人教版九年级数学下册反比例函数同步练习(3)B
新人教版数学九年级下册分课时同步练习全册
26.1.1反比例函数知识要点基础练知识点1反比例函数的定义1.下列函数中,表示y是x的反比例函数的是( B )A.y=1x-1B.y=2xC.y=2xD.y=x2.( 合肥包河区期末 )如果函数y=x2m+3为反比例函数,则m的值是-2. 【变式拓展】当a=时,函数y=( 2a-1 )x a2-2是反比例函数.( A )A.-1或1B.小于12的任意实数C.-1D.1知识点2确定反比例函数的解析式3.反比例函数y=-32x中常数k的值为( D )A.-3B.2C.-12D.-324.( 改编 )某蓄水池的排水管的排水量为平均每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,将满池水排空所需要的时间为t小时,那么时间t( 小时 )与Q( 立方米 )之间的函数解析式为t=48Q.5.已知y是x的反比例函数,且当x=-2时,y=3.( 1 )求该函数的解析式;( 2 )当y=2时,求x的值.解:( 1 )该函数的解析式为y=-6x.( 2 )x=-3.知识点3识别实际问题中变量的反比例函数关系6.下列关系中,两个变量之间为反比例函数关系的是( D )A.长40米的绳子减去x米,还剩y米B.买单价为3元的笔记本x本,花了y元C.正方形的面积为S ,边长为aD.菱形的面积为20,对角线的长分别为x ,y7.( 教材P3练习题第1题变式 )写出下列问题中两个变量之间的函数解析式,并判断其是否为反比例函数.( 1 )底边为3的三角形的面积y 随底边上的高x 的变化而变化;( 2 )一艘轮船从相距s 的甲地驶往乙地,轮船的速度v 与航行时间t 的关系;( 3 )在检修100 m 长的管道时,每天能完成10 m,剩下未检修的管道长y ( 单位:m )随检修天数x 的变化而变化.解:( 1 )函数解析式为y=32x ,不是反比例函数. ( 2 )函数解析式为v=s t,是反比例函数. ( 3 )函数解析式为y=100-10x ,不是反比例函数.综合能力提升练8.( 柳州中考 )已知反比例函数的解析式为y=|a|-2x,则a 的取值范围是( C )A.a ≠2B.a ≠-2C.a ≠±2D.a=±29.某圆锥的体积为V ,则圆锥的高h 是底面积S 的( B ) A.正比例函数 B.反比例函数 C.一次函数D.无法确定10.已知y 与x 2成反比例,且当x=-2时,y=2,那么当x=4时,y 的值是( C ) A.-2 B.2C.12D.-411.下列函数:①y=x-2;②y=x3;③y=x -1;④y=2x+1,其中y 是x 的反比例函数的有( B ) A.0个 B.1个 C.2个D.3个12.若y 与x 成反比例关系,x 与4z 成反比例关系,则y 与z 成( B ) A .正比例关系 B .反比例关系 C .一次函数关系D .不能确定【变式拓展】若1x与y 成反比例关系,1y与z 成正比例关系,则x 与1z( A ) A .成正比例关系B .成反比例关系C .不成比例关系D .成一次函数关系13.对于反比例函数y=k x,当自变量x 的值从3增加到6时,函数值减小了1,则函数的解析式为( A ) A .y=6x B .y=3x C .y=2xD .y=12x14.已知函数y=( k+1 )x |k|-3是反比例函数,且正比例函数y=kx 的图象经过第一、三象限,则k 的值为 2 .15.某粮库需要把晾晒场上的1200吨玉米入库封存.( 1 )入库所需要的时间d ( 单位:天 )与入库平均速度v ( 单位:吨/天 )的函数解析式为 d=1200v.( 2 )已知粮库有职工60名,每天最多可入库300吨玉米,预计玉米入库最快可在几天内完成?( 3 )粮库职工连续工作两天后,天气预报说未来几天会下雨,粮库决定次日把剩下的玉米全部入库,在( 2 )的条件下,至少需要增加多少名职工? 解:( 2 )当v=300时,则有d=1200300=4, 所以预计玉米入库最快可在4天内完成.( 3 )粮库的职工连续工作了两天后,还没有入库的玉米有1200-300×2=600吨,每名职工每天可使玉米入库的数量为300÷60=5吨, 将剩余的600 t 玉米一天内全部入库需职工人数为600÷5=120( 名 ), 所以需增加的人数为120-60=60( 名 ).16.已知y=y 1+y 2,y 1与( x-1 )成正比例关系,y 2与( x+1 )成反比例关系.当x=0时,y=-3;当x=1时,y=-1.( 1 )求y 的函数解析式; ( 2 )当x=-12时,求y 的值.解:( 1 )∵y 1与( x-1 )成正比例,y 2与( x+1 )成反比例,∴设y 1=k 1( x-1 ),y 2=k2x+1.∵y=y 1+y 2,当x=0时,y=-3;当x=1时,y=-1,∴{-3=-k 1+k 2,-1=12k 2,解得{k 2=-2,k 1=1, ∴y=x-1-2x+1.( 2 )当x=-12时,y=-12-1-2-12+1=-112.拓展探究突破练17.将x=23代入函数y=-1x 中,所得函数值记为y 1,又将x=y 1+1代入函数y=-1x 中,所得函数值记为y 2,再将x=y 2+1代入函数y=-1x 中,所得函数值记为y 3……继续下去. ( 1 )y 1= -32 ,y 2= 2 ,y 3= -13 ; ( 2 )求y 2019的值.解:( 2 )y 4=-1-13+1=-32,y 5=-1-32+1=2,y 6=-12+1=-13,∴每3次计算为一个循环组依次循环, ∵2019÷3=673,∴y 2019为第673个循环组的第3次计算,与y 3的值相同, ∴y 2019=-13.26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质知识要点基础练知识点1 待定系数法求反比例函数的解析式1.若反比例函数的图象经过点( 2,-2 ),( m ,1 ),则m=( D ) A.1B.-1C.4D.-42.已知反比例函数y=kx( k ≠0 )的图象经过点P ( 5,3 ),则反比例函数的解析式为 y=15x .知识点2 反比例函数的图象3.表示y=-2x ( x>0 )的大致图象是( B )4.( 原创 )已知正比例函数y=k1x( k1≠0 )与反比例函数y=2k2-1x (k2≠12)的大致图象如图所示,那么k1,k2的取值范围是( A )A.k1>0,k2<12B.k1>0,k2>12C.k1<0,k2>12D.k1<0,k2<12【变式拓展】如图是三个反比例函数y=k1x ,y=k2x,y=k3x在x轴上方的图象,由图观察得到k1,k2,k3的大小关系为k1<k2<k3.知识点3反比例函数的性质5.已知反比例函数y=10x,当1<x<2时,y的取值范围是( B )A.y>10B.5<y<10C.1<y<2D.0<y<56.已知反比例函数y=1x,下列结论不正确的是④.( 填序号 )①图象经过点( 1,1 );②图象在第一、三象限;③当x>1时,0<y<1;④当x<0时,y随着x的增大而增大.7.已知反比例函数y=k-1x( k为常数,k≠1 ).( 1 )若点A( 1,2 )在这个函数的图象上,求k的值;( 2 )若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;( 3 )若k=13,试判断点B( 3,4 ),C( 2,5 )是否在这个函数的图象上,并说明理由.解:( 1 )k=3.( 2 )k<1.( 3 )∵k=13,∴k-1=12,∴反比例函数的解析式为y=12x. 易得点B 在函数y=12x 的图象上,点C 不在函数y=12x 的图象上.综合能力提升练8.如果点( -2,6 )在反比例函数y=kx 的图象上,那么下列各点中,在此图象上的是( D ) A.( 3,4 ) B.( -3,-4 ) C.( 6,2 )D.( -3,4 )9.( 原创 )若点A ( x 1,-3 ),B ( x 2,-1 ),C (x 3,12)在反比例函数y=3x的图象上,则x 1,x 2,x 3的大小关系为( B ) A.x 1<x 2<x 3 B.x 2<x 1<x 3 C.x 3<x 1<x 2D.x 1<x 3<x 210.已知关于x 的方程( k-2 )2x 2+( 2k+1 )x+1=0有实数解,且反比例函数y=2k -3x的图象经过第二、四象限.若k 是整数,则k 的值为( D ) A.4B.3C.2D.111.( 德州中考 )若函数y=kx 与y=ax 2+bx+c 的图象如图所示,则函数y=kx+b 的大致图象为( C )12.如图,在平面直角坐标系中,线段AB 的两个端点分别在坐标轴上,点A 的坐标为( 1,0 ),将线段AB 绕点A 顺时针旋转90°后,点B 恰好落在反比例函数y=4x的图象上的点B'处,则点B 的坐标为( B ) A.( 0,2 ) B.( 0,3 )C.( 0,4 )D.( 0,5 )提示:由旋转的性质以及点A 的坐标,得点B'的纵坐标是1,由点B'在反比例函数y=4x的图象上,得点B'的坐标是( 4,1 ),∴点B 的坐标是( 0,3 ).13.如图,△ABC 的三个顶点分别为A ( 1,2 ),B ( 4,2 ),C ( 4,4 ).若反比例函数y=kx 在第一象限内的图象与△ABC 有交点,则k 的取值范围是 2≤k ≤16 .14.如图,在平面直角坐标系xOy 中,函数y=kx ( k>0,x>0 )的图象经过菱形OACD 的顶点D.若菱形OACD 的顶点C 的坐标为( 5,3 ),则k 的值为 245 .提示:延长CD 交y 轴于点H ,在菱形OACD 中,OD=CD ,CD ∥AO ,∴CH ⊥y 轴.∵点C 的坐标为( 5,3 ),∴OH=3,HC=5.设HD=x ,∴CD=OD=5-x.在Rt △ODH 中,OD 2=DH 2+OH 2,即x 2+32=( 5-x )2,解得x=85,∴点D 的坐标为(85,3),∴k=85×3=245.拓展探究突破练15.某学校的数学兴趣小组对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.( 1 )自变量x 的取值范围是 x ≠0 ,m= -52 .( 2 )根据( 1 )中表内的数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请你画出该函数图象的另一部分. ( 3 )请你根据函数图象,写出两条该函数的性质. ( 4 )进一步探究该函数的图象发现:①方程x+1x =3有 两 个实数根;②若关于x 的方程x+1x =t 有两个实数根,则t 的取值范围是 t<-2或t>2 .解:( 2 )图略.( 3 )①函数图象关于原点成中心对称;②当x>1时,y 的值随x 的值的增大而增大.( 答案不唯一,合理即可 )( 4 )①提示:方程x+1x =3可以看成函数y=x+1x 的图象与直线y=3的交点的个数.∵函数y=x+1x 的图象与直线y=3有两个交点,∴方程x+1x =3有两个实数根.②提示:观察函数图象可知,当t<-2或t>2时,函数y=x+1x 的图象与直线y=t 有两个交点.第2课时 反比例函数性质的应用知识要点基础练知识点1 反比例函数中k 的几何意义及其应用1.如图,A ,C 是函数y=1x 的图象上的任意两点,过点A 作y 轴的垂线,垂足为B ,记Rt △AOB 的面积为S 1;过点C 作y 轴的垂线,垂足为D,记Rt△OCD的面积为S2,则( C )A.S1>S2B.S1<S2C.S1=S2D.不能确定2.双曲线y1,y2在第一象限的图象如图所示,y1=3,过y1上的任意一点A作x轴的平行线交x.y2于点B,交y轴于点C.若△AOB的面积为1,则y2的解析式是y=5x知识点2反比例函数与其他函数的综合问题的图象如图所示,则二次函数y=2kx2-4x+k2 3.( 教材P9习题第8题变式 )反比例函数y=kx的图象大致是( B )4.已知两个函数y 1=k 1x+b 与y 2=k2x 的图象如图所示,其中点A ( -1,2 ),点B ( 2,-1 ),则不等式k 1x+b>k2x 的解集为( B ) A.x<-1或x>2 B.x<-1或0<x<2 C.-1<x<2 D.-1<x<0或0<x<25.( 大庆中考 )如图,反比例函数y=kx 的图象与一次函数y=x+b 的图象交于A ,B 两点,点A 和点B 的横坐标分别为1和-2,这两点的纵坐标之和为1. ( 1 )求反比例函数的解析式与一次函数的解析式; ( 2 )当点C 的坐标为( 0,-1 )时,求△ABC 的面积.解:( 1 )一次函数的解析式为y=x+1, 反比例函数的解析式为y=2x . ( 2 )当x=-2时,y=-1,即点B ( -2,-1 ),∴BC=2,S △ABC =12BC ·( y A -y C )=12×2×[2-( -1 )]=3.综合能力提升练6.( 改编 )如图,两个反比例函数y=4x和y=2x在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,PA ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( A )A.1B.2C.4D.无法计算7.如图,在平面直角坐标系中,点P ( 1,5 ),Q ( m ,n )在反比例函数的图象上,m>0,过点P 分别作x 轴、y 轴的垂线,垂足为A ,B.Q 为图象上的动点,过点Q 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,QD 交PA 于点E.随着m 的增大,四边形OCQD 与四边形OAPB 不重合部分的面积的变化为( B )A.先增大后减小B.先减小后增大C.先减小后增大再减小D.先增大后减小再增大8.( 合肥二模 )如图,点P 在双曲线y=4x ( x>0 )上,过点P 作PA ⊥x 轴,垂足为A ,分别以点O 和点P 为圆心、大于12OP 的长为半径画弧,两弧相交于C ,D 两点,直线CD 交OA 于点B.当PA=1时,△PAB 的周长为 5 .9.( 原创 )如图,若抛物线y=x2与双曲线y=-2( x<0 )上有三个不同的点xA( x1,m ),B( x2,m ),C( x3,m ),则当n=x1+x2+x3时,m与n之间满足的关系式为m=-2.n10.( 嘉兴中考 )如图,在平面直角坐标系中,已知点B( 4,0 ),等边三角形OAB的顶点A的图象上.在反比例函数y=kx( 1 )求反比例函数的解析式.( 2 )把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,求a的值.解:( 1 )过点A作AC⊥OB于点C.∵△OAB是等边三角形,∴∠AOB=60°,OC=1OB.2∵点B( 4,0 ),∴OB=OA=4,∴OC=2,AC=2√3,∴点A( 2,2√3 ).,得k=4√3,把点A( 2,2√3 )代入y=kx∴反比例函数的解析式为y=4√3.x( 2 )分两种情况讨论:①如图1,D是A'B'的中点,过点D作DE⊥x轴于点E.由题意得A'B'=4,∠A'B'E=60°.在Rt△DEB'中,B'D=2,DE=√3,B'E=1,∴O'E=3.,得x=4,∴OE=4,∴a=OO'=1;把y=√3代入y=4√3x②如图2,F 是A'O'的中点,过点F 作FH ⊥x 轴于点H.由题意得A'O'=4,∠A'O'B'=60°,在Rt △FO'H 中,FH=√3,O'H=1. 把y=√3代入y=4√3x,得x=4,∴OH=4,∴a=OO'=3.综上所述,a 的值为1或3.拓展探究突破练11.对于实数a ,b ,我们可以用min{a ,b }表示a ,b 两数中较小的数,例如min{3,-1}=-1,min{2,2}=2.类似地,若函数y 1,y 2都是x 的函数,则y=min{y 1,y 2}表示函数y 1和y 2的“取小函数”.( 1 )设y 1=x ,y 2=1x ,则函数y=min {x ,1x}的图象应该是 B 中的实线部分.( 2 )请在图中用粗实线描出函数y=min{( x-2 )2,( x+2 )2}的图象,并写出该图象三条不同的性质.( 3 )求函数y=min{( x-4 )2,( x+2 )2}图象的对称轴. 解:( 2 )函数y=min{( x-2 )2,( x+2 )2}的图象如图所示.观察图象,其性质有:①对称轴为y 轴;②当x<-2时,y 随x 的增大而减小;③最小值为0.( 答案不唯一,合理即可 )( 3 )令( x-4 )2=( x+2 )2,得x=1,则函数y=min{( x-4 )2,( x+2 )2}图象的对称轴为直线x=1.第1课时 现实生活中的反比例函数问题知识要点基础练知识点1 利用反比例函数解决几何问题1.已知一个矩形的面积为20,若设长为a ,宽为b ,则能反映a 与b 之间函数关系的图象大致为( B )2.( 原创 )把一个长、宽、高分别为3 cm,2 cm,1 cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S ( cm 2 )与高h ( cm )之间的函数关系式为 S=6ℎ .知识点2 利用反比例函数解决行程问题3.一辆汽车匀速通过某段公路,所需时间t ( h )与行驶速度v ( km/h )满足函数关系t=kv ( k ≠0 ),其图象为如图的一段曲线.若这段公路行驶速度不得超过60 km/h,则该汽车通过这段公路最少需要 23 h .4.小军的爸爸早晨从家骑自行车送小军去学校上学,他们的速度是12千米/小时,用了0.5小时到达学校.放学时,爸爸让小军坐汽车,汽车的速度为v 千米/小时. ( 1 )写出t 与v 之间的函数关系式;( 2 )如果小军要在10分钟内回到家,那么汽车的速度至少为多少? 解:( 1 )t 与v 之间的函数关系式为t=6v .( 2 )10分钟=16小时,当t=16时,v=6÷16=36( 千米/小时 ),答:汽车的速度至少为36千米/小时.知识点3利用反比例函数解决工作量问题5.一台印刷机每年可印刷的书本数量y( 万册 )与它的使用时间x( 年 )成反比例关系.当x=2时,y=10,则y与x的函数图象大致是( D )6.( 改编 )某工厂生产化肥的总任务一定,平均每天的化肥产量y( 吨 )与完成生产任务所需要的时间x( 天 )之间成反比例关系.如果每天生产化肥125吨,那么完成总任务需要7天.( 1 )求y关于x的函数解析式,并指出比例系数;( 2 )若要5天完成总任务,则每天产量应达到多少?,比例系数为875.解:( 1 )y关于x的函数解析式为y=875x=175( 吨 ).( 2 )当x=5时,y=8755答:若要5天完成总任务,则每天产量应达到175吨.综合能力提升练7.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温( k≠0 )的一部分,则度y( ℃ )随时间x( 时 )变化的函数图象,其中BC段是双曲线y=kx当x=16时,大棚内的温度约为( C )A.18 ℃B.15.5 ℃C.13.5 ℃D.12 ℃8.( 原创 )某商品售价y( 元/件 )是基础价与浮动价的和,其中基础价保持不变,浮动价与+5.月需求量x( 件 )成反比例,根据表格写出y与x的函数关系式为y=600x售价y( 元/件 )1110月需求量x( 件/100120月 )9.将油箱注满k 升油后,轿车行驶的总路程s ( 单位:千米 )与平均耗油量a ( 单位:升/千米 )之间的函数关系式为s=ka ( k 是常数,k ≠0 ).已知某轿车油箱注满油后,以平均耗油量为每千米0.1升的速度行驶,可行驶760千米,当平均耗油量为0.08升/千米时,该轿车可以行驶 950 千米.10.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y ( mg )与时间x ( min )的函数关系如图所示.已知药物燃烧阶段y 与x 成正比例,燃完后y 与x 成反比例.现测得药物10 min 燃完,此时教室内每立方米空气含药量为8 mg .当每立方米空气中含药量低于1.6 mg 时,对人体才能无毒害作用.那么从消毒开始,经过 50 min 后教室内的空气才能达到安全要求.11.如图,学校打算用某种材料围建一个面积为18平方米的矩形ABCD 生物园,用来饲养小兔,其中矩形ABCD 的一边AB 靠墙,墙长为8米.设AD 的长为y 米,CD 的长为x 米. ( 1 )求y 与x 之间的函数解析式;( 2 )若围成矩形ABCD 的生物园的三边材料总长不超过18米,AD 和DC 的长度都是整数,求出满足条件的所有围建方案.解:( 1 )根据题意得xy=18,即y=18x . ( 2 )由题意可知{x ≤8,x +2y ≤18,且y=18x ,所以符合条件的有x=3时,y=6;x=6时,y=3.答:满足条件的所有围建方案为AD=6米,CD=3米或AD=3米,CD=6米.12.合肥市某购物中心分批采购某种电器,预计全年将采购3600台,每批都采购x 台,且每批均需付运费400元.( 1 )写出该购物中心采购这种电器全年的总运费y ( 元 )与每批采购台数x ( 台 )的函数解析式;( 2 )如果要求全年的总运费不超过5万元,那么每批至少需要采购多少台? 解:( 1 )根据题意得y=3600x×400,则y=1440000x. ( 2 )当y ≤50000时,1440000x≤50000,解得x ≥28.8,∵台数取整数,∴每批至少需要采购29台.拓展探究突破练13.用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水( 约10升 ),小敏每次用半盆水( 约5升 ),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克. ( 1 )请帮助小红、小敏求出各自衣服中洗衣粉的残留量y 与漂洗次数x 的函数解析式; ( 2 )当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?解:( 1 )设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数解析式分别为y 1=k1x,y 2=k 2x.将{x 1=1,y 1=1.5和{x 2=1,y 2=2分别代入两个解析式,得1.5=k 11,2=k 21,解得k 1=1.5,k 2=2.∴所求的解析式分别是y 1=32x ,y 2=2x .( 2 )把y=0.5分别代入两个函数解析式,得32x =0.5,2x =0.5,解得x 1=3,x 2=4, 10×3=30( 升 ),5×4=20( 升 ).答:小红共用30升水,小敏共用20升水,小敏的漂洗方法更值得提倡.第2课时 物理学科中的反比例函数问题知识要点基础练知识点1 反比例函数解决力学问题1.已知力F 所做的功W 是15焦,则表示力F 与物体在力的方向上通过的距离s 的函数关系的图象大致为( D )2.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000 N 和0.4 m,当撬动石头的动力F 至少需要250 N 时,则动力臂l 的最大值为 1.6 m .知识点2 反比例函数解决电学问题3.( 教材P16第4题变式 )已知蓄电池的电压为定值,使用蓄电池时,电流I ( 单位:A )与电阻R ( 单位:Ω )是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制电流不能超过6 A,那么用电器的可变电阻R 应控制在( C )A.R ≥2B.0<R ≤2C.R ≥1D.0<R ≤14.舞台灯光可以在很短的时间内将阳光灿烂的晴日变成乌云密布的阴天,这样的效果就是通过改变电阻来控制电流的变化实现的.在灯光变化的电路中,保持电压不变,电流I ( 安培 )与电阻R ( 欧姆 )成反比例,当电阻R=5欧姆时,电流I=2安培. ( 1 )求I 与R 之间的函数关系式; ( 2 )当电流I=0.5安培时,求电阻R 的值. 解:( 1 )设I=UR ,则U=IR=10,∴I=10R . ( 2 )当I=0.5安培时,R=100.5=20( 欧姆 ).知识点3 反比例函数解决物理学中的其他问题5.在一个可以改变容积的密闭容器内,装有质量为m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变,ρ与V 在一定范围内满足ρ=mV ,它的图象如图所示,则该气体的质量m 为( B )A.1.4 kgB.7 kgC.5 kgD.6.4 kg综合能力提升练6.有一个圆台形的物体,其上底面积是S 1,下底面积是S 2.若如图放在桌面上,对桌面的压强是100帕;翻过来放,对桌面的压强是400帕,则S1S 2的值为( C )A .116B .18C .14D .12【变式拓展】用某种金属材料制成的高度为h 的圆柱形物体甲如图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为12h 的圆柱形的物体乙( 重量保持不变 ),则乙对桌面的压强为( A )A .500帕B .1000帕C .2000帕D .250帕7.一辆汽车前灯电路上的电压U 保持不变,通过前灯的电流强度I 越大,灯就越亮,且I=U R( R 表示前灯电阻 ).已知A ,B 两种前灯灯泡的电阻分别为R 1,R 2.若发现使用灯泡A 时,汽车前灯灯光更亮,则正确的是( C ) A.R 1>R 2 B.R 1=R 2C.R 1<R 2D.与R 1,R 2的大小无关8.( 原创 )近视镜镜片的焦距y ( 米 )是镜片度数x ( 度 )的函数,下表记录了一组数据:( 1 )在下列函数中,符合上述表格中所给数据的是 B ; A.y=1100xB.y=100xC.y=-1200x+32D.y=x 240000−13800x+198( 2 )利用( 1 )中的结论计算:当镜片的度数为200度时,镜片的焦距约为 12 米. 9.某物质在质量不变的情况下,它的密度ρ( kg/m3 )与体积V ( m 3 )成反比例函数关系.根据以上条件,解答下列问题:( 1 )已知V=3 m 3,ρ=2 kg/m 3,求ρ与V 之间的函数解析式;( 2 )在( 1 )的条件下,若该物质的体积由a m 3增加到( a+2 ) m 3,而密度却由6 kg/m 3减少到b kg/m 3,求a 和b 的值. 解:( 1 )ρ=6V .( 2 )当V=a 时,ρ=6,即6=6a ,∴a=1.当V=a+2时,ρ=b ,即b=6a+2,∴b=2. 10.我们知道当电压一定时,电流与电阻成反比例函数关系.现有某学生利用一个最大电阻为200 Ω的滑动变阻器及一个电流表测电源电压,结果如图所示.( 1 )电流( A )与电阻R ( Ω )之间的函数解析式为 I=144R;( 2 )当电阻在2 Ω~200 Ω时,电流应在 0.72 A ~72 A 范围内,电流随电阻的增大而减小 ;( 3 )若限制电流不超过20 A,求电阻的范围. 解:( 3 )当I=144R≤20时,R ≥7.2 Ω. 又∵R max =200 Ω,∴电阻的范围是7.2 Ω~200 Ω.11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的压强P ( 千帕 )随气体体积V ( 立方米 )的变化而变化,P 随V 的变化情况如下表所示.( 1 )写出符合表格数据的P 关于V 的函数解析式为 P=96V ; ( 2 )当气球的体积为20立方米时,气球内气体的压强P 为多少千帕?( 3 )当气球内气体的压强大于144千帕时,气球将爆炸,依照( 1 )中的函数解析式,基于安全考虑,气球的体积至少为多少立方米?解:( 2 )把V=20代入P=96V,得P=4.8,即当气球的体积为20立方米时,气球内气体的压强是4.8千帕.( 3 )把P=144代入P=96V ,得V=23,故P ≤144时,V ≥23. 答:基于安全考虑,气球的体积应不小于23立方米.拓展探究突破练12.如图所示,小华设计了一个研究杠杆平衡条件的实验,在一根长为1000 cm 的匀质木杆的中点左侧固定位置B 处悬挂重物A ,在中点的右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x ( cm ),观察弹簧秤的示数y ( N )的变化情况,实验数据记录如下:( 1 )观察数据,求出y( N )与x( cm )之间的函数解析式,写出自变量的取值范围.( 2 )当弹簧秤的示数是24 N时,弹簧秤与点O的距离是多少?随着弹簧秤与点O的距离不断减小,弹簧秤上的示数将发生怎样的变化?,解:( 1 )设y与x之间的函数解析式为y=kx把x=10,y=30代入上式得k=300,∴y=300.x经检验,其他几组数据也满足此解析式,∴y=300( 0<x≤500 ).x( 2 )当y=24时,x=300=12.5,24∴当弹簧秤上的示数为24 N时,弹簧秤与点O的距离是12.5 cm,随着弹簧秤与点O的距离不断减小,弹簧秤上的示数不断增大.第1课时认识相似图形知识要点基础练知识点1相似图形的概念1.“相似的图形”是( A )A.形状相同的图形B.大小不相同的图形C.能够重合的图形D.大小相同的图形2.( 教材P25练习第2题变式 )观察下列各组图形,其中不相似的是( A )3.下列说法正确的是( D )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗上的五角星都是相似的知识点2相似图形的放大与缩小4.( 原创 )下列四组图形中,其中一个图形可以看作由另一个图形放大或缩小得到的是( B )5.从放大镜里看一个等腰三角形,以下说法错误的是( B )A.看到的三角形还是一个等腰三角形B.看到的三角形各个角的度数都增大了C.看到的三角形各个角的度数保持不变D.看到的三角形各边长都增大了综合能力提升练6.下列各组图形中,两个图形的形状不一定相同的是( B )A.两个等边三角形B.有一个角是35°的两个等腰三角形C.两个正方形D.两个圆7.观察下列图形,其中相似图形有( C )A.1对B.2对C.3对D.4对8.( 改编 )下列图形中形状不相同的是( C )A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面像D.一棵树与它在水中的像9.如图是两个相似圆柱,它们的底面半径和高的尺寸如图所示,求它们的体积之比.解:V1V2=π·( 2a )2·2bπ·( 3a )2·3b=827,∴它们的体积之比为8∶27.拓展探究突破练10.某课外活动小组的同学在研究某种植物标本( 如图 )时,测得叶片①的最大宽度是8 cm,最大长度是16 cm;叶片②的最大宽度是7 cm,最大长度是14 cm;叶片③的最大宽度约为6.5 cm,请你用所学数学知识估算叶片③的完整叶片的最大长度约为多少?解:根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度∶最大长度=1∶2,由此估算出完整的叶片③的最大长度是6.5×2=13 cm.第2课时相似多边形的特征知识要点基础练知识点1成比例线段1.四条线段a,b,c,d成比例,其中b=3 cm,c=8 cm,d=12 cm,则a=( A )A.2 cmB.4 cmC.6 cmD.8 cm2.( 教材P27练习第1题变式 )钓鱼岛列岛是我国最早发现、命名,并行使主权的,在一幅比例尺是1∶100000的地图上,测得钓鱼岛的东西走向长为3.5厘米,那么它的东西走向实际长度大约是3500米.知识点2相似多边形的意义3.( 原创 )如图所示的四边形与选项中的一个四边形相似,这个四边形是( D )【变式拓展】如图所示的三个矩形中,其中互为相似形的是( B )A.甲与乙B.乙与丙C.甲与丙D.以上都不对知识点3相似多边形的性质及相似多边形的相似比4.( 教材P26例题变式 )如图的两个四边形相似,则∠α的度数是( A )A.87°B.60°C.75°D.120°5.( 原创 )如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC.若矩形ABFE与矩形DEFC相似,且相似比为1∶2,求AD的长.解:因为矩形ABFE与矩形DEFC相似,且相似比为1∶2,所以ABDE =AEDC=12.因为四边形ABCD为矩形,所以CD=AB=4,所以4DE =AE4=12,所以DE=8,AE=2,所以AD=AE+DE=2+8=10.综合能力提升练6.下列说法正确的是( C )A.所有的菱形都相似B.所有的矩形都相似C.所有的正方形都相似D.所有的等腰三角形都相似7.一个多边形的边长分别是4 cm,5 cm,6 cm,4 cm,5 cm,和它相似的一个多边形的最长边为8 cm,那么这个多边形的周长是( C )A.12 cmB.18 cmC.32 cmD.48 cm8.已知a,b,c,d四条线段依次成比例,其中a=3 cm,b=( x-1 ) cm,c=5 cm,d=( x+1 ) cm,则x=4.拓展探究突破练9.在AB=30 m,AD=20 m的矩形花坛四周修筑小路.( 1 )如果四周的小路的宽均相等,都是a,如图1,那么小路四周所围成的矩形A1B1C1D1和矩形ABCD相似吗?请说明理由.( 2 )如果相对着的两条小路的宽均相等,宽度分别为x,y,如图2,试问小路的宽x与y的比值为多少时,能使得小路四周所围成的矩形A2B2C2D2和矩形ABCD相似?请说明理由.解:( 1 )矩形A1B1C1D1和矩形ABCD不相似.理由:因为30+2a30=15+a15,20+2a20=10+a10,所以30+2a30≠20+2a20,所以小路四周所围成的矩形A1B1C1D1和矩形ABCD不相似.( 2 )因为当30+2y30=20+2x20时,小路四周所围成的矩形A2B2C2D2和矩形ABCD相似,解得x y =23,所以路的宽x与y的比值为23时,能使得小路四周所围成的矩形A2B2C2D2和矩形ABCD 相似.。
人教版九年级数学下册反比例函数知识点归纳及练习(含答案)
反比例函数26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图 1图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
九年级数学人教版下册第二十六章 反比例函数 26.1 反比例函数 (附答案)
人教版数学第二十六章反比例函数 26.1 反比例函数(附答案)一、选择题1.三角形的面积一定,则它的底和高所成的函数关系是()A.正比例函数B.一次函数C.反比例函数D.不确定2.计划修建铁路l km,铺轨天数为t(d),每日铺轨量s(km/d),则在下列三个结论中,正确的是()①当l一定时,t是s的反比例函数;②当l一定时,l是s的反比例函数;③当s一定时,l是t的反比例函数.A.仅①B.仅②C.仅③D.①,②,③3.已知反比例函数y=kx ,当x=2时,y=-12,那么k等于()A. 1B.-1C.-4D.-144.若当x=3时,正比例函数y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的值相等,则k1与k2的比是()A. 9∶1B. 3∶1C. 1∶3D. 1∶95.若函数y=x2m+1为反比例函数,则m的值是()A. 1B. 0C. 0.5D.-16.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系7.已知y=y1+y2,其中y1与1成反比例且比例系数为k1,y2与x成正比例且比例系数为k2.若x=-x1时,y=0,则k1,k2的关系为()A.k1+k2=0B.k1k2=1C.k1k2=-1D.k1=k28.函数y=m(m−3)是反比例函数,则m必须满足()xA.m≠3B.m≠0或m≠3C.m≠0D.m≠0且m≠3二、填空题9.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y元,x个月全部付清,则y与x的关系式为________,是________函数.(2)某种灯的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式________,是______函数.10.已知y与x成反比例,且当x=-3时,y=4,则当x=6时,y的值为_______..对于同一个物体,当F值保持不变时,P 11.已知压力F,压强P与受力面积S之间的关系是P=FS是S的____函数;当S=3时,P的值为180,那么当S=9时,P的值为____.三、解答题12.请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.13.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.14.已知y=(k2+k)x k2−k−1中,请问:k为何值,y是x的反比例函数.15.已知变量x,y满足(x-2y)2=(x+2y)2+10,问:x,y是否成反比例函数关系?如果不是,请说明理由;如果是,请求出比例系数.答案解析1.【答案】C【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.三角形的底×高=面积×2(一定),是乘积一定,它的底和高成反比例. 故选C.2.【答案】A【解析】根据工作总量=工作效率×时间,整理为反比例函数的一般形式:y =k x (k ≠0),根据k 是常数,y 是x 的反比例函数判断正确选项即可.∵l =ts ,∴t =l s ,或s =l t, ∵反比例函数解析式的一般形式y =k x(k ≠0,k 为常数), ∴当l 一定时,t 是s 的反比例函数;只有①正确,故选A.3.【答案】B【解析】∵当x =2时,y =-12,∴-12=k 2, 解得k=-1. 故选B.4.【答案】D【解析】把x=3分别代入y=k1x(k1≠0),和反比例函数y=k2x (k2≠0)得y=3k1和y=k23,根据题意,得3k1=k23,所以k1∶k2=1∶9.故选D.5.【答案】D【解析】根据反比例函数的定义.即y=kx(k≠0),只需令2m+1=-1即可.根据题意,得2m+1=-1,解得m=-1.故选D.6.【答案】C【解析】A.一个人的体重与他的年龄成正比例关系,错误;B.正方形的面积和它的边长是二次函数关系,故此选项错误;C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;故选C.7.【答案】A【解析】根据y1与1x成反比例且比例系数为k1,y2与x成正比例且比例系数为k2,可得k1的表示,k2的表示,根据y=y1+y2,若x=-1时,y=0,可得答案.k1=y1·1x,y2=k2x,y1=k1x,y =y 1+y 2,x =-1时,-k 1-k 2=0,k 1+k 2=0,故选A.8.【答案】D【解析】根据反比例函数定义:反比例函数的概念形如y =k x (k 为常数,k ≠0)的函数称为反比例函数可得m (m -3)≠0,再解即可.由题意,得m (m -3)≠0,解得m ≠0且m ≠3,故选D.9.【答案】(1)y =8000x , 反比例 (2)y =1000x 反比例【解析】(1)由题意,得y 与x 的函数关系式为y =12000−4000x =8000x , 故答案为y =8000x ,反比例;(2)由题意,得y =1000x ,故答案为y =1000x ,反比例.10.【答案】-2【解析】设反比例函数为y =k x ,当x =-3,y =4时,4=k −3,解得k =-12.反比例函数为y =−12x .当x =6时,y =−126=-2,故答案为-2. 11.【答案】反比例 60【解析】∵压力F ,压强P 与受力面积S 之间的关系是P =F S ,∴当F 值保持不变时,P 是S 的反比例函数,∵当S =3时,P 的值为180,∴F =SP =3×180=540,当S =9时,P =5409=60.故答案为反比例,60.12.【答案】解 (1)设三角形的面积为S ,底边为a ,底边上的高为h ,则S =12ah ,当a 一定,即a =2S ℎ一定,S 是h 的正比例函数;(2)设梯形的面积为S ,它的中位线与高分别为m ,h ,S =12mh 符合y =k x ,所以是反比例函数;(3)设矩形的周长C ,该矩形的长与宽分别为a ,b ,则C =2(a +b ),当矩形的周长一定时,该矩形的长与宽不成任何比例关系.【解析】根据实际问题分别列出函数关系式,然后结合反比例函数的定义得出答案. 13.【答案】解 (1)设反比例函数的表达式为y =k x,把x =-1,y =2代入,得k =-2,所以反比例函数表达式为y =-2x .(2)将y =23代入,得x =-3; 将x =-2代入,得y =1;将x =-12代入,得y =4;将x=12代入,得y=-4,将x=1代入,得y=-2;将y=-1代入,得x=2,将x=3代入,得y=-23.【解析】(1)设反比例函数的表达式为y=kx,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.14.【答案】解∵y=(k2+k)x k2−k−1中,y是x的反比例函数,∴{k2+k≠0,k2−k−1=−1,解得k=0(舍去)或k=1.∴k=1时,y是x的反比例函数.【解析】根据反比例函数的定义列出关于k的不等式组,求出k的值即可.15.【答案】解∵(x-2y)2=(x+2y)2+10,∴x2-4xy+4y2=x2+4xy+4y2+10,整理得出8xy=-10,∴y=−54x,∴x,y成反比例关系,比例系数为-54.【解析】直接去括号,进而合并同类项得出y与x的函数关系式,并根据定义判定即可.。
九年级数学下册26.1《反比例函数》中考模拟测试(B卷,无答案)新人教版(2021年整理)
九年级数学下册26.1《反比例函数》中考模拟同步测试(B 卷,无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册26.1《反比例函数》中考模拟同步测试(B卷,无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册 26.1《反比例函数》中考模拟同步测试(B卷,无答案)(新版)新人教版的全部内容。
《反比例函数》中考模拟B卷一、单项选择题(共5题,共40分)1。
已知反比例函数y=,当1<x<3时,y的最小整数值是()A。
3 B。
4 C。
5 D。
62。
函数y=的图象可能是()A。
B。
C.D.3。
如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC-S△BAD为( )A.36B.12 C。
6 D。
34.若点A(a,b)在反比例函数y=的图象上,则代数式ab-4的值为()A。
0 B.—2 C.2 D.—65。
反比例函数y=的图象与直线y=-x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )A。
t< B.t> C.t≤ D。
t≥二、填空题(共4题,共32分)1.已知点(m-1,y1),(m—3,y2)是反比例函数y=(m<0)图象上的两点,则y1______y2。
(填“>"或“=”或“<")2.如图,直线l⊥x轴于点P,且与反比例函数(x>0)和(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=______。
第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册
第二十六章反比例函数同步练习一、选择题1.下列函数中,当x>0时,y随x增大而增大的是()A.y=−1xB.y=−x+1C.y=x2−2x D.y=−12.若点A(1,y1),B(−2,y2),C(−3,y3)都在反比例函数y=6x的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y23.在同一平面直角坐标系中,函数y=x−k与y=kx(k为常数,且k≠0)的图象大致( ) A.B.C.D.4.如图,在平面直角坐标系中,P是反比例函数y=kx的图像上一点,过点P作PQ⊥x轴于点Q,若△OPQ的面积为2,则k的值是( )A.-2 B.2 C.-4 D.45.如图,点A在反比例函数y=3x (x>0)的图象上,点B在反比例函数y=kx(x>0)的图象上,AB⊥x轴于点M,且AM:MB=2:3,则k的值为()A.4.5 B.−4.5C.7 D.−76.如图,抛物线y=-13(x-t)(x-t+6)与直线y=x-1有两个交点,这两个交点的纵坐标为m、n.双曲线y=mnx的两个分支分别位于第二、四象限,则t的取值范围是()A.t<0 B.0<t<6 C.1<t<7 D.t<1或t>67.如图,点A在函数y=2x (x>0)的图象上,点B在函数y=3x(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为()A.1 B.2 C.3 D.58.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“杠杆原理”的意义和价值,“杠杆原理”在实际生产和生活中,有着广泛的运用,比如:小明用撬棍撬动一块大石头,运用的就是“杠杆原理”,已知阻力F1(N)和阻力臂L1(m)的函数图象如图所示,若小明想使动力F2不超过120N,则动力臂L2(单位:m)需满足()A.L2<5B.L2>5C.L2≥5D.0<L2≤5二、填空题的图象经过点(−2,3),则函数的解析式为.9.反比例函数y=kx10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y (x<0)的图象经过菱形OABC中心E点,则k的值为.=kx的图象交于点A(−4,4),11.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=mxB(n,−2).则△AOB的面积是(k≠0)的图象相交于12.如图,已知抛物线y=ax2+bx−1(a、b均不为0)与双曲线y=kx+1的解是.A(−2,m),B(−1,n),C(1,2)三点.则不等式ax2+bx<kx13.当温度不变时,某气球内的气压P(kPa)与气体体积V(m3)成反比例函数关系(其图象如图所示),已知当气球内的气压P>120kPa时,气球将爆炸,为了安全起见,气球内气体体积V应满足的条件是m3.三、解答题14.如图,一次函数y=12x−m的图象与反比例函数y=kx(k≠0)的图象交于A(a,1),B(−2,b)两点,与x轴相交于点C(2,0).(1)求反比例函数的表达式;(2)观察图象,直接写出不等式12x−m<kx的解集.15.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=kx的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.16.如图,直线AB:y=kx+b分别交坐标轴交于A(−1,0)、B(0,1)两点,与反比例函数y=mx(x>0)的图象交于点C(2,n).(1)求反比例函数的解析式;<0的解集;(2)在如图所示的条件下,直接写出关于x的不等式kx+b−mx(x>0)交于点P,使得S△PAC=6S△ABO.求点P的横坐标.(3)将直线AB沿y轴平移与反比例函数y=mx17.某气球内充满了一定质量的气体,当温度不变时,气球内的气压P(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的解析式.(2)求当气球的体积是0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于160kPa时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.18.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)
第26章《反比例函数》同步训练人教版九年级数学下册一、单选题1.下列图象中是反比例函数图象的是( ).A .B .C .D .2.在第一象限内各反比例函数的图像分别如图中①②③所示,则相应各反比例函数的比例系数1k ,2k ,3k 的大小关系是( )A .123k k k <<B .132k k k <<C .321k k k <<D .213k k k <<3.下列问题情景中的两个变量成反比例函数关系的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径r C .圆的面积s 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U4.已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是( )A .6y x=B .16y x=C .6y x=D .61y x =-5.已知反比例函数ky x=,当2x =时,3y =-,则k =( )236.若点()111,P x y ,()222,P x y 在反比例函数(0)ky k x=>的图像上,且12x x =-,则( )A .11y y <B .12y y =C .12y y >D .12y y =-7.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m4B .小于35m4C .不小于34m5D .小于34m59.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160 kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不大于53m 3B .小于53m 3C .不小于35m 3D .小于35m 310.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x=B .90F x=C .9F x=D .10F x=二、填空题11.反比例函数3y x=的图象与坐标轴有______个交点,当0x >时,y 随x 的增大而________.12.已知A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点,过点A 作x 轴的垂线,垂足为B ,且2OB =,则m 的值为________.13.如图,(1,6)A -是双曲线(0)ky x x=<上的一点,P 为y 轴正半轴上的一点,将A 点绕P 点逆时针旋转90︒,恰好落在双曲线上的另一点B ,则点B 的坐标为__________.14.如图所示,反比例函数ky x=(0k ≠,0x >)的图像经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.三、解答题16.已知y 与2x 成反比例,并且当3x =时,4y =.(1)写出y 关于x 的函数解析式;(2)当 1.5x =时,求y 的值;(3)当6y =时,求x 的值.17.如图,OPQ △是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式.18.某农业大学计划修建一块面积为62210m ⨯的矩形试验田.(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?(2)如果试验田的长与宽的比为2:1,那么试验田的长与宽分别为多少?19.已知点(3,2)P 、点(2,)Q a -都在反比例函数ky x=图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为2S .求a ,12,S S 的值.20.如图.正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点,已知图中阴影部分的面积等于9,求这个反比例函数的表达式.21.某空调生产厂的装配车间计划在一段时期内组装9000台空调.(1)在这段时期内,每天组装的数量m (台/天)与组装的时间t (天)之间有怎样的函数关系?(2)原计划用2个月时间(每月按30天计算)完成这一任务,但由于气温提前升高,厂家决定这批空调提前10天完成组装,那么装配车间每天至少要组装多少台空调?比原计划多多少?22.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课的变化而变化.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?23.如图,点A为双曲线2yx=(0x>)上一点,//AB x轴且交直线y x=-于点B.(1)若点B的纵坐标为2,比较线段AB和OB的大小关系;(2)当点A在双曲线图像上运动时,代数式“22AB OA-”的值会发生变化吗?请你作出判断,并说明理由.参考答案1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.A 11.0 减小12.913.(3,2)-或(2,3)-14.215.416.解:(1)根据题意,设y 关于x 的函数解析式2k y x =,将3x =,4y =代入,得:243k =,解得:k =36,∴y 关于x 的函数解析式为236y x =;(2)当 1.5x =时,236=16(1.5)y =;(3)当y =6时,由2366x=得:26x =,解得:x =17.解:过点P 作PD ⊥x 轴于点D ,∵△OPQ 是边长为2的等边三角形,∴OD =12OQ =12×2=1,在Rt △OPD 中,∵OP =2,OD =1,∴PD ==∴P (1,设反比例函数为:y =kx (k ≠0),因为反比例函数的图象过点P ,所以k所以所求解析式为:y 18.解:(1) 由题意得,xy = 2×106,所以y =6210x⨯∴故试验田的长y (单位:m)关于宽x (单位:m)的函数解析式是y =6210x ⨯ (2)设试验田的宽为x m ,则长为2x m 由题意得,2x ·x = 2 ×106,解得x =±103 (负值舍去),∴试验田长与宽分别为2 ×103m 、103m .19.解:∵点P (3,2)、点Q (−2,a )都在反比例函数ky x=的图象上,∴k =3×2=−2×a ,∴k =6,a =−3,∵过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 1;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 2,∴S 1=S 2=|6|=6.20.解: 反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则2194b =,解得6b =,正方形的中心在原点O ,∴直线AB 的解析式为:3x =, 点(3,)P a a 在直线AB 上,如下图:33a ∴=,解得1a =,(3,1)P ∴,点P 在反比例函数(0)ky k x=>的图象上,3k ∴=,∴此反比例函数的解析式为:3y x=.21.解:(1)每天组装的台数m (单位:台/天)与生产时间t (单位:天)之间的函数关系:9000m t=;(2)当50t =时,900018050m ==.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调,原计划用2个月时间(每月按30天计算)完成这一任务,则每天组装150台,即比原计划多:18015030-=台.22.解:(1)设线段AB 所在直线的解析式为1120y k x =+,把点(10,40)B 代入,得12k =,∴1220y x =+;设C 、D 所在双曲线的解析式为22k y x=,把点(25,40)C 代入,得21000k =,∴21000y x=;(2)当15=x 时,1252030y =⨯+=,当230x =时,21000100303y ==,∴12y y <,∴第30分钟时注意力更集中.23.解:(1)∵点B 的纵坐标为2,//AB x 轴,∴(1,2)A ,(2,2)B -,∴3AB =,OB ==∵3>∴AB OB >;(2)代数式22AB OA -不会发生变化.理由:设(,)A a b ,∵A 为双曲线2(0)y x x=>上一点,∴2ab =,∵//AB x 轴且交直线y x =-于点B ,∴点B 纵坐标为b ,∴(,)B b b -,∴()22222()24AB OA a b a b ab -=+-+==,∴代数式“22AB OA -”的值恒定不变.。
人教版九年级数学下册:单元练习卷 《反比例函数》(含解析)
人教版数学九年级(下)单元练习卷:《反比例函数》一.选择题1.已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.每一象限内y随x的增大而减少C.图象在第一、三象限D.若x>1,则y<22.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的点,若x1>0>x2,则下列一定成立的是()A.y1<0<y2B.y1<y2<0 C.y2<0<y1D.0<y1<y23.如图,当x>2时,反比例函数y=的函数值y的取值范围是()A.y>1 B.0<y<1 C.y>2 D.0<y<24.如图,点B在反比例函数y=(x>0)的图象上,过点B向x轴作垂线,垂足为A,连结BO,则△OAB的面积为()A.1 B.2 C.3 D.45.反比例函数y=(k≠0)的图象经过点(2,5),若点(﹣5,n)在反比例函数的图象上,则n等于()A.﹣10 B.﹣5 C.﹣2 D.﹣6.已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)7.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别于AB、BC 交于点D、E,若四边形ODBE的面积为9,则k的值为()A.3 B.4 C.5 D.68.如图,在平面直角坐标系中,点A在函数y=(k<0,x<0)的图象上,过点A作AB ∥y轴交x轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣69.若反比例函数y=的图象在其所在的每一个象限内,y都随x的增大而增大,则k的值可以是()A.2018 B.0 C.2017 D.﹣201710.如图,矩形的中心为直角坐标系的原点O,各边分别与坐标轴平行,其中一边AB交x 轴于点C,交反比例函数图象于点P,且点P是AC的中点.已知图中阴影部分的面积为8,该反比例函数的表达式是()A.B.C.D.11.以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且AB⊥x 轴,双曲线y=经过点D,则矩形的面积为()A.10 B.11 C.12 D.1312.如图,直线y=x+m交双曲线y=于A、B两点,交x轴于点C,交y轴于点D,过点A作AH⊥x轴于点H,连结BH,若OH:HC=1:5,S=1,则k的值为()△ABHA.1 B.C.D.二.填空题13.如图,一次函数的图象y=﹣x+b与反比例函数的图象y=交于A(2,﹣4),B(m,2)两点.当x满足条件时,一次函数的值大于反比例函数值.14.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C 点,则这个函数的解析式为 .15.如图,已知点A ,点C 在反比例函数y =(k >0,x >0)的图象上,AB ⊥x 轴于点B ,OC 交AB 于点D ,若CD =OD ,则△AOD 与△BCD 的面积比为 .16.如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线分别交于点C ,D .下面三个结论,①存在无数个点P 使S △AOC =S △BOD ; ②存在无数个点P 使S △POA =S △POB ; ③存在无数个点P 使S 四边形OAPB =S △ACD . 所有正确结论的序号是 .17.如图,直线y =mx ﹣1交y 轴于点B ,交x 轴于点C ,以BC 为边的正方形ABCD 的顶点A (﹣1,a )在双曲线y =﹣(x <0)上,D 点在双曲线y =(x >0)上,则k 的值为.( )18.如图,在平面直角坐标系中,直线y =﹣4x +4与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线y =上;将正方形A BCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a 的值是 .19.如图在Rt △ABC 中,∠BAC =90°,AB =2,边AB 在x 轴上,BC 边上的中线AD 的反向延长线交y 轴于点E (0,3),反比例函数y =(x >0)的图象过点C ,则k 的值为 .三.解答题20.如图,一次函数y 1=k 1x +2与反比例函数y 2=的图象交于点A (4,m )和B (﹣8,﹣2),与y 轴交于点C .(1)k 1= ,k 2= ;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是 ;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =3:1时,求直线OP 的解析式.21.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.22.如图,反比例函数y=(x>0)过点A(4,3),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试直接写出符合条件的所有D点的坐标.23.在平面直角坐标系中,已知点A、B的坐标分别为(﹣,0)、(0,﹣1),把点A绕坐标原点O 顺时针旋转135°得点C ,若点C 在反比例函数y =的图象上. (1)求反比例函数的表达式;(2)若点D 在y 轴上,点E 在反比例函数y =的图象上,且以点A 、B 、D 、E 为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D 、E 的坐标.24.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A ,那么该用电器的可变电阻至少是多少?25.如图,直线y 1=x +b 交x 轴于点B ,交y 轴于点A (0,2),与反比例函数y 2=的图象交于C (1,m ),D (n ,﹣1),连接OC ,OD . (1)求k 的值; (2)求△COD 的面积.(3)根据图象直接写出y 1<y 2时,x 的取值范围.(4)点M 是反比例函数y 2=上一点,是否存在点M ,使点M 、C 、D 为顶点的三角形是直角三角形,且CD 为直角边,若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A 、图象必经过点(1,2),说法正确;B 、每一象限内y 随x 的增大而减少,说法正确;C 、图象在第一、三象限,说法正确;D 、若x >1,则y <2,说法错误,应为0<y <2.故选:D .2.解:∵k =﹣2<0,∴双曲线在第二,四象限,在每个象限内,y 随x 的增大而增大, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 1<0<y 2; 故选:A .3.解:当x =2时,y ===1,即当x >2时,反比例函数y =的函数值y 的取值范围是0<y <1, 故选:B . 4.解:设B 点坐标为(x ,y ),则xy =2,OA =x ,AB =y , ∴S △OAB =OA •AB =xy =×2=1,(本题也可以直接利用反比例函数系数k 的几何意义来求得答案). 故选:A .5.解:∵反比例函数y =(k ≠0)的图象经过点(2,5), ∴代入得:k =2×5=10, 即y =,∵点(﹣5,n )在反比例函数的图象上, ∴代入得:n ==﹣2,故选:C .6.解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上, 四个选项中只有C 选项符合. 故选:C .7.解:由题意得:E 、M 、D 位于反比例函数的图象上,则S △OCE =|k |,S △OAD =|k |.过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点, ∴S 矩形ABCO =4S 矩形ONMG =4|k |,由于函数图象在第一象限,k >0,则k +k +9=4k , 解得:k =3. 故选:A .8.解:连接AO ,由同底等高得到S △AOB =S △ABC =3, ∴|k |=3,即|k |=6, ∵反比例函数在第二象限过点A , ∴k =﹣6, 故选:D .9.解:∵它在每个象限内,y随x增大而增大,∴2017﹣k<0,则k>2017观察选项,只有A选项符合题意.故选:A.10.解:∵矩形的中心为直角坐标系的原点O,图中阴影部分的面积为8,∴矩形OCAD的面积是8,设A(x,y),则xy=8,∵点P是AC的中点,∴P(x, y),设反比例函数的解析式为y=,∵反比例函数图象于点P,∴k=x•y=xy=4,∴反比例函数的解析式为y=.故选:B.11.解:∵双曲线y=经过点D,∴第一象限的小长方形的面积是3,∴矩形ABCD的面积是3×4=12.故选:C.12.解:设OH=a,则HC=5a,∴C(6a,0)代入y=﹣x+m,得m=3a,设A点坐标为(a,n)代入y=﹣x+m,得n=﹣a+3a=a,∴A(a, a),代入y=得,∴k=a2,∴y=,解方程组,可得:,,∴A点坐标为(a, a),B点坐标为(5a, a),∴AH=a,∴S=×a×(5a﹣a)=5a2,△ABH=1,∵S△ABH∴5a2=1,即a2=,∴k=×=.故选:B.二.填空题(共7小题)13.解:∵反比例函数的图象y=经过A(2,﹣4),B(m,2)两点,∴a=2×(﹣4)=2m,解得m=﹣4∴点B(﹣4,2),∴由函数的图象可知,当x<﹣4或0<x<2时,一次函数值大于反比例函数值,故答案为x<﹣4或0<x<2.14.解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.15.解:作CE⊥x轴于E,如图,∵DB∥CE,∴===,设D(m,n),则C(2m,2n),∵C(2m,2n)在反比例函数图象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD =×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD与△BCD的面积比=mn: mn=3.故答案为3.16.解:如图,设C (m ,),D (n ,),则P (n ,), ∵S △AOC =3,S △BOD =3, ∴S △AOC =S △BOD ;所以①正确;∵S △POA =﹣n ×=﹣,S △POB =﹣n ×=﹣, ∴S △POA =S △POB ;所以②正确; ∵S 四边形OAPB =﹣n ×=﹣,S △ACD =×(﹣n )×(﹣)=﹣+3,∴S 四边形OAPB ≠S △ACD .所以③不正确. 故答案为①②.17.解:∵A (﹣1,a )在双曲线y =﹣(x <0)上, ∴a =2, ∴A (﹣1,2),∵点B 在直线y =mx ﹣1上, ∴B (0,﹣1), ∴AB ==,∵四边形ABCD 是正方形, ∴BC =AB =,设C (n ,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为6.18.解:当x=0时,y=4,∴B(0,4),当y=0时,x=1,∴A(1,0),∴OA=1,OB=4,∵ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,∴∠ABO=∠BCN=∠DAM,∵∠AOB=∠BNC=∠AMD=90°,∴△AOB≌△BNC≌△DMA(AAS),∴OA=DM=BN=1,AM=OB=CN=4∴OM=1+4=5,ON=4+1=5,∴C(4,5),D(5,1),把D(5,1)代入y=得:k=5,∴y=,当y=5时,x=1,∴E(1,5),点C向左平移到E时,平移距离为4﹣1=3,即:a=3,故答案为:3.19.解:∵E (0,3), ∴OE =3,∵AD 是Rt △ABC 中斜边BC 上的中线, ∴AD =DB =DC , ∴∠DAB =∠ABC , ∵∠BAC =∠AOE =90° ∴△ABC ∽△OAE ∴,∴OA •AC =AB •OE =3×2=6, 又∵反比例函数的图象在第四象限, ∴k =﹣6, 故答案为:﹣6. 三.解答题(共6小题)20.解:(1)把B (﹣8,﹣2)代入y 1=k 1x +2得﹣8k 1+2=﹣2,解得k 1=, ∴一次函数解析式为y 1=x +2; 把B (﹣8,﹣2)代入y 2=得k 2=﹣8×(﹣2)=16, ∴反比例函数解析式为y 2=,故答案为:,16;(2)∵当y 1>y 2时即直线在反比例函数图象的上方时对应的x 的取值范围, ∴﹣8<x <0或x >4; 故答案为:﹣8<x <0或x >4;(3)把A (4,m )代入y 2=得4m =16,解得m =4,∴点A 的坐标是(4,4),而点C 的坐标是(0,2), ∴CO =2,AD =OD =4.∴S 梯形ODAC =×(2+4)×4=12, ∵S 梯形ODAC :S △ODE =3:1, ∴S △ODE =×12=4, ∴OD •DE =4, ∴DE =2,∴点E 的坐标为(4,2).设直线OP 的解析式为y =kx ,把E (4,2)代入得4k =2,解得k =, ∴直线OP 的解析式为y =x . 21.解:(1)∵等边△OAB ,∴AB =BO =AO =4,∠ABO =∠BOA =∠OAB =60°, ∵点C 是AB 的中点, ∴BC =AC =2,过点C 作CM ⊥OB ,垂足为M ,在Rt △BCM 中,∠BCM =90°﹣60°=30°,BC =2, ∴BM =1,CM =,∴OM =4﹣1=3, ∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3.(2)过点A 作AN ⊥OB ,垂足为N , 由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D(﹣,3)过D作DE⊥OB,垂足为E,S△OCD =S CMED+S△DOE﹣S△COM=S CMED=(+3)×(3﹣)=3,答:△OCD的面积为3.(3)①当与直线CD平行的直线y=mx+n过点O时,此时y=mx+n的n=0,②当与直线CD平行的直线y=mx+n经过点A时,设直线CD的关系式为y=ax+b,把C、D坐标代入得:,解得:a=1,b=3+∴直线CD的关系式为y=x+3+,∵y=mx+n过与直线y=x+3+平行,∴m=1,把A(﹣2,2)代入y=x+n得:n=2+2因此:0≤n≤2+2.答:n的取值范围为:0≤n≤2+2.22.解:(1)把A(4,3)代入y=得:k=12,当x=6时,y=12÷6=2,∴点B(6,2),答:k的值为12,点B的坐标为(6,2).(2)A(4,3),B(6,2)、C(6,0),BC=2,①过A 作BC 的平行线,在这条平行线上截取AD 1=BC ,AD 2=BC , 此时D 1(4,1),D 2(4,5),②过点C 作AB 的平行线与过B 作AC 的平行线相交于D 3, 过点A 作AM ⊥BC ,垂足为M ,过D 3作D 3N ⊥BC ,垂足为N , ∵ABCD 3是平行四边形, ∴AC =BD 3,∠ACM =∠DBN , ∴△ACM ≌△D 3BN (AAS ) ∴D 3N =AM =6﹣4=2,CM =BN =3, ∴D 3的横坐标为6+2=8,CN =3﹣2=1 ∴D 3(8,﹣1)答:符合条件的所有D 点的坐标为(4,1),(4,5),(8,﹣1).23.解:(1)由旋转得:OA =OA =,∠AOC =135°,过点C 作CM ⊥y 轴,垂足为M ,则∠COM =135°﹣90°=45°, 在Rt △OMC 中,∠COM =45°,OC =,∴OM =CM =1,∴点C (1,1),代入y =得: k =1, ∴反比例函数的关系式为:y =, 答:反比例函数的关系式为:y =(2)①当点E 在第三象限反比例函数的图象上,如图1,图2, ∵点D 在y 轴上,AEDB 是平行四边形, ∴AE ∥DB ,AE =BD ,AE ⊥OA , 当x =﹣时,y ==﹣,∴E (﹣,﹣)∵B(0,﹣1),BD=AE=,当点D在B的下方时,∴D(0,﹣1﹣)当点D在B的上方时,∴D(0,﹣1+),②当点E在第一象限反比例函数的图象上时,如图3,过点E作EN⊥y轴,垂足为N,∵ABED是平行四边形,∴AB=DE,AB=DE,∴∠ABO=∠EDO,∴△AOB≌△END(AAS),∴EN=OA=,DN=OB=1,当x=时,代入y=得:y=,∴E(,),∴ON=,OD=ON+DN=1+,∴D(0,1+)24.解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.25.解:(1)把A(0,2)代入y=x+b得:b=2,1即一次函数的表达式为y 1=x +2,把C (1,m ),D (n ,﹣1)代入得:m =1+2,﹣1=n +2, 解得m =3,n =﹣3,即C (1,3),D (﹣3,﹣1),把C 的坐标代入y 2=得:3=,解得:k =3;(2)由y 1=x +2可知:B (﹣2,0),∴△AOC 的面积为×2×3+×2×1=4;(3)由图象可知:y 1<y 2时,x 的取值范围是x <﹣3或0<x <1;(4)当M 在第一象限,根据题意MC ⊥CD ,∵直线y 1=x +2,∴设直线CM 的解析式为y =﹣x +b 1,代入C (1,3)得,3=﹣1+b 1解得b 1=4,∴直线CM 为y =﹣x +4,解得,, ∴M (3,1);当M 在第三象限,根据题意MD ⊥CD ,∵直线y 1=x +2,∴设直线DM 的解析式为y =﹣x +b 2,代入D (﹣3,﹣1)得,﹣1=3+b 2解得b 2=﹣4,∴直线DM 为y =﹣x ﹣4,解得或,∴M(﹣1,﹣3),综上,点M的坐标为(3,1)或(﹣1,﹣3).。
第 26章 反比例函数——图像上点的坐标特征 同步练习 2021—2022学年人教版数学九年级下册
反比例函数——图像上点的坐标特征一.选择题(共16小题)1.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤494B.6≤k≤10C.2≤k≤6D.2≤k≤2522.如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数y=kx的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.183.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=kx(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16B.20C.32D.404.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y =kx(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .3235.如图,已知点A 、B 分别在反比例函数y =1x(x >0),y =−4x(x >0)的图象上,且OA ⊥OB ,则OB OA的值为( )A .√2B .2C .√3D .46.已知点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n ),则m n+n m的值是( )A .﹣10B .﹣8C .﹣6D .47.如图,平面直角坐标系中,A (﹣8,0),B (﹣8,4),C (0,4),反比例函数y =kx 的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .﹣20B .﹣16C .﹣12D .﹣88.如图,点D 是▱OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,BD =√2,∠ADB =135°,S △ABD =2.若反比例函数y =kx (x >0)的图象经过A 、D 两点,则k 的值是( )A.2√2B.4C.3√2D.69.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx的图象上,则k的值为()A.36B.48C.49D.6410.如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣2111.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>112.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=−12x的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6B.﹣6C.12D.﹣1214.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=2x上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<015.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=kx(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y216.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1二.填空题(共16小题)17.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=kx(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.18.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=k x图象上,且y轴平分∠ACB,求k=.19.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=kx(k≠0)的图象恰好经过点A′,B,则k的值为.20.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(1x,1y)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=2√2,则k=.21.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为.22.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x上,点A关于x轴的对称点B在双曲线y=k2x,则k1+k2的值为.23.如图,已知直线y=−13x+1与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线y=kx(x>0)正好经过C,M两点,则直线AC的解析式为:.24.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=−4x和y=kx的图象上,则k的值为.25.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为.26.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.27.如图,已知矩形ABCD的顶点A、B分别落在双曲线y=kx上,顶点C、D分别落在y轴、x轴上,双曲线y=kx经过AD的中点E,若OC=3,则k的值为.28.如图,在平面直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.29.如图,过原点的直线与反比例函数y=2x(x>0)、反比例函数y=6x(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=6x(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为.30.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)31.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=6x(x>0)的图象上,则矩形ABCD的周长为.32.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=2x的图象上,且x1<x2<0,则y1y2(填“>”或“<”).三.解答题(共7小题)33.如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=kx(k≠0)的图象与AD边交于E(﹣4,12),F(m,2)两点.(1)求k,m的值;(2)写出函数y=kx图象在菱形ABCD内x的取值范围.34.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.35.阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x (x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)﹣f (x 2)=6x 1−6x 2=6x 2−6x 1x 1x 2=6(x 2−x 1)x 1x 2. ∵0<x 1<x 2,∴x 2﹣x 1>0,x 1x 2>0. ∴6(x 2−x 1)x 1x 2>0.即f (x 1)﹣f (x 2)>0.∴f (x 1)>f (x 2).∴函数f (x )=6x(x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=1x 2+x (x <0), f (﹣1)=1(−1)2+(﹣1)=0,f (﹣2)=1(−2)2+(﹣2)=−74(1)计算:f (﹣3)= ,f (﹣4)= ; (2)猜想:函数f (x )=1x 2+x (x <0)是 函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 36.已知反比例函数y =−3x.(1)若点(﹣t +52,﹣2)在此反比例函数图象上,求t 的值. (2)若点(x 1,y 1)和(x 2,y 2)是此反比例函数图象上的任意两点, ①当x 1>0,x 2>0,且x 1=x 2+2时,求y 2−y 1y 1y 2的值;②当x 1>x 2时,试比较y 1,y 2的大小.37.小明根据学习函数的经验,参照研究函数的过程与方法,对函数y=x−2x(x≠0)的图象与性质进行探究.因为y=x−2x=1−2x,即y=−2x+1,所以可以对比函数y=−2x来探究.列表:(1)下表列出y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣4﹣3﹣2﹣1−12121234…y=−2x…1223124﹣4﹣2﹣1−23−12…y=x−2x…325323m﹣3﹣10n12…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②函数y=x−2x的图象是由y=−2x的图象向平移个单位而得到.③函数图象关于点中心对称.(填点的坐标)38.小明根据学习函数的经验,对函数y=1x−1+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=1x−1+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…−32﹣1−1201232252372…y (3)5m130﹣1n2533275…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值1x−1+1>32时,x的取值范围是:.39.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=kx在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(3,n)时,求n和k的值;(2)若点E是BC的中点,求OD的长.答案一.选择题(共16小题)1.【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A , ∵过点A (1,2)的反比例函数解析式为y =2x , ∴k ≥2.随着k 值的增大,反比例函数的图象必须和线段BC 有交点才能满足题意, 经过B (2,5),C (6,1)的直线解析式为y =﹣x +7, {y =−x +7y =k x,得x 2﹣7x +k =0 根据△≥0,得k ≤494 综上可知2≤k ≤494. 故选:A .2.【解答】解:作A ′H ⊥y 轴于H .∵∠AOB =∠A ′HB =∠ABA ′=90°,∴∠ABO +∠A ′BH =90°,∠ABO +∠BAO =90°, ∴∠BAO =∠A ′BH , ∵BA =BA ′,∴△AOB ≌△BHA ′(AAS ), ∴OA =BH ,OB =A ′H ,∵点A 的坐标是(﹣2,0),点B 的坐标是(0,6), ∴OA =2,OB =6,∴BH =OA =2,A ′H =OB =6, ∴OH =4, ∴A ′(6,4), ∵BD =A ′D , ∴D (3,5),∵反比例函数y =kx的图象经过点D , ∴k =15. 故选:C .3.【解答】解:∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4, ∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E , ∴E 为BD 中点,∠DAB =90°. ∴E (12x ,4).∵∠DAB =90°, ∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x ﹣2)2+42=x 2, 解得x =10, ∴E (5,4).∵反比例函数y =kx (k >0,x >0)的图象经过点E , ∴k =5×4=20. 故选:B .4.【解答】解:过D 作DE ⊥x 轴于E ,过B 作BF ⊥x 轴,BH ⊥y 轴, ∴∠BHC =90°,∵点D (﹣2,3),AD =5, ∴DE =3,∴AE =√AD 2−DE 2=4, ∵四边形ABCD 是矩形, ∴AD =BC ,∴∠BCD =∠ADC =90°,∴∠DCP +∠BCH =∠BCH +∠CBH =90°, ∴∠CBH =∠DCH ,∵∠DCP +∠CPD =∠APO +∠DAE =90°, ∠CPD =∠APO , ∴∠DCP =∠DAE , ∴∠CBH =∠DAE , ∵∠AED =∠BHC =90°,∴△ADE ≌△BCH (AAS ), ∴BH =AE =4, ∵OE =2, ∴OA =2, ∴AF =2,∵∠APO +∠P AO =∠BAF +∠P AO =90°, ∴∠APO =∠BAF , ∴△APO ∽△BAF , ∴OP AF=OA BF,∴12×32=2BF,∴BF =83, ∴B (4,83),∴k =323, 故选:D .5.【解答】解:过点A 作AM ⊥y 轴于点M ,过点B 作BN ⊥y 轴于点N , ∴∠AMO =∠BNO =90°, ∴∠AOM +∠OAM =90°, ∵OA ⊥OB ,∴∠AOM +∠BON =90°, ∴∠OAM =∠BON , ∴△AOM ∽△OBN ,∵点A ,B 分别在反比例函数y =1x (x >0),y =−4x(x >0)的图象上, ∴S △AOM :S △BON =1:4, ∴AO :BO =1:2, ∴OB :OA =2. 故选:B .6.【解答】解:∵点A 的坐标为(m ,n ),A 、B 两点关于y 轴对称, ∴B (﹣m ,n ),∵点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上, ∴n =−2m,﹣m ﹣4=n ,即mn =﹣2,m +n =﹣4,∴原式=(m+n)2−2mn mn=16+4−2=−10. 故选:A .7.【解答】解:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示: 则△BDE ≌△FDE ,∴BD =FD ,BE =FE ,∠DFE =∠DBE =90° 易证△ADF ∽△GFE ∴AF EG=DF FE,∴AF :EG =BD :BE ,∵A (﹣8,0),B (﹣8,4),C (0,4), ∴AB =OC =EG =4,OA =BC =8, ∵D 、E 在反比例函数y =kx的图象上, ∴E (k4,4)、D (﹣8,−k 8)∴OG =EC =−k 4,AD =−k8, ∴BD =4+k8,BE =8+k4 ∴BD BE=4+k 88+k 4=12=DF FE=AF EG,∴AF =12EG =2,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2 即:(−k8)2+22=(4+k8)2解得:k=﹣12故选:C.8.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,∵S△ABD=12BD⋅AE=2,BD=√2,∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m﹣2√2,3√2),∵反比例函数y=kx(x>0)的图象经过A、D两点,∴k=√2m=(m﹣2√2)×3√2,解得m=3√2,∴k=√2m=6.故选:D.9.【解答】解:过P 分别作AB 、x 轴、y 轴的垂线,垂足分别为C 、D 、E ,如图, ∵A (0,4),B (3,0), ∴OA =4,OB =3, ∴AB =√32+42=5,∵△OAB 的两个锐角对应的外角角平分线相交于点P , ∴PE =PC ,PD =PC , ∴PE =PC =PD , 设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD ,∴12×t ×(t ﹣4)+12×5×t +12×t ×(t ﹣3)+12×3×4=t ×t ,解得t =6, ∴P (6,6),把P (6,6)代入y =kx得k =6×6=36. 故选:A .10.【解答】解:∵当x =0时,y =0+4=4, ∴A (0,4), ∴OA =4;∵当y =0时,0=43x +4, ∴x =﹣3,∴B (﹣3,0), ∴OB =3;过点C 作CE ⊥x 轴于E ,∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC ,∵∠CBE +∠ABO =90°,∠BAO +∠ABO =90°, ∴∠CBE =∠BAO . 在△AOB 和△BEC 中, {∠CBE =∠BAO ∠BEC =∠AOB BC =AB, ∴△AOB ≌△BEC (AAS ), ∴BE =AO =4,CE =OB =3, ∴OE =3+4=7,∴C 点坐标为(﹣7,3),∵点C 在反比例函数y =kx (x <0)的图象上, ∴k =﹣7×3=﹣21. 故选:D .11.【解答】解:∵k <0,∴在图象的每一支上,y 随x 的增大而增大, ①当点(a ﹣1,y 1)、(a +1,y 2)在图象的同一支上, ∵y 1>y 2, ∴a ﹣1>a +1, 此不等式无解;②当点(a ﹣1,y 1)、(a +1,y 2)在图象的两支上, ∵y 1>y 2,∴a ﹣1<0,a +1>0, 解得:﹣1<a <1, 故选:B .12.【解答】解:当x=﹣3,y1=−12−3=4;当x=﹣2,y2=−12−2=6;当x=1,y3=−121=−12,所以y3<y1<y2.故选:B.13.【解答】解:设反比例函数的解析式为y=k x,把A(3,﹣4)代入得:k=﹣12,即y=−12 x,把B(﹣2,m)代入得:m=−12−2=6,故选:A.14.【解答】解:∵反比例函数y=2x中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.15.【解答】解:∵反比例函数y=x(k<0)的图象分布在第二、四象限,在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.16.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.二.填空题(共16小题)17.【解答】解法1:如图,连接AD并延长,交x轴于E,由A(5,12),可得AO=√52+122=13,∴BC =13,∵AB ∥CE ,AB =BD ,∴∠CED =∠BAD =∠ADB =∠CDE , ∴CD =CE ,∴AB +CE =BD +CD =13,即OC +CE =13, ∴OE =13, ∴E (13,0),由A (5,12),E (13,0),可得AE 的解析式为y =−32x +392, ∵反比例函数y =kx(x >0)的图象经过点A (5,12), ∴k =12×5=60,∴反比例函数的解析式为y =60x ,解方程组{y =−32x +392y =60x ,可得{x =5y =12,{x =8y =152, ∴点D 的坐标为(8,152).解法2:如图,过D 作DH ⊥x 轴于H ,过A 作AG ⊥x 轴于G , ∵点A (5,12),∴OG =5,AG =12,AO =13=BC ,∵∠AOG =∠DCH ,∠AGO =∠DHC =90°, ∴△AOG ∽△DCH ,∴可设CH =5k ,DH =12k ,CD =13k , ∴BD =13﹣13k , ∴OC =AB =13﹣13k , ∴OH =13﹣13k +5k =13﹣8k , ∴D (13﹣8k ,12k ),∵反比例函数y =kx (x >0)的图象经过点A (5,12)和点D , ∴5×12=(13﹣8k )×12k , 解得k =58,k =1(舍去), ∴D 的坐标为(8,152).故答案为:(8,152).18.【解答】解:过A 作AE ⊥x 轴,垂足为E ,∵C (0,﹣3),∴OC =3,∵∠AED =∠COD =90°,∠ADE =∠CDO∴△ADE ∽△CDO ,∴AE CO =DE OD =AD CD =13, ∴AE =1;又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD ,∵∠ABC =90°,∴∠OCD =∠DAE =∠ABE ,∴△ABE ∽△DCO ,∴AE OD =BE OC设DE =n ,则BO =OD =3n ,BE =7n ,∴13n =7n 3, ∴n =√77∴OE =4n =4√77∴A (4√77,1)∴k =4√77×1=4√77. 故答案为:4√77.19.【解答】解:∵四边形ABCO 是矩形,AB =1,∴设B (m ,1),∴OA =BC =m ,∵四边形OA ′B ′D 与四边形OABD 关于直线OD 对称,∴OA ′=OA =m ,∠A ′OD =∠AOD =30°,∴∠A ′OA =60°,过A ′作A ′E ⊥OA 于E ,∴OE =12m ,A ′E =√32m ,∴A ′(12m ,√32m ), ∵反比例函数y =k x (k ≠0)的图象恰好经过点A ′,B ,∴12m •√32m =m , ∴m =4√33,∴k =4√33. 故答案为:4√33.20.【解答】解:(方法一)设点A (a ,﹣a +1),B (b ,﹣b +1)(a <b ),则A ′(1a ,11−a ),B ′(1b ,11−b ),∵AB =√(b −a)2+[(−b +1)−(−a +1)]2=√2(b −a)2=√2(b ﹣a )=2√2,∴b ﹣a =2,即b =a +2.∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{b =a +2k =1a(1−a)=1b(1−b), 解得:k =−43.(方法二)∵直线y =﹣x +1上有两点A 、B ,且AB =2√2,∴设点A 的坐标为(a ,﹣a +1),则点B 的坐标为(a +2,﹣a ﹣1),点A ′的坐标为(1a ,11−a ),点B ′的坐标为(1a+2,−1a+1).∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{11−a =ak −1a+1=k(a +2), 解得:{a =−12k =−43. 故答案为:−43.21.【解答】解:∵OA =1,OC =6,∴B 点坐标为(1,6),∴k =1×6=6,∴反比例函数解析式为y =6x ,设AD =t ,则OD =1+t ,∴E 点坐标为(1+t ,t ),∴(1+t )•t =6,整理为t 2+t ﹣6=0,解得t 1=﹣3(舍去),t 2=2,∴正方形ADEF 的边长为2.故答案为:2.22.【解答】解:∵点A (a ,b )(a >0,b >0)在双曲线y =k1x 上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,﹣b )∵点B 在双曲线y =k 2x 上, ∴k 2=﹣ab ;∴k 1+k 2=ab +(﹣ab )=0;故答案为:0.23.【解答】解:在y =−13x +1中,令x =0,得y =1,令y =0,x =3,∴A (3,0),B (0,1),∴OA =3,OB =1,过C 作CE ⊥y 轴于E ,∵四边形ABCD 是矩形,∴∠CBA =90°,∴∠CBE +∠OBA =∠OBA +∠BAO =90°,∴∠CBE =∠BAO ,∵∠BEC =∠AOB =90°,∴△BCE ∽△ABO ,∴OB OA =CE BE =13, 设CE =x ,则BE =3x ,∴C (x ,3x +1),∵矩形ABCD 对称中心为M ,∴M (x+32,3x+12), ∵双曲线y =k x (x >0)正好经过C ,M 两点,∴x (3x +1)=x+32⋅3x+12, 解得:x 1=1,x 2=−13(舍)∴C (1,4),设直线AC 的解析式为:y =kx +b ,把A (3,0)和C (1,4)代入得:{3k +b =0k +b =4, 解得:{k =−2b =6, ∴直线AC 的解析式为:y =﹣2x +6,故答案为:y =﹣2x +6.24.【解答】解:过A 作AE ⊥y 轴于E 过B 作BF ⊥y 轴于F ,∵∠AOB =90°,∠ABC =30°,∴tan30°=OA OB =√33, ∵∠OAE +∠AOE =∠AOE +∠BOF =90°,∴∠OAE =∠BOF ,∴△AOE ∽△BOF ,∴AE OF =OE BF =OA OB =√33, 设A (m ,−4m ),∴AE =﹣m ,OE =−4m,∴OF =√3AE =−√3m ,BF =√3OE =−4√3m , ∴B (4√3m ,√3m ), ∴k =√3m •4√3m=12. 故答案为:12.25.【解答】解:∵点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C (﹣6,m )一定在第三象限,∵B (3,2)在第一象限,反比例函数y =k x(k ≠0)的图象经过其中两点,∴反比例函数y =k x (k ≠0)的图象经过B (3,2),C (﹣6,m ),∴3×2=﹣6m ,∴m =﹣1,故答案为:﹣1.26.【解答】解:连接BD ,与AC 交于点O ′,∵四边形ABCD 是正方形,AC ⊥x 轴,∴BD 所在对角线平行于x 轴,∵B (0,2),∴O ′C =2=BO ′=AO ′=DO ′,∴点A 的坐标为(2,4),∴k =2×4=8,故答案为:8.27.【解答】解:设A 点坐标为(a ,b ),则k =ab ,y =ab x,如图, 过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,过点E 作EF ⊥x 轴于点F , ∵四边形ABCD 是矩形,∴AD =BC ,∠ADM +∠CDO =90°,∠BCN +∠DCO =90°,∵∠CDO +∠DCO =90°,∴∠ADM +∠BCN =90°,∵∠ADM +∠DAM =90°,∴∠BCN =∠DAM ,在△ADM 和△CBN 中,{∠DAM =∠BCN ∠AMD =∠CNB =90°AD =CB,∴△ADM ≌△CBN (AAS ),∴CN =AM =b ,BN =MD ,∴ON=3﹣b,即y B=b﹣3,且B在y=abx图象上,∴B(abb−3,b﹣3),∴BN=DM=|x B|=ab3−b,∵点E是AD的中点,∴MF=ab6−2b,OF=a+ab6−2b,OD=a+ab3−b,∴E(a+ab6−2b,12b),∵双曲线y=kx经过AD的中点E,∴(a+ab6−2b)•12b=ab,解得b=2,∴A(a,2),B(﹣2a,﹣1,D(3a,0),而C(0,﹣3),且矩形ABCD有AC=BD,∴(a﹣0)2+(2+3)2=(﹣2a﹣3a)2+(﹣1﹣0)2,解得a=1或a=﹣1(舍去),∴A(1,2),代入y=kx得:k=2.故答案为:2.28.【解答】解:过点D作DE⊥x轴,过点C作CF⊥y轴,∵AB⊥AD,∴∠BAO=∠ADE,∵AB=AD,∠BOA=∠DEA,∴△ABO≌△DAE(AAS),∴AE=BO,DE=OA,易求A(1,0),B(0,4),∴D(5,1),∵顶点D在反比例函数y=kx上,∴y=5 x,易证△CBF≌△BAO(AAS),∴CF=4,BF=1,∴C(4,5),∵C向左移动n个单位后为(4﹣n,5),∴5(4﹣n)=5,∴n=3,故答案为3;29.【解答】解:设直线AB的解析式为y=kx,A(m,2m ),B(n,6n),C(m,6m)∴{2m =km6 n =kn,∴k=2m2=6n2,∴n=√3m,∵AC=AE,即6m −2m=n﹣m,∴4m=√3m−m,解得:4m2=√3−1,∵S正方形=AC2=(4m )2=4×4m2=4(√3−1)=4√3−4;30.【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当直线AC 和直线BD 关于直线y =x 对称时,此时OA =OC =OB =OD ,即四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为:①④.31.【解答】解:∵四边形ABCD 是矩形,点A 的坐标为(2,1),∴点D 的横坐标为2,点B 的纵坐标为1,当x =2时,y =62=3,当y =1时,x =6,则AD =3﹣1=2,AB =6﹣2=4,则矩形ABCD 的周长=2×(2+4)=12,故答案为:12.32.【解答】解:在反比例函数y =2x 中k =2>0,∴x <0时,y 的值随着x 的增加而减小,∵x 1<x 2<0,∴y 1>y 2.故答案为:>.三.解答题(共7小题)33.【解答】解:(1)∵点E (﹣4,12)在y =k x 上, ∴k =﹣2,∴反比例函数的解析式为y =−2x ,∵F (m ,2)在y =−2x上, ∴m =﹣1.(2)函数y =k x 图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.34.【解答】解:(1)过点P 作x 轴垂线PG ,连接BP ,∵P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴PG =√3,∴P (2,√3),∵P 在反比例函数y =k x 上,∴k =2√3,∴y =2√3x ,由正六边形的性质,A (1,2√3),∴点A 在反比例函数图象上;(2)D (3,0),E (4,√3),设DE 的解析式为y =mx +b ,∴{3m +b =04m +b =√3, ∴{m =√3b =−3√3, ∴y =√3x ﹣3√3,联立方程{y =2√3x y =√3x −3√3解得x =3+√172, ∴Q 点横坐标为3+√172;(3)A (1,2√3),B (0,√3),C (1,0),D (3,0),E (4,√3),F (3,2√3), 设正六边形向左平移m 个单位,向上平移n 个单位,则平移后点的坐标分别为 ∴A (1﹣m ,2√3+n ),B (﹣m ,√3+n ),C (1﹣m ,n ),D (3﹣m ,n ),E (4﹣m ,√3+n ),F (3﹣m ,2√3+n ),①将正六边形向左平移两个单位后,E (2,√3),F (1,2√3);则点E 与F 都在反比例函数图象上;②将正六边形向右平移一个单位,再向上平移√3个单位后,C (2,√3),B (1,2√3) 则点B 与C 都在反比例函数图象上;35.【解答】解:(1)∵f(x)=1x2+x(x<0),∴f(﹣3)=1(−3)2−3=−269,f(﹣4)=1(−4)2−4=−6316故答案为:−269,−6316(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=1x2+x(x<0)是增函数故答案为:增(3)设x1<x2<0,∵f(x1)﹣f(x2)=1x12+x1−1x22−x2=(x1﹣x2)(1−x1+x2x12x22)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=1x2+x(x<0)是增函数36.【解答】解:(1)把点(﹣t+52,﹣2)代入反比例函数y=−3x得,(﹣t+52)×(﹣2)=﹣3,解得,t=1;(2)①当x1>0,x2>0,且x1=x2+2时,这两个点在第四象限,y2−y1 y1y2=1y1−1y2=−x13+x23=x2−x13=−23;②根据函数的图象可知,Ⅰ)当0>x1>x2时,y1>y2>0,Ⅱ)当x1>0>x2时,y1<0<y2,Ⅲ)当x1>x2>0时,0>y1>y2,37.【解答】解:(1)x=−12时,y=−2x+1=5,∴m=5,x =3时,y =−2x +1=13,∴n =13;故答案为:5,13; (2)把y 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来,如图:(3)根据图象可得:①在y 轴左边,y 随x 增大而增大,故答案为:增大;②函数y =x−2x 的图象是由y =−2x 的图象向上平移1个单位得到的, 故答案为:上,1;③函数图象关于点 (0,1)中心对称,故答案为:(0,1).38.【解答】解:(1)由分式的分母不为0得:x ﹣1≠0,∴x ≠1;故答案为:x ≠1.(2)当x =﹣1时,y =1x−1+1=12,当x =32时,y =1x−1+1=3, ∴m =12,n =3, 故答案为:12,3. (3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值1x−1+1>32时,x的取值范围是1<x<3,故答案为:1<x<3.39.【解答】解:(1)∵正方形ABCD的边长为2,点E的坐标为(3,n),∴OB=3,AB=AD=2,∴D(1,2),∵反比例函数y=kx在第一象限的图象经过点D,∴k=1×2=2,∴反比例函数的解析式为:y=2 x,∵反比例函数y=kx在第一象限的图象交BC于E,∴n=2 3;(2)设D(x,2),∵点E是BC的中点,∴E(x+2,1),∵反比例函数y=kx在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴OD=√OA2+AD2=2√2.。
人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)
人教版数学九年级下册第二十六章《反比例函数》测试卷[时间:100分钟满分:120分]一、选择题(每小题3分,共30分)1. 下列函数中,y是x的反比例函数的是()A. y=-12xB. y=-29xC. y=86xD. y=1-6x2.反比例函数y=5nx的图象经过点(2,3),则n的值是()A. -2B. -1C. 0D. 13. 反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 第二、三象限B. 第一、三象限C. 第三、四象限D. 第二、四象限4.已知反比例函数y=3x,下列结论中不正确的是()A. 图象经过点(-1,-3)B. 图象在第一、三象限C. 当x>1时,0<y<3D. 当x<0时,y随着x的增大而增大5. 已知反比例函数y=-10x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26.如图所示,直线y=x+2与双曲线y=kx相交于点A,点A的纵坐标为3,则k的值为()A. 1B. 2C. 3D. 4第6题第7题7.已知二次函数y=-(x-a)2-b的图象如图所示,则反比例函数y=abx与一次函数y=ax+b的图象可能是()A B C D8. 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,当V =10 m 3时,气体的密度是( )A. 1 kg/m 3B. 2 kg/m 3C. 100 kg/m 3D. 5 kg/m 3第8题 第9题9.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A. 4B.143 C. 163D. 6 10. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )A. 16小时B. 1578小时C. 151516小时 D. 17小时二、填空题(每小题3分,共24分)11.请写出一个图象在第二、四象限的反比例函数的解析式:.12. 若反比例函数y=(m-1)x|m|-2,则m的值是.13.若函数y=2mx的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为.14. 如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.若变量y与x成反比例,且当x=3时,y=-3,则y与x之间的函数关系式是________,在每个象限内函数值y随x的增大而________.17.某闭合电路,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为6 Ω时,电流I为________A.第17题第18题18. 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为________.三、解答题(共66分)19. (8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.20. (8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式;(2)当面条粗为1.6 mm2时,求面条总长度.21. (12分)已知反比例函数y=4 x .(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.22. (12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.23. (12分)如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=kx在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.24. (14分)为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。
-人教版九年级下册26.1《反比例函数》同步练习 含答案
人教版九年级下册26.1《反比例函数》同步练习一、选择题1.在下列选项中, y 与 x 成反比例函数关系的是 ( )A .6x y =B .23-=y xC .51=+y xD .21y x= 2.反比例函数4y x =的图象经过下列哪个点? ( ) A .()1,2 B .()2,2 C .()2,2- D .()2,2-3.已知反比例函数k y x=的图象经过点 ()3,2P -,则k 的值为( ) A .﹣6B .6C .±6D .不确定 4.对于函数4y x=-,下列说法错误的是( ) A .它的图象分布在第二、四象限 B .它的图象与直线2y x =无交点C .当0x <时,y 的值随x 的增大而减小D .它的图象关于直线y x =-对称 5.正比例函数y =kx 和反比例函数2y x =的一个交点为(1,2),则另一个交点为( ) A .(-1,-2)B .(-2,-1)C .(1,2)D .(2,1) 6.反比例函数m y x=与一次函数y =mx ﹣m (m ≠0)在同一平面直角坐标系中的图象可能是( ) A .B .C .D .7.已知点()()()1231,,1,,3,A y B y C y -都在双曲线(0)m y m x=<上,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .231y y y <<8.如图,反比例函数k y x=的图象经过点A ,则k 的值是( )A .2B .1.5C .﹣3D .32- 二、填空题 9.给出的六个关系式:①x (y +1);②y =22x ;③y =21x ;④y =﹣12x;⑤2x y =;⑥123y x -= ,其中y 是x 的反比例函数是_____. 10.在反比例函数2y x=-中,当1y =时,x =________. 11.若点(2)m -,在反比例函数6y x =的图像上,则m =______. 12.若函数21m y x +=是反比例函数,则m=_________.13.如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的_________14.已知()12,y -,()21,y -,()33,y 是反比例函数6y x=-的图象上的三个点,则1y ,2y ,3y 的大小关系是______.15.如图,已知双曲线4y x=上有一点A ,过A 作AB 垂直x 轴于点B ,连接OA ,则AOB 的面积为______.16.在平面直角坐标系中,若直线2y x =-+与反比例函数k y x =的图象有2个公共点,则k 的取值范围是_________.17.已知反比例函数1k y x -=,在x >0时,y 随x 的增大而增大,则k 的取值范围是 _____________.三、解答题18.函数y=(m ﹣1)21mm x --是反比例函数(1)求m 的值 (2)判断点(12,2)是否在这个函数的图象上.19.己知y-1与x+2成反比例函数关系,且当x=-1时,y=3.求:(1)y 与x 的函数关系式;(2)当x=0时,y 的值.20.已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =时,2y =;当1x =-时,1y =.(1)求y 与x 之间的函数关系式;(2)当3x =时,求y 的值.21.已知反比例函数1k y x-=(k 为常数,1k ≠). (1)若点()1,2A 在这个函数的图象上,求k的值; (2)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)如图,若反比例函数1(0)k y x x-=<的图象经过点A ,AB x ⊥轴于B ,且AOB 的面积为6,求k 的值;22.如图,在平面直角坐标系中,一次函数1(0)y kx b k =+≠的图象与反比例函数2(0)m y m x=≠的图象相交于第一、三象限内的A (3,5),B (a ,-3)两点,与x 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)求AOB S 的值;(3)直接写出当12y y 时, x 的取值范围.参考答案 1.B 2.B 3.A4.C 5.A 6.C 7.D8.C 9.④⑥10.2-11.-312.-113.反比例函数14.312y y y <<15.216.1k <且0k ≠17.1k <18.(1) m=0;(2)点(12,2)不在这个函数图象上. 19.(1)y=2x 2++1;(2)y=2. 20.(1)271699y x x=+;(2)20581 21.(1)3k =;(2)1k >;(3)11k =-22.(1)反比例函数的解析式为215y x =,一次函数的解析式为12y x =+;(2)AOB S 的值为8;(3)50x -<<或3x >.。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。
人教版初中数学九年级数学下册第一单元《反比例函数》测试题(包含答案解析)
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .3.如图,正比例函数y = ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为( )A .x < - 2或x > 2B .x < - 2或0 < x < 2C .-2 < x < 0或0 < x < 2D .-2 < x < 0或 x > -24.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<5.对于反比例函数21k y x+=,下列说法错误的是( )A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值6.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线y=4x-于点A ,交双曲线10y x=于点B ,点C 、点D 在x 轴上运动,且始终保持DC =AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .287.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =- B .2y x =+C .2y x=D .22y x x =-8.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15-B .15C .5-D .59.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .10.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,111.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.双曲线y =kx经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).14.若点()()125,,3,A y B y --在反比例函数3y x=的图象上,则12,y y ,的大小关系是_________.15.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.16.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________.17.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.18.反比例函数16y x =与2ky x=()0k <的图像如图所示,点P 是x 正半轴上一点,过点P 作x 轴的垂线,分别交反比例函数16y x =与2ky x=()0k <的图像于点A ,B ,若4AB PB =,则k 的值为_______.19.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y kx=(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.20.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x=>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)三、解答题21.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()()2,4,,1A B m --两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式. (2)求ABO ∆的面积.(3)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值? 22.如图,Rt △ABO 的顶点A 是双曲线y =kx与直线y =﹣x +(k +1)在第四象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求这两个函数的表达式;(2)求直线与双曲线的交点A 和C 的坐标及△AOC 的面积. (3)写出反比例函数y =kx的值大于一次函数y =﹣x +(k +1)时的x 的取值范围. 23.已知A (-2n ,n )、B (n ,-4)两点是一次函数y kx b =+和反比例函数my x=图像的两个交点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积;(3)观察图像,写出不等式0mkx b x+->的解集.24.已知:如图,一次函数的图象与反比例函数ky x=的图象交于A 、B 两点,且点B 的坐标为.(1)求反比例函数ky x=的表达式; (2)点在反比例函数ky x=的图象上,求△AOC 的面积;(3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.25.某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为212m 的矩形园子.(1)如图,设矩形园子的相邻两边长分别为()x m 、()y m . ①求y 关于x 的函数表达式; ②当4y 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?26.已知反比例函数y =12mx-(m 为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数12y x=,反比例函数28yx=,∴两个函数图象的另一个交点为(−2,−4),∴A,B选项错误;∵正比例函数12y x=中,y随x的增大而增大,反比例函数28yx=中,在每个象限内y随x的增大而减小,∴D选项错误;∵当x<−2或0<x<2时,y1<y2,∴选项C正确;故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.C解析:C 【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案. 【详解】①当k> 0时,y=kx+1过第一、二、三象限,ky x =过第一、三象限; ②当k<0时,y= kx+1过第一、二、四象限,ky x=过第二、四象限,观察图形可知,只有C 选项符合题意, 故选:C . 【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.3.B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象即可得出结论. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.4.A解析:A 【分析】 根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.5.B解析:B【分析】先判断出k2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=-1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=12(k2+1)是定值,故本选项正确.故选B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=kx(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.6.C解析:C【分析】设出M点的坐标,可得出过M与x轴平行的直线方程为y=m,将y=m代入反比例函数y=4x-中,求出对应的x的值,即为A的横坐标,将y=m代入反比例函数10yx=中,求出对应的x 的值,即为B 的横坐标,用B 的横坐标减去A 的横坐标求出AB 的长,根据DC=AB ,且DC 与AB 平行,得到四边形ABCD 是平行四边形,过B 作BN 垂直于x 轴,平行四边形底边为DC ,DC 边上的高为BN ,由B 的纵坐标为m得到BN=m ,再由求出的AB 的长,得到DC 的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积. 【详解】解:设M 的坐标为(0,m )(m >0)则直线AB 的方程为:y=m , 将y=m 代入y=4x-中得:4x m =-,∴A (4m -,m )将y=m 代入10y x=中得:10x m =,∴B (10m ,m )∴DC=AB=10m -(4m -)=14m过B 作BN ⊥x 轴,则有BN=m ,则平行四边形ABCD 的面积S=DC·BN=14m×m=14. 故选C . 【点睛】本题考查反比例函数综合题.7.B解析:B 【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合; C 、2x x=,解得:2x =2x =“好点”22)和(2,2),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B. 【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.8.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.9.D解析:D【分析】先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 11.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】 解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn 的大小【详解】∵双曲线y =经过点A (a ﹣2a )∴k =﹣2a2<0∴双曲线在二四象限在每个象限内y 随x 的增大而增大∵B (﹣2m )C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n 的大小..【详解】∵双曲线y =k x经过点A (a ,﹣2a ), ∴k =﹣2a 2<0, ∴双曲线在二、四象限,在每个象限内,y 随x 的增大而增大,∵B (﹣2,m ),C (﹣3,n ),﹣2>﹣3,∴m >n ,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质. 14.【分析】根据反比例函数的性质解答【详解】∵反比例函数中∴此函数图象的两个分支分别位于一三象限并且在每一象限内随的增大而减小这两点都在反比例函数的图象上在第三象限故答案为:【点睛】此题考查反比例函数的 解析:21y y <【分析】根据反比例函数的性质解答.【详解】∵反比例函数3y x=中30k =>, ∴此函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小. ()()125,,3,A y B y --这两点都在反比例函数3y x =的图象上,A B ∴、在第三象限,21y y ∴<,故答案为:21y y <.【点睛】此题考查反比例函数的性质:当k>0时,函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小;当k<0时,函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.15.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++=∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+ ∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.16.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3 解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可.【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a < 关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0), 综上,a≤13,且(a≠0), ∴ a 可取-1,-14,∴使以x 为自变量的反比例函数37a y x -=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】 本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键.17.y =【分析】设A 坐标为(xy )根据四边形OABC 为平行四边形利用平移性质确定出A 的坐标利用待定系数法确定出解析式即可【详解】解:设A 坐标为(xy )∵B (2﹣2)C (30)以OCCB 为边作平行四边形O解析:y =2x【分析】设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A 坐标为(x ,y ),∵B (2,﹣2),C (3,0),以OC ,CB 为边作平行四边形OABC ,∴x+3=0+2,y+0=0﹣2,解得:x =﹣1,y =﹣2,即A (﹣1,﹣2), 设过点A 的反比例解析式为y =k x, 把A (﹣1,﹣2)代入得:k =2, 则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键. 18.-2【分析】设点A 横坐标为m 分别表示出ABPB 根据得到关于k 的方程解方程即可【详解】解:设点A 横坐标为m 则点A 纵坐标为∵AB ⊥x 轴∴点B 纵坐标为∴AB=PB=∵∴∴∴故答案为:-2【点睛】本题考查了解析:-2【分析】设点A 横坐标为m ,分别表示出AB 、PB ,根据4AB PB =,得到关于k 的方程,解方程即可.【详解】解:设点A 横坐标为m ,则点A 纵坐标为6m , ∵ AB ⊥x 轴,∴点B 纵坐标为k m , ∴AB =66k k m m m--= ,PB =k k m m =-, ∵4AB PB =,∴64k k m m-=- , ∴64k k -=- ,∴2k =-.故答案为:-2【点睛】本题考查了反比例函数图象上点的表示,解题的关键是根据4AB PB =列出方程,注意表示PB 时,注意式子符号问题.19.2【分析】根据题意利用面积法求出AE 设出点B 坐标表示点A 的坐标应用反比例函数上点的横纵坐标乘积为k 构造方程求k 【详解】连接AC 分别交BDx 轴于点EF 由已知AB 横坐标分别为14∴BE=3∵四边形ABC解析:2.【分析】根据题意,利用面积法求出AE ,设出点B 坐标,表示点A 的坐标.应用反比例函数上点的横纵坐标乘积为k 构造方程求k .【详解】连接AC 分别交BD 、x 轴于点E 、F .由已知,A 、B 横坐标分别为1,4,∴BE =3.∵四边形ABCD 为菱形,AC 、BD 为对角线,∴S 菱形ABCD =412⨯AE •BE =9,∴AE 32=,设点B 的坐标为(4,y ),则A 点坐标为(1,y 32+) ∵点A 、B 同在y k x =图象上, ∴4y =1•(y 32+), ∴y 12=, ∴B 点坐标为(4,12), ∴k =2故答案为:2.【点睛】 此题考查菱形的性质,反比例函数图象上点的坐标与k 之间的关系,解题关键在于掌握其性质定义.20.【分析】过过点P1作P1E ⊥x 轴于点E 过点P2作P2F ⊥x 轴于点F 过点P3作P3G ⊥x 轴于点G 根据△P1OA1△P2A1A2△P3A2A3都是等腰直角三角形可求出A1A2A3的横坐标从而总结出一般规解析:3n【分析】过过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,,根据△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3都是等腰直角三角形,可求出A 1,A 2,A 3的横坐标,从而总结出一般规律得出点A n 的坐标,再求12n y y y ++⋅⋅⋅+的值即可.【详解】解:过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,∵△P 1OA 1是等腰直角三角形,∴P 1E=OE=A 1E ,设点P 1的坐标为(a,a),(a>0),将点P 1(a,a)代入()90y x x=>,可得a=3, 故点A 1的坐标为(6,0), 设点P 2的纵坐标为b ,则P 2的横坐标为6+b ,将点(b+6,b)代入()90y x x=>,可得b=3,故点A 2的横坐标为同理可以得到A 3的横坐标是A n 的横坐标是,根据等腰三角形的性质得到12n y y y ++⋅⋅⋅+=A n 的横坐标的一半,∴12n y y y ++⋅⋅⋅+=故答案为:【点睛】本题考查了反比例函数的综合应用,涉及了点的坐标的规律变化,解答本题的关键是根据等腰三角形的性质结合反比例函数解析式求出A 1,A 2,A 3的横坐标,从而总结出一般规律,难度较大.三、解答题21.(1)81;52y y x x =-=-;(2)15;(3)02x <<或8x > 【分析】(1)根据点A 坐标求出反比例函数的系数,再利用反比例函数解析式求出点B 坐标,再用待定系数法求出一次函数解析式;(2)分别过A 点,B 点作x 轴的垂线,垂足为,E F ,可知三角形ABO 的面积等于梯形ABFE 的面积,就可以算出结果;(3)根据图象找出一次函数在反比例函数上面时x 的取值范围,就可以得到结果.【详解】(1)∵()2,4A -在反比例函数()0a y x x =>上, ∴代入得24k -=, ∴8k =-,∴反比例函数的关系数8y x =-, ∵(),1B m 在8y m =-上, ∴代入得81m -=-, ∴8m =,∴()8,1B -,又∵()()2,4,8,1A B --在一次函数y kx b =+上,∴代入得4218k bk b-=+⎧⎨-=+⎩,解得125kb⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为152y x=-;(2)如图,分别过A点,B点作x轴的垂线,垂足为,E F,∵()()2,4,8,1A B--,∴ABO EABFS S∆=梯()()141822=⨯+⨯-1562=⨯⨯15=,∴ABOS∆的面积是15;(3)一次函数的值大于反比例函数的值,即一次函数的图象在上方,∴由图知02x<<或8x>.【点睛】本题考查反比例函数和一次函数综合,解题的关键是掌握反比例函数的图象和性质,特殊三角形的面积求法,利用函数图象解不等式的方法.22.(1)y=3x-和y=-x-2;(2)交点A为(1,-3),C为(-3,1);4;(3)-3<x<0或x>1.【分析】(1)设出A坐标(x,y),表示出OB与AB,进而表示出三角形ABO面积,由已知面积确定出反比例函数k的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A与C坐标即可;由一次函数解析式求出交点的坐标,然后三角形AOC面积=两个三角形面积的和,求出即可;(3)根据图象即可求得.【详解】解:(1)设A 点坐标为(x ,y ),且x >0,y <0, 则113||||(),222ABO S OB AB x y ∆=⋅⋅=⋅⋅-= ∴xy=-3,∴k=xy=-3,代入y =﹣x +(k +1),得y=-x-2;∴所求的两个函数的解析式分别为y=3x-和y=-x-2; (2)解:求两个函数图象交点,得 32y x y x ⎧=-⎪⎨⎪=--⎩ 13,?31x x y y ==-⎧⎧⎨⎨=-=⎩⎩∴交点A 为(1,-3),C 为(-3,1);由y=-x-2,令x=0,得y=-2.∴直线y=-x+2与y 轴的交点的坐标为(0,-2), 则112123422AOC S ∆=⨯⨯+⨯⨯= (3)∵交点A 为(1,-3),C 为(-3,1),∴由图象可知:反比例函数y=k x的值大于一次函数y=-x+(k+1)时, x 的取值范围为-3<x <0或x >1.【点睛】 此题考查了一次函数与反比例函数的交点问题,以及三角形面积,解题关键是熟练掌握待定系数法.23.(1)8y x=-,2y x =--;(2)6AOB S ∆=;(3)4x <-或02x << 【分析】(1)根据反比例函数图像上任意一点的横坐标与纵坐标的乘积相等可得到-2n²=-4n 求出n 的值,进而确定A 、B 两点坐标,求出反比例函数的解析式,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <-4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】解:(1)由“反比例函数上任意一点的横坐标与纵坐标的乘积相等”可知:-2n²=-4n ,求得n=0(舍去)或n=2,∴A(-4,2),B(2,-4),∴m=-4×2=-8,故反比例函数的解析式为:8y x =-, 将A 、B 两点代入一次函数y kx b =+中: ∴2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为:2y x =--,故答案为:8y x=-,2y x =--; (2) y=-x-2中,令y=0,则x=-2, 即直线y=-x-2与x 轴交于点C (-2,0),∴S △AOB =S △AOC +S △BOC =112224622⨯⨯+⨯⨯=, 故答案为:6;(3)0m kx b x+->,变形为:m kx b x +>, 观察图形,即要求一次函数的图像在反比例函数图像的上方,∴解集为:x <-4或0<x <2,故答案为:x <-4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.24.(1);(2)32;(3)(-1,0)、(0,0)、(0,1). 【详解】(1)一次函数的图象过点B , ∴∴点B 坐标为∵反比例函数k y x=的图象经过点B反比例函数表达式为(2)设过点A 、C 的直线表达式为,且其图象与轴交于点D ∵点在反比例函数的图象上 ∴∴点C 坐标为∵点B 坐标为∴点A 坐标为解得:过点A 、C 的直线表达式为∴点D 坐标为∴(3)①当点P 在x 轴上时,设P(m ,0)∵AC=2,AP=22(1)2m ++,CP=22(2)1m ++,∴22(1)2m ++=22(2)1m ++或22(2)1m ++=2,解得:m=0或-1 ②当点P 在y 轴上时,设P(0,n),∵AC=2,AP=221(2)n +-,CP=222(1)n +-,∴221(2)n +-=222(1)n +-或221(2)n +-=2解得:n=0或1 综上所述:点P 的坐标可能为、、 25.(1)①1265y x x ⎛⎫=⎪⎝⎭,②635x ;(2)小凯的说法错误,洋洋的说法正确. 【分析】(1)①根据矩形的面积公式计算即可,注意自变量的取值范围;②构建不等式即可解决问题;(2)构建方程求解即可解决问题;【详解】(1)①由题意xy =12, 1265y x x ⎛⎫∴= ⎪⎝⎭②y ⩾4时,124x ≥,解得3x ≤ 所以635x . (2)当1229.5x x +=时,整理得:2419240,0x x -+=∆<,方程无解.当12210.5xx+=时,整理得2421240,570x x-+=∆=>,符合题意;∴小凯的说法错误,洋洋的说法正确.【点睛】本题考查反比例函数的应用.(1)①中需注意,因为墙的宽度为10m,所以y≤10,据此可求得自变量x的取值范围;②中求得x的取值要与①中取公共解集;(2)能根据根的判别式判断一元二次方程解的情况是解决此问的关键.26.(1)m<12;(2)该反比例函数的解析式为y=6x;(3)y1<y2.【分析】(1)由图象在第一、三象限可得关于m的不等式,然后解不等式即可;(2)先根据平行四边形的性质求出D点的坐标,然后将D点的坐标代入y=12mx-可求得1-2m的值即可;(3)利用反比例函数的增减性解答即可.【详解】解:(1)∵y=12mx-的图象在第一、三象限,∴1﹣2m>0,∴m<12;(2)∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=6x;(3)∵x1>x2>0,∴E,F两点都在第一象限,又∵该反比例函数在每一个象限内,函数值y都随x的增大而减小,∴y1<y2.【点睛】本题考查了反比例函数的解析式、反比例函数的性质以及反比例函数与几何的综合,掌握反比例函数的定义及性质是解答本题的关键.。
2022-2023学年人教版九年级数学下册《26-1反比例函数》同步练习题(附答案)
2022-2023学年人教版九年级数学下册《26.1反比例函数》同步练习题(附答案)一.选择题1.下列函数中,不是反比例函数的是()A.y=x﹣1B.xy=5C.D.2.若y=(a+1)x a2﹣2是反比例函数,则a的值为()A.1B.﹣1C.±1D.任意实数3.如图,过原点的一条直线与反比例函数(k≠0)的图象分别交于A、B两点,若A 点的坐标为(3,﹣5),则B点的坐标为()A.(3,﹣5)B.(﹣5,3)C.(﹣3,+5)D.(+3,﹣5)4.下列函数中,y的值随x值的增大而增大的函数是()A.y=B.y=﹣2x+1C.y=x﹣2D.y=﹣x﹣2 5.已知反比例函数y=﹣,下列说法不正确的是()A.图象经过点(2,﹣4)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.y≤1时,x≤﹣86.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣2,1)在它的图象上B.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2C.它的图象在第二、四象限D.当x>0时y随x的增大而增大7.若反比例函数在每个象限内,y随x的增大而减小,则()A.B.C.D.8.二次函数y=ax2+bx和反比例函数在同一直角坐标系中的大致图象是()A.B.C.D.9.两个反比例函数C1:和C2:在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为()A.1B.2C.3D.410.如图,∠OAB=30°,点A在反比例函数的图象上,过B的反比例函数解析式为()A.B.C.D.二.填空题11.反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是.12.在反比例函数y=的图象的每一支上,y都随x的增大而减小,则k的取值范围是.13.下列函数:①y=﹣5x;②y=3x﹣2;③y=﹣(x>0);④y=3x2(x<0),其中y的值随x的增大而增大的函数为.(填序号)14.若(1,y1)、(2,y2)、(﹣3,y3)都在函数y=﹣的图象上,则y1、y2、y3的大小关系是.15.如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象交于点A(1,m),B(4,n).当y1>y2时,x的取值范围是.16.如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.17.如图,四边形OABC是正方形,OA在y轴正半轴上,OC在x轴负半轴上.反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F.若∠EOF=30°,则线段OE的长度为.三.解答题18.已知y是关于x的反比例函数,当x=3时,y=﹣2.(1)求此函数的表达式;(2)当x=﹣4时,函数值是2m,求m的值.19.如图,反比例函数的图象经过点(﹣2,4)和点A(a,﹣2).(Ⅰ)求该反比例函数的解析式和a的值.(Ⅱ)若点C(x,y)也在反比例函数的图象上,当2<x<8时,求函数y 的取值范围.20.已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.21.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b≥的x的取值范围;(3)连接BO并延长交双曲线于点C,连接AC,求△ABC的面积.22.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为.23.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.24.如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.参考答案一.选择题1.解:反比例函数的三种形式为:①y=(k为常数,k≠0),②xy=k(k为常数,k≠0),③y=kx﹣1(k为常数,k≠0),由此可知:只有y=不是反比例函数,其它都是反比例函数,故选:C.2.解:由反比例函数的定义得a+1≠0且a2﹣2=﹣1由a+1≠0得a≠﹣1由a2﹣2=﹣1得a=±1综上所述,a=1.故选:A.3.解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(﹣3,+5).故选:C.4.解:A、y=是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.5.解:A、当x=2时,y=﹣4,即反比例函数y=﹣的图像经过点(2,﹣4),故不符合题意;B、因为反比例函数y=﹣中的k=﹣8,所以图像分别在二、四象限,故不符合题意;C、因为反比例函数y=﹣中的k=﹣8,所以在每个象限内y随x增大而增大,故不符合题意;D、y≤1时,x≤﹣8或x>0,故符合题意;故选:D.6.解:A、当x=﹣2时,y=1,即点(﹣2,1)在它的图象上,不符合题意;B、点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,符合题意;C、反比例函数y=﹣中的k=﹣2<0,所以它的图象在第二、四象限,不符合题意;D、反比例函数y=﹣中的k=﹣2<0,所以当x>0时y随x的增大而增大,不符合题意.故选:B.7.解:∵反比例函数在每个象限内,y随x的增大而减小,∴3k﹣2>0,解得k>,故选:A.8.解:A、由反比例函数得:b>0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b<0,∴选项A不正确;B、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b>0,∴选项B正确;C、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b<0,∴选项C不正确;D、由反比例函数得:b<0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b>0,∴选项D不正确;故选:B.9.解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=|k|=,S矩形PCOD=|2|=2,∴四边形P AOB的面积=2﹣2•=1.故选:A.10.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图.∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴=,∵S△AOD==3,∴S△BCO=|k|=1,∵经过点B的反比例函数图象在第二象限,∴k=﹣2,故反比例函数解析式为:y=﹣.故选:C.二.填空题11.解:∵△POM的面积为2,∴S=|k|=2,∴k=±4,又∵图象在第四象限,∴k<0,∴k=﹣4,∴反比例函数的解析式为:y=﹣.故答案为:y=﹣.12.解:在反比例函数y=的图象的每一支上,y都随x的增大而减少,∴﹣k+1>0,∴k<1,∴k的取值范围为:k<1.故答案为:k<1.13.解:①对于y=﹣5x,y随x的增大而减小;②对于y=3x﹣2,y随x的增大而增大;③当x>0时,函数y=﹣,y随x的增大而增大;④y=3x2,当x<0时,y随x的增大而减小.故答案为:②③.14.解:∵y=﹣中,k=﹣2<0,∴图象在二、四象限,在每一象限内y随x的增大而增大,∵2>1>0,﹣3<0,∴点(1,y1),B(2,y2)在第四象限,(﹣3,y3)在第二象限,∴y1<y2<0,y3>0.∴y1<y2<y3.故答案为:y1<y2<y3.15.解:∵一次函数y1=k1x+b的图象与反比例函数的图象交于点A(1,m),B(4,n),∴当1<x<4时,y1>y2,当x<0时,y1>y2,即当y1>y2时,x的取值范围是x<0或1<x<4.故答案为:x<0或1<x<4.16.解:延长AC交x轴于E,如图所示:则AE⊥x轴,∵C的坐标为(4,3),∴OE=4,CE=3,∴OC==5,∵四边形OBAC是菱形,∴AB=OB=OC=AC=5,∴AE=5+3=8,∴点A的坐标为(4,8),把A(4,8)代入函数y=(x>0)得:k=4×8=32;故答案为:32.17.解:∵四边形OABC是正方形,∴OA=OC,∠OAF=∠OCE=90°,∵反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F,∴CE×OC=AF×OA=4,∴CE=AF,在△OCE与OAF中,,∴△OCE≌△OAF(SAS),∵∠EOF=30°,∴∠COE=∠AOF=30°,∴OC=CE,∵CE×OC=4,∴CE=2,∴OE=2CE=4,故答案为:4.三.解答题18.解:(1)设y=(k≠0),则k=xy;∵当x=3时,y=﹣2,∴k=3×(﹣2)=﹣6,∴该反比例函数的解析式是:y=﹣;(2)由(1)知,y=﹣,∵x=﹣4时,函数值是2m,∴2m=﹣,∴m=.19.解:(Ⅰ)将点(﹣2,4)代入y=(k≠0),得:k=﹣2×4=﹣8,∴反比例函数解析式为:y=﹣,把点A(a,﹣2)代入y=﹣得﹣=﹣2,∴a=4,A(4,﹣2);(Ⅱ)∵点C(x,y)也在反比例函数的图象上,∴当x=2时,y=﹣4;当x=8时,y=﹣1,∵k=﹣8<0,∴当x>0 时,y随x值增大而增大,∴当2<x<8 时,﹣4<y<﹣1.20.解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.21.解:(1)∵把A(3,1)代入y=得:k2=3×1=3,∴反比例函数的解析式是y=,∵B(﹣1,n)代入反比例函数y=得:n=﹣3,∴B的坐标是(﹣1,﹣3),把A、B的坐标代入一次函数y=k1x+b得:,解得:k1=1,b=﹣2,∴一次函数的解析式是y=x﹣2;(2)从图象可知:k1x+b≥的x的取值范围是当﹣1≤x<0或x≥3.(3)过C点作CD∥y轴,交直线AB于D,∵B(﹣1,﹣3),B、C关于原点对称,∴C(1,3),把x=1代入y=x﹣2得,y=﹣1,∴D(1,﹣1),∴CD=4,∴S△ABC=S△ACD+S△BCD=×4×(3+1)=8.22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).23.解:(1)∵AB∥x轴,∴∠ABO=∠BOD,由旋转可知∠ABO=∠CBD,∴∠BOD=∠CBD,∴OD=BD,由旋转知OB=BD,∴△OBD是等边三角形,∴∠BOD=60°,∴B(1,),∵双曲线y=经过点B,∴k=xy=1×=.∴双曲线的解析式为y=.(2)∵∠ABO=60°,∠AOB=90°,∴∠A=30°,∴AB=2OB,由旋转知AB=BC,∴BC=2OB,∴OC=OB,∴点C(﹣1,﹣),把点C(﹣1,﹣)代入y=,﹣=﹣,∴点C在双曲线上.24.解:(1)∵AB∥y轴,AB⊥x轴.点A(﹣2,1),且平行四边形ABCD对角线交于坐标原点O,∴AM=1,OM=ON=2,∴MN=4,∵平行四边形ABCD的面积为12,∴AB•MN=12,∴AB=3,BM=2.∴点B(﹣2,﹣2).将点B(﹣2,﹣2)代入,得,∴k=4.∴反比例函数的解析式为;(2)在Rt△AOM中,根据勾股定理,得.当△AOP是等腰三角形时,分三种情况讨论:①当OA=OP时,若点P在y轴的负半轴上,则点,若点P在y轴的正半轴上,则点;②当OP=AP时,点P在OA的垂直平分线上,如图,∴,∵∠POG+∠AOM=90°=∠AOM+∠OAM,∴∠POG=∠OAM,∵∠PGO=∠AMO=90°,∴△OAM∽△POG,∴OP=OG=,∴点P3的坐标为;③当AP=AO时,点A在OP4的垂直平分线上,∴点P4的坐标为(0,2).综上可知,点P的坐标为或或或(0,2).。
九年级数学下册同步练习(含答案)
最新九年级数学下册同步练习(含答案)第二十六章 反比例函数26.1 反比例函数第1课时 反比例函数1.下列函数中,不是反比例函数的是( )A .y =-3xB .y =-32xC .y =1x -1D .3xy =22.已知点P (-1,4)在反比例函数y =kx(k ≠0)的图象上,则k 的值是( )A .-14 B.14C .4D .-43.反比例函数y =15x 中的k 值为( )A .1B .5 C.15D .04.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数解析式为( )A .y =400xB .y =14xC .y =100xD .y =1400x5.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( ) A .正比例函数关系 B .反比例函数关系 C .一次函数关系 D .不能确定6.反比例函数y =kx 的图象与一次函数y =2x +1的图象都经过点(1,k ),则反比例函数的解析式是____________.7.若y =1x2n -5是反比例函数,则n =________.8.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数解析式是__________(不考虑x 的取值范围).9.已知直线y =-2x 经过点P (-2,a ),反比例函数y =kx(k ≠0)经过点P 关于y 轴的对称点P ′.(1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.10.已知函数y =(m +1)xm 2-2是反比例函数,求m 的值.11.分别写出下列函数的关系式,指出是哪种函数,并确定其自变量的取值范围.(1)在时速为60 km 的运动中,路程s (单位:km)关于运动时间t (单位:h)的函数关系式;(2)某校要在校园中辟出一块面积为84 m 2的长方形土地做花圃,这个花圃的长y (单位:m)关于宽x (单位:m)第2课时 反比例函数的图象和性质1.反比例函数y =-1x(x >0)的图象如图26-1-7,随着x 值的增大,y 值( )图26-1-7A .增大B .减小C .不变D .先增大后减小2.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)3.反比例函数y =k 2+1x的图象大致是( )4.如图26-1-8,正方形ABOC 的边长为2,反比例函数y =kx的图象经过点A ,则k 的值是( )图26-1-8A .2B .-2C .4D .-45.已知反比例函数y =1x,下列结论中不正确的是( )A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大6.已知反比例函数y =bx(b 为常数),当x >0时,y 随x 的增大而增大,则一次函数y =x +b 的图象不经过第几象限.( )A .一B .二C .三D .四7.若反比例函数y =kx(k <0)的函数图象过点P (2,m ),Q (1,n ),则m 与n 的大小关系是:m ____n (填“>”“=”8.已知一次函数y =x -b 与反比例函数y =2x的图象,有一个交点的纵坐标是2,则b 的值为________.9.已知y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 121 y 232 -1 (1)求这个反比例函数的解析式; (2)根据函数解析式完成上表.10.(2012年广东)如图26-1-9,直线y =2x -6与反比例函数y =kx(x >0)的图象交于点A (4,2),与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.图26-1-911.当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )12.如图26-1-10,直线x =t (t >0)与反比例函数y =2x ,y =-1x的图象分别交于B ,C 两点,A 为y 轴上的任意一图26-1-10A .3 B.32t C.32D .不能确定13.如图26-1-11,正比例函数y =12x 的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A 点,过A 点作x轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.图26-1-1126.2 实际问题与反比例函数1.某学校食堂有1500 kg 的煤炭需运出,这些煤炭运出的天数y 与平均每天运出的质量x (单位:kg)之间的函数关系式为____________.2.某单位要建一个200 m 2的矩形草坪,已知它的长是y m ,宽是x m ,则y 与x 之间的函数解析式为______________;若它的长为20 m ,则它的宽为________m.3.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例⎝⎛⎭⎫即y =kx (k ≠0),已知200度近视眼镜的镜片焦距为0.5 m ,则y 与x 之间的函数关系式是____________.4.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y (单位:m/min)可以表示为y =1500x;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y (单位:N/m 2)可以表示为y =1500x……函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (单位:kPa)是气体体积V (单位:m 3)的反比例函数,其图象如图26-2-2.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )图26-2-2A .不小于54 m 3B .小于54 m 3C .不小于45 m 3D .小于45m 37.某粮食公司需要把2400吨大米调往灾区救灾.(1)调动所需时间t (单位:天)与调动速度v (单位:吨/天)有怎样的函数关系?(2)公司有20辆汽车,每辆汽车每天可运输6吨,预计这批大米最快在几天内全部运到灾区?8.如图26-2-3,先在杠杆支点左方5 cm 处挂上两个50 g 的砝码,离支点右方10 cm 处挂上一个50 g 的砝码,杠杆恰好平衡.若在支点右方再挂三个砝码,则支点右方四个砝码离支点__________cm 时,杠杆仍保持平衡.图26-2-39.由物理学知识知道,在力F (单位:N)的作用下,物体会在力F 的方向上发生位移s (单位:m),力F 所做的功W (单位:J)满足:W =Fs ,当W 为定值时,F 与s 之间的函数图象如图26-2-4,点P (2,7.5)为图象上一点.(1)试确定F 与s 之间的函数关系式; (2)当F =5时,s 是多少?图26-2-410.一辆汽车匀速通过某段公路,所需时间t (单位:h)与行驶速度v (单位:km/h)满足函数关系:t =kv ,其图象为如图26-2-5所示的一段曲线,且端点为A (40,1)和B (m,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要多少时间?图26-2-511.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元.乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x (400≤x <600)元,优惠后得到商家的优惠率为p ⎝ ⎛⎭⎪⎫p =优惠金额购买商品的总金额,写出p 与x 之间的函数关系式,并说明p 随x 的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x (200≤x <400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.第二十七章 相 似 27.1 图形的相似1.如图27-1-4所示的四个QQ 头像,它们( )图27-1-4D.不能确定2.下列图形不是相似图形的是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图3.在比例尺为1∶5000的国家体育馆“鸟巢”的设计图上,“鸟巢”的长轴为6.646 cm,则长轴的实际长度为()A.332.3 m B.330 m C.332.5 m D.323.3 m4.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是()A.5 cm B.10 cm C.15 cm D.30 cm5.在下列四组线段中,成比例线段的是()A.3 cm,4 cm,5 cm,6 cmB.4 cm,8 cm,3 cm,5 cmC.5 cm,15 cm,2 cm,6 cmD.8 cm,4 cm,1 cm,3 cm6.已知正方形ABCD的面积为9 cm2,正方形ABCD的面积为16 cm2,则两个正方形边长的相似比为________.7.在某一时刻,物体的高度与它的影长成比例,同一时刻有人测得一古塔在地面上的影长为100 m,同时高为2 m的测竿,其影长为5 m,那么古塔的高为多少?8.两个相似的五边形的对应边的比为1∶2,其中一个五边形的最短边长为3 cm,则另一个五边形的最短边长为()A.6 cm B.1.5 cmC.6 cm或1.5 cm D.3 cm或6 cm9.(中考改编)如图27-1-5,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,求留下矩形的面积.图27-1-510.北京国际数学家大会的会标如图27-1-6所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.(1)试说明大正方形与小正方形是否相似?(2)若大正方形的面积为13,每个直角三角形两直角边的和是5,求大正方形与小正方形的相似比.图27-1-627.2 相似三角形第1课时 相似三角形的判定1.已知△ABC ∽△DEF ,∠A =80°,∠B =20°,那么△DEF 的各角的度数分别是______________.2.如图27-2-11,直线CD ∥EF ,若OE =7,CE =4,则ODOF=____________.图27-2-113.已知△ABC ∽△A ′B ′C ′,如果AC =6,A ′C ′=2.4,那么△A ′B ′C ′与△ABC 的相似比为________. 4.如图27-2-12,若∠BAD =∠CAE ,∠E =∠C ,则________∽________.图27-2-125.如图27-2-13,DE ∥FG ∥BC ,图中共有相似三角形( )A .2对B .3对C .4对D .5对图27-2-136.在△ABC 和△A ′B ′C ′中,有下列条件:①AB A ′B ′=BC B ′C ′;②BC B ′C ′=AC A ′C ′;③∠A =∠A ′;④∠C =∠C ′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A ′B ′C ′的共有( ) A .1组 B .2组 C .3组 D .4组 7.如图27-2-14,∠BAC =90°,AD ⊥BC 于点D ,求证:AD 2=CD ·BD .图27-2-148.已知线段AB,CD相交于点O,AO=3,OB=6,CO=2,则当CD=________时,AC∥BD. 9.如图27-2-15,已知△ABC,延长BC到点D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求AEAC的值;(2)若AB=a,FB=EC,求AC的长.图27-2-1510.如图27-2-16,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A 为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)求出△BDE的面积S与x之间的函数关系式;(3)当x为何值时,△BDE的面积S有最大值,最大值为多少?图27-2-16第2课时相似三角形的性质及其应用举例1.已知平行四边形ABCD 与平行四边形A ′B ′C ′D ′相似,AB =3,对应边A ′B ′=4,若平行四边形ABCD 的面积为18,则平行四边形A ′B ′C ′D ′的面积为( )A.272B.818C .24D .32 2.若把△ABC 的各边长分别扩大为原来的5倍,得到△A ′B ′C ′,则下列结论不可能成立的是( ) A .△ABC ∽△A ′B ′C ′B .△ABC 与△A ′B ′C ′的相似比为16C .△ABC 与△A ′B ′C ′的各对应角相等D .△ABC 与△A ′B ′C ′的相似比为153.如图27-2-24,球从A 处射出,经球台边挡板CD 反射到B ,已知AC =10 cm ,BD =15 cm ,CD =50 cm ,则点E 距离点C ( )图27-2-24A .40 cmB .30 cmC .20 cmD .10 cm4.已知△ABC 和△DEF 相似且对应中线的比为3∶4,则△ABC 和△DEF 的周长比为____________.5.高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为______米.6.如图27-2-25,在等腰梯形ABCD 中,AD ∥CB ,且AD =12BC ,E 为AD 上一点,AC 与BE 交于点F ,若AE ∶DE =2∶1,则S △AEFS △CBF=________.图27-2-257.如图27-2-26,直立在B 处的标杆AB =2.4 m ,直立在F 处的观测者从E 处看到标杆顶A 、树顶C 在同一条直线上(点F ,B ,D 也在同一条直线上).已知BD =8 m ,FB =2.5 m ,人高EF =1.5 m ,求树高CD .图27-2-268.如图27-2-27是测量旗杆的方法,已知AB 是标杆,BC 表示AB 在太阳光下的影子,下列叙述错误的是( )图27-2-27A .可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B .只需测量出标杆和旗杆的影长就可计算出旗杆的高12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.图27-2-2810.(2011年广东中考改编)如图27-2-29(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;(1)取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图27-2-29(2)中阴影部分,求正六角星形A1F1B1D1C1E1的面积;(2)取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图27-2-29(3)中阴影部分,求正六角星形A2F2B2D2C2E2的面积.(3) 取△A2B2C2和△D2E2F2各边中点,连接成正六角星形A3F3B3D3C3E3,依此法进行下去,试推测正六角星形A n F nB n D nC n E n的面积.图27-2-2927.3位似1.下列说法正确的是( )A .位似图形中每组对应点所在的直线必互相平行B .两个位似图形的面积比等于相似比C .位似多边形中对应对角线之比等于相似比D .位似图形的周长之比等于相似比的平方 2.如图27-3-9,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC的中点,则△DEF 与△ABC 的面积比是( )A .1∶2B .1∶4C .1∶5D .1∶6图27-3-9 图27-3-103.如图27-3-10,五边形ABCDE 和五边形A 1B 1C 1D 1E 1是位似图形,且P A 1=23P A ,则AB ∶A 1B 1=( )A.23B.32C.35D.534.已知△ABC 和△A ′B ′C ′是位似图形,△A ′B ′C ′的面积为6 cm 2,周长是△ABC 的一半,AB =8 cm ,则AB 边上高等于( )A .3 cmB .6 cmC .9 cmD .12 cm 5.如图27-3-11,点O 是AC 与BD 的交点,则△ABO 与△CDO ________是位似图形(填“一定”或“不一定”).图27-3-116.如图27-3-12,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,且相似比为12. 若五边形ABCDE 的面积为17 cm 2, 周长为20 cm ,那么五边形A ′B ′C ′D ′E ′的面积为________,周长为________.图27-3-127.已知,如图27-3-13,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A =4∶3,则△ABC 与________是位似图形,位似比为________;△OAB 与________是位似图形,位似比为________.图27-3-138.如图27-3-14,电影胶片上每一个图片的规格为3.5 cm ×3.5 cm ,放映屏幕的规格为2 m ×2 m ;若放映机的光源S 距胶片20 cm ,那么光源S 距屏幕________米时,放映的图象刚好布满整个屏幕.图27-3-149.如图27-3-15,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).图27-3-1510.某出版社的一位编辑在设计一本书的封面时,想把封面划分为四个矩形,其中左上角的矩形与右下角的矩形位似(如图27-3-16),以给人一种和谐的感觉,这样的两个位似矩形该怎样画出来?该编辑认为只要A,P,C三点共线,那么这两个矩形一定是位似图形,你认为他的说法对吗?请说明理由.图27-3-16第二十八章 锐角三角函数28.1 锐角三角函数1.三角形在正方形风格纸巾中的位置如图28-1-3所示,则sin α的值是( )图28-1-3A.34B.43C.35D.452.如图28-1-4,某商场自动扶梯的长l 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tan θ=( )图28-1-4A.34B.43C.35D.45 3.cos30°=( ) A.12 B.22 C.32D. 3 4.在△ABC 中,∠A =105°,∠B =45°,tan C =( ) A.12 B.33 C .1 D. 3 5.若0°<A <90°,且4sin 2A -2=0,则∠A =( ) A .30° B .45° C .60° D .75°6.按GZ1206型科学计算器中的白键MODE ,使显示器左边出现DEG 后,求cos9°的值,以下按键顺序正确的是( )A.cos 9B.cos 2ndF 9C.9cosD.92ndF cos7.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c .已知2a =3b ,求∠B 的三角函数值.8.下列结论中正确的有( ) ①sin30°+sin30°=sin60°; ②sin45°=cos45°; ③cos25°=sin65°;④若∠A 为锐角,且sin A =cos28°,则∠A =62°.A .1个B .2个C .3个D .4个 9.如图28-1-5,直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与B 点重合,折痕为DE ,则tan ∠CBE =( )图28-1-5A.247B.73C.724D.1310.如图28-1-6,AD 是BC 边上的高,E 为AC 边上的中点,BC =14,AD =12,sin B =45.(1)求线段CD 的长; (2)求tan ∠EDC 的值.图28-1-628.2 解直角三角形及其应用1.在Rt △ABC 中,∠C =90°,cos B =23,则a ∶b ∶c 为( )A .2∶5∶ 3B .2∶5∶3C .2∶3∶13D .1∶2∶3 2.等腰三角形的底角为30°,底边长为2 3,则腰长为( ) A .4 B .2 3 C .2 D .2 2 3.如图28-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AC =6,AB =9,则AD 的长为( )A .6B .5C .4D .3图28-2-9 图28-2-104.轮船航行到C 处时,观测到小岛B 的方向是北偏西65°,那么同时从B 处观测到轮船的方向是( ) A .南偏西65° B .东偏西65° C .南偏东65° D .西偏东65° 5.如图28-2-10,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB =( )A .a sin αB .a tan αC .a cos α D.atan α6.如图28-2-11,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5 m(即小颖的眼睛距地面的距离),那么这棵树高是( )图28-2-11A.⎝⎛⎭⎫5 33+32mB.⎝⎛⎭⎫5 3+32m C.5 33 mD .4 m7.在Rt △ABC 中,∠C =90°,a =2,∠B =45°,则 ①∠A =45°;②b =2;③b =2 2;④c =2;⑤c =2 2. 上述说法正确的是________(请将正确的序号填在横线上).8.一船上午8点位于灯塔A 的北偏东60°方向,在与灯塔A 相距64海里的B 港出发,向正西方向航行,到9时30分恰好在灯塔正北的C 处,则此船的速度为__________.9.如图28-2-12,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离(B ,F ,C 在一条直线上).(1)求教学楼AB 的高度;(2)学校要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离(结果保留整数;参考数据:sin22°≈38,cos22°≈1516,tan22°≈25).图28-2-1210.如图28-2-13,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路.现新修一条路AC 到公路l .小明测量出∠ACD =30°,∠ABD =45°,BC =50 m .请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1 m ;参考数据:2≈1.414,3≈1.732).图28-2-13第二十九章投影与视图29.1投影1.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是()2.下列投影不是中心投影的是()3.如图29-1-6,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()图29-1-6A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短4.如下图所示的四幅图中,灯光与影子的位置最合理的是()5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时6.如图29-1-7,小华为了测量所住楼房的高度,他请来同学帮忙,测得同一时刻他自己的影长和楼房的影长分别是0.5米和15米,已知小华的身高为1.6米,那么他所住楼房的高度为______米.图29-1-77.已知如图29-1-8,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=2 m.(1)请你画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.图29-1-88.晚上,小亮走在大街上,他发现:当他站在大街两边的两盏路灯之间,并且他自己被两边路灯照在地上的两个影子成一条直线时,自己右边的影子长为3 m,左边的影子长为1.5 m,如图29-1-9.又知小亮的身高为1.80 m,两盏路灯的高度相同,两盏路灯之间的距离为12 m,则路灯的高为________.图29-1-99.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花CD和一棵树AB.晚上幕墙反射路灯的灯光形成那盆花的影子DF,树影BE是路灯灯光直接形成的,如图29-1-10,你能确定此时路灯光源的位置吗?图29-1-1010.小红测得墙边一棵树AE在地面上的影子ED是2.8米,落在墙上的影子CD高1.2米,如图29-1-11,与此同时,测得一杆的长度为0.8米,影长为1米,求树的高度.图29-1-1129.2三视图1.两个大小不同的球在水平面上靠在一起,组成如图29-2-13所示的几何体,则该几何体的左视图是()图29-2-13A.两个外离的圆B.两个外切的圆C.两个相交的圆D.两个内切的圆2.如图29-2-14所示的几何体的主视图是()图29-2-14 图29-2-153.从不同方向看一只茶壶(如图29-2-15),你认为是俯视效果图的是( )4.如图29-2-16所示几何体:图29-2-16其中,左视图是平行四边形的有( )A .4个B .3个 C. 2个 D .1个5.在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )6.一个几何体的三视图如图29-2-17,其中主视图和左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( )图29-2-17A .2π B.12π C .4π D .8π7.如图29-2-18是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是( )图29-2-18A .3个B .4个C .5个D .6个8.如图29-2-19是一个正六棱柱的主视图和左视图,则图中的a =( )图29-2-19A.2 3 B. 3 C.2 D.19.画出如图29-2-20所示几何体的三视图.图29-2-2010.图29-2-21是一个由若干个棱长相等的正方体构成的几何体的三视图.(1)请写出构成这个几何体的正方体个数;(2)请根据图中所标的尺寸,计算这个几何体的表面积.图29-2-2129.3课题学习制作立体模型1.下面四个图形中,是三棱柱的平面展开图的是()2.一个无盖的正方体盒子的平面展开图可以是图29-3-6所示的()图29-3-6A.(1) B.(1)(2)C.(2)(3) D.(1)(3)3.将图29-3-7中的图形折叠起来围成一个正方体,可以得到()图29-3-74.如图29-3-8是长方体的展开图,顶点处标有1~11的自然数,折叠成长方体时,6与哪些数重合() A.7,8 B.7,9C.7,2 D.7,4图29-3-8 图29-3-95.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图29-3-9,则该立方体的俯视图不可能是()6.如图29-3-10,将七个正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方体的序号是________或________.图29-3-107.图29-3-11中的图形折叠后能围成什么图形?图29-3-118.如图29-3-12,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()图29-3-129.图29-3-13是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).图29-3-1310.如图29-3-14,它是某几何体的展开图.(1)这个几何体的名称是________;(2)画出这个几何体的三视图;(3)求这个几何体的体积(π取3.14).图29-3-14第二十六章 反比例函数 26.1 反比例函数 第1课时 反比例函数 【课后巩固提升】1.C 2.D 3.C 4.C 5.B6.y =3x 解析:把点(1,k )代入函数y =2x +1得:k =3,所以反比例函数的解析式为:y =3x .7.3 解析:由2n -5=1,得n =3.8.y =90x 解析:由题意,得12⎝⎛⎭⎫13x +x ·y =60,整理可得y =90x. 9.解:(1)将P (-2,a )代入y =2x ,得 a =-2×(-2)=4.(2)∵a =4,∴点P 的坐标为(-2,4). ∴点P ′的坐标为(2,4).(3)将P ′(2,4)代入y =k x 得4=k2,解得k =8,∴反比例函数的解析式为y =8x.10.解:由题意,得m 2-2=-1,解得m =±1. 又当m =-1时,m +1=0,所以m ≠-1. 所以m 的值为1.11.解:(1)s =60t ,s 是t 的正比例函数,自变量t ≥0.(2)y =84x ,y 是x 的反比例函数,自变量x >0.第2课时 反比例函数的图象和性质 【课后巩固提升】 1.A 2.A3.D 解析:k 2+1>0,函数图象在第一、三象限. 4.D 5.D6.B 解析:当x >0时,y 随x 的增大而增大,则b <0,所以一次函数不经过第二象限. 7.> 解析:k <0,在第四象限y 随x 的增大而增大.8.-1 解析:将y =2代入y =2x,得x =1.再将点(1,2)代入y =x -b ,得2=1-b ,b =-1.9.解:(1)设y =k x (k ≠0),把x =-1,y =2代入y =k x 中,得2=k-1,∴k =-2.∴反比例函数的解析式为y =-2x.(2)如下表:x -3 -2 -1 121 2 y 231 2 -4 -2 -1 10.解:(1)把A (4,2)代入y =k x ,2=k4,得k =8,对于y =2x -6,令y =0,即0=2x -6,得x =3,∴点B (3,0).(2)存在.如图D55,作AD ⊥x 轴,垂足为D ,图D55则点D (4,0),BD =1. 在点D 右侧取点C , 使CD =BD =1, 则此时AC =AB , ∴点C (5,0). 11.C12.C 解析:因为直线x =t (t >0)与反比例函数y =2x ,y =-1x的图象分别交于B ⎝⎛⎭⎫t ,2t ,C ⎝⎛⎭⎫t ,-1t ,所以BC =3t ,所以S △ABC =12·t ·3t =32. 13.解:(1)设点A 的坐标为(a ,b ),则b =ka ,∴ab =k . ∵12ab =1,∴12k =1.∴k =2. ∴反比例函数的解析式为y =2x.(2)由⎩⎨⎧y =2x ,y =12x 得⎩⎪⎨⎪⎧x =2,y =1.∴A 为(2,1).设点A 关于x 轴的对称点为C ,则 点C 的坐标为(2,-1).令直线BC 的解析式为y =mx +n .∵B 为(1,2),∴⎩⎪⎨⎪⎧ 2=m +n ,-1=2m +n .∴⎩⎪⎨⎪⎧m =-3,n =5.∴BC 的解析式为y =-3x +5.当y =0时,x =53.∴P 点为⎝⎛⎭⎫53,0. 26.2 实际问题与反比例函数 【课后巩固提升】1.y =1 500x 2.y =200x 10 3.y =100x4.体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可)5.C6.C 解析:设p =k V ,把V =1.6,p =60代入,可得k =96,即p =96V .当p ≤120 kPa 时,V ≥45m 3.7.解:(1)根据题意,得v t =2400,t =2400v . (2)因为v =20×6=120,把v =120代入t =2400v ,得t =2400120=20.即预计这批大米最快在20天内全部运到灾区.8.2.5 解析:设离支点x 厘米,根据“杠杆定律”有100×5=200x ,解得x =2.5.9.解:(1)把s =2,F =7.5代入W =Fs ,可得W =7.5×2=15,∴F 与s 之间的函数关系式为F =15s.(2)把F =5代入F =15s,可得s =3.10.解:(1)将(40,1)代入t =k v ,得1=k40,解得k =40.函数关系式为:t =40v .当t =0.5时,0.5=40m,解得m =80.所以,k =40,m =80.(2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.11.解:(1)400≤x <600,少付200元, ∴应付510-200=310(元). (2)由(1)可知少付200元,∴函数关系式为:p =200x.∵k =200,由反比例函数图象的性质可知p 随x 的增大而减小.(3)购x 元(200≤x <400)在甲商场的优惠金额是100元,乙商场的优惠金额是x -0.6x =0.4x . 当0.4x <100,即200≤x <250时,选甲商场优惠; 当0.4x =100,即x =250时,选甲乙商场一样优惠; 当0.4x >100,即250<x <400时,选乙商场优惠.第二十七章 相 似 27.1 图形的相似 【课后巩固提升】1.A 2.C 3.A 4.C 5.C 6.3∶47.解:设古塔的高为x ,则x 100=25,解得x =40.故古塔的高为40 m. 8.C 解析:分两种情况考虑:①3为小五边形的最短边长;②3为大五边形的最短边长. 9.解:由图可知:留下的矩形的长为4 cm ,宽可设为x ,利用相似图形的性质,得84=4x,即x =2.所以留下矩形的面积是4×2=8(cm 2).10.解:(1)因为正方形的四条边都相等,四个角都是直角,所以大正方形和小正方形相似. (2)设直角三角形的较长直角边长为a ,较短的直角边长为b ,则小正方形的边长为a -b .所以⎩⎪⎨⎪⎧a 2+b 2=13, ①a +b =5. ②把②平方,得(a +b )2=25,即a 2+2ab +b 2=25③. 所以③-①,得2ab =12,即ab =6.因为(a -b )2=a 2-2ab +b 2=13-12=1,所以小正方形的面积为1,边长为1.又因为大正方形的面积为13,则其边长为13,所以大正方形与小正方形的相似比为13∶1. 27.2 相似三角形第1课时 相似三角形的判定 【课后巩固提升】 1.∠D =80°,∠E =20°,∠F =80° 2.373.2∶5 4.△ABC △ADE5.B 解析:△ADE ∽△AFG ,△ADE ∽△ABC ,△AFG ∽△ABC . 6.C 解析:①②,②④,③④都能△ABC ∽△A ′B ′C ′. 7.证明:∵AD ⊥BC ,∴∠ADC =∠ADB =90°. ∴∠C +∠CAD =90°. 又∵∠BAC =90°,∴∠C +∠B =90°. ∴∠B =∠CAD .∴△ADC ∽△BDA . ∴AD CD =BDAD,即AD 2=CD ·BD . 8.6 解析:∵AC ∥BD ,∴△AOC ∽△BOD .∴CO DO =AOBO.∴DO =4.∴CD =6.9.解:(1)过点C 作CG ∥AB ,交DF 于点G . ∵点C 为BD 的中点,∴点G 为DF 的中点,CG =12BF =12AF .∵CG ∥AB ,∴△AEF ∽△CEG .∴AE CE =AFCG=2. ∴AE =2CE .∴AE AC =AE AE +CE =2CE 2CE +CE =23.(2)∵AB =a ,∴FB =12AB =12a .又∵FB =EC ,∴EC =12a .∴AC =3EC =32a .10.解:(1)∵DE ∥BC , ∴△ADE ∽△ABC . ∴AD AB =AE AC. 又∵AD =8-2x ,AB =8,AE =y ,AC =6, ∴8-2x 8=y 6.∴y =-32x +6.自变量x 的取值范围为0≤x ≤4.(2)S =12BD ·AE =12·2x ·y =-32x 2+6x .(3)S =-32x 2+6x =-32(x -2)2+6.∴当x =2时,S 有最大值,且最大值为6. 第2课时 相似三角形的性质及其应用举例 【课后巩固提升】 1.D 2.B 3.C4.3∶4 5.9 6.197.解法一:如图D57,过点E 作EG ⊥CD ,交CD 于点G ,交AB 于点H .图D57因为AB ⊥FD ,CD ⊥FD ,所以四边形EFBH 、EFDG 是矩形.所以EF =HB =GD =1.5,EH =FB =2.5, AH =AB -HB =2.4-1.5=0.9, CG =CD -GD =CD -1.5,EG =FD =FB +BD =2.5+8=10.5. 因为AB ∥CD ,所以△EHA ∽△EGC .所以EH EG =AH CG,即CG =AH ·EG EH =0.9×10.52.5=3.78.所以CD =CG +GD =3.78+1.5=5.28, 故树高CD 为5.28 m.解法二:如图D58,延长CE ,交DF 的延长线于点P .图D58设PF =x ,因为EF ∥AB , 所以△PEF ∽△P AB .所以PF PB =EF AB ,即x x +2.5=1.52.4,解得x =256,即PF =256.因为EF ∥CD ,所以△PFE ∽△PDC .所以PF PD =EF CD ,即PF PF +FB +BD =EF CD ,256256+2.5+8=1.5CD .解得CD =5.28.故树高CD 为5.28 m. 8.B9.(1)证明:∵AB ∥CE ,∴∠ABF =∠E . ∵四边形ABCD 为平行四边形,∠A =∠C , ∴△ABF ∽△CEB .(2)解:∵DE =12CD ,∴DE =13EC .由DF ∥BC ,得△EFD ∽△EBC . ∴S △EFD S △EBC =⎝⎛⎭⎫DE EC 2=⎝⎛⎭⎫132=19. ∴S △EBC =9S △EFD =9×2=18.S 四边形BCDF =S △EBC -S △EFD =18-2=16. 由AB ∥DE ,得△ABF ∽△DEF . ∴S △DEF S △ABF =⎝⎛⎭⎫DE AB 2=14.∴S △ABF =4S △DEF =4×2=8. ∴S 四边形ABCD =S △ABF +S 四边形BCDF =8+16=24.10.解:(1)∵正六角星形A 1F 1B 1D 1C 1E 1是取△ABC 和△DEF 各边中点构成的, ∴正六角星形AFBDCE ∽正六角星形A 1F 1B 1D 1C 1E 1,且相似比为2∶1. ∴111111AFBDCE A F B D C E S S 正六角星形正六角星形=1111111A FB DC E S 正六角星形=22.∴111111A F B D C E S 正六角星形=14.(2)同(1),得111111222222A FB DC E A F BD CE S S 正六角星形正六角星形=4,∴222222A FB DC E S 正六角星形=116.(3)n n n n n nA FB DC E S 正六角星形=14n .27.3 位 似 【课后巩固提升】1.C 2.B 3.B 4.B 5.不一定 6.174107.△A ′B ′C ′ 7∶4 △OA ′B ′ 7∶48.807 解析:设光源距屏x 米,则 3.5×3.52×102×2×102=⎝⎛⎭⎫20x ×1022,解得x =807. 9.解:(1)如图D63.图D63(2)AA ′=CC ′=2.在Rt △OA ′C 中,OA ′=OC =2,得A ′C =2 2, 于是AC ′=4 2.∴四边形AA ′C ′C 的周长=4+6 2.10.解:对的.如图D64,作对角线AC ,在AC 上根据需要取一点P ,过点P 作EF ∥BC ,作GH ∥AB ,则矩形AEPG 和矩形CFPH 就是两个位似的图形.图D64矩形AEPG 和矩形CFPH 的每个内角都是直角,又由AE ∥FC ,AG ∥CH ,可得EP PF =AE CF =AP CP ,PG PH =GA HC =AP CP ,于是EP PF =AE CF =PG PH =GAHC.所以矩形AEPG ∽矩形CFPH ,而且这两个矩形的对应点的连线交于P 点,因此矩形AEPG 位似于矩形CFPH ,位似中心是点P .第二十八章 锐角三角函数 28.1 锐角三角函数 【课后巩固提升】1.C 2.A 3.C 4.B 5.B 6.A7.解:由2a =3b ,可得a b =32.设a =3k ,b =2k (k >0),由勾股定理,得 c =a 2+b 2=(3k )2+(2k )2=13k .∴sin B =b c =2k 13k =2 1313,cos B =a c =3k 13k=3 1313,tan B =b a =2k 3k =23.8.C9.C 解析:设CE =x ,则AE =8-x ,由折叠性质知,AE =BE =8-x ,在Rt △CBE 中,由勾股定理,得BE 2=CE 2+BC 2,即(8-x )2=x 2+62,解得x =74.∴tan ∠CBE =CE BC =746=724.10.解:(1)在Rt △ABD 中,sin B =AD AB =45,又AD =12,∴AB =15.BD =152-122=9. ∴CD =BC -BD =14-9=5.(2)在Rt △ADC 中,E 为AC 边上的中点,∴DE =CE ,∴∠EDC =∠C .∴tan ∠EDC =tan C =AD CD =125.28.2 解直角三角形及其应用 【课后巩固提升】 1.B 2.C3.C 解析:∵AC =6,AB =9,又∵cos A =AD AC =AC AB ,即AD 6=69,∴AD =4.4.C 5.B6.A 解析:∵∠CAD =30°,AD =BE =5 m ,∴CD =AD ·tan ∠CAD =5tan30°=5 33(m),∴CE =CD +DE =。
九年级数学下册第二十六章反比例函数26.1反比例函数26.1.1反比例函数同步练习新版新人教版
《反比率函数》【基础点拨】1.以下选项中,能写成反比率函数的是()A.人的体重与身高B.正三角形的边长与面积C.速度必定,行程与时间的关系 D .销售总价不变,销售单价与销售数目的关系2.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是() A.正比率函数关系B.反比率函数关系C.一次函数关系D.不可以确立3. 以下函数中,y是x的反比率函数的是()xB.11 C.y1D. y1A. y y2x x2 21x4.反比率函数y=5x中的k值为 ()A. 1B. 5 C.1D. 0 52018)5. 函数y自变量 x 的取值范围是(xA . x> 0B.x< 0C.x=0D.x≠ 06.近视眼镜的度数y( 单位:度 ) 与镜片焦距x( 单位: m)成反比率,已知400 度近视眼镜镜片的焦距为0. 25 m ,则y与x的函数解析式为 _________ 。
1是反比率函数,则n=________。
7.若yx2 n58.已知反比率函数y 6,则当自变量 x=-2时,函数值是。
x【牢固训练】9.以下函数中,y不是x的反比率函数的是 ()3-31A.y=-x B. y=2x C. y=x-1D. 3xy= 2F10. 在物理学中,压力F、压强p与受力面积S的关系是p=S,则以下描述中正确的选项是 () A.当压力 F 一准时,压强p 是受力面积S 的正比率函数B.当压强p 一准时,压力 F 是受力面积S 的反比率函数C.当受力面积S 一准时,压强p 是压力 F 的反比率函数D.当压力 F 一准时,压强p 是受力面积S 的反比率函数11.若关于 x、 y 的函数y5x k25 是反比率函数,则k=________。
12.某厂有煤 1500 吨,求得这些煤能用的天数y 与均匀每日用煤吨数x 之间的函数关系式为。
13.已知圆柱的侧面积是 10cm2 ,若圆柱底面半径为r cm ,高为h cm ,则h与 r 的函数关系式是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学下册反比例函数同步练习(3)B
A组
1﹨已知反比例函数y=k
x
,当x=1时,y= -2,则k的值为()
A. 2 B.-1
2
C.1 D.-2
2﹨若y与x成反比例,当x= -1时, y= 4,则它的函数关系是 .
3﹨近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为.
4﹨已知变量y与x成反比例,当x=3时,y=-6.求:
(1)y与x之间的函数关系式;(2)当y=3时,x的值.
5.在面积为定值的一组矩形中,当矩形的边长为7.5cm时,它的另一边长为8cm.
(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.
(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.
B组
6﹨若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()
A.成反比例
B.成正比例
C.y与z2成正比例
D.y与z2成反比例
7﹨y 与x +1成反比例,当x =2时,y =1,则当y =-1时,x =_________.
8﹨某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (元)与日销售量y (个)之间有如下关系: 日销售单价x (元) 3 4 5 6 日销售量y(个) 20
15 12 10
求y 与x 之间的函数关系式;
9﹨已知121,y y y y -=与x 成反比例,2y 与)2(-x 成正比例,并且当x =3时,y =5,当x =1时,y =-1;求y 与x 之间的函数关系式.
参考答案
A 组
D 2﹨4y x =- 3﹨100y x
= 4﹨(1)y =-
18x ,(2)-6
5﹨(1)60y x
=
(2) 12 B 组 6﹨A 7﹨-4 8﹨60y x =
9﹨解:设11k y x
=,22(2)y k x =-,则y = 1k x 2(2)k x --。
根据题意有:1212153
k k k k +=-⎧⎪⎨-=⎪⎩ ,解得:13k =,24k =-,∴348y x x =+-。