整式的加减——合并同类项

合集下载

整式的加减(合并同类项-定稿)

整式的加减(合并同类项-定稿)

合并同类项的步骤
步骤一
识别出整式中的同类项 。
步骤二
将同类项的系数相加。
步骤三
合并后的项中只保留一 个未知数,未知数的次
数不变。
步骤四
重复上述步骤,直到整 式中没有同类项为止。
03
CATALOGUE
整式加减法的运算
去括号法则
01
括号前面是加号时,去 掉括号,括号内的各项 不变。
02
括号前面是减号时,去 掉括号,括号内各项都 变号。
01
整式加减法的规则
整式加减法的基本规则是同类项可以合并,不同类项不能合并。在合并
同类项时,系数相加减,未知数和指数保持不变。
02
简单整式加减法练习
通过简单的整式加减法练习,如两步整式加减法、三步整式加减法等,
让学生熟悉整式加减法的规则和步骤。
03
复杂整式加减法练习
对于复杂的整式加减法,需要进行适当的拆分和重组,以便更好地应用
整式加减法的规则。通过练习复杂整式加减法,可以提高学生的运算能
力和思维灵活性。
综合练习题
综合练习题的定义
综合练习题是指涉及多个知识点和技能的题目,需要学生综合运用所学知识进行解答。
综合练习题的分类
综合练习题可以分为基础综合题、提高综合题和拓展综合题等不同层次,以满足不同学生 的需求。
综合练习题的解题技巧
面积。
周长计算
在几何图形中,整式加减法可以 用来计算图形的周长。例如,在 矩形、三角形、圆形等基本图形 中,可以通过整式加减法来计算
周长。
体积计算
在几何图形中,整式加减法可以 用来计算图形的体积。例如,在 长方体、圆柱体、圆锥体等基本 立体图形中,可以通过整式加减

人教版七年级数学上册整式的加减——合并同类项课件

人教版七年级数学上册整式的加减——合并同类项课件
2.若5xy2+axy2=-2xy2,则a=-7___;
3.在6xy-3x2-4x2y-5yx2+x2中没有同类项 的项是_6_x_y___;
知 识 延 伸:
4.已知:_2 x3my3 3
求 m、n的值 .

-
1_ 4
x6yn+1
是同类项,
解:∵
_2 x3my3 与 3
-
1_ 4
x6yn+1
是同类项
二、展示目标和任务
学习目标: 1、掌握同类项的概念,能辨认同类项,学会合并同 类项并知道合并同类项所根据的运算律。 2、通过视察、思考、分析、归纳、小组合作,学会 了解数学的分类思想。 学习重难点: 1.同类项概念,以及合并同类项法则和基本步骤。 2.正确的判断同类项以及准确合并同类项。
三、自主合作与交流
(5) 2.1与 3 4
(4)2a与2ab
(6)53与b3
4a + 2a =66 a 4xy ――xy== 3xy
探究A:
(1)运用运算律计算:
100 2 252 2 __1_0_0___2_5_2___2__; 1002 2522 _1_0_0___2_5_2_____2__
(2)根据(1)中的方法完成下面的运算,并说说
3x2=-2(2+1-3)x2+(-5+4)x-2
(3
3)a
3
abc
(
1
3
1)c2
=-x-2
33
当x 1 时,原式 1 2 5
2
2
2
abc
当a 1,b 2,c 3时, 6
原式=(- 1) 2 (3) 1 6
随堂练习:

整式加减的运算法则

整式加减的运算法则

整式加减的运算法则
整式的加减法则:就是单项式和多项式的加减,可利用去括号法则和合并同类项来完成。

去括号法则:是数学科的一条法则,括号前面是加号时,去掉括号,括号内的算式不变。

括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

合并同类项:即把多项式中的同类项合并成一项。

合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变,字母不变,系数相加减。

同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

整式的加减--同类项、合并同类项

整式的加减--同类项、合并同类项

2.2(1)整式的加减--同类项、合并同类项一.【知识要点】1.同类项的概念:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项. 注意:①“两相同”同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②“两无关”是指同类项与(系数)和(字母)的顺序无关; ③所有的常数项都是同类项。

2.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 进行合并同类项的一般步骤: (1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起; (3)利用有理数的加减混合运算,进行系数相加; (4)字母与字母的系数不变. 二.【经典例题】 1.下列几组式子:(1)3y x 2与–3y x 2 (2)0.2b a 2与0.22ab (3)11abc 与9bc (4)224b a 和224n m(5)4332n m 与–3423m n (6)4z xy 2与4yz x 2 (7)6与6π (8)22和2a其中是同类项的是:_________________________________________.2.合并下列多项式中的同类项: (1)2a 2b -3a 2b+12a 2b ; (2)a 3-a 2b+ab 2+a 2b -ab 2+b 3.3.若25y x n -与m y x 2312是同类项,则=m ,=n 4.已知()2210a b -++=,求22222133542a b ab a b ab ab ab a b +-++-+的值5.已知0123=++y xb na b ma (m 、n 均不为0),求y x nm+-2的值。

6. 已知关于x,y 的单项式2322+-m n y x y ax与的和等于0,求a+m+n 的值为_______.7.(2020年绵阳期末第5题)若单项式﹣2m 2b n 3a﹣2与n a +1m b﹣1可以合并,则代数式2b ﹣a=( ) A .B .C .D .三.【题库】 【A 】1.化简:(1)3x -x =_____;(2)-2y 2x +3y 2x =______;(3)-22x -32x +y -2y =______.2.在代数式4x 2+4xy -8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 .3.若2x k y k+2与3x 2y n 的和为5x 2y n ,则k= ,n= .4.若-3xm -1y4与13x2yn+2是同类项,求m,n.5.合并同类项:(1)3x 2-1-2x -5+3x -x 2;(2)-0.8a 2b -6ab -1.2a 2b+5ab+a 2b.6.下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项;④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个7.若b a M 22=,23ab N =,b a P 24-=,则下面计算正确的是( )A .235b a N M =+B .ab P N -=+C .b a P M 22-=+D .b a P N 22=- 8.若323y xm-与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19.合并同类项22227435ab ab ab ab b a -+--=_______________ 10.求多项式3x 2+4x -2x 2-x+x 2-3x -1的值,其中x=-3. 11.下列计算正确的是( )A.2x +3y =5xyB.-3x -x =-x C.-xy +6x y =5x y D.5ab -b a =ab 2232252232227223212.已知单项式b a xy -y x +-431321与是同类项,那么b a ,的值分别是( ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a13.若单项式﹣35a b 与2m a b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.2 14.合并下列各式中的同类项(1)b a ab b a ab b a 2228.44.162.0++--- (2)222614121x x x --(3)222234422xy y x xy xy xy y x -++-- (4)2238347669a ab a ab +-+-+-15.下列各组中的两式是同类项的是( ) A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 16.若12x a -1y 3与-3x -b y 2a+b 是同类项,那么a,b 的值分别是( ) A.a=2, b=-1. B.a=2, b=1. C.a=-2, b=-1. D.a=-2, b=1. 17.指出下列多项式中的同类项:(1)3x -2y+1+3y -2x -5;(2)3x 2y -2xy 2+13xy 2-32yx 2.18. 下列合并同类项正确的是( )A. B. C. D. 19. 如果-13mx y 与221n x y +是同类项,则m=_______,n=________. 20.下列各组中的两项是同类项的为( )A .3m 3n 2和-3m 2n 3B .12xy 与22xy C .53与a 3D .7x 与7y21.下列运算正确的是( )A. 42232a a a =+B. b a b a +=+2)(2C. 2323a a a =-D. 22223a a a =- 22. 判断(1)4abc 与 4ab 不是同类项 ( )325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222(2) 325n m - 与 232m n 不是同类项 ( ) (3) y x 23.0- 与 2yx 是同类项 ( ) 23.若y x 25与 n m y x 1-是同类项,则m=( ) ,n=( )【B 】1.若单项式-5x m y 3与4x 3y n能合并成一项,则m n=( ) A.3 B.9 C.27 D.62. 若3231+a y x 与是同类项,求2222223612415b a ab b a ab b a ---+的值。

整式的加减

整式的加减

整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

几个常数项也是同类项。

如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。

(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。

如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。

(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。

如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。

说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。

如果括号前面有数字因数,就按乘法分配律去括号。

如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。

说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。

可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。

整式的加减法--1合并同类项

整式的加减法--1合并同类项

1 a3和b3
× 所含字母不同
2 4x2y和4 yx2 3 3.5abc和0.5abc 4 2和4 5 2m2n和4mn2
√ 所含字母相同且相同字母的指数相同
√ 所含字母相同且相同字母的指数相同
√ 所有的常数都是同类项 × 所含字母相同,但相同字母的指数不同
两 同:所含字母 相同 ;相同字母的指数 相同 .
方法一
解:当a 2, b 4时
原式 222 4 32 2 322 4 2 2 1 244 32 2 344 22 1
32 6 2 48 4 1
32 6 2 48 4 1
40 53 13
争分夺秒
2.已知a 2, b 4,求代数式2a2b 3a 2 3a2b 2a 1的值.
38.5 34.2 27.3 a
100a
数的运算
想一想:上面式子的变形逆用了哪个运算定律? 逆用了乘法的分配率
争分夺秒
1 7 x 3x 10x ; 2 4x2 2x2 2 x2 ; 3 5ab2 13ab2 8ab2 ; 4 9x2 y3 5x2 y3 4x2 y3 ;
说一说:怎样合并同类项?
合并同类项 法则
(1)系数的和 作为和的系数
一变两不变 (2)字母和字母的指数 不变
a2b
3 a3 a2b ab2 a2b ab2 b3 4 3x2 4x 2x2 x x2 3x 1
a3 1 1 a2b 11ab2 b3 3 2 1 x2 4 1 3 x 1
a3 b3
2x2 1
争分夺秒
2.已知a 2, b 4,求代数式2a2b 3a 2 3a2b 2a 1的值.
两无关:与 系数 无关;与字母的 顺序 无关.
规 定:所有的 常数 都是同类项.

整式的运算法则

整式的运算法则

整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ).A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。

3.4整式的加减一一合并同类项说课稿课件北师大版七年级数学上册

3.4整式的加减一一合并同类项说课稿课件北师大版七年级数学上册
3
(一)教材地位和作用
合并同类项是本章的一个重点。一方面, 合并同类项的过程中,要不断运用数的运 算。可以说合并同类项是有理数运算的延 伸与拓广;另一方面,合并同类项法则的 应用是后面整式的运算、解方程、解不等 式等的基础。
4
㈡学情分析 同类项的概念是合并同类项的基础,合并同
类项又是整式加减的基础。新的教学理念强调让 学生经历知识的形成过程,又因为学生刚学完多 项式的项和系数,对多项式的项和系数等概念还 没有区分清楚的学生,会对学习同类项感到困难。 另外七年级的学生形象直观思维已比较成熟,学 习意识和学习态度也有了明显提高,但抽象思维 能力还比较薄弱,考虑问题也不够全面,而且他 们探究、观察、概括的能力也不是很强。我根据 学生的认知能力以及教材的特点设计了这节课。
2、合并同类项法则及注意事项。
学生自己小结,发挥主体地位, 提高他们语言表达能力与总结 归纳能力,使学生能够系统全 面的掌握知识。
22
布置作业
必做题进一步巩固学
生所学知识,及时发
必做题:
现和弥补知识缺陷,
1、在下列代数式中,指出哪些是同类项。 2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2,
3x与2y不是同类 项,不能合并。
((43))、 、79xa22b39xb2a2
4
0
=4x2

18
合作探究:完成例1,小组内合作交流 合并同类项的步骤是怎样的?
例1 合并同类项:
a3 a2b ab2 a2b ab2 b3
同时采,用还先让放学后生收掌的握方在法多,项让式学中生辨先别小出组同内 试类解项,和并运讨用论法总则结进合行并合同并类同项类的项步运骤算和的方技法。 然能后,教使师学有生选的择知的识让、两技个能学螺生旋展式示上解升题。过程。 目的是让学生初步懂得运用合并同类项法则 合并同类项,掌握解题步骤和正确的书写格 式。

整式的加减

整式的加减

整式的加减整式的加减概念总汇1.整式加减的相关概念1) 同类项:所含字母相同且相同字母的指数也相同的项,称为同类项。

几个常数项也是同类项。

例如,6x2y2和-4x2y2是同类项,-3和5也是同类项;但4ab和3ab不是同类项,因为相同字母的指数不相同。

2) 合并同类项:将多项式中的同类项合并成一项,即将同类项的系数相加,字母和字母的指数不变。

例如,6x2y2+(-4x2y2)=2x2y2.说明:①只有同类项可合并,不是同类项的不能合并;②合并同类项时,只合并系数,字母与字母的指数不变;③合并同类项后,若其系数是带分数,要将其化为假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0.3) 去括号法则:括号前面是正号,将括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,将括号和括号前的负号去掉,括号里的各项都要改变符号。

例如,A+(5A+3B)-(A-2B)=A+5A+3B-A+2B=5A+5B。

说明:去括号法则相当于乘法分配律的应用。

例如,A+(5A+3B)-(A-2B)=A+1×(5A+3B)+(-1)×(A-2B)=A+5A+3B+(-1)A+(-1)×(-2B)=A+5A+3B-A+2B=5A+5B。

如果括号前面有数字因数,就按乘法分配律去括号。

例如:3a2-2ab+4b2)-2(a2-ab-3b2)=a2-ab+2b2-a2+2ab+6b2=ab+8b24) 添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。

说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。

可以将+(a-b)看作(+1)(a-b),将-(a-b)看作(-1)(a-b),则有+(a-b)=a-b,-(a-b)=-a+b。

这样,乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。

2.2.1整式的加减-合并同类项(教案)

2.2.1整式的加减-合并同类项(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“合并同类项在实际数学问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在新课讲授环节,我发现学生们对于理论知识的掌握程度有所不同。有些学生能够迅速理解并掌握合并同类项的法则,而部分学生则需要更多的时间来消化。因此,在接下来的课程中,我需要针对不同学生的学习需求,适当调整教学节奏和策略,确保每位学生都能跟上进度。
实践活动和小组讨论环节,学生们表现得相当积极。他们通过分组讨论和实验操作,加深了对合并同类项的理解。但同时,我也注意到有些小组在讨论过程中,个别成员参与度不高。为了提高学生的参与度,我打算在下一节课中,增加一些互动性强的环节,鼓励更多学生积极参与。
2.2.1整式的加减-合并同类项(教案)
一、教学内容
本节课选自教科书第二章“整式的加减”中的2.2.1节“合并同类项”。教学内容主要包括以下方面:
1.掌握同类项的定义及判断方法。
2.学习合并同类项的法则及运算步骤。
3.能够运用合并同类项法则进行整式的简化。
4.通过实例分析,让学生理解合并同类项在解决实际问题时的重要性。
-教学策略:通过具体案例分析,引导学生学习如何提取关键信息,建立数学模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减-合并同类项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将相同类别的物品进行合并计算的情况?”(如购物时买了几件相同的商品,需要计算总价。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。

人教版七年级上册数学2.2《整式的加减-合并同类项》教案

人教版七年级上册数学2.2《整式的加减-合并同类项》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“合并同类项在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
此外,我发现通过小组讨论和实验操作,学生们的参与度提高了,他们能够更积极地思考和解决问题。在小组讨论中,我注意到一些学生能够迅速掌握合并同类项的法则,并帮助其他同学理解。这种同伴教学的方式很有效,不仅加强了学生的合作能力,也提高了课堂的整体学习效果。
然而,我也注意到,在将理论知识应用到实际问题解决时,部分学生仍然感到困惑。这可能是因为他们还没有完全将合并同类项的法则内化。为此,我计划在下一节课中增加更多实际应用的练习,让学生在更多的情境中练习和巩固这一技能。
五、教学反思
在教授《整式的加减-合并同类项》这一章节时,我发现学生们在理解同类项的概念和合并法则上存在一些挑战。首先,识别同类项对学生来说是一个难点,特别是当变量和指数较为复杂时。我意识到,需要通过更多的实例和练习来加强他们对这一概念的理解。
在讲授过程中,我尝试使用了实物和日常生活中的例子来帮助学生直观地理解同类项。例如,我将不同颜色的小球代表不同的变量,让学生通过分组小球来识别同类项。这种方法似乎对学生有所帮助,他们能够更直观地理解同类项的概念。
具体教学内容如下:
(1)同类项的定义与识别;
(2)合并同类项的法则及操作步骤;
(3)利用合并同类项简化整式;
(4)实际应用问题中合并同类项的求解。
二、核心素养目标
《整式的加减-合并同类项》章节的核心素养目标如下:

人教版七年级数学上册:2.2整式的加减-合并同类项(教案)

人教版七年级数学上册:2.2整式的加减-合并同类项(教案)
3.重点难点解析:在讲授过程中,我会特别强调同类项的辨识和合并法则这两个重点。对于难点部分,比如容易混淆的项,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的合并同类项的练习。这个操作将演示如何识别和合并同类项。
-难点二:在合并同类项时,学生可能会忘记只对系数进行运算,而错误地改变字母的指数或字母本身。
-难点三:将合并同类项的法则应用到复杂的整式中,特别是当整式中含有多个字母和多项式时,学生可能会感到困惑。
举例解释:
对于难点一,教师可以通过对比练习,强调同类项的辨识关键点,如提供3x^2和3x^3这样容易混淆的例子,让学生通过对比加深理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母且相同字母指数的项进行相加或相减。它在数学运算中非常重要,可以帮助我们简化整式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将3x^2 + 5x^2这样的同类项合并为8x^2,以及它在实际中的应用。
五、教学反思
今天我们在课堂上学习了整式的加减-合并同类项,回顾整个教学过程,我觉得有几个方面值得反思。首先,我注意到在导入新课环节,通过提问方式引导学生思考日常生活中的合并同类项现象,大部分学生能够积极参与,但仍有部分学生显得不够活跃。这可能是因为他们对这个概念还不够熟悉,或者是对数学与生活联系的认识不够深入。在今后的教学中,我需要更多地设计贴近生活的例子,帮助学生建立起数学与实际的联系。
4.培养学生的合作交流能力,通过小组讨论和互动,让学生在交流中深化理解,共同提高。

2020第二章整式的加减——合并同类项(有答案)

2020第二章整式的加减——合并同类项(有答案)

第二章整式的加减整式的加减——合并同类项掌握的知识点:1.同类项概念:所含字母________,并且相同字母的指数也________的项叫做____________.2.合并同类项的概念:把多项式中的同类项合并成一项,叫做________________.3.合并同类项法则:把同类项的________相加,所得的结果作为系数,且字母部分不变.4.合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.知识点一同类项的概念例1下列各式不是同类项的是()A.12a2b与-a2b B.12x与-3x C.15ab2与-13a2b D.14xy与-yx知识点二合并同类项例2计算:(1)15x-20x=________;(2)x+8x-5x=________;(3)-5a+0.6a-2.4a=________;(4)13y-23y+2y=________;(5)-6ab+ba+8ab=________;(6)10y2-0.5y2=________.知识点三合并同类项在整式的化简求值中的运用☞例3求下列各式的值:(1)3a+2b-5a-b,其中a=-2,b=1;(2)3x-4x2+7-3x+2x2+1,其中x=-3.练习:变式1 下列各组中的两式是同类项的是( )A .(-2)3与(-n )3B .-45a 2b 与-45a 2c C .x -2与-2 D .0.1m 3n 与-12nm 3 变式2 直接写出下列各题结果:(1)3x -x =________;(2)-4a 2+2a 2=________;(3)-m 2-m 2=________;(4)-37x 2-47x 2=________; (5)8xy -5xy -7xy =________;(6)7a +b -2a -2b =________.变式3 先化简再求值:(1)2x 2-5x +x 2+4x -3x 2-2,其中x =-1;(2)2a 3+3a 2b -ab 2-3a 2b +ab 2+b 3,其中a =3,b =2.加强练习:1.计算2a-3a,结果正确的是()A.-1 B.1 C.-a D.a2.如果2x a+1y与x2y b-1是同类项,那么ab的值是()A.12B.32C.1 D.33.下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc-a2bc=a2bc D.a5-a2=a34.若单项式a m-1b2与a2b n的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9 5.(2019·怀化)合并同类项:4a2+6a2-a2=________.6.已知多项式2x2+3kxy-y2-12xy+10中不含xy项,则k=________.7.合并同类项:(1)2a2b-3a2b+12a2b;(2)3x2y-4xy2-3+5x2y+2xy2+5;(3)3x2+4x-2x2-x+x2-3x-1.8.我们知道1+2+3+…+100=5 050,于是m+2m+3m+…100m=5 050m,那么合并同类项m+2m+3m+…51m的结果是()A.1 570m B.1 576m C.1 326m D.1 323m9.把x-y看成一个整体,合并同类项:5(x-y)+4(x-y)-8(x-y)=________.10.若单项式-2x m+1y2与-13x5-n y2m是同类项,则(-m)n=________.11.若关于a的式子2a+ab-5,无论a为何值,该式的值恒不变,则b的值为________.12.某农贸公司有A,B,C三种农产品,且三种农产品的质量之比为5∶2∶7.若B种农产品有m吨,则三种农产品共有________吨(用含m的式子表示).13.已知将3x4-2x3+5x2+kx3+mx2+4x+5-7x合并同类项后不含有x3和x2项,求m k的值.14.小芳在小丽的典型习题摘抄本上看到这样一道题:当x=-14,y=0.78时,求多项式6x3-5x3y+2x2y+2x3+5x3y-2x2y-8x3+7的值.小芳对小丽说:“题目中给出的条件x=-14,y=0.78是多余的”.小芳说得有道理吗?为什么?。

《合并同类项》整式及其加减

《合并同类项》整式及其加减

多项式除以单项式
多项式除以单项式,先把这个多项式的每一 项分别除以单项式,再把所得的商相加。
02
合并同类项的基本概念
同类项的定义与识别
同类项定义
在多项式中,相同字母的指数也分别 相同的项称为同类ቤተ መጻሕፍቲ ባይዱ。
同类项识别
判断是否为同类项,需要同时满足两 个条件,一是字母相同,二是相同字 母的指数相同。
合并同类项的规则与步骤
算。
自测题2
3a³b²+2a²b-1/2a³b²3/2a²b+1/3a³b²+4/3a²b
答案解析
首先进行同类项的合并,然后 按照整式的加减法法则进行计
算。
感谢您的观看
THANKS
防范措施
教师可以引导学生先观察所有项,确保没有遗漏,然后再进行合并。同时,对于一些容易出错的题目,教师可 以多做一些练习和讲解。
05
合并同类项的实际应用
在数学问题中的应用
简化表达式
合并同类项可以将多项式化简为更简单的形式, 有助于理解和计算。
降低计算难度
在解方程或求解不等式时,合并同类项可以降低 计算的难度。
方法
将同类项的系数相加,字母和字母的指数不变,作为合并后的结果。
例子
$(2x^{2} + 3x^{2} + 5x^{2})$ 可以合并为 $10x^{2}$。
整式加减中合并同类项的注意事项
• 注意事项:合并同类项时,要注意以下几点:一是要掌握运算顺序,二是要识别同类项(所含字母相同,相 同字母的指数相同),三是要正确进行计算。
04
合并同类项的常见错误与纠正
常见错误类型及原因分析
误认符号
在合并同类项时,有些学生会误 认符号,导致符号错误。

整式的加减--合并同类项

整式的加减--合并同类项

几个常数项也是同类项。
真真假假
• 1.说出下列各题的两项是不是同类项?为什么?
(1)a 与b
2 3 3 2
( ( (
) ) )
(2)-4x y与4xy (3)3.5abc与0.5acb
( (4)-2 与 4 ) 同:所含字母相同;相同字母的指数相同。 两
两无关:与系数无关;与字母的顺序无关。
我们规定:所有的常数项都是同类项
2.2 整式的加减 -以下几组单项式有 什么相同点
找一找
相同字母的指数相同
指数都是2 指数都是1
(1)2x 和 -3 x (2)5st 和 7ts (3)3x2y 和 5x2y (4)2 ab2c 和 -ab2c
(3)3x y 和 5 x y
所含字母相同
2
2
相同字母的指数相同
2 2
( 交换律 )
例 4x 2x 7 3x 8x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2 ( 交换律 ) 2 2 (4 x 8 x ) (2 x 3 x) (7 2) ( 结合律 )
2 2 2 2
(3) 4a 3b 2ab 4a 4b
2 2 2
2
练习1 判断下列说法是否正确,正确的 在括号内打“√”,错误的打“×” (1) 3 x 与 3mx 是同类项( ) (2) 2 ab 与 5ab 是同类项( ) 1 2 2 (3) 3 xy 与 y x 是同类项( ) 2 2 2 (4) 5a b 与 2a bc 是同类项( ) 2 3 ( 5) 2 与 3 是同类项( )
随堂练习
1、下列各组是同类项的是( ) A 2x3与3x2 B 12ax与8bx C x 4与 a 4 D π与-3

整式的加减1同类项合并同类项

整式的加减1同类项合并同类项
解:由n-3=4,得n=7. 由2m+n=2,得m=-2.5.
观察下面这些的式子,是怎样计算得到的?
(1)3x2y 6x2y (3 6)x2y 9x2y; (2)5mn3 3mn3 (5 3)mn3 = 2mn3; (3) a2 6a2 (1 6)a2 = -7a2; (4)xyz 6xyz (1 6)xyz = -5xyz.
知识要点
同类项
所含字母相同,并且相同字母的指 数也相同的项叫做同类项.
另外,所有的常数项都是同类项.
测一测:
❖ 1:判断下列说法是否正确,正确地在 括号内打“√”,错误的打“×”。
下列各组单项式是不是同类项?
(1)2x3 y与 6xy3
(2)3x2 y3与y3 x2
6m3与-4m3 这两项中都 有字母m,且m的次数也相同,
(3)4a与4ab
所以2x它3y与们-是6同xy类3虽项都. 含有字母 x、y,所但含是字x母、相y的同指,数所不含同字,
(4)6m3与 4m3 所母以的它指们所数不含也是字相同母同类不,所项一以. 样它,们所以
(5)5与 6
是同它类们项不.是同类项.
常数项也是同类项.
注意
关于同类项的两点说明:
练一练
( 1 ) k 取 何 值 时 , 3xky 与 -x2y 是 同 类项?
同类项具备的条件: 1.所含字母相同; 2.相同字母的指数分别相同.
解:当k=2时,
3xky与-x2y是同类项.
(2)k为何值时,3xk+2y与-x2ky是同 类项?
解:由 k+2=2k,得k=2.
(3)m、n为何值时,3x2m+ny4与-x2y n-3 是同类项?
解 : (2) 4xy3 2x2y 4xy3 3x2y; (4 4)xy3 (2 3)x2y x2y.

整式的加减-合并同类项

整式的加减-合并同类项
思考:你有几种方法解决这个问题?
探究二:
把多项式中的同类项合并成一项,叫做合并同类项
合并同类项 38.5 a + 34.2a + 27.3a = (38.5+34.2+27.3) a =100a
05
当a=0.35,b=-0.28时,求多项式的值:
有一位同学指出:题目中给出的条件a=0.35,b=-0.28是多余的.
01
03
a3b+2a3-2a2b+3a3b+2a2b-2a3 -4a3b
02
他的说法有没有道理?
04
2.有这样一道题:
5x+3x= _____ -3x-8x= _____
01
合并同类项与单位量的加减法类似 如: 6克 + 7克 = 13克
3 a2b + 5 a2b =8 a2b
02
下列各题合并同类项的结果对不对?若不对,请改正。 (1)、 (2)、 (3)、 (4)、
=5x2
-4x2y与4xy2 ( ) 3.5abc与0.5acb ( ) 真真假假
说出下列各题的两项是不是同类项?为什么?
(1)a3与b3 ( )
01
提示:两 同:所含字母相同;相同字母的指数相同。 两无关:与系数无关;与字母的顺序无关。 我们规定:所有的常数项都是同类项
=4x2
3x与2y不是同类项,不能合并。
解:4x2 - 8x + 5-3x2 + 6x -4
~~~ ~~~
=(4x2-3x2)
= x2
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。
2、把同类项移在一起 用括号将同类项结合,括号间用加号连接。

2.2.整式的加减——合并同类项

2.2.整式的加减——合并同类项

因为多项式中的字母 表示的都是数,所以我们 可以运用交换律、结合律、 分配律把多项式中的同类 项进行合并。
例如:4x2+2x+7+3x-8x2-2
例3 (1) 求多项式
2x2 5x x2 4x 3x2 2 的值,其中x 1 ;
2
把多项式中的同类项 合并成一项,叫做合并同 类项。
(5) 4x2 y 3xy 5x y2 3yx
注意:合并同类项的结果 如果是一个多项式,通常 把这个结果按某一个字母 的升幂或降幂的顺序排列。2x y 5(x y)2
(x y) 3(x y)2 9
(2) (7 a+b)3 (3 a+b)2+(a+b)2 (2 a+b)2 (5 a+b)3
把它们的系数与系数相加 作为和的系数,而字母 和 字母的指数不变 。
例1 合并下列各式的同类项: (1) xy2 1 xy2
5
(2) 3x2 y 2x2 y 3xy2 2xy2
(3) 4a2 4b2 2ab 4a2 3b2
(4) 3x2 y 4xy2 3 5x2 y 2xy2 5
(4) 若多项式 a2 +2kab+b2 -6ab+9 不含ab项,求k的值。
(2) 求多项式
3a abc 1 c2 3a 1 c2的值,
3
3
其中a 1 ,b 2,c 3。 6
例4 (1) 水库中水位第一天 连续下降了a 小时,每小 时平均下降 2 cm;第二天 连续上升了a 小时,每小 时平均上 0.5 cm,这两天 水位总的变化情况如何?
整式的加减(1) ——合并同类项

整式的加减——合并同类项

整式的加减——合并同类项

2.2整式的加减(第一课时)教学目标知识目标1、理解同类项的概念;2、掌握合并同类项的法则,能进行同类项的合并。

能力目标1、在经历从具体问题抽象出同类项、合并同类项法则的过程中,发展抽象概括能力;2、通过化简问题引出同类项的概念,发展学生的探究能力。

情感目标通过参与同类项、合并同类项法则的数学探究活动,提高对数学学习的好奇心和求知欲;重点:同类项的概念和合并同类项的法则。

难点:对同类项的概念的理解,学会合并同类项。

教学流程具体情景引入问题设置步步引导同类项的定义合并同类项的法则(火眼金睛)巩固定义范例分析,巩固练习募然回首教学过程一、具体情景引入2010年3月28日上午,在郑州和开封之间举行了一场国际性的健身运动,大家知道是什么活动吗?对,是中国郑开国际马拉松赛在这里隆重举行。

爱好长跑运动的小明,看到宽敞的郑开大道,决定通过长跑亲身体验一下郑州至开封的距离。

在开封至中牟段小明的平均长跑速度为16千米/时,中牟至郑州段由于体力下降,小明的平均速度为10千米/时。

小明在中牟至郑州段所用的时间是开封至中牟段的 3.1倍,如果小明开封至中牟段所用的时间为t小时,能用含t的式子表示郑开大道的全长吗?学生回答。

郑开大道的全长是:16t+10 ×3.1t即: 16t+31t多项式中的字母表示数,类比数的运算,应如何化简该式呢?其依据是什么?与同伴交流。

这个式子是两个单项式的和,两个单项式中都含有相同的字母t,因此,我们可以用乘法分配律,把它们的系数相加,再乘以相同的因式t。

二、问题设置,步步引导同学们能否用乘法分配律把下列多项式进行化简?学生回答。

热身运动判别下列多项式是否能化简,若能,请你将它们化简,若不能,请说明理由。

(1) 0.2ab -0.4ab =(0.2-0.4)ab=-0.2ab (2) x 2y -3xy 2 不能 (3)-m 2+m 2=(-1+1)m 2=0 (4) -3x 3y -31x 3y= (-3- 31 ) x 3=-311x 3y (5) n 3+m 3 不能上面的(1)、(3)、(4)能够化简,再对比一下不能化简的几个式子,你能发现这些能化简的式子的各项的共同特点吗?与同伴交流 特点:1、各项所含的字母相同 2、相同字母的指数分别相同像a 与2a 、0.2ab 与-0.4ab 、-m 2与m 2、-3x 3y 与-31x 3y 这样所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


问题(2):式子100 t+252 t能化简吗? 依据是什么?
• 运用有理数的运算律计算: • 100×2+252×2= • 100×(-2)+252×(-2)=
• 102t-252t=( • 4 x2+2x2=( • 3ab2-7ab2=(
)t )x2 )ab2:
• 问题:观察上面的算式中的每项有什么特点? • 一、同类项的概念: • 像 102t与-252t , 4 x2与2x2 , 3ab2 与-7ab2 这样所含的字母相同,并且相同的字母所含的指 数也相同的项叫做同类项。
:几个常数项也是同类项。
• 二、合并同类项的概念: 把多项式中的同类项合并成一项, 叫做合并同类项。 • 问题:上面的运算有什么共同特点, 你能从中得出什么规律?
• 三、合并同类项的法则:
• 合并同类项后,所得项的系数是合 并前各同类项的系数的各,且字母部分 不变。
例1 合并下列各式的同类项。 (1)-3a2b+2ab2 +3a2b -3ab2
2.2 整式的加减--合并同类项
授课教师:杨娅 遵义县山盆中学 2007年10月
• 问题(1):青藏铁路上,在格尔木到拉萨 之间有一段很长的冻土地段,列车在冻土 地段的行驶速度可以达到100千米/小时, 在非冻土地段的行驶速度可以达到120千 米/小时。请根据这些数据回答下列问题: 在西宁到拉萨路段,列车通过非冻土地段 所需时间是通过冻土地段时间的2.1倍,如 果通过冻土地段需要t小时,你能用含的t 式子表示这段路程的全长吗?
(1) (2)
练习 2:
已知a= ,b= 4,求多项式 2 2 a b - 3a – 3a b + 2a的值。



1、已知多项式ax+bx合并后为0,则下 列说法正确的是( ) A. a=b=0 B. a=b=x=0 C. a-b=0 D. a+b=0 2、 若 a+b=_____ 与 是同类项,则
相关文档
最新文档