人教版初中数学九年级上册单元测试 第25章 概率初步 (2)

合集下载

2022年人教版九年级数学上册第二十五章概率初步章节测评试卷(含答案详解)

2022年人教版九年级数学上册第二十五章概率初步章节测评试卷(含答案详解)

人教版九年级数学上册第二十五章概率初步章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为( )A.14B.13C.12D.352、某随机事件A发生的概率()P A的值不可能是()A.0.0001B.0.5C.0.99D.13、班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.234、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.496、妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是()A.14B.13C.12D.347、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8、甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程210ax bx++=有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.23B.59C.49D.139、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个10、在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.14B.13C.12D.34第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子里有红色、黄色、白色小球共80个.它们除颜色外均相同,小文将这些小球摇匀后从中随机摸出一个记下颜色,再把它放回盒中,不断重复,多次试验后他发现摸到红色、黄色小球的频率依次为30%和40%,由此可估计盒中大约有白球_____个.2、现有两个不透明的箱子,一个装有2个红球和1个白球,另一个装有1个红球和2个白球,这些球除颜色外完全相同.从两个箱子中各随机摸出1个球,摸出1红1白的概率是______.3、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为_____.4、在1-,3,5,7中随机选取一个数记为a,再从余下的数中随机取一个数记为b,则一次函数=+经过一、三、四象限的概率为______.y ax b5、某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是_________.(用最简分数表示)三、解答题(5小题,每小题10分,共计50分)1、为了迎接建党100周年,学校举办了“感党恩•跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是;(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.2、2021年,为了能源资源配置更加合理,我国多地发布限电令.某校为了解学生对限电原因的了解程度,在九年级学生中作了一次抽样调查,并将结果分成四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查结果绘制成了如下不完整的统计图:请根据图中信息回答下列问题:(1)本次被调查的学生有_________人;请补全条形统计图;(2)若该校九年级共有1200名学生,请你估计该校九年级学生中“比较了解”限电原因的学生有多少人?(3)九年(1)班被查的学生中A等级的有5人,其中2名男生,3名女生,现打算从这5名学生中随意抽取2人进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.3、第24届北京冬奥会的开幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫.杨老师为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)请问随机抽取一张卡片,上面写有“立春”的概率为;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小明和小华同时抽取.请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率.4、为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是____人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为_____度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.5、为増强学生的实践劳动能力,某校本周为全校1000名学生提供了A、B、C、D四种类型特色活动,为了解学生对这四种特色活动的喜好情况,学校随机抽取部分学生进行了“你最喜欢哪一种特色活动(必选且只选一种)”的问卷调查:并根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)被抽取的学生共有人,在抽取的学生中最喜欢C类活动的人数为;扇形统计图中“D”类对应扇形的圆心角的大小为,估计全体1000名学生中最喜欢B活动的有人;(2)根据題意补全条形统计图;(3)现从甲、乙、丙、丁四名学生会成员中任选两人担任此次特色活动的“监督员”,请用树状图或列表法表示出所有可能的結果,求乙被选为“监督员”的概率.-参考答案-一、单选题1、A【解析】【分析】【详解】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份, 故针头扎在阴影区域的概率为14,故选:A .【考点】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.2、D【解析】【分析】概率取值范围:01p ,随机事件的取值范围是01p <<.【详解】解:概率取值范围:01p .而必然发生的事件的概率P (A )1=,不可能发生事件的概率P (A )0=,随机事件的取值范围是01p <<.观察选项,只有选项D 符合题意. 故选:D .【考点】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.3、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A,B两位同学座位相邻的概率是61 122.故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.4、D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【考点】此题主要考查了随机事件的判断,关键是掌握随机事件,确定性事件的定义.5、D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可.【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,∴所选矩形含点A的概率是4 9故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.6、A【解析】【分析】根据题意画出树形图,求出在这两个路口都直接通过的概率为14即可求解.【详解】解:由题意画树形图得,由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P=14.故选:A【考点】本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.7、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)∵关于x的一元二次方程210ax bx++=有两个不相等的实数根,∴△=b2-4a>0, 画树状图如下:由图可知,共有9种等可能的结果,分别是a=12,b=1,则△=-1<0;a=12,b=3,则△=7>0;a=12,b=2,则△=2>0;a=14,b=1,则△=0;a=14,b=3,则△=8>0;a=14,b=2,则△=3>0;a=1,b=1,则△=-3<0;a=1,b=3,则△=5>0;a=1,b=2,则△=0;其中能使乙获胜的有4种结果数,∴乙获胜的概率为49,故选C.【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9、D【解析】【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】设红球有x个,根据题意得,3:(3+x)=1:5,解得x=12,经检验:x=12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D.【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.10、C【解析】【分析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解.【详解】从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是21 42 ,故选:C【考点】本题考查了利用列表法或树状图法求概率,正确地列出表格或树状图是解题的关键.注意:从中任意摸出一张,放回搅匀后再任意摸出一张.二、填空题1、24【解析】【分析】根据题意,先求出摸到白色小球的频率,再乘以总球数即可求解.【详解】解:∵多次试验的频率会稳定在概率附近,∴从盒子中摸出一个球恰好是白球的概率约为1-30 %-40 %=30 %,∴白球的个数约为80×30 %=24个.故答案为24.【考点】本题考查了利用频率估计概率,解答此题的关键是要计算出盒中白球所占的比例,再计算其个数.2、5 9【解析】【分析】列表得出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:列表如下:由表知,共有9种等可能结果,其中摸出1红1白有5种结果,所以摸出的两个球颜色相同的概率为59,故答案为:59.【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.3、0.600【解析】【详解】观察图象可知,该射手击中靶心的频率维持在0.600左右,所以该射手击中靶心的概率的估计值为0.600.4、1 4【解析】【分析】先画树状图,确定a,b,再根据图像分布,确定a,b的符号,根据概率公式计算即可.【详解】根据题意,画树状图如下:共有12种等可能性,∵一次函数y ax b =+经过一、三、四象限, ∴a >0,b <0,符合条件的有3种等可能性,∴一次函数y ax b =+经过一、三、四象限的概率为31124=; 故答案为:14.【考点】本题考查了不放回式的概率计算,一次函数的图像分布,熟练掌握概率计算,准确画树状图是解题的关键. 5、13【解析】 【分析】根据题意计算中奖概率即可; 【详解】解:∵每一箱都有6件产品,且每箱中都有2件能中奖,∴P(从其中一箱中随机抽取1件产品中奖)=21 63 ,故答案为:13.【考点】本题主要考查简单概率的计算,正确理解题意是解本题的关键.三、解答题1、(1)14;(2)见解析,12【解析】【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率.【详解】解:(1)∵共有4种可能出现的结果,其中是舞蹈社团D的有1种,∴小颖从中随机抽取一张卡片是舞蹈社团D的概率是14,故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,∴小颖抽取的两张卡片中有一张是演讲社团C的概率是612=12.【考点】本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键.2、 (1)200,图见详解(2)该校九年级学生中“比较了解”限电原因的学生有360人.(3)35 P【解析】【分析】(1)根据统计图可知B等级的学生有60人,占抽取人数的30%,进而问题可求解;(2)由统计图及题意可直接进行求解;(3)通过列表法进行求解概率即可.(1)解:由统计图可知B等级的学生有60人,占抽取人数的30%,∴本次被调查的学生有60÷30%=200(人),∴C等级的学生有:200-40-60-20=80(人),补全统计图如下:(2)解:由题意得:1200×30%=360(人),答:该校九年级学生中“比较了解”限电原因的学生有360人;(3)解:由题意可得列表如下:由上表可知5人中随机抽取2人的可能性有20种,恰好为一男一女的有12种,∴恰好抽到一男一女的概率为35P .【考点】本题主要考查概率及扇形统计图、条形统计图、样本估计总体,解题的关键是根据题意得到相应的数据进行分析即可.3、 (1)124;(2)16.【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片数即可得出答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与小明和小华同时抽取到的卡片上写有相同字的情况,再利用概率公式求解即可求得答案;(1)解:解:共有24张卡片,其中写有“立春”的卡片数为1,抽取到写有“立春”的概率为124;(2) 解:共有30种等可能性的结果,其中写有相同字的有4种可能性,分别是:(谷雨,雨水)、(雨水,谷雨) 、(春分,立春)、(立春,春分);∴两人抽到的卡片上写有相同的字的概率为:P(抽到相同字)=41 246=.【考点】本题考查了列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m是解题的关键,然后利用概率公式计算事件A或事件B的概率.4、 (1)120,见解析(2)90(3)300人(4)见解析,10%【解析】【分析】(1)由B的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)用C的人数除以调查总数再乘以360°即可得到答案;(3)用样本估计总体进行计算即可;(4)列出表格或画出树状图,得到所有可能的结果数,找出符合条件的结果数,再由概率公式求解即可.(1)因为参与B活动的人数为36人,占总人数30%,所以总人数36120 30%==人,则参与E活动的人数为:120303630618----=人;补全统计图如下:故答案为:120;(2)扇形C的圆心角为:3036090 120⨯︒=︒,故答案为:90;(3)最喜爱“测量”项目的学生人数是:301200300120⨯=人;答:估计其中最喜爱“测量”项目的学生人数是300人;(4)列表如下:或者树状图如下:所以,选中B 、E 这两项活动的概率为:()2100%10%20BE P =⨯=选中. 【考点】 本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.5、 (1)100,30,36°,350(2)见解析(3)见解析,12【解析】【分析】(1)用最喜欢A类活动的人数除以最喜欢A类活动的人数所占百分比即可得被抽取的学生的总人数;用总人数减去最喜欢A类、B类、D类活动的人数即可到最喜欢C类活动的人数;用最喜欢D类人数除以被抽取学生总数,求出最喜欢D类人数占被抽取学生总数的百分比,再乘以360°,即可求出“D”类对应扇形的圆心角;用喜欢B类活动人数除以被抽取学生总人数,得到最喜欢B类人数占被抽取学生总数的百分比,再乘以1000,即可求出最喜欢B活动的人数;(2)按照(1)求出的最喜欢C类活动的人数,补全即可;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.(1)解:被抽取学生总人数为:25÷25%=100(人),在抽取的学生中最喜欢C类活动的人数为:100―25―35―10=30(人),扇形统计图中D类占被抽取学生的百分比为:10100%=10% 100⨯,扇形统计图中D类对应扇形的圆心角为:360°×10%=36°,扇形统计图中B类占被抽取学生的百分比为:35100%=35% 100⨯,估计全体1000名学生中最喜欢B活动的有:1000×35%=350(人);故答案为:100,30,36°,350(2)解:补全条形统计图如图所示,(3)解:画树状图为:共有12种等可能的结果数,其中乙被选到的结果数为6,.∴乙被选到的概率为:61=122答:乙被选为“监督员”的概率为1.2【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数目n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

人教版数学九年级上册_第25章_概率初步_单元测试卷【有答案】

人教版数学九年级上册_第25章_概率初步_单元测试卷【有答案】

人教版数学九年级上册_第25章_概率初步_单元测试卷【有答案】一、选择题(共10 小题,每小题 3 分,共30 分)1.从这九个自然数中任取一个,是的倍数的概率是()A. B. C. D.2.在一次抽奖中,若抽中的概率是,则抽不中的概率是()A. B. C. D.3.一副扑克牌,去掉大小王,从中任抽一张,抽到的牌是的概率是()A. B. C. D.4.袋中有同样大小的个球,其中个红色,个白色.从袋中任意地同时摸出两个球,这两个球的颜色相同的概率是()A. B. C. D.5.掷一次骰子(每面分别刻有点),向上一面的点数是质数的概率等于()A. B. C. D.6.如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得分,否则小刚得分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测7.一个不透明的袋中装有除颜色外均相同的个红球、个白球,从中随机摸出个球,则下列说法正确的是()A.至少有一个是白球B.至少有一个是红球C.一定是一个白球、一个红球D.一定是两个红球8.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为()A. B. C. D.9.在一个不透明的布袋中,红色、黑色的球共有个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在附近,则口袋中红球的个数很可能是()A.个B.个C.个D.个10.一个不透明的口袋里装有除颜色外都相同的个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了次,其中有次摸到白球,因此小亮估计口袋中的红球大约为()A.个B.个C.个D.个二、填空题(共8 小题,每小题 3 分,共24 分)11.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋摸球的次数摸到白球的次数摸到白球的频率12.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有支黑色,支绿色,支红色的笔.那么随机赠送的笔为绿色的概率为________.13.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.14.“刘翔在米跨栏比赛中一定不会输给其他任何一个选手”是________事件(填“必然”,“不可能”或“不确定”).15.从一个装有个白球,个红球,个黄球的口袋中,随机摸一个不是白球的概率为________.16.有张看上去无差别的卡片,上面分别写着,,,,,,随机抽取张后,放回并混在一起,再随机抽取张,则两次取出的数字都是奇数的概率为________.17.一只不透明的袋子中装有个红球、个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是________.18.小明和爸爸今年五一节准备到峨眉山去游玩,他们选择了报国寺、伏虎寺、清音阁三个景点去游玩.如果他们各自在这三个景点中任选一个景点作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择报国寺为第一站的概率是________.三、解答题(共8 小题,共66 分)19.(6分) 在一个不透明的袋中装有个完全相同的小球,上面分别标号为、、,从中随机摸出两个小球,并用球上的数字组成一个两位数.求组成的两位数是奇数的概率;小明和小华做游戏,规则是:若组成的两位数是的倍数,小明得分,否则小华得分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(6分) 为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母,,,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.求甲获得电影票的概率;求乙获得电影票的概率;此游戏对谁有利?21.(9分) 小明和小亮想趁暑假去看世博会,可是只有一张门票,谁都想去,最后商定通过转盘游戏来决定.他们准备了如图所示两个可以自由转动的转盘、,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为时,小明去:数字之和为时,小亮去.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)用树状图或列表法求小明去的概率;这个游戏规则对小明、小亮双方公平吗?请判断并说明理由.22.(9分) 判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.若两张卡片均为死,该臣民最终活着;若两张卡片均为死,该臣民被杀死;若两张卡片上分别写着一“生”一“死”,该臣民最终活着.23.(9分) 在一个不透明的盒子中装有个形状大小完全一样的小球,上面分别有标号,,,用树状图或列表的方法解决下列问题:将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.将球搅匀,摸出一个球将其标号记为,放回后搅匀后再摸出一个球,将其标号记为.求直线不经过第三象限的概率.24.(9分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.小明和小刚都在本周日上午去游玩的概率为________;求他们三人在同一个半天去游玩的概率.25.(9分)在一个口袋中有个完全相同的小球,把它们分别标号为,,,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件为“两次取的小球的标号的和是的整数倍”,记事件为“两次取的小球的标号的和是或的整数倍”,请你判断等式是否成立,并说明理由.26.(9分) 解答下列问题:在一个不透明的口袋中有个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了次,其中有次摸到了红球,那么估计口袋中有白球多少个?请思考并作答:在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用、、等字母表示).答案1.C2.C3.D4.C5.B6.A7.B8.A9.A10.C11.12.13.14.不确定15.16.17.18.19.解:画树状图如下:一共有种等可能的结果,组成的两位数是奇数的有,,,共种情况,两位数是奇数的概率为;∵组成的两位数是的倍数的有种情况,∴(小明得分),(小华得分),∴该游戏不公平.可改游戏规则为:组成的两位数是的倍数,小明得分,否则小华得分.20.解:根据题意得:(甲获得电影票);列表如下:所有等可能的情况有种,其中两次抽取字母相同的结果有种,则(乙获得电影票);∵,∴此游戏对甲更有利.21.解:画树状图得:∵共有种等可能的结果,小明去的有种情况;∴小明去的概率为:;公平.理由:∵数字之和为的有种情况,∴(小亮去),∴(小明去)(小亮去),∴这个游戏规则对小明、小亮双方公平.22.解:不可能事件必然事件随机事件23.解:列表得:一共有种情况,两次取出小球上的数字两标号互为相反数的情况有种,所以两标号互为相反数的概率;列表如下:∴(不经过第三象限).24.(1).25.解:等式不成立,理由:列表得:共种等可能的结果,其中为的倍数的有种,为或的倍数的有种,故,,故不成立.26.解:∵实验总共摸了次,其中有次摸到了红球,∵口袋中有个红球,假设有个白球,∴,解得:,∴口袋中有白球个;可以拿出个标上记号,然后搅匀后再拿出个,带记号的有个,即可估计白球的个数.设球的总个数为,,∴.∴白球的个数为.人教版数学九年级(上)第25章《概率初步》单元综合练习卷(含答案)一.选择题1.下列事件中,属于必然事件的是()A.经过路口,恰好遇到红灯B.抛一枚硬币,正面朝上C.打开电视,正在播放动画片D.四个人分成三组,这三组中有一组必有2人2.做重复实验:抛掷同一枚瓶盖1000次.经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A.0.4B.0.45C.0.5D.0.553.如果k是随机投掷一个骰子所得的数字(1,2,3,4,5,6),则关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不等实数根的概率P=()A.B.C.D.4.如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次,当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A.B.C.D.5.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.6.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近7.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是58.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①某次实验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①②B.②③C.①③D.①②③9.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A.B.C.D.10.小红上学要经过两个十字路口,假设她在每个路口遇到红、绿灯的概率均为,小红上学时经过每个路口都是绿灯的概率为()A.B.C.D.二.填空题11.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,恰好是男生的概率是.12.一个不透明的袋中装有除颜色外均相同的8个红球和m个黄球,从中随机摸出一个,摸到红球的概率为,则m= .13.从、、、、0.中,任取一个数,取到无理数的概率是.14.如图,转盘的白色扇形和黑色扇形的圆心角分别为240°和120°.让转盘自由转动2次,则指针一次落在白色区域,另一次落在黑色区域的概率是.15.一只妈蚁在如图所示的树枝上寻见食物,假定妈蚁在每个岔路口都会随机地选择一条径,则它获得食物的概率是.16.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,圆O是Rt△ABC的外接圆,如果在圆O内随意抛一粒小麦,则小麦落在△ABC内的概率为.17.班里有18名男生,15名女生,从中任意抽取a人打扫卫生,若女生被抽到是必然事件,则a的取值范围是.18.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字为p,随机摸出另一张卡片,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是.三.解答题19.现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.20.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“6”的四张牌背面朝上洗匀,先从中抽出1张牌,再从余下的3张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)求出每次抽奖获奖的概率?21.2018年3月30日初2018级同学以优异的成绩在双福育才中学完成了中招体育测试,初2019级为了准备明年的体考,对1、2、3、4班进行了体考模拟测试,并对三个班的满分进行了统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中2班体育成绩满分人数对应的圆心角是度;并补全条形统计图;(2)经过体育老师推荐,这些满分同学中有4名同学(1女3男)的跳远动作十分标准,12班班主任准备从这4名同学中任选2名给自己班级的同学示范标准动作,请利用画树状图或列表的方法求出选出2名同学恰好是一男一女的概率.22.小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.23.某中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),根据统计图提供的信息,回答问题:(1)该校毕业生中男生有人;扇形统计图中a= ;(2)补全条形统计图;扇形统计图中,成绩为10分的所在扇形的圆心角是度;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?24.为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x= ,a= ,b= ;(2)补全上面的条形统计图;(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.参考答案一.选择题1.解:A、经过路口,恰好遇到红灯,是随机事件,不合题意;B、抛一枚硬币,正面朝上,是随机事件,不合题意;C、打开电视,正在播放动画片,是随机事件,不合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,符合题意.故选:D.2.解:∵抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的次数约为550次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.55;故选:D.3.解:关于x的一元二次方程(k﹣1)x2+4x+1=0中,b2﹣4ac=16﹣4(k﹣1)>0,解得:k<5,则符合题意的数字为:1,2,3,4,故方程有两个不等实数根的概率P=.故选:C.4.解:指针落在红色区域内的概率是=,故选:C.5.解:∵图中共有15个方格,其中黑色方格3个,∴黑色方格在整个方格中所占面积的比值==,∴最终停在阴影方砖上的概率为.故选:C.6.解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.7.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,符合题意;C、抛一枚硬币,出现正面的概率为,不符合题意;D、抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5的概率是,不符合题意,故选:B.8.【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的频率是:308÷500=0.616,故①正确;随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选:A.9.解:画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,所以两次摸出的小球的标号的和为奇数的概率为=,故选:B.10.解:画树状图如下:由树状图知共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.二.填空题(共8小题)11.解:∵某班共有6名学生干部,其中4名是男生,2名是女生,∴任意抽一名学生干部去参加一项活动,恰好是男生的概率是:.故答案为:.12.解:由题意得:,解得:m=6;故答案为:6.13.解:无理数有、、所以取到无理数的概率是,故答案为:.14.解:设白色扇形两块和黑色扇形的一块分别为1,2,3,画树形图得:由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为.故答案为:.15.解:共有8种等可能的结果数,其中有食物的占2种,所有它获得食物的概率==.故答案为:.16.解:∵∠C=90°,AB=10,AC=8,∴BC===6,=AC•BC=×6×8=24,∴S△ABC=π•()2=25π,∵S⊙O∴小麦落在△ABC内的概率为=,故答案为:.17.解:因为班里共有18名男生,若要使女生被抽到是必然事件,则抽取的人数不少于19人,又总人数为33人,所以18<a<33,故答案为:18<a<33.18.解:画树状图如下:由树状图知共有6种等可能结果,其中使关于x的方程x2+px+q=0有实数根的结果有3种结果,∴关于x的方程x2+px+q=0有实数根的概率为=,故答案为:三.解答题(共6小题)19.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.20.解:(1)画树状图如下:由树状图知,共有12种等可能结果,其中|x|=4的只有2种结果,所以甲同学获得一等奖的概率为=;(2)因为共有12种等可能结果,其中可以获奖的有10种结果,所以每次抽奖获奖的概率为=.21.解:(1)调查的总人数为:8÷40%=20(人),扇形统计图中2班体育成绩满分人数对应的圆心角=×360°=36°;条形统计图为:故答案为36;(2)画树状图为:共有12种等可能的结果数,其中选出2名同学恰好是一男一女的结果数为6,所以选出2名同学恰好是一男一女的概率==.22.解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率==;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为4,所以小王胜的概率==;两次的数字都是偶数的结果数为4,所以小张胜的概率==,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.23.解:(1)校毕业生中男生有:20+40+60+180=300人.∵×100%=12%,∴a=12.故答案为300,12.(2)由题意b=1﹣10%﹣12%﹣16%=62%,∴成绩为10分的所在扇形的圆心角是360°×62%=223.2°.500×62%﹣180=130人,∵500×10%=50,∴女生人数=50﹣20=30人.条形图如图所示:(3)这名学生该项成绩在8分及8分以下的概率是=.24.解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)∵5﹣2=3(名),∴喜爱最强大脑的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,==.则P(一男一女)人教版九年级上册第二十五章《概率初步》单元检测(有答案)(2)一、选择题1、随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A. B. C. D.12、一个事件的概率不可能是()A.0B.C.1D.3、10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.0.5 B.0.4 C.0.2 D.0.14、某校学生会正筹备一个“红五月校园艺术节”文艺汇演活动,现准备从4名其中两男两女节目主持候选人中,随机选取两人担任节目主持人,两名主持人恰好为一男一女的概率是A. B. C. D.5、在﹣1,1,2这三个数中任意抽取两个数k,m,则一次函数y=kx+m的图象不经过第二象限的概率为()A. B. C. D.6、下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视机,正在播放广告C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球7、有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取一张,那么小明抽到好人牌的概率是()A. B. C. D.8、下列说法错误的是()A. 同时抛两枚普通正方体骰子,点数都是4的概率为B. 不可能事件发生机会为0C. 买一张彩票会中奖是可能事件D. 一件事发生机会为1.0%,这件事就有可能发生9、在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A. 9B. 12C. 15D. 1810、如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A. ①B. ②C. ①②D. ①③11、如图,一小鸟受伤后,落在阴影部分的概率为()A. B. C. D.1。

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试

【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试

(2)若小军事先选择的数是5,用列表法或画树状图的方法求他获胜的概率.
23.有,,三种款式的帽子,甲,乙两种款式的围巾,穿戴时小华任意选一顶帽子
和一条围巾.
(1)用列表法或树状图表示搭配的所有可能性结果.
(2)求小华恰好选中她所喜欢的款帽子和乙款围巾的概率.
24.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做
19.在一个不透明的袋子中有6个红球和若干个白球,这些球除颜色外均相同,每次从
袋子中摸出一个球记录颜色后再放回,经过大量重复试验,摸到白球的频率稳定在
0.25,则袋子中白球的个数是 ______.
20.在一个不透明的盒子中装有个球,它们除了颜色之外其它都没有区别,其中含有
3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放
3.下列说法正确的是( )
A. 为了解人造卫星的设备零件的质量情况,应选择抽样调查
B. 了解九年级(1)班同学的视力情况,应选择全面调查
C. 购买一张体育彩票中奖是不可能事件
D. 抛掷一枚质地均匀的硬币刚好正面朝上是必然事件
4.翻开鲁教版八年级下册数学课本,恰好是45页,这个事件是( )
A. 不可能事件
回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出的值
大约是______.
三 、解答题(本大题共 4 小题,共 32 分)
21.某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按
照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
等,则小球从出口落出的概率是( )
1
1
1
1
A. 2

人教版-数学-九年级上册-第25章概率初步单元测试题含答案

人教版-数学-九年级上册-第25章概率初步单元测试题含答案

(第7题图)九年级数学单元检测题(第25章)一、选择题1. “抛一枚均匀硬币,落地后正面朝上”这一事件是 ( ) .A .随机事件B .确定事件C .必然事件D .不可能事件 2.下列说法正确的是( ).A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 3.“明天降水概率是30%”,对此消息下列说法中正确的是( ). A .明天降水的可能性较小 B .明天将有30%的时间降水C .明天将有30%的地区降水D .明天肯定不降水4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ) .A .1B .12C .13D .05.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、 P(C),则P(A)、P(B)、 P(C)的大小关系正确的是( ). A .P(C)<P(A)=P(B) B . P(A)< P(B)<P(C) C .P(C)< P(B)<P(C) D . P(C)< P(A)<P(B)6. 小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ).A .201 B .41 C .51 D .317.一只小狗在如图所示的方砖上走来走去,最终停在阴影方砖上的概率是( ). A .154 B .31 C .51 D .1528.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ). A .12 B .14 C .16 D .1129. 在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发(第10题图)现摸到红球的频率稳定在20%左右,则a 的值大约为( ).A .12B .15C .18D .2110.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( ).A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4 二、填空题 11. 从 - 1, 0,31, ,3中随机任取一数, 取到无理数的概率是 . 12.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 . 13.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是.14. 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有 条鱼.15.有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是 .16.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球 个.三、解答题(本大题共6小题,共44分) 17.从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率: (1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.18.节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品,质监部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表.(1)根据分布表中的数据,在答题卡上写出a ,b ,c 的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.19.小颖为九年级1班毕业联欢会设计了一个“配紫色”的游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜,求游戏者获胜的概率.20.一个不透明的布袋里装有2个白球,1 个黑球和若干个红球,它们除颜色外其余都相同. 从中任意摸出1个球,是白球的概率为12. (1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回...,再摸出1个球,请用列表或画树状图等方法求出(第19题图)两次摸到的球都是白球的概率.九年级数学单元检测题答案(第25章)一、选择题(本大题共10小题.每小题3分,共30分) 1.A 2.C 3.A 4.C 5.D 6.B 7.B 8.C 9. B 10.D 二、填空题(本大题共6小题.每小题4分,共24分) 11.25 12.0.88 13.14 14.1200 15. 14 16. 9三、解答题(本大题共4小题,共46分)17.(10分)解:(1)从甲、乙、丙3名同学中随机抽取1名环保志愿者,恰好是甲的概率是13. (2)所有可能出现的结果(甲,乙),(甲,丙),(乙,丙),共有3种,它们出现的可能性相同.所有的结果中,满足“甲在其中”(记为事件A )的结果只有2种,所以()23P A =. 18. (12分)解:(1)a =20÷200=0.1;b =200×0.15=30;c =60÷200=0.3,即a =0.1,b =30,c =0.3;(2)这批节能灯中,优等品有60个,正品有110个,次品有30个,此人购买的1个节能灯恰好不是次品的概率为:85.020060110=+=P . 19.(12分)解法1开始红1红2蓝色红(红1,红)蓝(红1,蓝) 红(红2,红)蓝(红2,蓝) 红(蓝,红)蓝(蓝,蓝)解法2:用树状图来说明所以配成紫色得概率为P(配成紫色)=2163=,所以游戏者获胜的概率为21.20. (12分)解:(1)由题意得,1242÷= ∴布袋里共有 4个球. ∵4-2-1 =1∴布袋里有 1个红球. (2)∴任意摸出 2个球刚好都是白球的概率是1.6。

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。

除了颜色外,它们都一样。

如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。

c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。

b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。

B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。

转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。

如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。

d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。

10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。

c.d。

人教版九年级数学上册单元清 检测内容:第二十五章 概率初步

人教版九年级数学上册单元清 检测内容:第二十五章 概率初步

检测内容:第二十五章 概率初步得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是( B )A .小于12B .等于12C .大于12D .无法确定2.下列事件中,属于必然事件的是( C )A .抛掷一枚1元硬币落地后,有数字的一面向上B .打开电视任选一频道,正在播放新闻C .到一条线段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是10%,则购买该种彩票100张一定中奖3.(绥化中考)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( A )A .13B .14C .15D .164.有一个质地均匀且可以转动的转盘,盘面被分成6个全等的扇形区域,在转盘的适当地方涂上灰色,未涂色部分为白色,用力转动转盘,为了使转盘停止时,指针指向灰色区域的可能性的大小是13,那么下列涂色方案正确的是( A )5.(绍兴中考)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( C )A .12B .13C .14D .16第5题图第6题图第7题图6.在拼图游戏中,从图①的四张纸片中,任取两张纸片,能拼成“小房子”(如图②)的概率等于( D )A .1B .12C .13D .237.(东营中考)如图.随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡L 1,L 2同时发光的概率为( D )A .16B .12C .14D .138.(新疆中考)四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为( C )A .14B .13C .12D .349.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( B )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” C .抛一个质地均匀的正六面体骰子,向上的面的点数是5 D .抛一枚硬币,出现反面的概率10.(济宁中考)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第1个图案中有1个正方体,第2个图案中有3个正方体,第3个图案中有6个正方体,…,按照此规律,从第100个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( D )A .1100B .120C .1101D .2101二、填空题(每小题3分,共24分) 11.将下列事件序号填入相应的空中:①测得某天的最高气温为100 ℃;②度量三角形的内角和,结果是180°;③100件某种产品中有2件次品,从中任取1件恰好是次品;④在标准大气压下,水加热到100 ℃时,沸腾;⑤经过城市中某一有交通信号灯的路口,遇到红灯;⑥某篮球队员在罚球线上投篮1次,恰好投中.(1)必然事件:__②④__;(2)不可能事件:__①__;(3)随机事件:__③⑤⑥__ .12.一个不透明口袋中装有红球6个,黄球4个,绿球3个,这些球除颜色外没有其他区别.现从中任意摸出一个球,如果要使摸到绿球的概率最大,需要在这个口袋中至少再放入__4__个绿球.13.新学期开学,刚刚组建的七年级(1)班有男生30人,女生24人,欲从该班级中选出一名值日班长,任何人都有同样的机会,则这班选中一名男生当值日班长的概率是__59 __.14.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为20%,估计袋中白球有__2__个.15.一个不透明的布袋里装有若干个只有颜色不同的小球,随机摸出一个白色小球的概率是12 ;如果将摸出的白球放回,再往袋子中放入9个同样的红色小球,随机摸出一个白球的概率为13,则原来袋子中有白色小球__9__个.16.(菏泽中考)从-1,2,-3,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数y =ab x ,则这些反比例函数中,其图象在二、四象限的概率是__23 __.17.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__25__.18.已知⊙O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,则P 1P 2 =__2π __.三、解答题(共66分)19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 1个球是黑球的可能性大小是45,求m 的值.解:(1)4;2或3(2)依题意,得6+m 10 =45,解得 m =2,所以m 的值为220.(10分)(包头中考)某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图法解答)解:(1)450×1850 =162(人),则估计该校九年级体育测试成绩为25分的学生人数为162人(2)画树状图如图,共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为212 =1621.(10分)某商场为吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下:(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由. 解:(1)50010 000 =120 (2)平均每张奖券获得的购物券金额为100×50010 000+50×1 00010 000 +20×2 00010 000 +0×6 50010 000=14(元),∵14>10,∴选择抽奖合算22.(12分)(泰州中考)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是__0.33__.(精确到0.01),由此估出红球有__2__个;(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.解:(2)画树状图如图所示,由图可知,共有9种等可能的结果数,其中恰好摸到1个白球、1个红球的结果数为4,所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为4923.(12分)(贵阳中考)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C 处的概率是__14__;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率. 解:(2)列表如下:6(9,6)(8,6)(7,6)(6,6)共有16种可能,和为14可以到达点C ,有3种结果,所以棋子最终跳动到点C 处的概率为31624.(14分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S 甲2=0.8,S 乙2=0.4,S 丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)解:(1)甲运动员测试成绩的众数和中位数都是7分(2)∵x 甲=7(分),x 乙=7(分),x 丙=6.3(分),∴x 甲=x 乙>x 丙,S 甲2>S乙2,∴选乙运动员更合适(3)树状图如图所示,第三轮结束时球回到甲手中的概率是P =28 =14。

人教版九年级上《第25章概率初步》单元测试(2)含答案解析

人教版九年级上《第25章概率初步》单元测试(2)含答案解析

《第25章概率初步》一.选择题1.一个均匀的正20面体形状的骰子,其中一个面标有“1”,两个面标有“2”,三个面标有“3”,四个面标有“4”,五个面标有“5”,其余的面标有“6”,将这个骰子掷出后,“6”朝上的概率是()A.B.C.D.2.下列说法错误的是()A.随机事件的概率介于0至1之间B.“明天降雨的概率是50%”表示明天有一半的时间降雨C.在同一年出生的367名学生中,至少有两人的生日是同一天D.“彩票中奖的概率是1%”,小明买该彩票100张,他不一定中奖3.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B.C.1 D.4.“小刚同学数学考试得满分”是一个()A.必然事件 B.不可能事件C.随机事件 D.上述说法都不对5.下列事件中,属于必然发生的事件是()A.今天下雨,则明天也会下雨B.小明数学考试得满分C.若今天是2月28日,则明天是2月29日D.2008年有366天6.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球7.A、B两站间特快列车需要行驶3小时30分钟,早6时两站同时对发首次列车,以后每隔1小时发一次车.那么,上午9时从A站发出的特快列车将与B站出发的列车相遇的次数是()A.5次B.6次C.7次D.8次8.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.9.一游戏规则如下:在20个商标中,有5个商标的背面注明一定奖金额,其余商标背面是一张哭脸,若翻到哭脸就不得奖,参与这个游戏的观众有三次翻牌机会(翻开的不能重翻),某观众前两次牌均获得若干奖金,他第三次翻牌的中奖概率为()A.B.C.D.10.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.11.下列成语所描述的事件是必然发生的是()A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖12.某种彩票的中奖机会是1%,下列说法正确的是()A.买1张这种彩票一定不会中奖B.买100张这种彩票一定会中奖C.买1张这种彩票可能会中奖D.买100张这种彩票一定有99张彩票不会中奖二.填空题13.在一个不透明的袋子中装有红白两种颜色的球(形状大小质地完全相同)共25个,其中白球有5个.每次从中随机摸出一个球,并记下颜色后放回,那么从袋子中随机摸出一个红球的概率是.14.同时投掷两枚硬币100次,两个都是正面的次数约为次.15.随机掷两枚硬币,落地后全部正面朝上的概率是.16.“明天会下雨“是(填“确定”或“不确定”)事件.17.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(0,﹣1),则他第三次掷得的点也在这条直线上的概率为.18.在100张奖券中有16张可以中奖,小华从中任抽一张中奖的概率是.三.解答题19.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了52个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:穗长 4.5≤x<55≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<77≤x<7.5频数 4 8 12 13 10 5(1)请你在图1,图2中分别绘出频数分布直方图和频数折线图;(2)请你对这块试验田里的水稻穗长进行分析;(3)求这块试验田里穗长在5.5≤x<7范围内的谷穗的概率.22.从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C 就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).23.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.24.有三张卡片(背面完全相同)分别写有,1,2把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张(1)两人抽取的卡片上的数都是1的概率是多少?(2)李刚为他们俩设定了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军胜;否则小明获胜,你认为这个游戏规则对谁有利?请用画树状图的方法进行分析说明.25.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.26.韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果;(2)求韦玲胜出的概率.《第25章概率初步》参考答案与试题解析一.选择题1.一个均匀的正20面体形状的骰子,其中一个面标有“1”,两个面标有“2”,三个面标有“3”,四个面标有“4”,五个面标有“5”,其余的面标有“6”,将这个骰子掷出后,“6”朝上的概率是()A.B.C.D.【考点】概率公式.【分析】先求出标有“6”的面的个数,正二十边形每个面向上的机会相同,因而根据概率公式解答即可.【解答】解:标有“6”的面数为5,共有20个面,故标有“6”的面朝上的可能性为.故选:C.【点评】此题主要考查了概率公式的应用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.下列说法错误的是()A.随机事件的概率介于0至1之间B.“明天降雨的概率是50%”表示明天有一半的时间降雨C.在同一年出生的367名学生中,至少有两人的生日是同一天D.“彩票中奖的概率是1%”,小明买该彩票100张,他不一定中奖【考点】概率的意义.【分析】根据概率的意义即可判断.【解答】解:A、随机事件的概率介于0至1之间,说法正确,不符合题意;B、“明天降雨的概率是50%”表示明天有可能降雨,也有可能不降雨,说法错误,符合题意;C、在同一年出生的367名学生中,至少有两人的生日是同一天,说法正确,不符合题意;D、“彩票中奖的概率是1%”,小明买该彩票100张,他不一定中奖,说法正确,不符合题意.故选B.【点评】本题主要考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,比较简单.3.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B.C.1 D.【考点】概率公式.【专题】应用题.【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选A.【点评】明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.4.“小刚同学数学考试得满分”是一个()A.必然事件 B.不可能事件C.随机事件 D.上述说法都不对【考点】随机事件.【分析】根据必然事件、不可能事件和随机事件的定义即可判断.【解答】解:“小刚同学数学考试得满分”是一个随机事件.故选C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下列事件中,属于必然发生的事件是()A.今天下雨,则明天也会下雨B.小明数学考试得满分C.若今天是2月28日,则明天是2月29日D.2008年有366天【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、今天下雨,则明天也会下雨是随机事件,故A错误;B、小明数学考试得满分是随机事件,故B错误;C、若今天是2月28日,则明天是2月29日是不可能事件,故C错误;D、2008年有366天是必然事件,故D正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A、B两站间特快列车需要行驶3小时30分钟,早6时两站同时对发首次列车,以后每隔1小时发一次车.那么,上午9时从A站发出的特快列车将与B站出发的列车相遇的次数是()A.5次B.6次C.7次D.8次【考点】一元一次方程的应用.【专题】行程问题.【分析】首先从A地9点开出的那辆与 B地6点开出的(还有30分钟到A)车在 9:15 相遇之后分别于从B地7点、8点等开出的车相遇,从而求解.【解答】解:9:15 第一次相遇9:45 第二次相遇,以此类推10:1510:4511:1511:4512:15 第七次相遇12:30 行3小时半到达B点一共七次.故选C.【点评】本题考查理解题意能力,关键是看到9点钟从A站出发的车在途中遇到几辆车.8.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.【考点】概率公式.【分析】先求出题的总号数及8号的个数,再根据概率公式解答即可.【解答】解:前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为.故选B.【点评】考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.9.一游戏规则如下:在20个商标中,有5个商标的背面注明一定奖金额,其余商标背面是一张哭脸,若翻到哭脸就不得奖,参与这个游戏的观众有三次翻牌机会(翻开的不能重翻),某观众前两次牌均获得若干奖金,他第三次翻牌的中奖概率为()A.B.C.D.【考点】概率的意义.【专题】常规题型.【分析】根据概率的意义,第三次翻牌时有奖的商标数除以第三次翻牌时的总的商标数即可.【解答】解:∵前两次牌均获得若干奖金,∴他第三次翻牌时,有奖的商标有5﹣2=3个,总的商标有20﹣2=18个,∴他第三次翻牌的中奖概率为=.故选B.【点评】本题考查了概率的意义,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与征征和舟舟选到同一社团的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,征征和舟舟选到同一社团的有3种情况,∴征征和舟舟选到同一社团的概率是: =.故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.下列成语所描述的事件是必然发生的是()A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖【考点】随机事件.【专题】转化思想.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A,B选项为不可能事件,故不符合题意;C选项为可能性较小的事件,是随机事件;D项瓮中捉鳖是必然发生的.故选:D.【点评】理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.某种彩票的中奖机会是1%,下列说法正确的是()A.买1张这种彩票一定不会中奖B.买100张这种彩票一定会中奖C.买1张这种彩票可能会中奖D.买100张这种彩票一定有99张彩票不会中奖【考点】概率的意义.【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.【解答】解:中奖机会是1%,就是说中奖的概率是1%,机会较小,但也有可能发生.故选C.【点评】本题解决的关键是理解概率只是反映事件发生机会的大小.二.填空题13.在一个不透明的袋子中装有红白两种颜色的球(形状大小质地完全相同)共25个,其中白球有5个.每次从中随机摸出一个球,并记下颜色后放回,那么从袋子中随机摸出一个红球的概率是.【考点】概率公式.【分析】根据袋中共有25个球,每个球被摸到的机会是均等的,利用概率公式即可解答.【解答】解:∵袋子中装有20个红球和5个白球,∴根据概率公式,从袋子中摸出一个红球的概率P==;故答案为:.【点评】此题考查了概率公式:如果一个随机事件有以下特征,(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等,则可用概率公式计算.14.同时投掷两枚硬币100次,两个都是正面的次数约为25 次.【考点】利用频率估计概率.【专题】计算题.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从求概率入手,求出发生的次数.【解答】解:同时投掷两枚硬币,会出现正正.正反,反正,反反4种等可能的结果,故两个都是正面发生的概率为四分之一,次数约为100×=25次.故答案为:25.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.随机掷两枚硬币,落地后全部正面朝上的概率是.【考点】列表法与树状图法.【分析】利用列举法,列举出出现的各种可能情况,根据概率公式即可求解.【解答】解:用列举法表示出各种可能:则共有4种情况,而全部正面朝上的只有一种,则概率是:.故答案是:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.“明天会下雨“是不确定(填“确定”或“不确定”)事件.【考点】随机事件.【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件,即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:“明天会下雨”可能发生,也可能不发生,是不确定事件.【点评】理解概念是解决这类基础题的主要方法.17.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(0,﹣1),则他第三次掷得的点也在这条直线上的概率为.【考点】列表法与树状图法;一次函数图象上点的坐标特征;专题:正方体相对两个面上的文字.【分析】根据一次函数的性质,找出符合点在这条直线上的点的个数,即可根据概率公式求解即可.【解答】解:每掷一次可能得到6个点的坐标分别是(其中有两个点是重合的):(1,1),(1,1),(2,3),(3,2),(3,5),(5,3),通过描点和计算可以发现,经过(1,1),(2,3),(3,5),三点中的任意两点所确定的直线都经过点P(0,﹣1),所以小华第三次掷得的点也在直线l上的概率是故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.在100张奖券中有16张可以中奖,小华从中任抽一张中奖的概率是.【考点】概率公式.【分析】根据概率=所求情况数与总情况数之比直接进行计算即可.【解答】解:∵在100张奖券中有16张可以中奖,∴小华从中任抽一张,她中奖的概率是=;故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=..三.解答题19.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.【考点】概率公式.【分析】(1)用黄球的个数除以所有球的个数即可求得概率;(2)根据概率公式列出方程求得红球的个数即可.【解答】解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得: =,解得:x=5.故后来放入袋中的红球有5个.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.【考点】列表法与树状图法;频数(率)分布直方图;扇形统计图;中位数.【分析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50﹣5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50﹣5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E 组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为: =.【点评】此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了52个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:穗长 4.5≤x<55≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<77≤x<7.5频数 4 8 12 13 10 5(1)请你在图1,图2中分别绘出频数分布直方图和频数折线图;(2)请你对这块试验田里的水稻穗长进行分析;(3)求这块试验田里穗长在5.5≤x<7范围内的谷穗的概率.【考点】频数(率)分布直方图;频数(率)分布折线图;利用频率估计概率.【专题】数据的收集与整理;概率及其应用.【分析】(1)根据已知表格绘出频数分布直方图与频数折线图,如图所示;(2)找出谷穗长度的大致范围,以及谷穗个数最多与最少的即可;(3)由穗长在5.5≤x<7范围内的谷穗个数除以总数,即可求出所求概率.【解答】解:(1)做出统计图,如图所示:(2)由(1)可知谷穗长度大部分落在5cm至7cm之间,其它区域较少,长度在6≤x<6.5范围内的谷穗个数最多,有13个,而长度在4.5≤x<5,7≤x<7.5范围内的谷穗个数很少,总共只有9个;。

人教版九年级上册数学 第二十五章 概率初步 单元测试卷(含答案解析)

人教版九年级上册数学 第二十五章 概率初步  单元测试卷(含答案解析)

人教版九年级上册数学第二十五章概率初步单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.彩民李大叔购买1张彩票,中奖.这个事件是( )A.必然事件B.确定性事件C.不可能事件D.随机事件2.老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是( )A.15B.14C.13D.343.如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )A.14B.13C.38D.494.下列说法正确的是( )A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖5.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个白球B. 至少有2个白球C. 至少有1个黑球D. 至少有2个黑球6.某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A.12B.14C.16D.1167.从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( )A.15B.25C.35D.458.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( )A.14B.12C.π8D.π49.下表显示的是某种大豆在相同条件下的发芽试验结果.每批粒数n100 300 400 600 1000 2000 3000 发芽的粒数m96 282 382 570 948 1904 2850 发芽的频率mn0.960 0.940 0.955 0.950 0.948 0.952 0.950①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800.其中推断合理的是( )A.①②③B.①②C.①③D.②③10.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球的概率是1 3D.两次摸出的球都是红球的概率是1 9二、填空题(每小题4分,共20分)11.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_______.12.班里有18名男生,15名女生,从中任意抽取a名打扫卫生,若女生被抽到是必然事件,则a的取值范围是_________.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是___________.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图.用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为_____________2cm.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回、搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号 1 2 3袋中玻璃球色彩、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)从1号布袋中随机摸出1个玻璃球,该球是黄色、绿色或红色;(2)从2号布袋中随机摸出2个玻璃球,2个球中至少有1个不是绿色;(3)从3号布袋中随机摸出1个玻璃球,该球是红色;(4)从1号布袋中和2号布袋中各随机摸出1个玻璃球,2个球的颜色一致.17.(8分)回答下列问题:。

人教新版九年级数学上学期 期末单元复习 第25章 概率初步 含答案

人教新版九年级数学上学期 期末单元复习 第25章 概率初步  含答案

第25章概率初步一.选择题(共11小题)1.若气象部门预报明天下雨的概率是65%,下列说法正确的是()A.明天一定会下雨B.明天一定不会下雨C.明天下雨的可能性较大D.明天下雨的可能性较小2.下列事件中,是不可能事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.从装有5个黑球的袋子中摸出白球3.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.守株待兔D.瓮中捉鳖4.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数5.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.B.C.D.6.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.17.甲、乙两人分别投掷一枚质地均匀的正方体骰子,规定掷出的两个骰子“和为奇数”算甲赢,否则算乙赢,这个游戏对甲乙双方()A.公平B.对甲有利C.对乙有利D.无法确定8.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.9.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色再放回,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.B.C.D.10.如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上11.做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动二.填空题(共4小题)12.同时抛掷3枚均匀的硬币,则3枚硬币落地后,都是正面朝上的概率是.13.从﹣1,1,2这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(3,0),则在平面直角坐标系内直线MN经过第二象限的概率为.14.在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球个.15.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为.三.解答题(共3小题)16.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?17.车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.18.为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.参考答案与试题解析一.选择题(共11小题)1.若气象部门预报明天下雨的概率是65%,下列说法正确的是()A.明天一定会下雨B.明天一定不会下雨C.明天下雨的可能性较大D.明天下雨的可能性较小【分析】根据概率的意义找到正确选项即可.【解答】解:气象部门预报明天下雨的概率是65%,说明明天下雨的可能性比较大.所以只有C合题意.故选:C.2.下列事件中,是不可能事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.从装有5个黑球的袋子中摸出白球【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:A、购买一张彩票,中奖,是随机事件,不合题意;B、射击运动员射击一次,命中靶心,是随机事件,不合题意;C、经过有交通信号灯的路口,遇到红灯,是随机事件,不合题意;D、从装有5个黑球的袋子中摸出白球,是不可能事件,符合题意.故选:D.3.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.守株待兔D.瓮中捉鳖【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:A、水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、守株待兔是随机事件,故选项C符合题意;D、瓮中捉鳖是必然事件,故选项D不符合题意;故选:C.4.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数【分析】求出各个选项概率即可判断【解答】解:A、P1==;B、P2==;C、P3=;D、P4==.骰子停止运动后出现点数可能性大的是出现小于5的点.故选:D.5.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.B.C.D.【分析】由在这两辆车牌中,共有14个字符,其中数字9出现3次,再根据概率公式计算可得.【解答】解:在这两辆车牌中,共有14个字符,其中数字9出现3次,∴“9”这个数字在这两辆车牌号中出现的概率为,故选:B.6.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【解答】解:设两双只有颜色不同的手套的颜色为红和绿,列表得:∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.7.甲、乙两人分别投掷一枚质地均匀的正方体骰子,规定掷出的两个骰子“和为奇数”算甲赢,否则算乙赢,这个游戏对甲乙双方()A.公平B.对甲有利C.对乙有利D.无法确定【分析】列表得出所有等可能结果,根据概率公式计算出甲乙获胜的概率,再比较大小即可得.【解答】解:列表如下由表可知,共有36种等可能结果,其中和为奇数的有18种,和为偶数的有18种结果,∴甲获胜的概率为=,乙获胜的概率为=,故这个游戏对甲乙双方是公平的,故选:A.8.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.【分析】根据树形图即可求概率.【解答】解:根据树形图,可知蚂蚁可选择食物的主干路径有3条,即有三种等可能的结果,有食物的有两条.第一次选择有3种情况,然后其中有2种情况的每一种情况中有2种,所以是+=所以它获取食物的概率.故选:B.9.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色再放回,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.B.C.D.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【解答】解:估计摸白色乒乓球的概率为,故选:A.10.如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【解答】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是≈0.33,故本选项正确;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;D、掷一个正六面体的骰子,出现3点朝上的频率约为:≈0.17,故本选项错误;故选:B.11.做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率,故此选项错误;B、概率等于,故此选项错误;C、频率是随机的,随实验而变化,但概率是唯一确定的一个值,故此选项错误;D、当实验次数很大时,频率稳定在概率附近,故此选项正确.故选:D.二.填空题(共4小题)12.同时抛掷3枚均匀的硬币,则3枚硬币落地后,都是正面朝上的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次落地后都是正面朝上的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有8种等可能的结果,三次落地后都是正面朝上的只有1种情况,∴三次落地后都是正面朝上的概率=,故答案为:.13.从﹣1,1,2这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(3,0),则在平面直角坐标系内直线MN经过第二象限的概率为.【分析】根据题意画出树状图得出所有点M的坐标,再根据N点的坐标和直线MN经过第二象限,得出符合条件M的坐标,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:得到点M的坐标分别是(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1),∵点N为(3,0),∴直线MN经过第二象限时,点M的坐标有(﹣1,1)(﹣1,2)(1,2)(2,1),共4种情况数,∴在平面直角坐标系内直线MN经过第二象限的概率为=;故答案为:.14.在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球50 个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:设袋中有x个红球.由题意可得:=25%,解得:x=50,故答案为:50.15.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为.【分析】设袋子中红色小球有x个,根据摸取到红色小球的频率稳定在0.4左右列出关于x的分式方程,解之求得x的值即可得出红色小球的个数,再利用概率公式计算可得.【解答】解:设袋子中红色小球有x个,根据题意,得:=0.4,解得x=20,经检验x=20是分式方程的解,则在袋子中随机摸取一个小球,摸到黄色小球的概率=,故答案为:.三.解答题(共3小题)16.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)∵红灯40s、绿灯60s、黄灯3s.∴他遇到绿灯的概率大;(2)遇到绿灯的概率=,故遇到绿灯的概率是.17.车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,画树状图得:由树状图可知:两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.18.为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:(1)根据上表:估计该运动员罚球命中的概率是0.8 ;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.。

人教版九年级数学上册单元测试卷:第25章概率初步(含答案)

人教版九年级数学上册单元测试卷:第25章概率初步(含答案)

人教版九年级数学上册单元测试卷:第25章概率初步(含答案)概率一、填空题(本大题共5个小题,每小题3分,共15分)1.“清明时节雨纷纷”是随机事件.(填“必然”“不可能”或“随机”)2.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是13.3.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有12个白球.4.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是13.5.在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是13.二、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)6.下列事件中是必然事件的是(B)A .投掷一枚硬币正面朝上B .明天太阳从东方升起C .五边形的内角和是560°D .购买一张彩票中奖 7.“水中捞月”事件发生的概率是(D)A .1 B.12 C.14D .08.2018年5月5日,中国邮政发行《马克思200周年诞辰》纪念邮票1套2枚,这套邮票图案名称分别为:马克思像、马克思与恩格斯像,其背面完全相同,发行当日,某集邮爱好者购买了此款纪念邮票3套,他将所购买的6枚纪念邮票背面朝上放在桌面上,并随机从中取出一张,则取出的邮票恰好是“马克思像”的概率为(A)A.12 B.13C.14D.169.下列说法正确的是(A) A .必然事件发生的概率为1 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次10.口袋内装有一些除颜色外其他完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率为0.2,摸出白球的概率为0.5,那么摸出黑球的概率为(D) A .0.2 B .0.7C .0.5D .0.311.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(C)A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于2 12.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的概率是(A) A.14 B.13 C.12 D.3413.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是(B) A.18 B.16 C.14 D.1214.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是(A)A.12B.13C.23D.5615.如图,△ABC 是一块绿化带,将阴影部分修建为花圃.已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为(B)A.16B.π6C.π8D.π5三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)(1)一个袋中装有2个红球,3个白球和5个黄球,每个球除了颜色外都相同,从中任意摸出一个球,分别求出摸到红球、白球、黄球的概率; 解:∵袋中装有2个红球,3个白球和5个黄球,共10个球,∴摸到红球的概率为210,即15;摸到白球的概率为310;摸到黄球的概率为510,即12.(2)随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),求这粒豆子落在黑色方格中的概率.解:∵共有12个方格,其中黑色方格占4个, ∴这粒豆子落在黑色方格中的概率是412=13.17.(本题6分)在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生?(3)当n 为何值时,这个事件可能发生?解:(1)当n >6时,即n =7或8或9时,这个事件必然发生. (2)当n <3时,即n =1或2时,这个事件不可能发生.(3)当3≤n ≤6时,即n =3或4或5或6时,这个事件可能发生.18.(本题7分)如图是一个正六边形转盘被分成6个全等的正三角形,指针位置固定.转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个三角形的公共边时,当作指向右边的三角形),这时称转动了转盘1次. (1)下列说法不正确的是(B) A .出现1的概率等于出现3的概率 B .转动转盘30次,6一定会出现5次C .转动转盘3次,出现的3个数之和等于19,这是一个不可能发生的事件 (2)当转动转盘36次时,出现2这个数大约有多少次? 解:∵转动转盘1次时,出现2的概率为16,∴转动转盘36次,出现2这个数大约有36×16=6(次).19.(本题9分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同. (1)小明选择去蜀南竹海旅游的概率为14;(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率. 解:画树状图如下:两人选择的方案共有16种等可能的结果,其中都选择兴文石海的方案有1种, 所以小明和小华都选择去兴文石海旅游的概率为116.20.(本题9分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1 000 2 000 6 500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由.解:(1)50010 000=120.(2)平均每张奖券获得的购物券金额为100×50010 000+50×1 00010 000+20×2 00010 000+0×6 50010 000=14(元),∵14>10,∴选择抽奖更合算.21.(本题9分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.解:(1)列表如下:乙甲6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 14由表可知,两数和共有12种等可能结果.(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴P(李燕获胜)=612=12,P(刘凯获胜)=312=14.22.(本题12分)在一个不透明的袋子中装有(除颜色外)完全相同的红色小球1个,白色小球1个和黄色小球2个.(1)从中先摸出一个小球,记录下它的颜色后,将它放回袋中搅匀,再摸出一个小球,记录下颜色.求摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(2)如果摸出第一个小球之后不放回袋中,再摸出第二个小球,这时摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(3)小明想给袋中加入一些红色的小球,使从袋中任意摸出一个小球恰为红色的概率为45,请你帮小明算一算,应该加入多少个红色的小球? 解:(1)画树状图如下:由树状图可得:共有16种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=416=14. (2)画树状图如下:由树状图可得:共有12种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=412=13. (3)设应加入x 个红色的小球,则 1+x 4+x =45,解得x =11. 故应加入11个红色的小球.23.(本题13分)如今,旅游度假成了中国人庆祝传统春节的一项“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:山西省2014年~2018年春节假日接待海内外游客数量 山西省2014年~2018年春节假日实现旅游总收入图1 图2 图3(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到1__365.45万人次,比2017年春节假日增加414.4万人次;(2)2018年2月15日~20日期间,山西省35个重点景区每日接待游客数量如下:这组数据的中位数是93.79万人次;(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同比增长的百分率约为30%,理由是近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%;(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A ,B ,C ,D 四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”“国粹京剧”“陶瓷艺术”“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率. 解:画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6, 所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.。

人教版九年级数学上册单元测试卷:第25章概率初步(包含答案)

人教版九年级数学上册单元测试卷:第25章概率初步(包含答案)

概率一、填空题(本大题共5个小题,每小题3分,共15分)1.“清明时节雨纷纷”是随机事件.(填“必然”“不可能”或“随机”)2.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是13.3.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有12个白球. 4.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是13.5.在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是13.二、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求) 6.下列事件中是必然事件的是(B)A .投掷一枚硬币正面朝上B .明天太阳从东方升起C .五边形的内角和是560°D .购买一张彩票中奖 7.“水中捞月”事件发生的概率是(D) A .1 B.12 C.14D .08.2018年5月5日,中国邮政发行《马克思200周年诞辰》纪念邮票1套2枚,这套邮票图案名称分别为:马克思像、马克思与恩格斯像,其背面完全相同,发行当日,某集邮爱好者购买了此款纪念邮票3套,他将所购买的6枚纪念邮票背面朝上放在桌面上,并随机从中取出一张,则取出的邮票恰好是“马克思像”的概率为(A)A.12B.13C.14D.169.下列说法正确的是(A) A .必然事件发生的概率为1 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次10.口袋内装有一些除颜色外其他完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率为0.2,摸出白球的概率为0.5,那么摸出黑球的概率为(D) A .0.2 B .0.7C .0.5D .0.311.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(C)A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于212.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的概率是(A) A.14 B.13 C.12 D.3413.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是(B)A.18B.16C.14D.1214.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是(A) A.12 B.13 C.23 D.5615.如图,△ABC 是一块绿化带,将阴影部分修建为花圃.已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为(B)A.16B.π6C.π8D.π5三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)一个袋中装有2个红球,3个白球和5个黄球,每个球除了颜色外都相同,从中任意摸出一个球,分别求出摸到红球、白球、黄球的概率; 解:∵袋中装有2个红球,3个白球和5个黄球,共10个球,∴摸到红球的概率为210,即15;摸到白球的概率为310;摸到黄球的概率为510,即12.(2)随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),求这粒豆子落在黑色方格中的概率.解:∵共有12个方格,其中黑色方格占4个, ∴这粒豆子落在黑色方格中的概率是412=13.17.(本题6分)在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个. (1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生? (3)当n 为何值时,这个事件可能发生?解:(1)当n >6时,即n =7或8或9时,这个事件必然发生. (2)当n <3时,即n =1或2时,这个事件不可能发生.(3)当3≤n ≤6时,即n =3或4或5或6时,这个事件可能发生.18.(本题7分)如图是一个正六边形转盘被分成6个全等的正三角形,指针位置固定.转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个三角形的公共边时,当作指向右边的三角形),这时称转动了转盘1次. (1)下列说法不正确的是(B) A .出现1的概率等于出现3的概率B .转动转盘30次,6一定会出现5次C .转动转盘3次,出现的3个数之和等于19,这是一个不可能发生的事件 (2)当转动转盘36次时,出现2这个数大约有多少次? 解:∵转动转盘1次时,出现2的概率为16,∴转动转盘36次,出现2这个数大约有36×16=6(次).19.(本题9分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同. (1)小明选择去蜀南竹海旅游的概率为14;(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率. 解:画树状图如下:两人选择的方案共有16种等可能的结果,其中都选择兴文石海的方案有1种, 所以小明和小华都选择去兴文石海旅游的概率为116.20.(本题9分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下:(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由. 解:(1)50010 000=120.(2)平均每张奖券获得的购物券金额为100×50010 000+50×1 00010 000+20×2 00010 000+0×6 50010 000=14(元),∵14>10,∴选择抽奖更合算.21.(本题9分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止). (1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.解:(1)列表如下:由表可知,两数和共有12种等可能结果.(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种, ∴P(李燕获胜)=612=12,P(刘凯获胜)=312=14.22.(本题12分)在一个不透明的袋子中装有(除颜色外)完全相同的红色小球1个,白色小球1个和黄色小球2个. (1)从中先摸出一个小球,记录下它的颜色后,将它放回袋中搅匀,再摸出一个小球,记录下颜色.求摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(2)如果摸出第一个小球之后不放回袋中,再摸出第二个小球,这时摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(3)小明想给袋中加入一些红色的小球,使从袋中任意摸出一个小球恰为红色的概率为45,请你帮小明算一算,应该加入多少个红色的小球? 解:(1)画树状图如下:由树状图可得:共有16种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=416=14.(2)画树状图如下:由树状图可得:共有12种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=412=13.(3)设应加入x 个红色的小球,则 1+x 4+x =45,解得x =11. 故应加入11个红色的小球.23.(本题13分)如今,旅游度假成了中国人庆祝传统春节的一项“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:山西省2014年~2018年春节假日接待海内外游客数量 山西省2014年~2018年春节假日实现旅游总收入图1 图2 图3(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到1__365.45万人次,比2017年春节假日增加414.4万人次;(2)2018年2月15日~20日期间,山西省35个重点景区每日接待游客数量如下:这组数据的中位数是93.79万人次;(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同比增长的百分率约为30%,理由是近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%;(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A ,B ,C ,D 四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”“国粹京剧”“陶瓷艺术”“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率. 解:画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6, 所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.。

人教版九年级上册(新)第25章《概率初步》全章试题含答案

人教版九年级上册(新)第25章《概率初步》全章试题含答案

人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。

人教版初中数学九年级上册《第25章 概率初步》单元测试卷(含答案解析

人教版初中数学九年级上册《第25章 概率初步》单元测试卷(含答案解析

人教新版九年级上学期《第25章概率初步》单元测试卷一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.32.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.483.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.18.艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.19.某校对初三500名学生体育进行坐位体前屈测试,根据男生及女生的成绩整理绘制成如下不完整的统计图,请根据统计图提供的信息,回答下列问题:(1)男生有人,女生有人;扇形统计图中a=,b=,并补全条形统计图;(2)求图①中“8分a%”所对应的扇形圆心角的度数;(3)若该校学生中随机抽取一名男生,则这名男生的坐位体前屈测试成绩为10分的概率是多少?20.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,求这两个小球的号码之和大于4的概率.21.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).22.如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.在一个口袋中有3个完全相同的小球,把它们分别标上数字:﹣1,1,2,随机的摸出一个小球记录数字然后放回,再随机的摸出一个小球记录数字,求“两次都是正数”的概率.24.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.小明和小华从甲、乙两口袋中分别随机地摸出一个小球,若2个数字的乘积为偶数,就算小明赢,否则就算小华赢.请判断这个游戏是否公平,并用概率知识说明理由.人教新版九年级上学期《第25章概率初步》单元测试卷参考答案与试题解析一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.3【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.48【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【解答】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选:B.【点评】考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.3.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.【分析】直接利用概率公式计算.【解答】解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨【分析】根据概率的意义找到正确选项即可.【解答】解:本市降雨的概率是90%,是说明天下雨发生的可能性很大,但不一定就一定会发生.所以只有D合题意.故选:D.【点评】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.【分析】列举出所有情况,看直角三角形的情况数占总情况数的多少即可.【解答】解:4条线段的全部组合有:3,4,5和3,4,6和3,5,6和4,5,6.能构成直角三角形的是3,4,5一组,∴P(构成三角三角形)=,故答案为:.【点评】本题主要考查概率公式的应用,解题的关键是熟练掌握三角形三边间的关系、勾股定理逆定理及概率公式的运用.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.【分析】根据题意分析可得:3个数字两辆相加有3种情况,其中有1种情况可使牌面上两数和为0,故其概率是.【解答】解:一共有3种情况,这个两位数是0的有1种情况;∴P(两数和为0)=.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.【分析】根据概率公式可得答案.【解答】解:由表可知,当天上午九年级的课表中听一节课有16种等可能结果,其中听数学课的有3种可能,∴听数学课的可能性是,故答案为:.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25人,扇形统计图中短跑项目所对应圆心角的度数为72°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.【分析】(1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比例,即可得出参加复选的学生总人数;用短跑项目的人数除以总人数得到短跑项目所占百分比,再乘以360°即可求出短跑项目所对应圆心角的度数;(2)先求出长跑项目的人数,减去女生人数,得出长跑项目的男生人数,根据总人数为25求出跳高项目的女生人数,进而补全条形统计图;(3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.【点评】此题主要考查了概率公式,扇形统计图以及条形统计图,利用已知图形得出正确信息是解题关键.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?【分析】(1)全班共有50名学生,共有12名学生获奖,让获奖总人数除以学生总数即为能获得荣誉的机会;(2)全班共有50名学生,共有7名学生当选三好生、模范生,让当选三好生、模范生的总人数除以学生总数即为能当选三好生、模范生的机会;(3)利用(1)(2)的计算过程可得后四项为必须数据;(4)可以利用50个不同颜色的球来模拟实验.【解答】解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.【点评】概率等于所求情况数与总情况数之比;注意理解可以用一个班的获奖情况来估计整个学校的学生获奖情况;模拟实验需在等可能的情况下进行模拟,一般采用摸球法.11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?【分析】(1)由m=24,摸到黑球的概率不少于,根据题意可得≥,继而求得答案;(2)由若m=,摸到白种球概率的最大,可得==,则可求得x的值,继而求得答案.【解答】解:(1)∵口袋中有三个颜色的球共m个,其中白球x+3个,红球2x 个,m=24,∴黑球有:24﹣(x+3)﹣2x=21﹣3x,∵摸到黑球的概率不少于,∴≥,解得:x≤3,∴口袋中的红球的个数最多6个;(2)∵m=,白球x+3,∴摸到白种球概率为:==,∴当x=2时,摸到白种球概率的最大,∴m=10,白球5个,红球4个,∴袋中黑球有:10﹣5﹣4=1(个);∴若m=,当摸到白种球概率的最大时,袋中黑球有1个.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.【分析】(1)2次实验,每次实验都有3种情况,列举出所有情况即可;(2)看两人摸到的球的颜色相同的情况占所有情况的多少即可求得小明赢的概率,进而求得小英赢的概率,比较即可.【解答】解:(1)根据题意,画出树状图如下:或列表格如下:所以,游戏中所有可能出现的结果有以下9种:红1红1,红1红2,红1黄,红红1,2红2红2,红2黄,黄红1,黄红2,黄黄,这些结果出现的可能性是相等的;(2)这个游戏对双方不公平.理由如下:由(1)可知,一次游戏有9种等可能的结果,其中两人摸到的球颜色相同的结果有5种,两人摸到的球颜色不同的结果有4种.∴P(小英赢)=,P(小明赢)=,∵P(小英赢)≠P(小明赢),∴这个游戏对双方不公平.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由【分析】(1)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;(2)画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解可得.【解答】解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.【分析】分别求得时间A和事件B的概率后即可确定P(B)=+P(A)是否成立.【解答】解:等式P(B)=+P(A)不成立,理由:列表得:共9种等可能的结果,其中为2的倍数的有5种,为2或3的倍数的有7种,故P(A)=,P(B)=,故P(B)=+P(A)不成立.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.【分析】首相根据题意画出树状图,然后由树状图求得所有等可能的结果与白色上衣配米色裤子的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵所有等可能结果共6种,其中正好是白色上衣配米色裤子的只有1种,∴所求概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)所有可能的情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的,=.所以,P(积为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.【分析】(1)利用概率的求解方法,借助于方程求解即可;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验.【解答】解:(1)设袋中黄球的个数为x个,=∴x=1∴袋中黄球的个数为1个;(2分)(2)方法一、列表如下:(6分)∴一共有12种情况,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:.(8分)方法二,画树状图如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章 概率初步全章测试
一、选择题
1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).
A .让比赛更富有情趣
B .让比赛更具有神秘色彩
C .体现比赛的公平性
D .让比赛更有挑战性
2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A .0 B .1 C .0.5 D .不能确定 3.关于频率与概率的关系,下列说法正确的是( ). A .频率等于概率
B .当试验次数很多时,频率会稳定在概率附近
C .当试验次数很多时,概率会稳定在频率附近
D .试验得到的频率与概率不可能相等 4.下列说法正确的是( ). A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001
次一定抛掷出5点
B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖
C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨
D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.下列说法正确的是( ).
A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1
B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业
C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)
D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面
6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).
A .
21 B .31 C .61 D .8
1 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .3
1
B .32
C .61
D .91
8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).
A .
32 B .41 C .51 D .10
1 9.下面4个说法中,正确的个数为( ). (1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大
(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%” (3)小李说,这次考试我得90分以上的概率是200% (4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.下列说法正确的是( ).
A .可能性很小的事件在一次试验中一定不会发生
B .可能性很小的事件在一次试验中一定发生
C .可能性很小的事件在一次试验中有可能发生
D .不可能事件在一次试验中也可能发生 二、填空题
11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1
个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_______ __________.
12.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______. 13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,
记事件A 为“取出的是红球”,事件B 为“取出的是黄球”,事件C 为“取出的是蓝球”,则P (A )=______,P (B )=______,P (C )=______.
14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5
中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.
15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是
轴对称图形又是中心对称图形的概率为______.
16.从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.
17.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,
则摸到红球的概率是______.
18.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.
若从中随机摸出一个球,它是白球的概率为
3
2
,则n =______. 三、解答题
19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:
(2)读者对该杂志满意的概率约是多少?
(3)从中你能说明频率与概率的关系吗?
20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?
请用列表法或画树形图法说明理由.
21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复
(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)
(2)假如摸一次,你到白球的概率P(白球)=______;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
答案与提示
第二十五章 概率初步全章测试
1.C . 2.C . 3.B . 4.D . 5.B . 6.C . 7.D . 8.D . 9.D . 10.C .
11.略. 12..0,61
13.P (A )=0.375,P (B )=0.5,P (C )=0.125.
14.0.4. 15..3
1
16.⋅158 17.0.4. 18.1.
19
(3)概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数. 20.解:(1)⋅==
2
142)2(抽到P
或画树状图: 第一次抽
第二次抽
从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∵P (两位数不超过32)=
8
51610=. ∴游戏不公平.
21.(1)0.6; (2)0.6; (3)16只黑球,24只白球.。

相关文档
最新文档