函数与映射
《函数与映射》PPT课件
(C )
A.4,6,1,7
B.7,6,1,4
C.6,4,1,7
D.1,6,4,7
2021/1/21
精选课件ppt
10
§2.1.1 函数与映射(一)
例1.设映射f:x→-x2+2x是实数集M到实数集N的
映射,若对于实数p∈N,在M中不存在原象,则
p的取值范围是
()
A. (1,+∞) B.[1,+∞)
数关系的有
()
A.0个 B.1个 C.2个 D.3个
2021/1/21
精选课件ppt
8
§2.1.1 函数与映射(一)
【解析】根据函数的定义:“集合M中的任一元素, 在对应法则f作用下,在集合N中都有唯一元素与之 对应.”由此逐一进行判断.
对于图a:M中属于(1,2]的元素,在N中没有
对于图b:符合M到N 对于图c:M中有一部分的元素的象不属于集合N, 因此它不表示M到N 对于图d:其象不唯一,因此也不表示M到N的函 数关系.
本题解法一转化为方程解的问题,解法二转化 为求函数值域问题.
2021/1/21
精选课件ppt
13
§2.1.1 函数与映射(一)
例 2. 设 集 合 A= { a,b } ,B= { 0,1 } , 试 列 出 映 射 f:A→B的所有可能的对应法则f.
设f:A→B是集合A到集合B的一个映射.如果在这个映射下, 对于集合A中的不同元素,在集合B中有不同的象,而且B 中每一个元素都有原象,那么这个映射就叫做A到B上的一 一映射.
2021/1/21
精选课件ppt
3
§2.1.1 函数与映射(一)
3.函数的三要素 函数是由定义域、值域以及从定义域到值域的对应法则三 部分组成的特殊映射. 4.函数的表示法:
高等数学上册1.1 映射与函数
一、映 射
二、函 数
第一章 函数与极限
一、映射
1. 映射的概念
定义1
设 X 、Y 是两个非空集合, 若存在一个法则 , 使得对X中
每个元素, 按法则 , 在Y中有唯一确定的与之对应, 则称
为从 X 到 Y 的映射. 记作 : X→Y.
X
定义域
D =X
第一节 映射与函数
()
()=
若既是满射又是单射, 则称为双射或一一映射.
第一节 映射与函数
第一章 函数与极限
注 映射又称为算子, 在不同数学分支中有不同的名称.
Y
非空集X
上的泛函
数集Y
非空集X
上的变换
非空集Y
实数集X
上的函数
实数集Y
第一节 映射与函数
第一章 函数与极限
2. 逆映射与复合映射
注 分段函数是一个函数,不是多个函数.
第一节 映射与函数
第一章 函数与极限
2. 函数的几种特性
设函数 = () 的定义域为D , 且数集 ⊂ D 或区间 I ⊂ D .
(1) 有界性
∀ ∈ , ∃ > 0, 使 () ≤, 称 () 在上有界.否则称无界.
∀ > 0, ∃0 ∈ , 使|( 0)|≥M, 称() 在I上无界.
<0
第一章 函数与极限
例8 设为任一实数,不超过的最大整数称为的整数部分,记作[].
例如:
5
= 0,
7
阶梯曲线
2 = 1, [π] = 3, [−1] = −1, [−3.5] = −4.
求函数 = [] 的定义域和值域并画图.
映射与函数
f :A B
x f ( x)
这时称y是x在映射f 的作用下的象,x称作 y的原象。
映射的性质:
①映射的任意性;
②映射的唯一性; ③映射的方向性;
例1、判断下列对应是否构成映射?
aa bb cc (是) e f g
e f g
a b c d
( a是)
b c
e f g d (是)
a e ea b f fb c g gc d (不是) a (不是) d
(2)已知 A=B=R, x A, y B, f : x y ax b , 若集合 B 中的元素 5 和 10 分别对应 A 中的 5 和 20, 求 a, b 值。
(3)从集合 A a , b , c 到集合B x , y , 可以构成___Байду номын сангаас个不同的映射.
函数定义:设 A , B 是两个非空数集, 如果按照某种对应法则 f , 使对于集合 A中的任意一个元素 x ,在集合B中都 有唯一确定的元素 y 与之对应,则 称 f 为集合A上的函数。 记作 y f ( x), x A
⑥ y 2 x 与 s 2t
2
2
④ y x 与 y=
3
x
3
b c e f g
a e f b cg d (是)
注意: (1)就对应来说,一对一,多对一是映射。一 对多不是映射。 (2)集合A中的元素一定有象,且唯一。即 A是所有原象的集合 (3)集合B中的元素未必有原象( B中的元 素可以有剩余。
概念深化:判断下列对应是否构成映射?
(2) A R, B x | x 0, f : 取绝对值;
思考:x 的取值范围 A 叫做函数的定义域, 集合 B 的取值范围是否是函数的值域?
函数、映射的概念
函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
1-1 映射与函数
例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
《高等数学》第一节:映射与函数
[
, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x
2
2
0
2
x
| arctanx |
定义域 (,)
2
2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos
,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!
映射与函数
1 ≤2}, x (3)A={x|0≤y ≤2},对应法则f :x→y= 3
(4)A={1,2,3},B={2,4,8}, (4)A={1,2,3},B={2,4,8},对应法则 f :x→y=2x (5)A={平面 内的圆} B={平面 (5)A={平面α内的圆},B={平面α内的 矩形} 对应法则“作圆的内接矩形” 矩形},对应法则“作圆的内接矩形”
四种有界区间: 四种有界区间: 表示{x|a≤x≤b} 叫闭区间; {x|a≤x≤b}, 1)[a,b] 表示{x|a≤x≤b},叫闭区间; 表示{x|a {x|a< b},叫开区间; 2)(a,b) 表示{x|a<x<b},叫开区间; 表示{x|a x≤b},叫左开右闭区间; {x|a< 3)(a,b] 表示{x|a<x≤b},叫左开右闭区间; 表示{x|a≤x b},叫左闭右开区间。 {x|a≤x< 4)[a,b) 表示{x|a≤x<b},叫左闭右开区间。 五种无界区间: 五种无界区间: 表示{x|x≥a} {x|x≥a}; 1)[a,+∞) 表示{x|x≥a}; 表示{x|x a}; {x|x> 2)(a,+∞) 表示{x|x>a}; )(表示{x|x≤a} {x|x≤a}; 3)(-∞,a] 表示{x|x≤a}; )(表示{x|x a}; {x|x< 4)(-∞,a) 表示{x|x<a}; )(表示实数集R 5)(-∞,+∞) 表示实数集R;
• 如果函数中含有分式,那么函数的分母必须不 如果函数中含有分式, 分式 为零。 为零。 • 如果函数中含有偶次根式,那么根号内的式 如果函数中含有偶次根式, 偶次根式 子必须不小于零。 子必须不小于零。 • 零的零次幂没有意义。 零的零次幂没有意义。 零次幂没有意义
练习 1、函数 f ( x ) =
高数课件-映射与函数
义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射
与
主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1
一函数与映射的基本概念
一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。
例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。
3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。
映射和函数的分类与性质
映射和函数的分类与性质一、映射的概念与性质1.映射:从集合A到集合B的一种规则,使得A中任意一个元素x,在B中都有唯一的元素y与之对应。
2.映射的性质:a)单射性(一一对应):对于A中的任意两个不同元素x1、x2,在B中对应的元素y1、y2也不同,即y1 ≠ y2。
b)满射性(覆盖):对于B中的任意元素y,存在A中的元素x与之对应。
c)域和值域:映射的定义域为集合A,值域为集合B中所有可能的输出值。
二、函数的分类1.线性函数:形如y = kx + b(k、b为常数)的函数,其中k≠0。
2.非线性函数:不包括线性函数的函数,如二次函数、指数函数、对数函数等。
3.单调函数:a)单调递增函数:对于定义域内的任意两个不同元素x1、x2,若x1 < x2,则f(x1) ≤ f(x2)。
b)单调递减函数:对于定义域内的任意两个不同元素x1、x2,若x1 < x2,则f(x1) ≥ f(x2)。
4.奇函数与偶函数:a)奇函数:满足f(-x) = -f(x)的函数。
b)偶函数:满足f(-x) = f(x)的函数。
三、函数的性质1.连续性:函数在每一点上都存在极限,且极限值等于函数值。
2.可导性:函数在某一点可导,意味着在该点处存在切线,且切线斜率等于函数导数值。
3.周期性:函数满足f(x + T) = f(x),其中T为函数的周期。
4.奇偶性:根据奇函数和偶函数的定义,函数的奇偶性决定了其在y轴对称或关于原点对称。
四、映射与函数的关系1.函数是特殊的映射:函数是一种映射,具有单射性、满射性和域值域的概念。
2.函数的定义域和值域:函数的定义域为映射的输入集合,值域为映射的输出集合。
五、映射和函数的应用1.数学领域:在数学分析、线性代数、概率论等领域中,映射和函数是基本概念,用于描述变量之间的关系。
2.物理学:在物理学中,函数用于描述物理量随另一物理量的变化规律,如速度与时间的关系。
3.计算机科学:在计算机科学中,函数用于实现算法,映射概念用于哈希表等数据结构的设计。
高三数学映射与函数
映射与函数一、学习目标1、了解映射的概念;能判断某些简单的对应是不是映射;在映射基础上加深理解函数。
2、理解函数的概念;正确运用函数记号。
3、掌握函数的要素;能判断两个函数是否为同一个函数。
4、初步掌握函数的三种表示法。
5、掌握分段函数6.加深理解函数的概念;理解对应法则的含义;初步掌握函数解析式的两种求法:(1)待定系数法;(2)换元法7.会求一些简单函数的定义域和值域。
二、问与答问1:写出映f∶A→B的定义【解】映射f∶A→B的定义是:设A;B是两个集合;如果按照某种对应法则f;对于集合A中的任何一个元素;在集合B中都有唯一的元素和它对应;那么这样的对应(包括集合A;B以及A到B的对应法则f)叫做集合A到集合B的映射;记作f∶A→B。
【评注】这个定义;不要死记硬背;要从以下四点深刻理解它:1、先记住映射的记号“f∶A→B”;它包括集合A;B以及A到B的对应法则f(A≠Φ;B≠Φ)。
2、映射f∶A→B是有方向的;即从A到B;定义中只要求A中的每一个元素在B中有怎样的“象”?并不要求B中的每一个元素在A中有怎样的对应。
因此;“从A到B 的映射”与“从B到A的映射”是不同的。
3、在A到B的映射中;集合A中的每一个元素在B中都有“象”;且“象”唯一。
4、映射是一种特殊的“对应”。
而“对应”与集合一样;也是原始概念;即无定义的;但可以“说明”:对应是两个集合A与B的关系;通常以一个集合为主来考虑;对于A中的每一个元素来说;有以下三种对应关系:(1)B中有唯一元素与之对应。
(2)B中有多个元素(不是唯一)与之对应。
(3)B中没有元素与之对应。
映射就是第(1)种对应;而(2)、(3)两种对应不是映射。
问2:在映射f∶A→B中;什么叫“象”和“原象”?怎样判别一个对应是否是映射?试举一个正例和反例。
【解】在映射f∶A→B中;如果a∈A;b∈B;且元素a和元素b对应;那么;元素b叫做元素a的象;元素a叫做元素b的原象;记作:f(a)=b。
函数与映射的关系
函数与映射的关系函数与映射是数学中两个重要的概念,它们之间存在着密切的关系。
函数是映射的一种特殊形式,而映射则是函数的一种更普遍的表达方式。
首先,我们来了解函数的概念。
函数是一种特殊的关系,它将一个集合的元素对应到另一个集合的元素上。
在函数中,每个输入都有且只有一个对应的输出。
我们可以将函数想象成一台黑盒子,它接收输入并返回输出,而我们无需关心黑盒子内部的运作过程。
函数的定义通常由一个公式或者算法给出,从而确定每个输入所对应的输出。
而映射是函数的一般形式,它描述了一个集合中的元素如何对应到另一个集合中的元素。
映射可以是一对一的,即每个输入对应到唯一一个输出;也可以是多对一的,即多个输入对应到同一个输出;还可以是一对多或多对多的。
映射的表达方式有多种,例如集合表示法、图表、箭头图等。
映射中的每个元素对我们可以理解为函数中的一个输入-输出对。
函数和映射在数学建模中具有重要的作用。
它们可以帮助我们描述和解决各种实际问题。
例如,在经济学中,我们可以将不同的产量和对应的成本通过函数来描述,进而研究成本最小化的问题;在计算机科学中,我们可以通过映射来实现数据的转换和处理,从而实现各种算法和程序。
函数和映射的概念也被广泛应用于物理学、工程学、生物学等学科中。
在数学教学中,函数和映射也是重要的基础概念。
它们可以帮助学生理解抽象的数学概念,并培养他们的逻辑思维和问题解决能力。
通过学习函数和映射,学生可以了解到不同数学对象之间的联系,例如函数之间的复合和逆运算。
此外,函数和映射还可以帮助学生更好地理解数学的实际应用,从而提升他们的学习兴趣和动力。
总结起来,函数和映射是数学中不可或缺的两个概念。
函数是映射的一种特殊形式,它将一个集合的元素对应到另一个集合的元素上,并满足每个输入有且只有一个输出的条件。
映射则是更广义的表达方式,它描述了集合中元素之间的对应关系。
函数和映射在数学建模和教学中都具有重要的作用,它们帮助我们解决实际问题,培养思维能力,理解数学对象之间的联系。
第2讲映射与函数
解
f1 ( x) x f 2 ( x) f ( f1 ( x)) , 2 2 1 f1 ( x) 1 3x
x 设 f k ( x) f ( f k 1 ( x)) , 2 1 (k 1) x x 由数学归纳法可证得: f n ( x) . 2 1 (n 1) x
四、复合函数、反函数
1.复合函数
请点击
2. 反函数
1.复合函数
Ima( g ) D( f )
Ima ( g )
u g (x)
y f (u )
x D(g ) ~ Dg
·
D( f )
u
·
·
· ·( f ) Ima
y
如何
? 描述
设有映射 y f (u ), u D( f ) 及 u g ( x), x D( g ),
自 己 画 一 下 草 图
x (, 0] 时,它的反函数存在, 为
x y,
y (, 0]。
反函数的图形
将函数 y = f (x) 的反函数写成 x = f 1(y) 时, 函数与其反函数的图形相同. 将函数 y = f (x) 的反函数记为 y = f 1(x) 时, 函数 y = f (x) 与其反函数 y = f 1(x) 的图形关于 第Ⅰ、Ⅲ 象限的角平分线 y = x 对称。
画画图就一目了然.
我们以后将运用微积分的方法研究函数的单调性。
2. 有界性
有 界
有界性
有上界
有下界
函数有界性的定义 设函数 y = f ( x ) 在区间 I 上有定义。 若存在实数 A , B , 使对一切 x I 恒有
A f(x)B
则称函数 y = f ( x ) 在区间 I 上有界。 否则, 称函数 y = f ( x ) 在区间 I 上无界。
第2讲 函数与映射的概念,定义域,值域
第2讲 函数与映射的概念★知识梳理1.函数的概念设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),((2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域。
(2)函数的三要素:定义域、值域和对应法则2.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,这样的单值对应叫做从A 到B 的映射,记为B A f →: ★重、难点突破重点:掌握映射的概念、函数的概念,会求函数的定义域、值域难点:求函数的值域和求抽象函数的定义域重难点:1.关于抽象函数的定义域求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域[误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a[正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a即本题的实质是求b x a ≤+≤2中x 的范围问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域[误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而22-≤≤-b x a ,所以函数)(x f y =的定义域是]2,2[--b a[正解]因为函数)2(+=x f y 的定义域是][b a ,,则b x a ≤≤,从而222+≤+≤+b x a 所以函数)(x f y =的定义域是]2,2[++b a即本题的实质是由b x a ≤≤求2+x 的范围即)(x f 与)2(+x f 中x 含义不同1. 求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数)32(log 221++-=x x y 就是利用函数u y 21log =和322++-=x x u 的值域来求。
映射与函数
函数与映射一、知识点1.函数映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.二、易错点1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成. [试一试]1.(2013·江西高考)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1]D .[0,1]解析:选B 根据题意得⎩⎪⎨⎪⎧1-x >0,x ≥0,解得0≤x <1,即所求定义域为[0,1).2.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.[练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( ) A .-2x +1 B .2x -1 C .2x -3 D .2x +7答案:D2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________. 答案:x 2-4x +3函数与映射的概念1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.以下给出的同组函数中,是否表示同一函数?为什么?(1)f 1:y =xx;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2:如图所示.解:(1)不同函数.f 1(x )的定义域为{x ∈R|x ≠0},f 2(x )的定义域为R.(2)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(3)同一函数.理由同②. [类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.函数的定义域问题角度一 求给定函数解析式的定义域 1.(1)(2013·山东高考)函数f (x )=1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1].答案:(1)A (2)(0,1]角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域. 解:∵函数f (x )的定义域是[-1,1],∴-1≤log 2x ≤1, ∴12≤x ≤2.故f (log 2x )的定义域为⎣⎡⎦⎤12,2. 角度三 已知定义域确定参数问题 3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0] [类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.求函数的解析式求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[典例] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. [解] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).(4)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).[针对训练]1.已知f (x +1)=x +2x ,求f (x )的解析式. 解:法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1).2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.(3)已知含参函数值或函数值关系(范围)求参数的值或范围 提醒:当分段函数的自变量范围不确定时,应分类讨论.[典例] (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.(2)(2013·福建高考)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. [解析] (1)当a >0时,1-a <1,1+a >1.这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.(2)∵π4∈⎣⎡⎭⎫0,π2, ∴f ⎝⎛⎭⎫π4=-tan π4=-1, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. [答案] (1)-34 (2)-2[针对训练]设函数f (x )=⎩⎨⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.解析:当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2.综上可得x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)。
《映射和函数》课件
奇函数
如果一个函数满足f(-x)=f(x),则该函数为奇函数, 其图像关于原点对称。
06
常见函数的图像和性质
正比例函数
总结词
正比关系,过原点
详细描述
正比例函数是形如$y=kx$($k neq 0$)的函数,图像是一条经过原点的直线。当 $k>0$时,图像过一、三象限;当$k<0$时,图像过二、四象限。
总结词
函数是数学中一个重要的概念, 它描述了两个集合之间的对应关 系。
详细描述
函数是建立在两个非空集合A和B 之间的对应关系,使得集合A中的 每一个元素x,通过某种对应关系 f,在集合B中都有唯一确定的元 素与之对应。
函数的性质
总结词
函数的性质包括有界性、单调性、奇偶性和周期性等。
详细描述
有界性是指函数在一定区间内存在上界和下界;单调性是指函数在某一区间内 的增减性;奇偶性是指函数对于原点的对称性;周期性是指函数按照一定的周 期重复的性质。
详细描述
函数加法是将两个函数的输出作为输入,对应输出相加得到的新的函数。函数加 法满足交换律和结合律。
函数的数乘
总结词
数乘函数的概念和性质
详细描述
数乘是指将一个常数与一个函数相乘,得到一个新的函数。数乘满足结合律和分配律。数乘对函数的图像有伸缩 变换的影响。
函数的复合
总结词
复合函数的概念和性质
详细描述
映射中集合A的元素x的取值范围。
陪域
映射中集合B中元素y的取值范围。
函数
特殊的映射,其定义域和陪域都是数集, 且数集中的每一个元素都有唯一的一个数 与之对应。
映射的性质
01
02
03
04
一一对应
函数与映射的概念
a
8
理解映射的概念,应注意以下几点: ①集合A、B及对应法则f是确定的,是一个整体系统; ②对应法则有“方向性”,即强调从集合A到集合B的对应, 它与从集合B到集合A的对应关系一般是不同的; ③集合A中每一个元素,在集合B中都有象,并且象是唯一 的,这是映射区别于一般对应的本质特征; ④集合A中不同元素,在集合B中对应的象可以是同一个; ⑤不要求集合B中的每一个元素在集合A中都有原象.
2.映射的概念
设 A、B 是两个非空集合,如果按照某种对应关系 f,对于集 合 A 中的_任__意__元素,在集合 B 中都有___唯__一__确__定__的元素与之对 应,那么这样的对应叫做从 A 到 B 的映射,通常记为___f:__A__→__B_.
a
4
1.(2011 年广东广州调研)函数 g(x)= x+3的定义域为( A )
a
9
【互动探究】
1.已知f∶A→B是集合A到集合B的映射,又A=B=R,对应
法则f∶y=x2+2x-3,k∈B且k在A中没有元素与之对应,则k的取
值范围为( A)
A.k<-4
B.-1<k<3
C.k≥-4
D.k<-1或k>3
解析:y=x2+2x-3=(x+1)2-4≥-4,k∈B且k在A中没有 没有元素与之对应,则k的取值范围为k<-4.
a
10
考点2 判断两函数是否为同一个函数 例2:试判断以下各组函数是否表示同一函数?
(1)f(x)= x2,g(x)=3 x3;
(2)f(x)=|xx|,g(x)=1-1
(x≥0), (x<0);
(3)f(x)=2n+1 x2n+1,g(x)=2n-1 x2n-1(n∈N*); (4)f(x)= x x+1,g(x)= x2+x; (5)f(x)=x2-2x-1,g(t)=t2-2t-1.
集合的函数与映射关系
集合的函数与映射关系函数与映射关系是数学的重要概念,在解决实际问题、描述数学规律和建立数学模型时特别有用。
在本文中,我将介绍函数和映射的基本概念、性质以及它们在实际生活中的应用。
一、函数的概念和性质函数是数学中的一个重要概念,它描述了两个集合之间的一种特殊关系。
一个函数是每个元素从一个集合到另一个集合的唯一映射。
具体来说,对于一个函数f:A→B,集合A中的每个元素都会被映射到集合B中的唯一元素。
函数可以用各种方法表示,例如公式、图表或者说明。
函数具有以下一些重要性质:1. 定义域和值域:函数的定义域是指函数的输入可取的所有值的集合,而值域是指函数的输出可以取到的所有值的集合。
2. 单射和满射:如果一个函数的每一个元素在值域中都有唯一的对应元素,则该函数被称为单射。
如果一个函数的值域中包含所有的可能值,则该函数被称为满射。
3. 反函数:如果一个函数的每个元素在定义域中都有唯一的对应元素,那么可以通过交换定义域和值域来得到一个新的函数,这个函数被称为原函数的反函数。
二、函数与实际生活中的应用函数在实际生活中有广泛的应用。
以下是一些常见的应用领域:1. 经济学:函数在经济学中被广泛应用,例如收益函数、供给函数和需求函数等。
这些函数可以帮助经济学家研究市场行为、预测市场变化和分析经济政策的影响。
2. 物理学:函数在物理学中用于描述物理量之间的关系。
例如,牛顿的第二定律可以用力和加速度之间的函数表达式来描述。
3. 工程学:函数在工程学中被广泛应用于设计和分析各种系统。
例如,控制系统中的传输函数描述了输入和输出之间的关系。
4. 计算机科学:函数在计算机科学中用于建立算法、优化程序性能和解决问题。
例如,搜索算法和排序算法都可以用函数来描述。
函数与映射关系是数学中的重要工具,在解决实际问题时很有帮助。
通过函数,我们可以描述数学规律、建立数学模型并应用于各个领域。
函数的性质和应用可以帮助我们更好地理解和解决实际问题,为科学研究和技术发展提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五
第一章 函数与极限(Function )
一、坐标系 二、集合 三、函数的概念 四、初等函数、分段函数
第一节 坐标系(coordinate system)
1.平面直角坐标系
第二象限
y
b
3 第一象限.C(a, b)
2
1
3
2
1 O
1 1
23axFra bibliotek第三象限
2 第四象限
点 a 的左 邻域 (a , a);
点a 的右 邻域 (a,a ).
第三节 函数的概念(concept of function)
一、 函数的概念
1、映射 2、函数
函数的两要素: 定义域与对应法则.
例如: y x 与y 1 x
y x与y x2
定义域的计算: 是使解析式有意义的自变量所能取得
则称 f (x) 为偶函数(或奇函数).
y y f (x)
y
f (x)
y f (x)
f (x)
f (x)
-x
o
xx
-x o x
x
偶函数
y cos x y sin x
f (x) 奇函数
4.函数的周期性
设函数f ( x)的定义域为D, 如果存在一个正
数l, 使得对于任一x D, ( x l) D. 且 f (x l) f (x) 恒成立. 则称f ( x)为周期函数, l称为f ( x)的周期.
正割函数 y sec x 1 cos x
余割函数 y csc x 1 sin x
sec2 x 1 tan2 x csc2 x 1 cot2 x
(5)反三角函数
反正弦函数 y arcsin x
反余弦函数 y arccos x
反正切函数 y arctan x
反余切函数 y arc cot x
arcsin x arccosx arctan x arc cot x
2
2
幂函数,指数函数,对数函数,三角函数和反
三角函数统称为基本初等函数(或简单函数).
初等函数
由常数和基本初等函数经过有限 次四则运算和有限次的函数复合步骤 所构成并可用一个式子表示的函数,称 为初等函数.
y
函数 y f ( x)
y
反函数 x ( y)
y0
W
o
y0
W
x0
x
o
D
x0
x
D
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x 对称.
例1 求函数
的反函数.
y 2x 1
解:由
y 2x
1
得
x
到一切实数组成的集合.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
显函数:等号左端是因变量的符号,而右端是 含有自变量的式子.
例如, y 1 x2
例如 y = x2 , y = 2x , y = sin2x.
隐函数:如果变量 x、y 满足方程 F(x、y) = 0 ,在 一定条件下,当 x 取某区间内的任一值时, 通过方程 F(x、y) = 0 总能唯一确定满足条件的 y 与之对应。
任意的、所有的或一切 存在
常用数集: N N+ Z Q R
2、邻域 U (a, ) {x x a } {x a x a }=(a , a )
a
a
a x
点a的去心的邻域,
0
记作 U(a,)
0
U (a, ) {x 0 x a }.
则称函数f (x)在D上有界,否则称为无界.
y K
y M
y=f(x)
o
x
有界 D
x0
o
D
x 无界
-K
-M
2.函数的单调性
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 f (x1) f (x2), (或 f (x1) f (x2)),
四、分段函数
在自变量的不同变化范围中,对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
f
(
x)
2x
x
2
1, 1,
x0 x0
y x2 1
y 2x 1
1,
符号函数
sgn
x
0,
1
x 0, x 0, x0
y
1
O
x
1
log
( 2
y1)
,
所以,所求反函数为
y log2(x1) (x 1)
二、复合函数
设 y u, u 1 x2
y 1 x2
x 自变量, u 中间变量, y 因变量.
注意:(1)不是任意两个函数都可以复合成一个复合函数;
例如 y u 2和u sin x 不能构成复合函数
v
22
2
O
10 t
1、高等数学的研究对象:函数 (初等函数)
2、研究函数的分析性质
连续性 可导性 可微性 可积性
3、研究的基本工具或方法: 极限
C目 录 ONTENTS 一、函数与极限 二、导数与微分 三、中值定理导数应用
四、不定积分 五、定积分 六、定积分的应用 七、微分方程
一、函数与极限 二、导数与微分 三、微分中值定理与导数的应用
则称函数 f ( x)在区间 I上是单调增加的(; 或单调减少的)
y
f (x2 ) f (x1)
y f (x)
x1
x2
o
I
y
f (x1) f (x2 )
x
o
y f (x)
x1
x2
I
x
3.函数的奇偶性
设D关于原点对称, 对于x D, 有
f ( x) f ( x) (或f (x) f (x))
(通常说周期函数的周期是指其最小正周期).
3l 2
l 2
l 2
3l 2
第四节 初等函数、分段函数
一、 反函数
设函数 y f (x)的定义域为D,值域为W.
若对W中每一值 y0 ,D中必有一个值 x0 ,使得 f (x0) y0
则在W上可确定一个函数,称此函数为函数的反函数,
记作
x f 1( y) y W
例如 y - x2 = 0, y - 2x = 0, y + sin2x = 0
ey xy x2 0
三、函数几种特性
例如:函数y 1
x
1.有界性
在区间(0,1)内无界。 在区间(1,2)内有界,
设函数 f (x) 在集D上有定义,若存在正数K,使得对
一切 x D 有 f (x) K,
(2)复合函数可以由两个以上的函数复合构成;
例如 y esin x22 是由函数 y eu , u sin v, v x2 2 复合而成.
三、基本初等函数与初等函数
(1)幂函数
y x (是常数)
y
y x2
(1,1) y x y x
o
x
y 1 x
(2)指数函数 y a x (a 0, a 1) y e x
y
0 a 1
a 1
1
O
x
(3)对数函数 y loga x (a 0,a 1) y ln x
y
a 1
O1
x
0 a 1
(4)三角函数
正弦函数 y sin x
余弦函数 y cos x
正切函数 y tan x
3
2. 极坐标系
M(r, )
r
O
x
r 为 M点的极径; 为 M点的极角.
y
(x, y)
r M(r, )
y
Ox
x
x r cos
直角坐标与极坐 标之间的变换公式
y r sin
x2 y2 r2
tan y (x 0)
x
例1 将点M 的直角坐标(1, 3)化为极坐标.
例 下列初等函数是由哪些基本初等函数复合而成的?
(1)y arcsin(3x2 ) 是由函数 y arcsin u 和 u 3v , v x2 复合而成.
(2) y 22x1 x 1 是由函数 y u v, u 2 , 2x 1, v t ,t x 1 复合而成.
解 r (1)2 ( 3)2 2 tan 3 3
1
x2 y2 r2
tan y (x 0)
x
因为点 坐标为
M(2在, 4第)三象限,所以
4。因此点 M 的极
3
3
第二节 集合(assemblage)
一、集合的概念
1、集合:具有某种特定性质的事物的全体 A、B、C 事物个体称为集合的元素 a、b、c aA aA