最新整理初一数学教案不等式及其基本性质的导学案(1).docx
不等式及不等式性质导学案
课题:9.1.1不等式及其解集 备课人: 课型:新授 备时: 上时: 审核: 序号:1 学习目标: 1、知道不等式和一元一次不等式的含义; 2、知道不等式的解与不等式的解集的含义,会正确表示不等式的解集; 3、能根据实际问题列出不等关系式。
学习重点和难点: 重点:知道不等式的意义、不等式的解集的含义;会在数轴上表示不等式解集. 难点:正确理解不等式、不等式的解与解集的含义,把不等式的解集正确地表示在数轴上. 学习过程: 一、提出问题: 1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢? 2、一辆匀速行驶的汽车在11:20时距离A 地50千米。
要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x 千米,能用一个式子表示吗? 二、探究新知: (一)不等式、一元一次不等式的概念: 1、自学教材P121,思考并完成下列问题: 一辆匀速行驶的汽车在11:20距离A 地50千米,要在12:00之前驶过A 地,车速应满足什么条件?若设车速是x 千米/时,那么从时间上看,汽车要在12:00这前驶过A 地,则以这个速度行驶50千米所用的时间_______必须小于2/3小时,用式子表示:______________①; 从路程上看,汽车要在12:00这前驶过A 地,则以这个速度行驶2/3小时的路程_______必须超过50km ,用式子表示:_________________ ②。
2、以上两个式子从不同角度表示了车速应满足的条件。
像○1和○2这样用“>”或“<”表示 关系的式子,叫做不等式。
用 号表示不等关系的式子也是不等式。
(温馨提示:⑴不等式分两大类:①表示大小关系的不等式,其符号类型有:“>”、“<”、“≤”、“≥”。
“≤”读作“小于或等于”也可以说是“不大于”;“≥”读作“大于或等于”也可以说“不小于”。
②表示不等关系的不等式,其符号为“≠”,读作“不等于”,它说明两个量之间的关系是不等的,但不明确谁大、谁小。
数学七年级下册《不等式性质(1)》导学案
数学七年级下册《不等式性质》导学案【学习目标】1、理解掌握不等式的性质.2、能够利用不等式的性质解简单的一元一次不等式问题.3、通过性质的推导进一步感受“特殊——一般——特殊”的认知规律。
【知识导航】【要点检索】1、重点:不等式的性质2、难点:不等式性质3的运用【方法导航】(一)学习诱导[课前热身]回顾复习1、下列变形是怎样进行的?由a+2=b+2, 能得到a=b?由a-2=b-2, 能得到a=b?由0.5a=0.5b, 能得到a=b?由-2a= -2b, 能得到a=b?2、请你写出等式的性质:性质1:性质2:我探索,我发现1、完成下列填空:①如果7>3,那么7+5 ____3+5 , 7 -5____3-5②如果-1< 3, 那么-1+2____3+2, -1- 4____3 - 4③如果a>5,那么a+6 5+6, a-6 5-62、再还能写出这样规律的式子吗?①②我尝试,我归纳1、以上的式子有怎样的共同的特征: 用字母表示:2、不等式是否有等式的性质2一样的性质呢?请你举例来验证3、你能写出等式的性质2和性质3吗?性质2:用字母表示:性质3:用字母表示:4、请你对比等式的性质和不等式的性质的相同和不同:相同点:不同点:我运用,我掌握1、判断下列各题的推导是否正确?为什么?(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a >-4;(3)因为4a >4b ,所以a >b ;(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a >2a .2、设a >b ,用“<”或“>”填空并口答是根据哪一条不等式基本性质。
(1) a - 3____b - 3;(2)a ÷3____b ÷3(3) 0.1a____0.1b;(4) -4a____-4b(5) 2a+3____2b+3;(6) (m2+1) a ____ (m2+1)b (m 为常数)拓展提升1、填空:(1) ∵ 2a < 3a , ∴a 是____数(2) ∵ 2a > 3a , ∴a 是____数 (3) ∵ ax < a 且 x > 1 , ∴a 是____数2、按下列要求,写出正确的不等式:(1)由-2<-1,两边都加-a ;(2)由7>5,两边都乘以不为零的-a .3、已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列式子中 ① c+b>a+b ②-c+a>-b+a ③cb<ab ④ ac>ab 正确的个数有( )(A )0 个 (B) 1 个 (C)2个 (D) 3个4、(1)由x<y 得mx>my 的条件是( )A . m ≥0B . m ≤0 C. m >0 D. m <0(2)若mx<m,且x>1,则应为( )A. m<0B. m>0C. m ≤0D. m ≥0(3)若m 是有理数,则-7m 与3m 的大小关系应是( )A. -7m<3mB. -7m>3mC. -7m ≤3mD. 不能确定4)若a >b ,则-ac2与-bc2的大小关系应是 ( )( A) –ac2>-bc2 ( B) -ac2<-bc2(C) -ac2≥-bc2 (D) -ac2≤-bc2我梳理,我总结本节课主要学习了______________________;最大的收获是__________________;最大的困惑是___________________________为你支招:1、本节课学习的内容:不等式的三个性质。
不等式和它的基本性质教学设计方案
不等式和它的基本性质教学设计方案不等式,作为数学中一个基础而重要的概念,它的理解与应用贯穿整个数学学习过程。
今天,就让我们一起探讨一下如何让学生更好地掌握不等式及其基本性质。
一、导入新课我会以一个简单的数学游戏来引入这个话题。
让学生在纸上写下几个不等式,比如2<3、5>2等,然后让他们用自己的方式解释这些不等式的含义。
通过这种方式,让学生初步感知不等式的存在,并引发他们对不等式的好奇心。
二、不等式的定义与性质1.定义我会用简单的语言解释不等式的定义:不等式就是用“<”、“>”、“≤”、“≥”等符号表示不相等关系的式子。
接着,我会通过几个例子来让学生理解这个定义,如3<4、7≥6等。
2.性质(1)传递性:如果a<b,b<c,那么a<c。
我会用生活中的例子来解释这个性质,如“小明比小红高,小红比小刚高,所以小明比小刚高”。
(2)对称性:如果a<b,那么b>a。
这个性质很容易理解,我只需通过几个简单的例子让学生验证即可。
(3)可加性:如果a<b,那么a+c<b+c。
这个性质可以通过实际操作让学生感受,如在一个不等式的两边同时加上一个数,观察不等式的变化。
(4)可乘性:如果a<b,且c>0,那么ac<bc。
这个性质稍微复杂一些,我会通过具体的例子来讲解,如2<3,那么2×2<3×2。
三、实例讲解与练习在讲解完不等式的定义和性质后,我会选取一些典型的实例进行分析。
这些实例包括:1.解不等式:2x5>3我会引导学生将不等式转化为等式进行求解,然后让学生自己尝试解释为什么解出来的数是大于号两边的数。
2.不等式的应用:比较两个数的大小我会让学生用不等式来比较两个数的大小,如比较3^2和4^2的大小,让学生在实际操作中感受不等式的应用。
3.练习题我会设计一些练习题,让学生在实际操作中巩固不等式的知识。
《不等式及其基本性质》教案
《不等式及其基本性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如a > b、a ≤b 等。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。
性质2:如果a > b 且c > d,a + c > b + d。
性质3:如果a > b 且c < d,a + c < b + d。
性质4:如果a > b,a c > b c(其中c 是任意实数)。
第二章:不等式的运算2.1 加减法不等式介绍加减法不等式的运算规则,如a > b 且c > 0,a + c > b + c;a > b 且c < 0,a + c < b + c。
举例说明如何解决涉及加减法的不等式问题。
2.2 乘除法不等式介绍乘除法不等式的运算规则,如a > b 且c > 0,ac > bc;a > b 且c < 0,ac < bc。
举例说明如何解决涉及乘除法的不等式问题。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如解a > b 的问题,可将b 移至不等式右边,得到a b > 0。
举例说明如何解简单不等式。
3.2 复合不等式的解法介绍解复合不等式的方法,如解a > b 且c > 0 的问题,可将不等式两边乘以c,得到ac > bc。
举例说明如何解复合不等式。
第四章:不等式的应用4.1 实际问题中的应用举例说明如何将实际问题转化为不等式问题,如判断身高、体重等是否符合要求。
引导学生运用不等式解决实际问题。
4.2 线性不等式组的解法介绍线性不等式组的解法,如解a > b 且c > d 的问题,可先解a > b,再解c > d,求交集。
初中数学初一数学下册《不等式及其基本性质》教案、教学设计
(二)过程与方法
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力,采用以下方法:
1.通过引入实际生活中的例子,激发学生对不等式的兴趣,引导学生发现不等式在生活中的广泛应用。
2.采用启发式教学,鼓励学生主动探究不等式的基本性质,培养学生的自主学习能力。
教师提问:“同学们,你们知道什么是比较吗?在生活中,我们经常会比较一些事物的大小,比如身高、体重等。今天,我们就来学习一种新的数学表达方式,用来表示两个数的大小关系。”
2.学生分享:请学生举例说明生活中遇到的大小比较情况,让学生感受到数学与生活的联系。
3.引入概念:教师通过学生分享的例子,引出不等式的定义,并用数学符号表示。
初中数学初一数学下册《不等式及其基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.了解不等式的定义,理解不等式两边的关系,能够正确书写和识别常见的不等式。
2.熟练掌握不等式的基本性质,如加法、减法、乘法、除法的性质,并能够运用这些性质进行不等式的化简和求解。
3.学会使用数轴和区间表示不等式的解集,掌握求解一元一次不等式的方法,并能够解决实际问题。
难点:运用不等式的基本性质进行复杂不等式的化简和求解,以及在实际问题中灵活运用不等式知识。
2.重点:培养学生利用数轴和区间表示不等式解集的能力,提高学生的直观想象力和逻辑思维能力。
难点:让学生理解并掌握不等式解集的求解方法,特别是在处理多重不等式和区间交、并问题时。
(二Байду номын сангаас教学设想
1.创设情境,导入新课
1.学生在不等式的理解上可能存在一定难度,需要通过具体实例和生活情境,帮助学生建立起不等式的直观感知。
不等式的基本性质(教案)
不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知。
二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。
2) 不等式的两边乘除同一个正数,不等号的方向不变。
3) 不等式的两边乘除同一个负数,不等号的方向改变。
3. 运用不等式的基本性质解决实际问题。
三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。
2. 教学难点:不等式性质3的理解与应用。
四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 通过例题讲解,让学生学会运用不等式解决实际问题。
3. 利用小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。
2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。
3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。
5. 课堂小结:总结不等式的基本性质及运用方法。
6. 课后作业:布置相关作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。
2. 练习题解答:检查学生运用不等式解决实际问题的能力。
3. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。
2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。
八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。
2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。
九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。
2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。
初中七年级数学教案 不等式及其基本性质-名师
如图,a与b的大小关系如何a>b a+c-c>b+c-c 如学生自己认认真真的搞一遍。
充分动手、动脑,亲身参与不等式基本性质的探索归纳过程,欲和学数学的兴趣。
这个环节老师要给a+c>b+c师:观察天平说说结论不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质1 如果 a>b ,那么 a+c>b+c ,a-c>b-c.观察:用“<”或“>”填空,并找一找其中的规律。
4 8 -2 -6 4×2 _____ 8×2 -2×2 _____ -6×2 4÷2 _____ 8÷2 -2÷2 _____ -6÷24×(-2) ____ 4×(-2) -2×(-2) _____-6×(-2)4÷(-2) _____ 4÷(-2) -2÷(-2) _____ -6÷(-2) 想一想: 你发现了什么规律 不等式的两边都乘以(或除以)同一个正数,不等号的方向____;而乘以(除以)同一个负数,不等号的方向_____.性质2 如果 a>b,c>0,那么 ac>bc,a ⁄c>b ⁄c. 性质3 如果 a>b ,c<0 ,那么 ac<bc ,a ⁄c<b ⁄c. 性质4 (对称性) 如果 a>b ,那么b<a例如,由5<x ,可得x>5.性质5(传递性) 如果 a>b ,b>c , 那么a>c例如,由∠A>∠B,∠B>390,可得∠A>390.学生充足的自主探索的时间和空间,励学生积极主动地获取知识,生代表展示,体验自主探索知识获取成功的乐趣和自豪本性质对比不等式的基本性质,的数值到字母代表数,性结论。
不等式的基本性质(教案)
不等式的基本性质教学目标:1. 了解不等式的概念及基本性质;2. 掌握不等式的运算规则;3. 能够运用不等式的基本性质解决实际问题。
教学重点:1. 不等式的基本性质;2. 不等式的运算规则。
教学难点:1. 不等式的性质3的推导;2. 不等式运算的灵活运用。
教学准备:1. 教学课件;2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、探究不等式的基本性质(15分钟)1. 引导学生发现不等式的性质1:不等式两边加(减)同一个数(或式子),不等号的方向不变;2. 引导学生发现不等式的性质2:不等式两边乘(除)同一个正数,不等号的方向不变;3. 引导学生发现不等式的性质3:不等式两边乘(除)同一个负数,不等号的方向改变。
三、不等式的运算规则(15分钟)1. 讲解不等式的加减法运算规则;2. 讲解不等式的乘除法运算规则;3. 举例说明不等式运算的运用。
四、巩固练习(10分钟)1. 让学生完成练习题,巩固不等式的基本性质和运算规则;五、课堂小结(5分钟)1. 回顾本节课所学的不等式的基本性质和运算规则;2. 强调不等式在实际问题中的应用。
教学反思:六、不等式的应用举例(15分钟)1. 举例说明不等式在实际生活中的应用,如分配问题、比赛评分等;2. 引导学生运用不等式的基本性质和运算规则解决实际问题;3. 让学生尝试解决一些复杂的不等式问题,培养学生的解决问题能力。
七、不等式的综合训练(15分钟)1. 给出一些综合性的不等式题目,让学生独立解答;2. 引导学生运用不等式的基本性质和运算规则,提高解题效率;3. 及时给予学生反馈,帮助学生纠正错误,提高解题正确率。
2. 强调不等式在实际问题中的应用,提醒学生课后加强练习。
九、课后作业(课后自主完成)1. 完成练习册上的相关题目,巩固不等式的基本性质和运算规则;2. 选择一些不等式的应用题目,尝试解决实际问题。
不等式基本性质教学设计(共5篇)
不等式根本性质教学设计〔共5篇〕第1篇:不等式性质教学设计 2022-2022学年度第二学期关集中心校七年级数学组导学案专用纸主备人:胡伟审核人:使用人:第11周讨论时间:不等式的根本性质〔1〕教学设计学习目标1、理解、掌握不等式的根本性质;2、能够运用不等式的根本性质解决有关问题.重点难点重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决方法:不等式的根本性质3的导出,采用通过学生自己动手实践、观察、归纳猜测结论、验证等环节来突破的.并在理解的根底上加强练习,以期到达学生稳固所学知识的目的.教学方法先学后教、讨论、探究、讲练结合教具准备多媒体,或小黑板教学设计流程问题:等式有哪些性质?〔学生交流3-5分钟〕学生答复等式的性质:性质1 等式两边同时加〔或减〕同一个数〔或式子〕,结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:〔1〕学生对已学过的等式性质内容的记忆,及表达语言的准确性;〔2〕学生对等式性质得出过程的回忆.探讨不等式的根本性质.〔学生读文8-10分钟后,研讨并解决下面问题〕如果a>b,那么,在数轴上表示a的点A位于表示b 的点B的右侧,画图表示.〔一〕做做1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比拟出两组数的大小关系.〔以小组为单位,充分讨论,通过交流得出结论〕.不等式的根本性质1:如果a>b,那么 a+c>b +c,a-c>b-c.就是说,不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变.〔二〕探究1.根据8>3,用“>〞或“ 8×2_______3 × 2; 8×〔-2〕_______3×〔-2〕.8× _______3×; 8×〔-〕_______3×〔-〕.8×0.01______3×0.01; 8×〔-0.01〕_______3×〔-0.01〕.2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗?3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗?4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的根底上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察比照,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的根本性质2:如果a>b,并且c>0,那么ac>bc.不等式的根本性质3:如果a>b,并且c 〔三〕例题例根据不等式的根本性质,把以下不等式化成x>a或x2;〔2〕2x20.学生独立完成,举手答复以下问题.教师填写答案,并对学生出现的问题给予指导,进一步稳固不等式的性质.此次活动中教师应重点关注:〔1〕学生能否说出填空根据的是不等式的哪一条性质;〔2〕学生对不等式性质3的掌握情况.解:〔1〕 x-l>2,x-l+l>2+1〔不等式的根本性质1〕, x>3.〔2〕2x 2x-x 〔不等式的根本性质2〕, x20 〔不等式的根本性质3〕, xa或x 〔四〕教后检测1.如果a〞或“a或x8x+1;〔3〕 x>-4;〔4〕-10x 〔五〕当堂训练1.在以下各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式根本性质.〔1〕假设a-3<9,那么 a ______12;〔2〕假设-a<10,那么a______ -10;答:〔1〕a<12,根据不等式根本性质1.〔2〕a>-10,根据不等式根本性质3. 2.a<0,那么〔1〕a+2 ______2;〔2〕a-1 ______ -1;〔3〕3a______ 0;〔4〕a-1______0;〔5〕|a|______0.答:〔1〕a+2<2,根据不等式根本性质1.〔2〕a-1<-1,根据不等式根本性质1.〔3〕3a<0,根据不等式根本性质2.〔4〕因为a<0,两边同加上-1,由不等式根本性质1,得a-1<-1.又,-1<0,所以 a-1<0.〔5〕因为a<0,所以a≠0,所以|a|>0.〔此题除了进一步运用不等式的三条根本性质外,还涉及了一些旧的根底知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.〕 3.判断以下各题的推导是否正确?为什么?〔投影〕〔请学生口答〕〔1〕因为7.5>5.7,所以-7.5<-5.7;〔2〕因为a+8>4,所以a>-4;〔3〕因为4a>4b,所以a>b;〔4〕因为-1>-2,所以-a-1>-a-2;〔5〕因为3>2,所以3a>2a.答:〔1〕正确,根据不等式根本性质3.〔2〕正确,根据不等式根本性质1.〔3〕正确,根据不等式根本性质2.〔4〕正确,根据不等式根本性质1.〔5〕不对,应分情况逐一讨论.当a>0时,3a>2a.〔不等式根本性质2〕当 a=0时,3a=2a.当a<0时,3a<2a.〔不等式根本性质3〕〔学生在答复此题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助〕4.按照以下条件,写出仍能成立的不等式:〔1〕由-2<-1,两边都加-a;〔2〕由7>5,两边都乘以不为零的-a.5.用不等号填空:〔1〕当a-b<0时,a______ b;〔2〕当a<0,b<0时,ab ______0;〔3〕当a<0,b>0时,ab ______0;〔4〕当a>0,b<0时,ab ______ 0;〔5〕假设a ______ 0,b<0,那么ab>0;〔六〕教后反思第2篇:根本不等式教学设计根本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解根本不等式;③引导学生从不同角度去证明根本不等式;④用根本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的微妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解根本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比拟几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对根本不等式进行严格的证明,包括了比拟法,综合法和分析法,而学生对作差比拟法是比拟熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并标准证明过程,为今后学习证明方法打下根底.第四个环节:训练小结,稳固深化.学习根本不等式最终的目的表达在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对根本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,表达化归的思想,最后设计三道思考题,两道进一步稳固化归思想及应用根本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的时机,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用根本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等〞这样的结论,但已潜移默化为我们下一节课使用根本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解根本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用根本不等式,以及根本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索根本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜测,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??〔教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情〕?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用根本不等式解决生活中的应用问题2.进一步掌握用根本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是根本不等式应用举例的延伸。
七年级数学下册《不等式》教案、教学设计
c.引入:今天我们要学习的就是这种表示大小关系的数学表达式,它叫做“不等式”。
(二)讲授新知
1.教学内容:讲解不等式的定义、基本性质、一元一次不等式的解法。
教学过程:
a.介绍不等式的定义,包括不等式的符号、形式等。
b.讲解不等式的基本性质,如传递性、加法和乘法性质等。
a.导入:通过生活实例,引导学生思考如何表示大小关系,自然引入不等式的概念。
b.新课:讲解不等式的定义、性质和解法,结合实际例题,让学生在实践中掌握方法。
c.练习:设计不同难度的练习题,让学生巩固所学知识,并及时给予反馈和指导。
d.小结:引导学生总结本节课所学的不等式知识,强调重点和难点,提升学生的概括能力。
a.布置练习题,包括基础题、提高题和拓展题,以满足不同层次学生的需求。
b.学生独立完成练习题,教师巡回指导,关注学生的解题过程,及时发现问题并进行个别辅导。
c.对学生完成的练习题进行批改,给予反馈,让学生了解自己的学习情况。
d.针对普遍存在的问题,进行集中讲解,帮助学生巩固所学知识。
(五)总结归纳
1.教学内容:对本节课所学的不等式知识进行总结,强调重点和难点,提升学生的概括能力。
3.采用“从特殊到一般”的教学策略,先让学生解决具体的不等式问题,再引导学生总结归纳出一元一次不等式的解法。
4.利用数轴、图像等直观工具,帮助学生形象地理解不等式的解集,提高学生的几何直观能力。
5.引导学生通过自我评价和同伴评价,反思自己在解题过程中的思维方法和策略,培养学生的自我调控能力。
(三)情感态度与价值观
b.在解题过程中遇到的困难和解决方法。
c.对不等式在实际问题中应用的体会。
不等式的基本性质(教案)
不等式的基本性质一、教学目标1. 知识与技能:使学生掌握不等式的性质,能够运用不等式的性质解有关不等式。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现不等式的基本性质。
3. 情感态度价值观:培养学生对数学的兴趣,培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:不等式的性质。
2. 教学难点:不等式性质的应用。
三、教学准备1. 教师准备:教案、PPT、黑板、粉笔。
2. 学生准备:课本、练习本、文具。
四、教学过程1. 导入新课1.1 复习相关知识:回顾一元一次不等式的解法。
1.2 提问:同学们,你们知道不等式有什么性质吗?今天我们就来学习不等式的基本性质。
2. 探究不等式的性质2.1 展示不等式实例,引导学生观察、分析。
2.2 引导学生发现不等式的性质,并总结出不等式的基本性质。
3. 例题讲解3.1 出示例题,讲解例题的解法,引导学生运用不等式的性质解决问题。
3.2 学生自主练习,教师巡回指导。
4. 课堂练习4.1 出示练习题,学生独立完成,教师批改并讲解。
4.2 学生总结练习中的经验教训。
五、课后作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
六、教学拓展1. 引导学生思考:不等式的性质在实际生活中有哪些应用?2. 举例说明不等式性质在生活中的应用,如购物、分配等。
3. 引导学生进行不等式性质的综合应用,提高解决问题的能力。
七、巩固练习1. 出示巩固练习题,学生独立完成。
2. 教师批改并讲解,学生总结解题思路和方法。
八、课堂小结1. 教师引导学生回顾本节课所学内容,总结不等式的基本性质。
2. 学生分享学习收获和感受。
九、课后反思1. 教师反思本节课的教学效果,找出不足之处,为下一节课做好准备。
2. 学生反思自己的学习过程,找出优点和不足,制定改进措施。
十、布置作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
不等式性质基本性质教案
不等式性质基本性质教案一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 通过对不等式性质的学习,培养学生探索数学规律的兴趣。
二、教学内容1. 不等式的概念:介绍不等式的定义,理解不等式表示的意义。
2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。
b. 不等式两边乘(除)同一个正数,不等号方向不变。
c. 不等式两边乘(除)同一个负数,不等号方向改变。
3. 应用不等式性质解决实际问题。
三、教学重点与难点1. 教学重点:不等式的基本性质,如何运用不等式性质解决实际问题。
2. 教学难点:不等式性质的应用,解决复杂的不等式问题。
四、教学方法1. 采用启发式教学,引导学生探索不等式的性质。
2. 利用实例讲解,让学生直观地理解不等式的应用。
3. 开展小组讨论,培养学生的合作能力。
五、教学过程1. 导入:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。
2. 新课讲解:讲解不等式的基本性质,引导学生发现不等式性质的规律。
3. 实例分析:利用不等式性质解决实际问题,让学生体会不等式在生活中的应用。
4. 练习巩固:布置练习题,让学生独立解决,巩固不等式性质的应用。
5. 课堂小结:总结本节课的主要内容,强调不等式性质的重要性。
6. 课后作业:布置课后作业,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对不等式概念和基本性质的理解程度。
2. 练习题:布置针对性的练习题,检验学生对不等式性质的掌握情况。
3. 小组讨论:评估学生在小组讨论中的参与程度,以及合作解决问题的能力。
七、教学反思1. 总结课堂教学:回顾本节课的教学内容,总结成功的教学方法和需要改进的地方。
2. 学生反馈:了解学生的学习感受,收集学生对不等式性质学习的意见和建议。
3. 教学调整:根据教学评估和反思,对教学内容、方法和策略进行调整,以提高教学效果。
不等式性质导学案
9.1.2不等式的性质导学案(第一课时)一、学习目标(树标)1.理解并掌握不等式的基本性质。
2.会用不等式的基本性质将不等式实行简单变形。
重点:理解不等式的三个基本性质。
难点:不等式的基本性质的应用。
二、自主合作做、展示点拨(学标+解标)1、复习巩固交流展示等式的基本性质:2、自主学习感受新知不等式性质1:不等式两边(或)同一个数(或式子),不等号的方向。
字母表示为:如果a>b,那么a±c b±c。
练习一:1.说出下面结论的依据。
如果a>b,那么a-8 > b-8如果a-1>0 那么a-1+1 > 12.设a>b,用“<”或“>”填空并说明理由。
(1)a - 3____b - 3;(2)a- b____03.如果x+5>4,那么两边都减去5,可得x -1活动二:填写下表(学生分组活动,探究规律,交流讨论、总结)不等式的两边 (或 )同一个正数向 ;字母表示为:如果a>b,c>0那么ac bc, (或 c a c)不等式性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变。
字母表示为:如果a >b ,c <0那么ac bc, (或c a c)练习二1.由不等式2a<8,得a<4,是在不等式的两边都2.已知x>y,那x/2 y/23.在不等式a>b 的两边都乘以-1,可得 ,根据是4.若-2x>10,则x -55.如果a>0,那么5a 7a三、当堂检测(检标)1.判断下列各题是否正确?为什么(学生口答) (1) 因为4a >4b , 所以a >b ; ( ) (2) 因为a+8>4, 所以a >-4; ( ) (3) 如果a >b , 那么ac >bc ( ) (4) 如果a >b , 那么ac 2>bc 2 ( )2.将不等式2x-5 >-1 化为x > 2思考(选做题): a 是一个实数,比较a 与3a 的大小。
不等式的基本性质数学教案
不等式的基本性质数学教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容:1. 不等式的定义及其表示方法。
2. 不等式的基本性质:(1) 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2) 不等式两边乘以(或除以)同一个正数,不等号的方向不变。
(3) 不等式两边乘以(或除以)同一个负数,不等号的方向改变。
三、教学重点与难点:重点:不等式的基本性质及其应用。
难点:不等式性质的理解和运用。
四、教学方法:1. 采用问题驱动法,引导学生发现不等式的基本性质。
2. 运用案例分析法,让学生在实际问题中运用不等式。
3. 采用小组讨论法,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。
2. 探究不等式的基本性质:(1) 性质1:通过举例让学生发现不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2) 性质2:通过举例让学生发现不等式两边乘以(或除以)同一个正数,不等号的方向不变。
(3) 性质3:通过举例让学生发现不等式两边乘以(或除以)同一个负数,不等号的方向改变。
3. 应用不等式的基本性质:通过案例分析,让学生在实际问题中运用不等式。
4. 课堂小结:总结不等式的基本性质,强调其在实际问题中的应用。
5. 课后作业:布置相关练习题,巩固所学知识。
六、教学评估:1. 通过课堂问答,检查学生对不等式概念的理解程度。
2. 通过举例,检验学生对不等式基本性质的掌握情况。
3. 通过课后作业,评估学生对不等式应用的能力。
七、教学拓展:1. 讨论不等式在实际生活中的应用,如分配问题、比赛评分等。
2. 介绍不等式的进一步概念,如不等式组、不等式的解集等。
八、教学资源:1. PPT课件:展示不等式的基本性质及其应用。
2. 案例材料:提供实际问题,供学生分析运用不等式解决。
初一数学上册不等式及其基本性质(一)教案
远耀教育个性化辅导教案讲义任教科目:数学授课题目:不等式及其基本性质(一)年级:七年级任课教师:授课对象:合肥远耀个性化教育新站校区教研组长签字:教学主任签字:日期:【讨论提高】a>b a+c>b+c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.观察:用“<”或“>”填空,并找一找其中的规律8__128×4__12×48÷4__12÷4(-4)__(-6)(-4)×2__(-6)×2(-4)÷2__(-6)÷28×(-4)__12×(-4)8÷(-4)__12÷(-4)(-4)×(-2)__(-6)×(-2)(-4)÷(-2)__(-6)÷(-2)想一想:你发现了什么规律?不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.应用:1.用不等式表示下列关系①亮亮的年龄(记为x)不到14岁。
_____________②七年级(1)班的男生数(记为y)不超过30人。
_____________耀教育教务处附:跟踪回访表主任签字:远耀教育教务处3.1.2 等式的性质教学目标:①了解等式的两条性质;②会用等式的性质解简单的(用等式的一条性质)一元一次方程;③培养学生观察、分析、概括及逻辑思维能力;④渗透“化归”的思想.教学重点:理解和应用等式的性质教学难点:应用等式的性质把简单的一元一次方程化成“x=a”.教学过程:一、提出问题用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1) 3x-5=22; (2) 0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知①实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按教科书第82页图2.1-2的方法演示实验.教师可以进行两次不同物体的实验.②归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11” . ③表示:问题1:你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b 来表示.等式的性质1怎样用式子的形式来表示?④观察教科书第71页图吗?在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于: “5元一买1支钢笔的钱;2元一买1本笔记本的钱. 5元+2元=买1支钢笔的钱+买1本笔记本的钱. 3×5元=3×买1支钢笔的钱.” 三、应用举例方程是含有未知数的等式,我们可以运用等式的性质来解方程。
不等式基本性质导学案
归 纳
你又有什么发现了,告诉我们吧?
3.探究三(填空并总结其规律) 不等式 不等式的两边都乘 上同一个负数 5>3 -3<4 -5<-2 不等号的两边都除 以同一个负数 不等号的方向 是否改变了
【展示单元三】 1.口述 【导学 2】 中问题 1;
我对自己说: 2. 根据下列已知条件, 3. 小组展示: 说出 a 与 b 的不等关系, 教 师 分 配 任 并说明是根据不等式哪 务,承担展示 条性质。 任务的小组, 确 定 展 示 方 (1)a-3 > b-3 案,并在大黑 板做好 展示 准备,其他组 (2) a b 成员在 组内 3 3 倾听,进行补 充质疑。 (3)-4a > -4b
3 3
) ) )
(3)-4a > -4b(
请总结你的发现:
作业:P120 T4,6
运 用
【导学 2】实战演练 1.设 a>b,用“>”或“<”填空 (1)a-3 b-3 (2)-2a -2b (3)2a+5 2b+5 (4) a
3
b 3
2.根据下列已知条件, 说出 a 与 b 的不等关系, 并说明是根据不等式哪条性质。 (1)a-3 > b-3( (2) a b (
课题:不等式的性质(1)
学习目标:1. 经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质; 2. 初步体会不等式与等式的异同。
导 学 流 程 自研自激环节 自主学习 导学激思 互探互激环节 合作探究 互动激趣 ; 。 共激展示环节 展示激疑 评价激情 反思再激环节 总结提升 拓展激智 重点识记:
【展示单元一】 根据【导学 1】中的 3 个 问题,探究如何得到不等 式的 3 个基本性质,归纳 其性质,并用式子表示。
不等式的基本性质教案
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 通过对不等式的学习,培养学生的逻辑推理和运算能力。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的运算规则。
三、教学重点与难点:1. 教学重点:不等式的概念、表示方法、基本性质及运算规则。
2. 教学难点:不等式基本性质的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用实例分析,让学生感受不等式在实际问题中的应用。
3. 运用小组合作学习,培养学生之间的交流与协作能力。
五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感知不等式的存在。
2. 新课讲解:讲解不等式的表示方法,阐述不等式的基本性质,引导学生理解和记忆。
3. 例题解析:分析典型例题,让学生运用不等式的基本性质解决问题。
4. 课堂练习:设计相关练习题,巩固学生对不等式基本性质的掌握。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,鼓励学生深入研究不等式的应用。
6. 教学反思:根据学生课堂表现和作业情况,对教学效果进行评估,为下一步教学提供调整依据。
六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对不等式基本性质的理解和应用能力。
2. 关注学生在解决问题时的思维过程,考察其逻辑推理和运算能力。
3. 结合学生的小组合作学习和课堂参与度,评价其协作和沟通能力。
七、教学资源:1. 教学PPT:展示不等式的定义、表示方法和基本性质。
2. 练习题库:提供不同难度的练习题,用于巩固所学内容。
3. 实例素材:收集与不等式相关的实际问题,用于课堂讨论和练习。
八、教学进度安排:1. 第1-2课时:介绍不等式的概念和表示方法。
2. 第3-4课时:讲解不等式的基本性质。
3. 第5-6课时:通过例题解析和练习,巩固不等式的基本性质。
不等式及不等式的性质(教案)
一、教学内容
本节课选自人教版七年级数学下册第八章第一节“不等式及其性质”。教学内容主要包括以下部分:
1.不等式的定义:了解不等式的概念,能够识别不等号(>、<、≥、≤)。
2.不等式的读法:掌握如何正确读出各种不等式。
3.不等式的性质:
(1)不等式两边同时加上(或减去)同一个数,不等号的方向不变。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质1、2、3。对于难点部分,比如性质3,我会通过具体数字的示例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过比较不同物体的重量,让学生直观地感受到不等式的意义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式及不等式的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数大小的情况?”(如:比较两个人的身高)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数之间大小关系的式子。它是数学中非常重要的一个工具,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,小华的身高是1.6米,小丽的身高是1.55米,我们可以用不等式表示这个关系:小华的身高>小丽的身高。
5.培养学生的数据分析素养:在解决实际问题的过程中,培养学生对数据的敏感性,学会利用不等式分析数据,为决策提供依据。
新湘教版七年级数学上册《不等式的基本性质(课时1)》导学案
《不等式的基本性质(课时1)》导学案课题:不等式的基本性质1【学习目标】1、了解不等式的意义,掌握不等式的基本性质1,初步运用不等式的基本性质。
2、通过自主、合作、探究学习,学生探索发现不等式的基本性质。
3、让学生感受到不等式是刻画现实世界的有效模型,体验数学实用性,激发学生学习数学的兴趣和热情。
【学习过程】(一)预习(明确学习目标,布置自主预习)1.预习书本132页-133页内容,用心体会教案内容,用笔圈出重点内容。
2.不等式的定义:(1)我们把用不等号_____________________________连接的式子叫做不等式。
(2)基本符号语言“≤”读作:_______________________________“≥”读作:_______________________________(3)下列式子中,哪些是不等式?哪些不是?4x+5>0 () a+2=2+b () -3<0 ()x+3 ≤ 6() a+1 () x=3, ()2c+5 ≠7d-2 () 2a ≥ 3-a ()3.不等式基本性质1:不等式的两边都加上(或都减去)_____________________________________________,不等号的方向________.用字母表示:如果a>b,那么a+c>b+c,且a-c>b-c。
如果a<b,那么a+c<b+c, 且a-c<b-c。
(二)展示(展示自学效果,展示学习疑难,合作探究释疑)1. 用不等式表示:(1)a与b两数和的平方超过了5 (2)m乘以4的积不足0.5 (3)y与5的和小于7 (4)a与2的差不小于-1 (5)m的3倍与b的差不大于8 (6)x是正数(7)a是非正数(8)x的3倍与y的2倍的和是非负数2. 利用不等式的基本性质1填空.(1)已知a>b, a+3____b+3; (2)已知a>b, a-5____ b-5;(3)已知a<b, a+0.001____b+0.001; (4)已知a>b, a+d____b+d;(5)已知a<b, 2a____b+a.3. 将不等式化为 x > a 或 x < a 的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理初一数学教案不等式及其基本性质的导学
案(1)
课题:第7章一元一次不等式与不等式组
7.1不等式及其基本性质
学习目标:
1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种;
2.了解不等式及其概念;会用不等式表示数量之间的不等关系;
3.掌握不等式的基本性质,并能利用不等式的基本性质对不等式进行变形;
学习重点:
不等式的概念和不等式的性质
学习难点:
不等式的性质3以及正确分析实际问题中的不等关系并用不等式表示。
一、学前准备
(一)自学提纲
1.认真看书24-26页内容
2.举出生活中一个不等量关系的例子。
3.填空:
(1)不等式:;
(2)不等式的基本性质:
①
②
③
④
⑤
(二)自学检测
1.用不等式表示下列关系
①亮亮的年龄(记为x)不到14岁。
_____________
②七年级(1)班的男生数(记为y)不超过30人。
_______
③某饮料中果汁的含量(记为x)不低于20%.________
2.试一试选择适当的不等号填空:
(1)2____3(2)-2____-3(3)____0
(4)a2+b2____0(5)若x≠y,则-x____-y
二、探究活动
(一)探究性质1
1.明确定义
2.不等式的意义:表示生活中量与量之间不等关系的式子。
例题:1.“神七”速度v超过11200米/秒,才能脱离地球引力,飞入太空,怎样表示v和11200之间的关系?
3.想一想:(1)如果a<b,用不等号连接下列各式的两边.
①a+2b+2②a–5b–5
(2)如果2x-8≥3,那么2x11.
4.小结:不等式性质1:
即
(二)探究性质2和性质3
1.用不等号填空:
①已知5<8,则5×38×3;5×(-3)8×(-3)
②已知-5>-8,则-5×3-8×3;-5×(-3)-8×(-3)
归纳:不等式两边同时乘以一个正数,不等号方向;
不等式两边同时乘以一个负数,不等号方向。
2.用不等号填空:
①已知6<8,那么6÷28÷2;6÷(-2)8÷(-2)
②已知-6>-8,那么-6÷2-8÷2;6÷(-2)-8÷(-2)
归纳:不等式两边同时除以一个正数,不等号方向;
不等式两边同时除以一个负数,不等号方向。
3.归纳不等式性质
性质2:
性质3
(三)例题分析
例1.(1)若x+1>3,则x_____________.根据_____________.
(2)2x>-6,则x_____________.根据____________.
(3)-3y≤5,则y.根据。
例2.如果m》n。
判断下列不等式是否正确
(1)m+7《n+7()(2)m-2《n-2()
(3)3m《3n()(4)()
例3.利用不等式的基本性质,将下列各不等式化为“”或“”的形式. (1)(2)
(四)课堂练习
1.用代数式表示:比x的5倍大1的数不小于x的与4的差_____________.。