.1)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为 2 .考点:反比例函数系数k的几何意义.专题:代数几何综合题.分析:由于AB⊥x轴,根据反比例函数k的几何意义得到S△AOB=3,S△COB=1,然后利用S△AOC=S△AOB﹣S△COB进行计算.解答:解:∵AB⊥x轴,∴S△AOB=×|6|=3,S△COB=×|2|=1,∴S△AOC=S△AOB﹣S△COB=2.故答案为:2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x 轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.2.(人教版.八下.反比例函数.16.1)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO 的面积为2,则k的值为 4 .考点:反比例函数系数k的几何意义.专题:计算题.分析:根据反比例函数比例系数k的几何意义得到|k|=2,然后去绝对值得到满足条件的k的值.解答:解:∵MA垂直y轴,∴S△AOM=|k|,∴|k|=2,即|k|=4,而k>0,∴k=4.故答案为4.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.3.(人教版.八下.反比例函数.16.1).如图,反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为y=.考点:反比例函数系数k的几何意义.专题:数形结合.分析:根据题意设点A坐标(x,),由D为斜边OA的中点,可得出D(x,),从而得出过点D的反比例函数的解析式.解答:解:设点A坐标(x,),∵反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,∴D(x,),∴过点D的反比例函数的解析式为y=,故答案为:y=.点评:本题考查了反比例函数系数k的几何意义,本知识点是中考的重要考点,同学们应高度关注.4.(人教版.八下.反比例函数.16.1)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l 分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.考点:反比例函数图象上点的坐标特征;反比例函数系数k的几何意义.专题:计算题.分析:(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△PO Q=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=8,然后解方程得到满足条件的k的值.解答:解:(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=8,∴|k|=10,而k<0,∴k=﹣10.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数系数k的几何意义.5.(人教版.八下.反比例函数.16.1)已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).考点:待定系数法求反比例函数解析式;反比例函数的性质.专题:待定系数法.分析:(1)利用待定系数法把(2,1)代入反比例函数y=中可得k的值,进而得到解析式;(2)根据y=可得x=,再根据条件2<x<4可得2<<4,再解不等式即可.解答:解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.6.(人教版.八下.反比例函数.16.1)如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB于点E.(1)k的值为9 ;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.专题:几何综合题.分析:(1)根据题意得出点D的坐标,从而可得出k的值;(2)根据三角形的面积公式和点D,E在函数的图象上,可得出S△OCD=S△OAE,再由点D为BC的中点,可得出S△OCD=S△OBD,即可得出结论.解答:解:∵OA=6,OC=3,点D为BC的中点,∴D(3,3).∴k=3×3=9,故答案为9;(2)S△OCD=S△OBE,理由是:∵点D,E在函数的图象上,∴S△OCD=S△OAE=,∵点D为BC的中点,∴S△OCD=S△OBD,即S△OBE=,∴S△OCD=S△OBE.点评:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等.20.已知反比函数y=,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质.菁优网版权所有专题:代数综合题.分析:(1)把x、y的值代入反比例函数解析式,通过方程来求m的值;(2)根据反比例函数图象的性质进行解答.解答:解:(1)把x=2时,y=3代入y=,得3=,解得:m=﹣1;(2)由m=﹣1知,该反比例函数的解析式为:y=.当x=3时,y=2;当x=6时,y=1.∴当3≤x≤6时,由于y随x的增大而减小,所以函数值y的取值范围是:1≤y≤2.点评:本题考查了反比例函数的性质,待定系数法求反比例函数解析式.(1)题,实际上是把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程.7.(人教版.八下.反比例函数.16.1)如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.考点:待定系数法求反比例函数解析式;待定系数法求一次函数解析式.专题:数形结合;待定系数法.分析:(1)利用待定系数法把A(1,3)代入反比例函数y=可得k的值,进而得到解析式;(2)根据△AOB的面积为6求出B点坐标,再设直线AB的解析式为y=kx+b,把A、B两点代入可得k、b的值,进而得到答案.解答:解:(1)∵反比例函数y=(k为常数,且k≠0)经过点A(1,3),∴3=,解得:k=3,∴反比例函数解析式为y=;(2)设B(a,0),则BO=a,∵△AOB的面积为6,∴•a•3=6,解得:a=4,∴B(4,0),设直线AB的解析式为y=kx+b,∵经过A(1,3),B(4,0),∴,解得,∴直线AB的解析式为y=﹣x+4.点评:此题主要考查了待定系数法求一次函数解析式和反比例函数解析式,关键是正确求出B点坐标.8.(人教版.八下.反比例函数.16.1).如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义.专题:数形结合;待定系数法.分析:(1)将点A的坐标代入反比例函数解析式,即可求出k值;(2)由于点A是反比例函数上一点,矩形ABOC的面积S=|k|.(3)设图象上任一点的坐标(x,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y=的图象过点A(1,2),∴将点A的坐标代入反比例函数解析式,得2=,解得:k=2,∴反比例函数的解析式为y=;(2)∵点A是反比例函数上一点,∴矩形ABOC的面积S=AC•AB=|xy|=|k|=2.(3)设图象上任一点的坐标(x,y),∴过这点分别向x轴和y轴作垂线,矩形面积为|xy|=|k|=2,∴矩形的面积为定值.点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y=中k的几何意义,注意掌握反比例函数图像上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.9.(人教版.八下.反比例函数.16.1)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.考点:反比例函数与一次函数的交点问题.菁优网版权所有专题:计算题;数形结合.分析:(1)将B的坐标代入反比例函数解析式中,求出m的值,将A和B的坐标分别代入一次函数解析式中,得到关于k与b的方程组,求出方程组的解集得到k与b的值,确定出一次函数解析式;(2)由B的横坐标为2,将x轴正半轴分为两部分,找出一次函数在反比例函数图象上方时x的范围,即为所求不等式的解集.解答:解:(1)∵反比例函数y=(x>0)的图象经过点B(2,1),∴将B坐标代入反比例解析式得:m=1×2=2,∵一次函数y=kx+b的图象经过点A(1,0)、B(2,1)两点,∴将A和B坐标代入一次函数解析式得:,解得:,∴一次函数的解析式为y=x﹣1;(2)由图象可知:当x>0时,不等式kx+b>的解集为x>2.点评:此题考查了一次函数与反比例函数的交点,以及待定系数法的运用,利用了数形结合的思想,灵活运用数形结合思想是解本题第二问的关键.10.(人教版.八下.反比例函数.16.1).已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.考点:反比例函数与一次函数的交点问题.专题:代数几何综合题.分析:(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.解答:解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∴反比例函数的解析式是y=,一次函数解析式是y=x+3;(2)如图,设直线y=x+3与y轴的交点为C,当x=﹣4时,y=﹣1,∴B(﹣4,﹣1),当x=0时,y=+3,∴C(0,3),∴S△AOB=S△AOC+S△BOC==;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.点评:本题考查了一次函数和反比例函数的交点问题,用待定系数法求出一次函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.。
反比例函数的图象和性质(含答案)

反比例函数的图象和性质◆回顾归纳1.反比例函数y=kx(k为常数,k≠0)的图象是_______.2.当k>0时,函数图象的两个分支分别位于_____象限,在每个象限内,y随x•的增大而_______.3.当k<0时,双曲线的两个分支分别位于______象限,在每个象限内,y随x的增大而______.4.双曲线的两个分支都不会与_______相交,因为在y=kx中,x______.◆课堂测控测试点反比例函数的图象及性质1.如果反比例函数的图象经过点(-1,2)•,那么这个反比例函数的解析式为______.2.反比例函数y=-3x的图象位于______象限.3.已知反比例函数y=4kx,其图象在第一,第三象限内,则k的值可为____.(写出满足条件的一个k的值即可)4.下列各点在双曲线y=-2x上的是()A.(-43,-32) B.(-43,32) C.(34,-43) D.(34,83)5.(体验探究题)在某数学小组的活动中,组长给大家出了一道函数题:这是一个反比例函数,并且y随x的增大而减小,请你写出一个符合条件的函数解析式.◆课后测控 1.反比例函数y=3x的图象在( ) A .第一,三象限 B .第二,四象限 C .第一,二象限 D .第三,四象限 2.反比例函数y=kx(k ≠0)的图象过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( )A .10B .5C .2D .1103.已知函数y=-12x(m 为常数)的图象上有三点(-3,y 1),(-2,y 2),(1,y 3),则函数值y 1,y 2,y 3的大小关系是( )A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 2 4.如图所示,在同一直角坐标系中,函数y=kx-k 与y=kx(k ≠0)的图象大致是( )A B C D 5.如图所示是三个反比例函数y=1k x ,y=2kx ,y=3k x在x 轴上方的图象,由此得到k 1,k 2,k 3的大小关系为(提醒:比较k 2,k 3的大小时,可观察x 取相同值时的函数值的大小).A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 26.已知函数y=3k x,当x<0时,y 随x 的增大而增大,那么k 的取值范围是______.7.如图所示,P 是反比例函数图象在第二象限上的一点,且矩形PEOF•的面积为3,则反比例函数的表达式是___________________.8.如图所示,一次函数与反比例函数的图象分别是直线AB 和双曲线,直线AB 与双曲线的一个交点为C ,CD ⊥x 轴于点D ,OD=2OB=4OA=4,求一次函数和反比例函数的解析式.(提示:先求出一次函数的解析式,得到点C 的坐标,从而求出反比例函数解析式)9.已知点A (0,2)和点B (0,-2),点P 在函数y=-1x的图象上,如果△PAB 的面积是6,求P 点的坐标.◆拓展创新10.点P是x轴正半轴的一个动点,过点P作x轴的垂线PA交双曲线y=1x于点A,连接OA.(1)如图甲,当点P在x轴的正方向上运动时,Rt△AOP的面积大小是否变化?若不变,请求出Rt△AOP的面积;若改变,试说明理由;(2)如图乙,在x轴上的点P的右侧有一点D,过点D作x轴的垂线交双曲线于点B,连接BO交AP于C,设△AOP的面积是S1,梯形BCPD的面积为S2,则S1与S2的大小关系是S1______S2(填“>”“<”或“=”)答案: 回顾归纳1.双曲线 2.第一,三,减小 3.第二,四,增大 4.x 轴,y 轴,≠0 课堂测控1.y=-2x2.第二,四 3.如k=5,点拨:满足k-4>0 4.B 5.如y=2x等(满足k>0即可)课后测控 1.A 2.A3.D 点拨:注意三个点不在同一分支上. 4.D5.B 点拨:结合图象及性质逐一分析. 6.k<3 7.y=-3x8.由已知条件知OA=1,OB=2,OD=4,则点A (0,-1),B (-2,0),D (4,0), 易求得直线AB 的解析式为y=-12x-1,反比例函数的解析式为y=-4x. 9.如图答-1,不妨设点P 的坐标为(x 0,y 0),过P 作PC ⊥y 轴于C .因为A (0,2),B (0,-2),所以AB=4.又因为PC=│x 0│且S △PAB =6,所以12│x 0│·4=6,所以│x 0│=3,所以x 0=±3. 又因为P (x 0,y 0)在双曲线y=-1x上,所以当x 0=3时,y 0=-13;当x 0=-3时,y 0=13,所以P•的坐标为P(3,-13)或P(-3,13).拓展创新10.(1)设S△AOP=12·OP·AP,设A点坐标为(x,y),则y=1x,xy=1,所以S△AOP =12xy=12.故当点P在x轴的正方向上运动时,Rt△AOP的面积不变,值总等于12.(2)由(1)知S△AOP =S△BOD,而S梯形BCPD<S△BOD,所以S1>S2.。
反比例函数的图像与性质(含答案)

反比例函数的图像与性质一.选择题(共12小题) 1.当x >0时,函数的图象在( )2.反比例函数y=的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大; ③若A (﹣1,h ),B (2,k )在图象上,则h <k ;④若P (x ,y )在图象上,则P ′(﹣x ,﹣y )也在图象上. 其中正确的是( )3.已知k 1<0<k 2,则函数y=k 1x ﹣1和y=的图象大致是( ).CD .4.若正比例函数y=﹣2x 与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( )5.如图,一次函数y=kx ﹣3的图象与反比例函数y=的图象交A 、B 两点,其中A 点坐标为(2,1),则k ,m 的值为( )6.在反比例函数的图象上有两点(﹣1,y 1),,则y 1﹣y 2的值是( )7.反比例函数的图象,当x >0时,y 随x 的真增大而增大,则k 的取值范围是( )y=10.若函数为反比例函数,则a的值为()11.对于反比例函数y=,下列说法正确的是()12.如图,直线y=x与双曲线y=(k>0)的一个交点为A,且OA=2,则k的值为()D 二.填空题(共3小题)13.已知是反比例函数,那么k的值是_________.14.已知反比例函数的图象经过点(m,2)和(﹣2,3),则m的值为_________.15.如图,点P是反比例函数图象上的一点,则矩形PEOF的面积是_________.三.解答题(共3小题)16.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.17.(2012•云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.18.(2012•南京二模)反比例函数y1=图象上的一些点的坐标如下表所示:(1)这个反比例函数的表达式是_________;(2)一次函数的表达式是y2=mx﹣1(其中,m是常数,且m≠0).①求证:不论m为何值,该一次函数的图象都经过一个定点;②已知一次函数的图象与反比例函数图象交于点(﹣6,1)和点(3,﹣2),请你直接写出使式子>mx﹣1成立的x的取值范围.反比例函数的图像与性质参考答案与试题解析一.选择题(共12小题)1.(2013•兰州)当x>0时,函数的图象在()解:∵反比例函数(2.(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()得到y=得到得到3.(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是().C D.4.(2012•孝感)若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标5.(2012•青海)如图,一次函数y=kx﹣3的图象与反比例函数y=的图象交A、B两点,其中A点坐标为(2,1),则k,m的值为()6.(2012•兰州)在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是()反比例函数解:∵反比例函数)和,7.(2012•黑龙江)反比例函数的图象,当x>0时,y随x的真增大而增大,则k的取值范围是(),所以正方形的面积本题考查了反比例函数的定义.反比例函数的一般形式是y=y=本题考查了反比例函数的定义,重点是将一般式10.若函数为反比例函数,则a的值为()本题考查了反比例函数的定义.反比例函数解析式的一般形式(11.(2011•盐城)对于反比例函数y=,下列说法正确的是()的图象上,故本选项错误;的图象在一、三象限,故本选项错误;是反比例函数,∴此函数的图象是中心对称图形,故本选项正确;y=12.(2006•武汉)(人教版)如图,直线y=x与双曲线y=(k>0)的一个交点为A,且OA=2,则k的值为()D,,二.填空题(共3小题)13.已知是反比例函数,那么k的值是﹣2.反比例函数解析式的一般形式(14.(2012•黔西南州)已知反比例函数的图象经过点(m,2)和(﹣2,3),则m的值为﹣3.15.(2011•张家界)如图,点P是反比例函数图象上的一点,则矩形PEOF的面积是6.是反比例函数三.解答题(共3小题)16.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.,根据x==﹣代入(.17.(2012•云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.©2010-2013 菁优网(得到方程组(得:.的面积为.18.(2012•南京二模)反比例函数y1=图象上的一些点的坐标如下表所示:(1)这个反比例函数的表达式是y1=﹣;(2)一次函数的表达式是y2=mx﹣1(其中,m是常数,且m≠0).①求证:不论m为何值,该一次函数的图象都经过一个定点;②已知一次函数的图象与反比例函数图象交于点(﹣6,1)和点(3,﹣2),请你直接写出使式子>mx﹣1成立的x的取值范围.=得:,©2010-2013 菁优网,;>©2010-2013 菁优网。
中考数学复习之反比例函数的图像与性质(含答案)

中考数学复习之反比例函数的图像与性质(含答案)1.已知反比例函数的解析式为y=|a|-2x,则a的取值范围是()A. a≠2B. a≠-2C. a≠±2D. a=±22.已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 二、三象限B. 一、三象限C. 三、四象限D. 二、四象限3.已知反比例函数y=2k-3x的图象经过点(1,1),则k的值为()A. -1B. 0C. 1D. 24.关于反比例函数y=-8x,下列说法正确的是()A. 函数图象经过点(2,4)B. 函数图象位于第一、三象限C. 当x>0时,y随x的增大而减小D. 当-8<x<-1时,1<y<85.如图,已知直线y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象交于M,N两点,若点M的坐标是(1,2),则点N的坐标是()A. (-1,-2)B. (-1,2)C. (1,-2)D. (-2,-1)6.如图,直线y1=k1x与双曲线y2=k2x相交于A,B两点,其中A点的横坐标为1,当y1<y2时,x的取值范围是()A. x<-1或x>1B. x<-1或0<x<1C. -1<x<0或0<x<1D. -1<x<0或x>17.若点(-2,y1),(-1,y2),(3,y3)在双曲线y=kx(k<0)上,则y1,y2,y3的大小关系是()A. y1<y2<y3 B. y3<y2<y1 C. y2<y1<y3 D. y3<y1<y28. 已知反比例函数y =k -1x (k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是________.9. 已知反比例函数y =-1x ,当自变量的取值为-1<x <0或x ≥2,函数值y 的取值为________.10. 如图,已知一次函数y =-x +b 与反比例函数y =k x 的图象相交于点P ,则关于x 的方程-x+b =k x 的解是________.11. 如图,正比例函数y =kx 与反比例函数y =6x 的图象有一个交点A (2,m ),AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是____________.12.已知点A (-1,m )与点B (2,m -3)是反比例函数y =k x 图象上的两个点,则m 的值为________.参考答案:1. CDDDA6-7 BD 8. k<19. y>1或-12≤y<010. x=1或x=211. y=32x-312.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的图像和性质(1)
【知识要点】
1.反比例函数(0)k y k x =≠的函数是由两个分支组成的曲线.
2.当k>0时图像在一、三象限;当k<0时图像在二、四象限.
3.反比例函数(0)k y k x =
≠的图象关于直角坐标系的原点成中心对称. 课内同步精练
●A 组 基础练习
1.反比例函数43y x
=-的图象在( ) A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限
2.若函数k y x
=的图象在第一、三象限,则函数y=kx-3的图象经过( ) A.第二、三、四象限 B.第一、二、三象限 C.第一、二、四象限 D.第一、三、四象限
3.若反比例函数21m y x -=
的图象在第二、四象限,则 m 的取值范围是 . 4.反比例函数k y x
=的图象的两个分支关于 对称. 5.某个反比例函数的图象如图所示,根据图象提供的信息,求反比例函数的解析式.
●B 组 提高训练
6. 画出反比例函数8y x
-=
的图象.
7.如图是反比例函数()0k y k x =≠的图象在第一象限的部分曲线,P 为曲线上任意一 点,PM 垂直x 轴于点M ,求△OPM 的面积(用k 的代数式表示).
课外拓展练习
●A 组 基础练习
1.反比例函数,321,,4y y y x x x
==-=的共同点是( ) A.图象位于同样的象限 B.自变量取值范围是全体实数
C.图象关于直角坐标系的原点成中心对称. 随x 的增大而增大
2.以下各图表示正比例函数y=kx 与反比例函数()0k y k x
-=
<的大致图象,其中正确的是( )
3.反比例函数k y x
=
经过(-3, 2),则图象在 象限. 4.若反比例函数3k y x +=图像位于第一、三象限,则k . 5若反比例函数图象经过(-1, 2 ),试问点(4,-2)是否在这个函数的图象上为什么
●B 组 提高训练
6.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x 的图象,请同学们观察,并说出来.同学甲:与直线y=-x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式.
第4课时 反比例函数的图像和性质(2)
【知识要点】
一般地,反比例函数()0k y k x
=≠有以下性质:当k>0时,图象在一、三象限内,函数值y 随自变量x 的增大而减小;当k<0时,图象在二、四象限内,函数值y 随自变量x 的增大而增大.
课内同步精练
●A 组 基础练习
1.下列函数中,y 随x 的增大而减小的有( )
3(1)(2)21(3)5y y x y x x
==-=-+ 413(4)(5)(0)(6)(0)3x y y x y x x x
-==>=< 个 个 个 个
2.若点(-2,y 1), ( 1,y 2), ( 2,y 3)都在反比例函数,1y x
=的图象上,则有 ( ) 123132312213
....A y y y B y y y C y y y D y y y >>>>>>>>
3.已知函数k y x
=的图象与直线y=x-1都经过点 (-2, m ),则m= ,k= . 4.如图,点P 是反比例函数y=2x
-图象上一点,PM ⊥x 轴于M ,则△POM 的面积为 . 5.已知一次函数图象与反比例函数图象2y x =-
交于点(-1, m ),且过点(0,-3),求一次函数的解析式.
●B 组 提高训练
6.已知反比例函数k y x
=的图象经过点A(-2,3) (1)求出这个反比例函数的解析式; (2)经过点A 的正比例函数y=k 1x 的图象与反比例函数k y x =
的图象还有其他交点吗若有,求出交点坐标;若没有,说明理由.
课外拓展练习
●A 组 基础练习
1.若反比例函数2y x
=的图象经过(n ,n ),则x 的值是( )
A.±2
B. D.
2.若点(-2,y 1), (1,y 2), ( 2,y 3)都在反比例函数,1y x =
的图象上,则下列结论正确的是 ( )
123213312321....A y y y B y y y C y y y D y y y >>>>>>>>
3. 若反比例函数
12m
y
x
-
=的图象经过点A (x1,y1) 和点B(x2, y2 ),且0<x1<x2时,
y1>y2>0,
则m的取值范围是 ( )
<0 >0 C.m<1
2
>
1
2
4.函数y=6
x
的图象在第象限内,在每一个象限内,曲线从左向右 .
5.函数y=-6
x
的图象在第象限内,在每一个象限内,y 随x的增大而 .
6.任写一个图象在每一个象限内y随x增大而增大的反比例函数关系式: .
●B组提高训练
7.已知反比例函数y=k
x
的图象与一次函数y=kx+b交于点(-2, 3 ),分别求出该反比例函
数与一次函数的表达式.
8. 已知
6
y
x
=,利用反比例函数的增减性,求当x≤时,y的取值范围.
参考答案。