整式的加减(一)——合并同类项(基础)

合集下载

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)【知识点1:合并同类项】1. 同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.1.1 判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.1.2 同类项与系数无关,与字母的排列顺序无关.1.3 一个项的同类项有无数个,其本身也是它的同类项.2. 合并同类项2.1 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.2 法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.2.3 合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项时,只把系数相加减,字母、指数不作运算,照抄即可.【知识点2:去括号与添括号】1. 去括号法则:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2. 去括号法则诠释:2.1 去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.2.2 去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.2.3 对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.2.4 去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.3. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.4. 添括号法则诠释:4.1 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.4.2 去括号和添括号是两种相反的变形,因此可以相互检验正误:如:a +b −c 添括号→ a +(b −c) a −b +c 添括号→ a −(b −c)【知识点3:整式的加减运算法则】1. 运算顺序: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式的加减运算法则诠释:2.1 整式加减的一般步骤是:①先去括号;②再合并同类项.2.2 两个整式相加减时,减数一定先要用括号括起来.2.3 整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点1:同类项的概念】1. 下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a)5与(-3)5⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C【解析】所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.2. 判断下列各组是同类项的有 ( ) .①0.2x 2y 和0.2xy 2;②4abc 和4ac ;③-130和15;④-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组【答案】B【解析】 ①0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.②4abc 和4ac 所含字母不同.③-130和15都是常数,是同类项.④-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.3. 如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C【解析】根据题意得:a+1=2,b=3,则a=1.4. 若﹣2a m b 4与3a 2b n+2是同类项,则m+n= .【答案】4.【解析】∵﹣2a m b 4与3a 2b n+2是同类项,∴{m =2n +2=4解得:{m =2n =2则m+n=4.故答案为:4.5. 如果单项式﹣xy b+1与12x a ﹣2y 3是同类项,那么(a ﹣b )2015= .【答案】1.【解析】由同类项的定义可知,a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.6. 指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)3x 2y 3与-y 3x 2;(2)2x 2yz 与2xyz 2;(3)5x 与xy ;(4)-5与8【答案】(1)(4)是同类项;(2)不是同类项,因为2x 2yz 与2xyz 2所含字母x ,z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【解析】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.7. 若单项式13a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.【答案】8【解析】解:由13a 3b n+1和2a 2m ﹣1b 3是同类项,得{2m −1=3n +1=3, 解得{m =2n =2. 当m=2,n=2时,3m+n=3×2+2=6+2=8.8. 如果单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2021的值;(2)若5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,求(5m ﹣5n )2022的值.【答案】(1)-1;(2)0【解析】(1)由单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项,得a=2a ﹣3,解得a=3;∴(7a ﹣22)2021=(7×3﹣22)2021=(﹣1)2021=﹣1;(2)由5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,得5m ﹣5n=0,解得m=n ;∴(5m ﹣5n )2022=02022=0.9. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A.6 B.d C.c D.e【答案】D【解析】题中“?”所表示的单项式与“5e”是同类项,故“?”所代表的单项式可能是e,故选D.【考点2:“去括号”与“添括号”】1.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n【答案】C【解析】原式=m﹣n﹣m﹣n=﹣2n.故选C.2.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y);(3)8m-(3n+5);(4)n-4(3-2m);(5)2(a-2b)-3(2m-n).【答案】(1)d-6a+4b-6c;(2)xy+1-x+y【解析】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.(3)8m-(3n+5)=8m-3n-5.(4)n-4(3-2m)=n-(12-8m)=n-12+8m.(5)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.3.在各式的括号中填上适当的项,使等式成立.(1).2x+3y-4z+5t=-( )=+( )=2x-( )=2x+3y-( );(2).2x-3y+4z-5t=2x+( )=2x-( )=2x-3y-( )=4z-5t-( );(3).a-b+c-d=a-( );(4).x+2y-z=-( );(5)a2-b2+a-b=(a2-b2)+( );(6).a2-b2-a-b=a2-a-( ). 【答案】(1)-2x-3y+4z-5t,2x+3y-4z+5t,-3y+4z-5t,4z-5t(2)-3y+4z-5t,3y-4z+5t,-4z+5t,-2x+3y.(3)b-c+d (4)-x-2y+z (5)a-b (6)b2+b【解析】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.(1) 2x+3y-4z+5t=-(-2x-3y+4z-5t)=+( 2x+3y-4z+5t)=2x-(-3y+4z-5t)=2x+3y-(4z-5t)(2)2x-3y+4z-5t=2x+(-3y+4z-5t)=2x-(3y-4z+5t)=2x-3y-(-4z+5t)=4z-5t-(-2x+3y)(3)a-b+c-d=a-(b-c+d);(4)x+2y-z=-(-x-2y+z);(5)a2-b2+a-b=(a2-b2)+(a-b);(6)a2-b2-a-b=a2-a-(b2+b).4.按要求把多项式3a-2b+c-1添上括号:(1)把含a、b的项放到前面带有“+”号的括号里,不含a、b的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】(1) 3a-2b+c-1=(3a-2b)-(-c+1);(2) 3a-2b+c-1=(3a+c)-(2b+1).【考点3:整式加减】1.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0D. 5a2﹣4a2=1 【答案】C【解析】3a和2b不是同类项,不能合并,A错误;2a3和3a2不是同类项,不能合并,B错误;3a2b﹣3ba2=0,C正确;5a2﹣4a2=a2,D错误,故选:C.2.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是( ).A.十四次多项式 B.七次多项式C.不高于七次的多项式或单项式 D.六次多项式【答案】C【解析】根据多项式相加的特点,多项式次数不增加,项数增加或减少可得:A+B 一定是不高于七次的多项式或单项式.故选C.3.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( ) A.-5x-1 B.5x+1 C.-13x-1 D.13x+1【答案】A【解析】 (3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.4.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=1x2+x﹣1,C=x2+2x,那么A﹣B=2()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【答案】C.x2+x﹣1)﹣(x2+2x)【解析】根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(12=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.5.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,则代数式|a|-|c-a|+|c-b|-|-b|的值为().A.-2c B .0 C.2c D.2a-2b+2c【答案】A【解析】由图可知:a<c<0<b,所以|a|-|c-a|+|c-b|-|-b|=-a-(c-a)+(b-c)-b=-2c.6.如图所示,阴影部分的面积是( ).A.112xy B.132xy C.6xy D.3xy【答案】A【解析】S阴=2x×3y-0.5y×x=6xy-12xy=112xy7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为( ) .A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n-10)厘米【答案】C.【解析】观察上图,可知n块石棉瓦重叠的部分有(n-1)处,则n块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.8.若23a2b m与−0.5a n b4的和是单项式,则m=,n=.【答案】4,2.【解析】23a2b m与−0.5a n b4的和是单项式,∴23a2b m与−0.5a n b4是同类项,即可得:m=4,n=29.若5a|x|b3与-0.2a3b|y|可以合并,则x= ,y= .【答案】±3;±3【解析】∵5a|x|b3与-0.2a3b|y|可以合并∴5a|x|b3与-0.2a3b|y|为同类项即可得|x|=3.|y|=3解得:x=±3,y=±310.如图所示,长方形内有两个相邻的正方形,面积分别为9和a2(a>0).那么阴影部分的面积为________.【答案】3a-a2【解析】由图形可知阴影部分面积=长方形面积-a2-9,而长方形的长为3+a,宽为3,∴S阴=3(3+a)-9-a2=3a-a211.任意一个三位数,减去它的三个数字之和所得的差一定能被______整除. 【答案】9【解析】设任意一个的三位数为a×102+b×10+c.其中a是1~9的正整数,b,c分别是0~9的自然数.∵(a×102+b×10+c)-(a+b+c)=99a+9b=9(11a+b)=9m. (用m表示整数11a+b) . ∴任意一个三位数,减去它的三个数字之和所得的差一定能被9整除.12.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5【答案】(1)-7x2-4y2-6xy ;(2)8x2y-2xy2+2【解析】①所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;②在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+213.合并同类项:(1)3x-2x2+4+3x2-2x-5(2)6a2-5b2+2ab+5b2-6a2(3)-5yx2+4xy2-2xy+6x2y+2xy+5(4)3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3(注:将“x-1”或“1-x”看作整体)【答案与解析】(1)原式=(3-2)x+(-2+3)x2+(4-5)=x+x2-1(2)原式=(6-6)a2+(-5+5)b2+2ab=2ab(3)原式=(-5+6)x2y+(-2+2)xy+4xy2+5=x2y+4xy2+5(4)原式=(3-5)(x-1)2+(-2-4)(x-1)3=-2(x-1)2-6(x-1)314.一个多项式加上4x3-x2+5得3x4-4x3-x2+x-8,求这个多项式.【答案】3x4-8x3+x-13【解析】在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.(3x4-4x3-x2+x-8)-(4x3-x2+5)=3x4-4x3-x2+x-8-4x3+x2-5=3x4-8x3+x-1315.已知2a3+m b5-pa4b n+1=-7a4b5,求m+n-p的值.【答案】-4【解析】两个单项式的和仍是单项式,这就意味着2a3+m b5与pa4b n+1是同类项.可得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴ m+n-p=1+4-9=-4.【考点4:化简求值】1.若m2-2m=1则2m2-4m+2020的值是________.【答案】2024【解析】2m2-4m+2008=2(m2-2m)+2008=2×1+2022=20242.已知a=-(-2)2,b=-(-3)3,c=-(-42),则-[a-(b-c)]的值是________.【答案】15【解析】因为a=-(-2)2=-4,b=-(-3)3=27,c=-(-42)=16,所以-[a-(b-c)]=-a+b-c=15.3.有理数a,-b在数轴上的位置如图所示,化简|1-3b|-2|2+b|+|2-3a|= .【答案】b+3a-7【解析】-b<-3,b>3,所以原式=3b-1-2(2+b)+(3a-2)=b+3a-7.4.当p=2,q=1时,分别求出下列各式的值.(1)(p−q)2+2(p−q)−13(q−p)2−3(p−q);(2)8p2−3q+5q−6p2−9【答案】(1)−123;(2)1【解析】(1)把(p−q)当作一个整体,先化简再求值:(p−q)2+2(p−q)−13(q−p)2−3(p−q)=(1−13)(p−q)2+(2−3)(p−q)=−23(p−q)2−(p−q)又p−q=2−1=1;∴原式=−23(p−q)2−(p−q)=−23×12−1=−123(2)先合并同类项,再代入求值.8p2−3q+5q−6p2−9=(8−6)p2+(−3+5)q−9=2p2+2q−9当p=2,q=1时,原式=2p2+2q−9=2×22+2×1−9=1 5.先化简,再求值:(1)3x2-8x+x3-12x2-3x3+1,其中x=2;(2)4x2+2xy+9y2-2x2-3xy+y2,其中x-2,y=1.【答案】(1)-67;(2)16【解析】(1)原式=-2x3-9x2-8x+1,当x=2时,原式=-2×23-9×22-8×2+1=-67.(2)原式=2x2-xy+10y2,当x=2,y=1时,原式=2×22-2×1+10×12=16.6. 先化简,再求各式的值:12x +(−32x +13y 2)−(2x −23y 2),其中x =−2,y =23; 【答案与解析】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?原式=12x −32x +13y 2−2x −23y 2=−3x +y 2当x =−2,y =23时,原式=−3×(−2)+(23)2=6+49=649.7. 先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案与解析】(-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.8. 化简:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2.【答案】-a 2-3b 2【解析】a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2=(a 2﹣2a 2)+(﹣2ab+2ab )+(b 2﹣4b 2)=﹣a 2﹣3b 2.9. 化简求值:(1)当a =1,b =−2时,求多项式5ab −92a 3b 2−94ab +12a 3b 2−114ab −a 3b −5的值.(2)若|4a +3b |+(3b +2)2=0,求多项式2(2a+3b)2-3(2a+3b)+8(3a+3b)2-7(2a+3b)的值.【答案与解析】(1)先合并同类项,再代入求值:原式=(−92+12)a 3b 2+(5−94−114)ab −a 3b −5=−4a 3b 2−a 3b −5 将a =1,b =−2代入,得:−4a 3b 2−a 3b −5=-4×13-(-2)2-13×(-2)-5=-19(2)把(2a+3b )当作一个整体,先化简再求值:原式=(2+8)(2a+3b)2+(-3-7)(2a+3b )=10(2a+3b)2-10(2a+3b )由|4a +3b |+(3b +2)2=0可得:4a +3b =0,3b +2=0两式相加可得:4a +6b =−2,所以有2a +3b =−1代入可得:原式=10×(-1)2-10×(-1)=2010. 已知3x a+3y 4与-2xy b-2是同类项,求代数式3b 2-6a 3b-2b 2+2a 3b 的值.【答案】228【解析】∵3x a+3y 4与-2xy b-2是同类项∴a+3=1,b-2=4.∴a=-2,b=6.∵3b 2-6a 3b-2b 2+2a 3b=(3-2)b 2+(-6+2)a 3b=b 2-4a 3b∴当a=-2,b=6时,原式=62-4×(-2)3×6=22811. 先化简,再求值:3(y+2x )-[3x-(x-y )]-2x ,其中x ,y 互为相反数.【答案与解析】3(y+2x )-[3x-(x-y )]-2x=3y+6x-3x+x-y-2x=2(x+y) 因为x ,y 互为相反数,所以x+y=0所以3(y+2x )-[3x-(x-y )]-2x=2(x+y)=2×0=012. 已知代数式3y 2-2y+6的值为8,求32y 2-y+1的值.【答案】2【解析】∵3y 2-2y+6=8,∴3y 2-2y=2.当3y 2-2y=2时,原式=12(3y 2-2y )+1=12×2+1=2 13. 已知xy=-2,x+y=3,求整式(3xy+10y )+[5x-(2xy+2y-3x )]的值.【答案】22【解析】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看 成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.原式=3xy+10y+(5x-2xy-2y+3x )=3xy+10y+5x-2xy-2y+3x=8x+8y+xy=8(x+y )+xy 把xy=-2,x+y=3代入得,原式=8×3+(-2)=24-2=2214. 先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=12,且xy <0.【答案与解析】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=12,且xy <0,∴x=﹣2,y=12,则原式=﹣52﹣8=﹣212.15. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案】(1)-45;(2)-10【解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【考点5:“无关”与“不含”型问题】1. 代数式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关【答案】B【解析】合并同类项后的结果为-3x 3-2,故它的值只与x 有关.2. 多项式x 2﹣3kxy ﹣3y 2+xy ﹣8化简后不含xy 项,则k 为( )A .0B .−13C .13D .3【答案】C【解析】原式=x 2+(1﹣3k )xy ﹣3y 2﹣8,因为不含xy 项,故1﹣3k=0,解得:k=13.故选C .3. 如果对于某一个特定范围内x 的任意允许值,P=|1-2x|+|1-3x|+…+|1-10x|的值恒为一个常数,则此值为 ( ).A. 2B. 3C. 4D. 5【答案】B【解析】P 值恒为一常数,说明原式去绝对值后不含x 项,由此得:P =(1-2x )+(1-3x )+…+(1-7x )+(8x-1)+(9x-1)+(10x-1)=34. 当k = 时,代数式x 2−3kxy −3y 2−13xy −8中不含xy 项. 【答案】−19【解析】合并同类项得:x 2+(−3k −13)xy −3y 2−8.由题意得−3k −13=0. 故k =−19.5. 李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y-4x 3+2x 3y-2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案与解析】解:6x 3-2x 3y-4x 3+2x 3y-2x 3+15=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.6. 已知关于x ,y 的代数式x 2−3kxy −3y 2−13xy −8中不含xy 项,求k 的值.【答案】k =−19【解析】x 2−3kxy −3y 2−13xy −8=x 2+(−3k −13)xy −3y 2−8 因为不含xy 项,所以此项的系数应为0,即有:−3k −13=0,解得:k =−19.7. 试说明多项式x 3y 3-12x 2y+y 2-2x 3y 3+0.5x 2y+y 2+x 3y 3-2y-3的值与字母x 的取值无关.【答案】5【解析】根据题意得:m﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.8.要使关于x,y的多项式mx3+3nxy2+2x3-xy2+y不含三次项,求2m+3n的值.【答案】-3【解析】原式=(m+2)x3+(3n-1)xy2+y要使原式不含三次项,则三次项的系数都应为0,所以有:m+2=0,3n-1=0,即有:m=-2,n=13所以2m+3n=2×(-2)+3×13= -3.9.已知:ax2+2xy-x与2x2-3bxy+3y的差中不含2次项,求a2-15ab+9b2的值. 【答案】28【解析】(ax2+2xy-x)-(2x2-3bxy+3y)=ax2+2xy-x-2x2+3bxy-3y=(a-2)x2+(2+3b)xy-x-3y. ∵此差中不含二次项,∴a-2=0,2+3b=0解得:a=2,3b=-2当a=2且3b= -2时,a2-15ab+9b2=a2-5a(3b)+(3b)2=22-5×2×(-2)+(-2)2=4+20+4=28.10.若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd. 【答案】-27【解析】由已知 ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴{a=2b−1=−78=−2(c+1)−2=3a+7解得:{a=2b=−6c=−5d=−3∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.11.若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.【答案】2【解析】 -2x2+mx+nx2+5x-1=(n-2)x2+(m+5)x-1∵此多项式的值与x的值无关,∴{n−2=0m+5=0解得:{n=2m=−5当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n有最小值为2.12.若关于x,y的多项式:x m-2y2+mx m-2y+nx3y m-3-2x m-3y+m+n,化简后是四次三项式,求m+n的值.【答案】4【解析】分别计算出各项的次数,找出该多项式的最高此项:因为x m-2y2的次数是m,mx m-2y的次数为m-1,nx3y m-3的次数为m,-2x m-3y的次数为m-2,又因为是三项式 ,所以前四项必有两项为同类项,显然x m-2y2与nx3y m-3是同类项,且合并后为0,所以有m=5,1+n=0 m+n=5+(-1)=4.13.有一道题目:当a=2,b=-2时,求多项式:3a3b3-2a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

整式的加减(合并同类项-定稿)

整式的加减(合并同类项-定稿)

合并同类项的步骤
步骤一
识别出整式中的同类项 。
步骤二
将同类项的系数相加。
步骤三
合并后的项中只保留一 个未知数,未知数的次
数不变。
步骤四
重复上述步骤,直到整 式中没有同类项为止。
03
CATALOGUE
整式加减法的运算
去括号法则
01
括号前面是加号时,去 掉括号,括号内的各项 不变。
02
括号前面是减号时,去 掉括号,括号内各项都 变号。
01
整式加减法的规则
整式加减法的基本规则是同类项可以合并,不同类项不能合并。在合并
同类项时,系数相加减,未知数和指数保持不变。
02
简单整式加减法练习
通过简单的整式加减法练习,如两步整式加减法、三步整式加减法等,
让学生熟悉整式加减法的规则和步骤。
03
复杂整式加减法练习
对于复杂的整式加减法,需要进行适当的拆分和重组,以便更好地应用
整式加减法的规则。通过练习复杂整式加减法,可以提高学生的运算能
力和思维灵活性。
综合练习题
综合练习题的定义
综合练习题是指涉及多个知识点和技能的题目,需要学生综合运用所学知识进行解答。
综合练习题的分类
综合练习题可以分为基础综合题、提高综合题和拓展综合题等不同层次,以满足不同学生 的需求。
综合练习题的解题技巧
面积。
周长计算
在几何图形中,整式加减法可以 用来计算图形的周长。例如,在 矩形、三角形、圆形等基本图形 中,可以通过整式加减法来计算
周长。
体积计算
在几何图形中,整式加减法可以 用来计算图形的体积。例如,在 长方体、圆柱体、圆锥体等基本 立体图形中,可以通过整式加减

人教版七年级数学上册整式的加减——合并同类项课件

人教版七年级数学上册整式的加减——合并同类项课件
2.若5xy2+axy2=-2xy2,则a=-7___;
3.在6xy-3x2-4x2y-5yx2+x2中没有同类项 的项是_6_x_y___;
知 识 延 伸:
4.已知:_2 x3my3 3
求 m、n的值 .

-
1_ 4
x6yn+1
是同类项,
解:∵
_2 x3my3 与 3
-
1_ 4
x6yn+1
是同类项
二、展示目标和任务
学习目标: 1、掌握同类项的概念,能辨认同类项,学会合并同 类项并知道合并同类项所根据的运算律。 2、通过视察、思考、分析、归纳、小组合作,学会 了解数学的分类思想。 学习重难点: 1.同类项概念,以及合并同类项法则和基本步骤。 2.正确的判断同类项以及准确合并同类项。
三、自主合作与交流
(5) 2.1与 3 4
(4)2a与2ab
(6)53与b3
4a + 2a =66 a 4xy ――xy== 3xy
探究A:
(1)运用运算律计算:
100 2 252 2 __1_0_0___2_5_2___2__; 1002 2522 _1_0_0___2_5_2_____2__
(2)根据(1)中的方法完成下面的运算,并说说
3x2=-2(2+1-3)x2+(-5+4)x-2
(3
3)a
3
abc
(
1
3
1)c2
=-x-2
33
当x 1 时,原式 1 2 5
2
2
2
abc
当a 1,b 2,c 3时, 6
原式=(- 1) 2 (3) 1 6
随堂练习:

4.2 整式的加减第1课时 合并同类项 课件(共37张PPT)

4.2 整式的加减第1课时 合并同类项  课件(共37张PPT)


1 3

1 3
c2
abc.
当a

1 6
,b
2,c
-3
时,原式

1 6
2
-3
=1.
3 合并同类项的应用
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方 商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土 豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹 果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话 有道理吗?请你用所学的有关数学知识加以判定.
周长为30x .当时 x 2cm ,周长为 60 cm.
5.合并同类项: (1)-a-a-2a=__-_4_a____; (2)-xy-5xy+6yx=__0____; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2b_-_2_a_b_2_+_3_.
=- x2y+xy2
练一练
合并同类项: (1)6x+2x2-3x+x2+1; (2)-3ab+7-2a2-9ab-3.
先分组, 再合并
解:(1)原式=(6x-3x)+(2x2+x2)+1 =3x+3x2+1
(2)原式=(-3ab-9ab)-2a2+(7-3) =-12ab-2a2+4
归纳总结
“合并同类项”的方法: 一找,找出多项式中的同类项,不同类的同类项用不同 的标记标出; 二移,利用加法的交换律,将不同类的同类项集中到不 同的括号内; 三并,将同一括号内的同类项相加即可.
答案:下降1.5a
当堂练习
✓ 当堂反馈 ✓ 即学即用

整式的加减--同类项、合并同类项

整式的加减--同类项、合并同类项

2.2(1)整式的加减--同类项、合并同类项一.【知识要点】1.同类项的概念:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项. 注意:①“两相同”同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②“两无关”是指同类项与(系数)和(字母)的顺序无关; ③所有的常数项都是同类项。

2.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 进行合并同类项的一般步骤: (1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起; (3)利用有理数的加减混合运算,进行系数相加; (4)字母与字母的系数不变. 二.【经典例题】 1.下列几组式子:(1)3y x 2与–3y x 2 (2)0.2b a 2与0.22ab (3)11abc 与9bc (4)224b a 和224n m(5)4332n m 与–3423m n (6)4z xy 2与4yz x 2 (7)6与6π (8)22和2a其中是同类项的是:_________________________________________.2.合并下列多项式中的同类项: (1)2a 2b -3a 2b+12a 2b ; (2)a 3-a 2b+ab 2+a 2b -ab 2+b 3.3.若25y x n -与m y x 2312是同类项,则=m ,=n 4.已知()2210a b -++=,求22222133542a b ab a b ab ab ab a b +-++-+的值5.已知0123=++y xb na b ma (m 、n 均不为0),求y x nm+-2的值。

6. 已知关于x,y 的单项式2322+-m n y x y ax与的和等于0,求a+m+n 的值为_______.7.(2020年绵阳期末第5题)若单项式﹣2m 2b n 3a﹣2与n a +1m b﹣1可以合并,则代数式2b ﹣a=( ) A .B .C .D .三.【题库】 【A 】1.化简:(1)3x -x =_____;(2)-2y 2x +3y 2x =______;(3)-22x -32x +y -2y =______.2.在代数式4x 2+4xy -8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 .3.若2x k y k+2与3x 2y n 的和为5x 2y n ,则k= ,n= .4.若-3xm -1y4与13x2yn+2是同类项,求m,n.5.合并同类项:(1)3x 2-1-2x -5+3x -x 2;(2)-0.8a 2b -6ab -1.2a 2b+5ab+a 2b.6.下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项;④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个7.若b a M 22=,23ab N =,b a P 24-=,则下面计算正确的是( )A .235b a N M =+B .ab P N -=+C .b a P M 22-=+D .b a P N 22=- 8.若323y xm-与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19.合并同类项22227435ab ab ab ab b a -+--=_______________ 10.求多项式3x 2+4x -2x 2-x+x 2-3x -1的值,其中x=-3. 11.下列计算正确的是( )A.2x +3y =5xyB.-3x -x =-x C.-xy +6x y =5x y D.5ab -b a =ab 2232252232227223212.已知单项式b a xy -y x +-431321与是同类项,那么b a ,的值分别是( ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a13.若单项式﹣35a b 与2m a b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.2 14.合并下列各式中的同类项(1)b a ab b a ab b a 2228.44.162.0++--- (2)222614121x x x --(3)222234422xy y x xy xy xy y x -++-- (4)2238347669a ab a ab +-+-+-15.下列各组中的两式是同类项的是( ) A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 16.若12x a -1y 3与-3x -b y 2a+b 是同类项,那么a,b 的值分别是( ) A.a=2, b=-1. B.a=2, b=1. C.a=-2, b=-1. D.a=-2, b=1. 17.指出下列多项式中的同类项:(1)3x -2y+1+3y -2x -5;(2)3x 2y -2xy 2+13xy 2-32yx 2.18. 下列合并同类项正确的是( )A. B. C. D. 19. 如果-13mx y 与221n x y +是同类项,则m=_______,n=________. 20.下列各组中的两项是同类项的为( )A .3m 3n 2和-3m 2n 3B .12xy 与22xy C .53与a 3D .7x 与7y21.下列运算正确的是( )A. 42232a a a =+B. b a b a +=+2)(2C. 2323a a a =-D. 22223a a a =- 22. 判断(1)4abc 与 4ab 不是同类项 ( )325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222(2) 325n m - 与 232m n 不是同类项 ( ) (3) y x 23.0- 与 2yx 是同类项 ( ) 23.若y x 25与 n m y x 1-是同类项,则m=( ) ,n=( )【B 】1.若单项式-5x m y 3与4x 3y n能合并成一项,则m n=( ) A.3 B.9 C.27 D.62. 若3231+a y x 与是同类项,求2222223612415b a ab b a ab b a ---+的值。

2.2整式的加减(1)合并同类项

2.2整式的加减(1)合并同类项

(1)3x2+2x2=( 5 ) x2 (2)3ab24ab2=( )ab2
-1
5 5
-4
(3)4x2+2x+7+3x-8x2- 2 =( )x2+( )x+( ) 合并同类项——把多项式中的同类项合并 成一项。 合并同类项后,所得项的系数是合并前各同 类项的系数的和,且字母部分不变。 合并同类项法则: 1.系数相加减, 2.字母和字母的指数不变。
在合并同类项时结果往往是一个多项式, 通常把这个结果写成按某一个字母的升幂 或降幂的形式排列: 升幂排列:按照某字母的指数从小到大的 顺序排列 降幂排列:按照某字母的指数从大到小的 顺序排列
例:将多项 式按x的降 幂排列
2 2 x y x y 3x y x 2 3
4 3 2 2 3
你能简化这些式子吗?
(1) 运用有理数的运算律计算:
100×2+252×2=_
100×(-2)+252×(-2)= _
(2)根据(1)中的方法完成下面的运算, 并说明其中的道理:
100t+252t = _
1.下列三个多项式有哪些单项式组成? 2.你能运算吗? 3.每个多项式中的单项式有什么共同特 点?
2
1 2 解:1 xy xy 5 1 1 xy 2 5 4 2 xy 5
2
方法: (1)系数:系数 相加; (2)字母:字母 和字母的指数不 变。
瞧一瞧:
下列各题计算的结果对不对?如果不对, 指出错在哪里?
(1) 3a 2b 5ab (2) 5 y 2 y 3
按x的升幂排列呢?
把下列多项式按照升幂排列,然后再按照降幂 排列
(1) 5a2+4-2a

整式的加减合并同类项

整式的加减合并同类项
解:4x2 2x 7 3x 8x2 2
4x2 8x2 2x 3x 7 2 ( 交换律 ) (4x2 8x2 ) (2x 3x) (7 2) ( 结合律 ) (4 8)x2 (2 3)x (7 2) ( 分配律 )
4.类比探究,学习新知
例题 4x2 2x 7 3x 8x2 2
2.2 整式的加减 (第1课时) -----同类项、合并同类项
动手动脑
问题:捐款结束,班干部要留下来清点班级 捐款总数,假如你是班干部,面对这一堆不同面
值的钱,你如何数?
我们常常把 具有相同特 征的事物归
为一类.
生活中处处有分类的存在.那 在数学中也有分类吗?
思考问题:
有八只小白兔,每只身上都标有一个单项式, 你能根据这些单项式的特征将这些小白兔分到不 同的房间里吗?(无论你用几个房间)
上述运算有什么特点,你能 从中得出什么规律?
2.合并同类项的定义:
把多项式中的同类项合并成一项叫合
并同类项。
➢系数相加 ➢字母部分 不变
同类项的系数相加,所得的结果作为 系数,字母和字母的指数不变。
4.类比探究,学习新知
例题:合并同类项
4x2 2x 7 3x 8x2 2
找出多项式中的同类项并进行合并, 思考下面问题: 每一步运算的依据是什么?注意什么?
3、合并同类项 系数相加,字母及字母的指数不变 。
应用练习 例 合并下列各式的同类项:
(1) 6xy-10x2-5yx+7x2 +5x
(2)
应用练习:
(1) 6xy-10x2-5yx+7x2 +5x (找)
=(6xy-5yx)+(-10x2+7x2 )+5x(移)

整式的加减基础知识详解

整式的加减基础知识详解

注:《初中数学典型题思路分析》已被多位老师选用备课。

可提供样本!《初中数学典型题思路分析》亮点:内容为王!A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。

B.整体难度较大.严格选题,标注难度,不用浪费时间重复做简单题。

二、整式的加减(二)——去括号与添括号基础知识讲解【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.三、《整式的加减》全章复习与巩固【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.。

2.2整式的加减(1)合并同类项(教案)-2021-2022学年人教版七年级数学上册

2.2整式的加减(1)合并同类项(教案)-2021-2022学年人教版七年级数学上册
在讲授重点难点时,我尽量用简单的语言和丰富的例子来进行解释,但从同学们的反应来看,可能还需要进一步简化讲解,让他们更容易理解和接受。此外,对于学习有困难的同学,我将在课后进行个别辅导,帮助他们克服难点,提高学习效果。
二号表示现实问题;
2.培养学生的逻辑推理能力,通过合并同类项的过程,掌握整式加减的基本法则,提高解决问题的逻辑思维能力;
3.培养学生的运算能力,熟练进行整式的加减运算,形成准确的数学运算习惯;
4.培养学生的数学应用意识,将所学知识应用于解决实际生活中的问题,体会数学与现实生活的紧密联系;
同学们,今天我们将要学习的是《整式的加减(1)合并同类项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将相同的东西放在一起的情况?”比如,我们整理书包时,会把相同的书本放在一起。这个问题与我们将要学习的合并同类项密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式加减的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解同类项的基本概念。同类项是指字母相同且相同字母的指数也相同的项。它是整式加减的基础,帮助我们简化计算过程。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了合并同类项在实际中的应用,以及它如何帮助我们解决数学问题。
3.重点难点解析:在讲授过程中,我会特别强调同类项的识别和合并这两个重点。对于难点部分,比如区分同类项和不同类项,我会通过举例和比较来帮助大家理解。
(2)掌握合并同类项的法则,能够正确进行整式的加减运算;
举例:合并同类项的法则是将同类项的系数相加或相减,字母及字母的指数保持不变,如3x + 5x = 8x,4y - 2y = 2y。
(3)运用整式的加减法则解决实际问题,体会数学在生活中的应用。

整式的加减—合并同类项 教学课件(获奖课件)

整式的加减—合并同类项 教学课件(获奖课件)
像这样把多项式中的同类项合并成一项, 这个过程叫做合并同类项。
观察上面的合并同类项,发现变的是什 么?不变的又是什么?
谁能总结一下合并同类项的法则?
• 探究4: 合并同类项的法则
(1)同类项系数的和作为结果的系数
(2)字母和字母的指数不变
口诀:
合并同类项,法则不能忘 只求系数代数和,字母指数不变样。
例1. 1) 若7xay4与-2.35ycx5是同类 项,求 | 3a-5c | 的值.
2) 若单项式2xkyk+2与3x2yn的和为 5x2yn,求 k , n 的值.
探究3:化简:3a+2a-4a= (3+2-4)a =a
• 100t+252t=(100+252)t=352t • 3x2+2x2=( 3+2)x2=5x2 • 3ab2-4ab2=( 3-4 )ab2=-ab2
三、合并
=
= -5a+2a2 -2
展示图片
探究1:
青藏铁路线上,列车在冻土地段的行驶速度是 100千米/时,在非冻土地段的行驶速度可以达到 120千米/时,在西宁到拉萨路段,列车通过非冻 土地段所需时间是通过冻土地段所需时间的2.1 倍,如果通过冻土地段需要t小时,则这段铁路的 全长是多少? (单位:千米)
解:这段铁路的全长是 100t+120×2.1t
例2:合并多项式中的同类项
– 7a + 3a2 + 2a – a2 ++2ab - 4a2 -5b2
一、知识小结
二、思想方法小结
作业布置
例题赏析
– 7a +3a2 –5 + 2a – a2 + 3

3.4整式的加减一一合并同类项说课稿课件北师大版七年级数学上册

3.4整式的加减一一合并同类项说课稿课件北师大版七年级数学上册
3
(一)教材地位和作用
合并同类项是本章的一个重点。一方面, 合并同类项的过程中,要不断运用数的运 算。可以说合并同类项是有理数运算的延 伸与拓广;另一方面,合并同类项法则的 应用是后面整式的运算、解方程、解不等 式等的基础。
4
㈡学情分析 同类项的概念是合并同类项的基础,合并同
类项又是整式加减的基础。新的教学理念强调让 学生经历知识的形成过程,又因为学生刚学完多 项式的项和系数,对多项式的项和系数等概念还 没有区分清楚的学生,会对学习同类项感到困难。 另外七年级的学生形象直观思维已比较成熟,学 习意识和学习态度也有了明显提高,但抽象思维 能力还比较薄弱,考虑问题也不够全面,而且他 们探究、观察、概括的能力也不是很强。我根据 学生的认知能力以及教材的特点设计了这节课。
2、合并同类项法则及注意事项。
学生自己小结,发挥主体地位, 提高他们语言表达能力与总结 归纳能力,使学生能够系统全 面的掌握知识。
22
布置作业
必做题进一步巩固学
生所学知识,及时发
必做题:
现和弥补知识缺陷,
1、在下列代数式中,指出哪些是同类项。 2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2,
3x与2y不是同类 项,不能合并。
((43))、 、79xa22b39xb2a2
4
0
=4x2

18
合作探究:完成例1,小组内合作交流 合并同类项的步骤是怎样的?
例1 合并同类项:
a3 a2b ab2 a2b ab2 b3
同时采,用还先让放学后生收掌的握方在法多,项让式学中生辨先别小出组同内 试类解项,和并运讨用论法总则结进合行并合同并类同项类的项步运骤算和的方技法。 然能后,教使师学有生选的择知的识让、两技个能学螺生旋展式示上解升题。过程。 目的是让学生初步懂得运用合并同类项法则 合并同类项,掌握解题步骤和正确的书写格 式。

人教版七年级数学上册说课稿:2.2整式的加减一合并同类项

人教版七年级数学上册说课稿:2.2整式的加减一合并同类项
(二)媒体资源
在教学过程中,我将使用以下教具和多媒体资源:
1.黑板和教鞭:用于展示和解释合并同类项的步骤,便于学生跟随思路。
2.电子白板:展示多媒体课件,包括动画、图表和典型例题,增强视觉效果,提高学生的学习兴趣。
3.数学教具:如代数棒等,用于学生动手操作,直观感受同类项的合并过程。
4.电脑和网络:提供在线数学资源和练习平台,便于学生进行个性化学习和自我检测。
对于重点,需要通过反复的例题演示、学生练习和讲解反馈来确保学生能够牢固掌握合并同类项的基本操作。
对于难点,则需要通过直观的教具展示、具体的案例分析以及小组合作探讨等方式,帮助学生突破指数相同这一概念难点,并能够准确地识别和合并各类同类项。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,他们大多处于青春期初期,好奇心强,求知欲旺盛,但注意力容易分散。在认知水平上,他们已经具备了一定的逻辑思维能力,但抽象思维能力还在发展中。学习兴趣方面,学生对新鲜有趣的事物更感兴趣,喜欢通过游戏和互动来学习。然而,学生的学习习惯尚在养成中,需要教师引导和培养良好的学习习惯,如记笔记、预习复习等。
四、教学过程设计
(一)导Байду номын сангаас新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.生活情境:我会向学生展示一些生活中常见的物品,如购物小票、计算器等,并提问:“你们在生活中遇到过需要计算多个相同物品总价的情况吗?如何快速准确地计算呢?”通过这个话题,让学生感受到数学知识在生活中的应用,从而引出合并同类项的概念。
2.例题演示:通过展示具体的例题,逐步讲解合并同类项的步骤,让学生跟随解题过程,加深对知识点的理解。
3.互动提问:在讲解过程中,适时提问学生,引导学生思考并回答问题,以确保学生对知识点的掌握。

2024年秋新人教版七年级上册数学课 4.2 整式的加减(第1课时)合并同类项

2024年秋新人教版七年级上册数学课 4.2 整式的加减(第1课时)合并同类项

知识点3 合并同类项的应用
在求多项式的值时,可以先将多项式中的同类项合并, 然后再求值,这样做往往可以简化运算.
先化简,再求值
例2
解:(1) 2x2-5x+x2+4x-3x2 -2 = (2+1-3) x2 + (-5+4) x-2 = -x-2.
例3
(1)水库中水位第一天连续下降了a小时,平均每小时 下降2 cm;第二天连续上升了a小时,平均每小时上升 0.5 cm,这两天水位总的变化情况如何?
小结 合并同类项的一般步骤:
一找:找出同类项,当项数较多时,通常在同类项的下面做 相同的标记;
二移:运用加法交换律、结合律将多项式中的同类项结合; 三合:利用合并同类项法则,合并同类项; 四排:合并后的结果按某一个字母的降幂(或升幂)排列.
注意:(1)合并同类项时,只能把同类项合并成一项, 不是同类项的不能合并,不能合并的项,在每一步运算中 都要写出,不能漏掉. (2)所有的常数项都是同类项,合并时把它们结合在一 起,运用有理数的运算法则进行合并. (3)若两个同类项的系数互为相反数,则合并这两个同 类项的结果为0.
解:把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米(单位:kg) 5x-3x+4x=(5-3+4)x=6x.
1.如果5x2y与xmyn是同类项,那么 m=__2__,n=__1__. 2.合并同类项:
(1)-a-a-2a= -4a . (2)-xy-5xy+6yx= 0 . (3)0.8ab2-a2b+0.2ab2= ab2-a2b .
解:把下降的水位变化量记为负,上升的水位变化量 记为正. 第一天水位的变化量是-2a cm, 第二天水位的变化量是0.5a cm. 两天水位的总变化量(单位:cm)是

3.2整式的加减(1)+合并同类项、去括号课件2024-2025学年北师大版数学七年级上册

3.2整式的加减(1)+合并同类项、去括号课件2024-2025学年北师大版数学七年级上册

D.−2(3 − 1) = −6 + 2
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习11、 已知
+ = 2, = −3,则多项式( + ) − [( − 2) − ] − (−)的
值是
.
( + ) − [( − 2) − ] − (−)
(4)30 − = 5 6 −
错误
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习8、下列去括号错误的个数为
(
C
)
① + ( + ) = + ; + +
② − ( + − ) = − − + ;
③ + 2( − ) = + 2 − + 2 − 2
(1)−2 2 + 3 2
解: − 2 2 + 3 2
(2) − − 2 − 4
解: − − 2 − 4
= −2 + 3 2
= −1 − 2 − 4
= 2
= −7
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
= −4 3 + −2 + 2 2 − 6
练习3、 若多项式−4
3
− 2 2 + 2 2 − 6合并同类项后是一个三次
−2 + 2 = 0
二项式,则满足的条件是 ( C )
A. = −1
B. ≠ −1
C. = 1
D. ≠ 1
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习4、若−4

人教版数学七年级上册 整式的加减

人教版数学七年级上册   整式的加减

整式的加减(一)——合并同类项(基础)【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=14.已知35414527m n ab pa b a b ++-=-,求m+n -p 的值.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4 二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++-(3)2222630.835m n mn mn n m mn n m --+--(4)33331()2()()0.5()3a b a b b a a b +-+-+-+17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.。

整式的加减(一)——合并同类项(基础)__整式的加减(一)——合并同类项(基础)知识讲解

整式的加减(一)——合并同类项(基础)__整式的加减(一)——合并同类项(基础)知识讲解

整式的加减(一)——合并同类项(基础)责编:康红梅【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并;2. 掌握同类项的有关应用;3. 体会整体思想即换元的思想的应用.【要点梳理】【高清课堂:整式加减(一)合并同类项 同类项】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念 1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8【答案与解析】本题应用同类项的概念与识别进行判断:解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.【答案与解析】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【总结升华】考查了同类项定义.同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.举一反三:【高清课堂:整式加减(一)合并同类项 例1】 【变式】已知和 是同类项,试求 的值.【答案】()()21,23223m n m n -=+=∴-+=解:由题意知,且类型二、合并同类项 3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5【答案与解析】解: (1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy=(-2-5)x 2+(-8+4)y 2+(-5+5)x -6xy =-7x 2-4y 2-6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5=(3+5)x 2y+(-4+2)xy 2+(-3+5)=8x 2y -2xy 2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=1【答案】C解:3a 和2b 不是同类项,不能合并,A 错误;2a 3+和3a 2不是同类项,不能合并,B 错误;3a 2b ﹣3ba 2=0,C 正确;233m x y --22n xy +()()22m n -+5a 2﹣4a 2=a 2,D 错误,故选:C .4.已知35414527m n a b pa b a b ++-=-,求m+n -p 的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m a b +与41n pa b +是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7解这三个方程得:m =1,n =4,p =9,∴ m+n -p =1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = . 【答案】4,2 .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--【答案与解析】(1)把()p q -当作一个整体,先化简再求值:解: 22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值. 解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.【答案】解: (1)原式322981x x x =---+,当2x =时,原式=32229282167-⨯-⨯-⨯+=-.(2)原式22210x xy y =-+,当2x =,1y =时,原式=22222110116⨯-⨯+⨯=. 类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【答案与解析】解:333336242215x x y x x y x --+-+=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并.。

北师大版(2024)数学七年级上册3.2 整式的加减 第1课时 合并同类项 课件(共19张PPT)

北师大版(2024)数学七年级上册3.2 整式的加减 第1课时 合并同类项 课件(共19张PPT)

-7a2b+2a2b= (-7+2)a
。 2b=-5a2b。
合作探究
观察8n和5n、-7a2b和2a2b有什么相同点?
①所含字母相同;
同类项与
系数无关。
②相同字母的指数也相同.
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:所有的常数项都是同类项。
思考
x与y、a2b与ab2、-3qp与3qp、abc与ac、a2与a3是不是同类项?
把同类项合并成一项叫做合并同类项。
例如:8n+5n=13n,2xy+3xy=5xy,-7a2b+2a2b=-5a2b。
思考
观察上述式子,你能从中得出什么规律?
合并同类项法则:
合并同类项时,把同类项的系数相加,字母和字母的指数不变.
典例精析
根据乘法对加法的分配律合并同类项:
(1)-xy2+3xy2;
3.2 整式的加减
第1课时 合并同类项
学习目标
1.在具体情境中感受合并同类项的必要性,理解合并同类项法则
所依据的运算律.(重点)
2.了解合并同类项的法则,能进行同类项的合并.(难点)
知识回顾
1.表示数与字母 乘积 的代数式叫做单项式.单独一个数或一个
字母也是单项式.单项式中的 数字因数 叫做这个单项式的系数。
3
4
= − 22
3
9
当= ,=-1时
4
4
9
原式= × ×(-1)-2×
3
4
=-3-2
=-5
4
+ (−42+22),
−1
2
课堂总结
整式的加减
(合并同类项)
同类项
两相同两无关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减(一)——合并同类项(基础)
【学习目标】
1.掌握同类项及合并同类项的概念,并能熟练进行合并;
2. 掌握同类项的有关应用;
3. 体会整体思想即换元的思想的应用.
【要点梳理】
要点一、同类项
定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.
要点诠释:
(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.
(2)同类项与系数无关,与字母的排列顺序无关.
(3)一个项的同类项有无数个,其本身也是它的同类项.
要点二、合并同类项
1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.
2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:
(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.
(2) 合并同类项,只把系数相加减,字母、指数不作运算.
【典型例题】
类型一、同类项的概念 1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.
(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8
【答案与解析】本题应用同类项的概念与识别进行判断:
解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等;
(3)不是同类项,因为5x 与xy 所含字母不相同.
【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.
举一反三:
【变式】下列每组数中,是同类项的是( ) .
①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与
23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12
A .①②③
B .①③④⑥
C .③⑤⑥
D .只有⑥
【答案】C
2.(2014•咸阳模拟)已知﹣4xy n+1与
是同类项,求2m+n 的值. 【答案与解析】
解:由题意得:m=1,n+1=4,
解得:m=1,n=3.
∴2m+n=5.
【总结升华】考查了同类项定义.同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.
举一反三:
【变式】已知 和 是同类项,试求
的值.
【答案】()()21,23
223
m n m n -=+=∴-+=解:由题意知,且
类型二、合并同类项 3.合并下列各式中的同类项:
(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy
(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5
【答案与解析】
解: (1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy
=(-2-5)x 2+(-8+4)y 2+(-5+5)x -6xy =-7x 2-4y 2-6xy
(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5
=(3+5)x 2y+(-4+2)xy 2+(-3+5)=8x 2y -2xy 2+2
【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.
举一反三:
【变式】(2015•玉林)下列运算中,正确的是( )
A. 3a+2b=5ab
B. 2a 3+3a 2=5a 5
C. 3a 2b ﹣3ba 2=0
D. 5a 2﹣4a 2=1
【答案】C
解:3a 和2b 不是同类项,不能合并,A 错误;
2a 3+和3a 2不是同类项,不能合并,B 错误;
3a 2b ﹣3ba 2=0,C 正确;
5a 2﹣4a 2=a 2,D 错误,
故选:C .
4.已知35414527m n a b pa b a b ++-=-,求m+n -p 的值.
233m x y --22n xy +()()22m n -+
【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m a b +与41n pa b +是同类项.因此,可以利用同类项的定义解题.
【答案与解析】
解:依题意,得3+m =4,n+1=5,2-p =-7
解这三个方程得:m =1,n =4,p =9,
∴ m+n -p =1+4-9=-4.
【总结升华】要善于利用题目中的隐含条件.
举一反三: 【变式】若223
m a b 与40.5n a b -的和是单项式,则m = ,n = . 【答案】4,2 .
类型三、化简求值
5. 当2,1p q ==时,分别求出下列各式的值.
(1)22
1()2()()3()3p q p q q p p q -+-----;
(2)2283569p q q p -+--
【答案与解析】(1)把()p q -当作一个整体,先化简再求值:
解: 22221()2()()3()3
1(1)()(23)()3
2()()3
p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=
所以,原式=22222()()111333
p q p q ----=-⨯-=- (2)先合并同类项,再代入求值. 解:2
283569p q q p -+-- 2(86)(35)9p q =-+-+-
2229p q =+-
当p =2,q =1时,原式=22
229222191p q +-=⨯+⨯-=.
【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.
举一反三:
【变式】先化简,再求值:
(1)2323381231x x x x x -+--+,其中2x =;
(2)222242923x xy y x xy y ++--+,其中2x =,1y =.
【答案】
解: (1)原式322981x x x =---+,
当2x =时,原式=32
229282167-⨯-⨯-⨯+=-.
(2)原式22210x xy y =-+,
当2x =,1y =时,原式=22222110116⨯-⨯+⨯=. 类型四、“无关”与“不含”型问题
6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?
【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.
【答案与解析】
解:333336242215x x y x x y x --+-+
=(6-4-2)x 3+(-2+2)x 3y+15
=15
通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.
【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并.。

相关文档
最新文档