(完整版)平行线中的拐点问题

合集下载

平行线中的拐点(拐角)问题

平行线中的拐点(拐角)问题

专题一平行线中的拐点问题【学习目标】1.复习巩固平行线的性质和判定,找到解决平行线间拐点问题的基本方法,学会运用平行线转移角,建立分散的角之间的练习,提高几何推理能力。

2.在探究的过程中,体会观察-猜想-实验-证明的探究过程,初步体会添加辅助线的目的。

【学习过程】一、复习填空.平行线的判定:①_____________________________________________.②_____________________________________________.③_____________________________________________.④_____________________________________________.平行线的定理:①_____________________________________________.②_____________________________________________.③_____________________________________________.二、探究新知假设,两根木杆AB与CD平行放置,木杆的两端B、D用一根橡皮筋连接,现在在橡皮筋BD上任取一点P,将点P向里压:例1.如图,在平行线AB,CD内任取一点P,连接DP,BP.(1)若∠ABP=45°,∠CDP=15°则∠BPD=__________.(2)若∠BPD=50°,∠CDP=10°则∠ABP=__________.(3)试猜想∠BPD与∠ABP、∠CDP之间的数量关系,并说明理由.变式练习:1.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是__________. 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1的度数是_____________.(1)(2)拓展提升:如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.(2)如果将折一次改为折三次,如图3,则∠BEO、∠O、∠P、∠Q、∠QFD之间会满足怎样的数量关系(直接写出结果不需证明)假设,现在在橡皮筋BD上任取一点P,将点P水平向外拉:例2.如图,在平行线段AB、CD外取一点P,连接BP,DP,刚才的结论还成立吗?若不成立,你又有新的发现吗?变式练习:1.某小区地下停车场入口门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=110°,则∠ABC=__________.2.如图,如果a∥b,∠1=55°,∠2=130°,则∠3=___________.(1)(2)拓展提升:已知:如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=_;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.假设,现在在橡皮筋BD上任取一点P,将点P斜上右上方拉或者斜上左上方拉:例3.如图①②,在平行线AB、CD外取一点P,连接BP,DP,这时∠ABP,∠CDP,∠BPC之间又有怎样的数量关系呢?变式训练:1.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为__________.2.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是___________.3.如图,已知直线a∥b,则∠1、∠2、∠3的关系是______________.(1)(2)(3)三、课后练习1.如图,直线l2∥12,∠A=125°,∠B=85°,则∠1+∠2=.2.如图,如果AB∥CD,则角α、β、γ之间的关系为.3.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°.则∠BFD的度数为____________.(1)(2)(3)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为.5.直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=____________.(4)(5)6.如图,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=75°.求∠BFD的度数.7.如图,一条公路修到湖边时需绕道,第一次拐角∠B=110°,第二次拐角∠C=150°,为了保持公路AB与DE平行,则第三次拐角∠D的度数为__________.8.如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°9.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60°B.45°C.30°D.75°10.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°(8)(9)(10)11.阅读第(1)题解题过程,解答第(2)题.(1)如图1,AB∥CD,E为AB、CD之间的一点,已知∠B=40°,∠C=30°,求∠BEC的度数.解:过点E作EM∥AB,∴∠B=().∵AB∥CD,AB∥EM,∴EM∥().∴∠2=().∴∠BEC=∠1+∠2=∠B+∠C=40°+30°=70°.(2)如图2,AB∥ED,试探究∠B、∠BCD、∠D之间的数量关系.。

专题 平行线间的拐点问题(解析版)--七年级数学下册

专题 平行线间的拐点问题(解析版)--七年级数学下册

专题01平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。

一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°【分析】过B作BK∥m,推出BK∥n,由平行线的性质得到∠OBK=∠1=20°,∠2=∠ABK,求出∠ABK=∠ABO﹣∠OBK=25°,即可得到∠2=25°.【解答】解:过B作BK∥m,∵m∥n,∴BK∥n,∴∠OBK=∠1=20°,∠2=∠ABK,∵∠ABO=45°,∴∠ABK=∠ABO﹣∠OBK=45°﹣20°=25°,∴∠2=∠ABK=25°.故选:B.2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°【分析】根据平行线的性质可以得到∠1=∠BDC,然后直角三角形的性质,即可求得∠2的度数.【解答】解:延长AB交直线n于点D,∵m∥n,∠1=50°,∴∠1=∠BDC=50°,∵∠ABC=90°,∴∠CBD=90°,∴∠2=90°﹣∠BDC=90°﹣50°=40°,故选:D.3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°【分析】过点E作AB的平行线HI,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∠EFD=32°,∴CD∥HI,∴∠HEF=∠EFD=32°,∵GE⊥EF于点E,∴∠GEF=90°,∴∠GEH=∠GEF﹣∠HEF=90°﹣32°=58°,∵AB∥HI,∴∠BGE=∠GEH=58°.故选:B.4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°【分析】过点E作EM∥AB,利用平行线的性质可证得∠BED=(∠ABF+∠CDF),可以得到∠BED 与∠BFD的关系.【解答】解:过点E作EM∥AB,如图:∵AB∥CD,EM∥AB∴CD∥EM,∴∠ABE=∠BEM,∠CDE=∠DEM,∵∠ABF的平分线与∠CDF的平分线相交于点E,∴∠ABE=∠ABF,∠CDE=∠CDF,∴∠BED=∠BEM+∠DEM=(∠ABF+∠CDF),∵∠ABF+∠BFD+∠CDF=360°,∴∠ABF+∠CDF=360°﹣∠BFD,∴∠BED=(360°﹣∠BFD),整理得:2∠BED+∠BFD=360°.故选:C.5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠2【分析】首先过点E作EF∥AB,由AB∥CD,可得EF∥AB∥CD,然后根据两直线平行,内错角相等,即可求得∠AEF=∠1,∠CEF=∠3,继而可得∠1+∠3=∠2.【解答】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠AEF=∠1,∠CEF=∠3,∵∠2=∠AEF+∠CEF=∠1+∠3.故选:D.6.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°【分析】过A作AB∥l1,得到AB∥l2,推出∠3=∠1=120°,∠2=∠BAC,即可求出∠2=∠3+∠4=30°+120°=150°.【解答】解:过A作AB∥l1,∵l1∥l2,∴AB∥l2,∴∠3=∠1=120°,∠2=∠BAC,∴∠2=∠3+∠4=30°+120°=150°.故选:D.二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=30°.【分析】过P作PQ∥AB,得到PQ∥CD,推出∠CPQ=∠2=28°,∠BPQ=∠1,求出∠BPQ=∠BPC ﹣∠CPQ=30°,即可得到∠1的度数..【解答】解:过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠CPQ=∠2=28°,∠BPQ=∠1,∵∠BPQ=∠BPC﹣∠CPQ=58°﹣28°=30°,∴∠1=30°.故答案为:30°.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为20°.【分析】过F作FM∥DE,推出FM∥BC,得到∠ABC+∠MFB=180°,∠D+∠MFD=180°,求出∠MFB=75°,∠MFD=55°,即可得到∠DFB=∠MFB﹣∠MFD=20°.【解答】解:过F作FM∥DE,∵DE∥BC,∴FM∥BC,∴∠ABC+∠MFB=180°,∠D+∠MFD=180°,∵∠ABC=105°,∠EDF=125°,∴∠MFB=75°,∠MFD=55°,∴∠DFB=∠MFB﹣∠MFD=20°.故答案为:20°.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=35°.【分析】过E作EF∥AB,则EF∥AB∥CD,利用平行线的性质求得∠FEA=110°,∠FEC=75°,进而可求解.【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠EAB+∠FEA=180°,∠ECD+∠FEC=180°,∵∠EAB=70°,∠ECD=105°,∴∠FEA=110°,∠FEC=75°,∴∠AEC=∠FEA﹣∠FEC=35°,故答案为:35°.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=100°.【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E﹣∠F=60°,即可得到∠E的度数.【解答】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°﹣β,∠BFC=∠BFH﹣∠CFH=α﹣β,∴四边形BFCE中,∠E+∠BFC=360°﹣α﹣(180°﹣β)=180°﹣(α﹣β)=180°﹣∠BFC,即∠E+2∠BFC=180°,①又∵∠E﹣∠BFC=60°,∴∠BFC=∠E﹣60°,②∴由①②可得,∠E+2(∠E﹣60°)=180°,解得∠E=100°,故答案为:100°.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=88°°.【分析】过点G,F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,根据平行线的传递性得出AB∥CD∥GH∥FQ∥EP∥MN,再根据两直线平行内错角相等以及角平分线的定义即可求解;【解答】解:过点G、F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥GH∥FQ∥EP∥MN,∴∠BNN=∠1,∠NMD=∠4,∵BM平分∠ABG,MD平分∠CDE,∴,∵∠BMD=45°,∴2∠1+2∠3=90°,∴∠5=2∠1,∠10=2∠3,∠6=∠7,∠8=∠9,∴∠GFE=∠7+∠8=∠6+∠9=64°,∠FED=∠9+∠D=∠9+2∠3=66°,∴2∠3﹣∠6=2°,∴2∠1+∠6=90°﹣2°=88°,∴∠BGF=∠5+∠6=2∠1+∠6=88°.故答案为:88°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.【分析】(1)过C作CS∥MN,由已知可以得到PQ∥CS,从而得到MN∥PQ;(2)连接DC并延长交AE于点F,由已知可以得到∠DAC=∠NAC,再由∠EAD=∠EAC+∠CAD及平角的意义可以得到解答.【解答】(1)证明:过C作CS∥MN,如图,∵CS∥MN,∴∠NAC=∠ACS,∵∠ACB=∠ACS+∠BCS=∠NAC+∠CBQ,∴∠BCS=∠CBQ,∴PQ∥CS,∴MN∥PQ;(2)解:如图,连接DC并延长交AE于点F,则:∠ACF=∠DAC+∠ADC,∠BCF=∠DBC+∠BDC,∴∠ACB=∠DAC+∠DBC+∠ADB=2∠ADB,∴∠ADB=∠DAC+∠DBC,∴2∠ADB=2∠DAC+2∠DBC=2∠DAC+∠QBC,又∠ACB=∠NAC+∠CBQ=2∠ADB.∴∠NAC+∠CBQ=2∠DAC+∠QBC,即∠NAC=2∠DAC,∴∠DAC=∠NAC,∴∠EAD=∠EAC+∠CAD=∠MAC+∠NAC=(∠MAC+∠NAC)=90°.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据平行线的性质、对顶角相等计算.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD−∠AEM=90°;理由如下:如图②,∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD−∠AEM=90°;(3)如图②,∵∠P=90°,∠PEB=15°,∴∠PHE=∠P−∠PEB=90°−15°=75°,∴∠BHF=∠PHE=75°,∵AB∥CD,∴∠DFH+∠BHF=180°,∴∠DFH=180°−∠BHF=105°,∴∠OFN=∠DFH=105°,∵∠DON=20°,∴∠N=180°−∠DON−∠OFN=55°.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【解答】(1)解:∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠PAB=150°,求∠PEH的度数.【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可求得∠APQ=60°,∠CPQ=50°,最后可以求出∠APC=110°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG﹣∠GEH可得答案.【解答】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵∠A=120°,∴∠APQ=180°﹣∠A=180°﹣120°=60°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∵∠C=130°,∴∠CPQ=180°﹣∠C=180°﹣130°=50°,∴∠APC=∠APQ+∠CPQ=60°+50°=110°;(2)∠APC=∠A﹣∠C,理由如下:如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,∵∠APC=20°,∠PAB=150°,∴∠PCD=130°,∵AB∥CD,∴∠PQB=∠PCD=130°,∵EF∥PC,∴∠BEF=∠PQB=130°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG﹣∠GEH=∠FEG﹣∠BEG=∠BEF=65°.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.【分析】(1)过P作PN∥AB,根据平行线的传递性得出PN∥CD,再根据两直线平行,内错角相等即可解答;(2)过点Q作QN∥AC,证出∠PHQ=∠2,根据平行线的传递性即可证明;(3)根据三角形内角和即可算出∠1=21°,再根据角平分线定义以及已知条件即可得出∠PQH=4∠2+2∠5=84°+2∠5,结合(2)即可解出∠5=18°,过K作KM∥AC,证出∠CKG=∠1+∠3=21°+∠3,根据平行线性质得出∠EGA=∠EHC,即可得∠3=∠5°+21°=18°+21°=39°,即可求解;【解答】解:(1)过P作PN∥AB,∴∠BAP=∠1,∵AB∥CD,∴PN∥CD,∴∠DCP=∠2,∴∠APC=∠1+∠2=∠BAP+∠DCP;(2)过点Q作QN∥AC,∴∠ACP=∠1,∵∠ACP+∠PHQ=∠CQH,∠1+∠2=∠CQH,∴∠PHQ=∠2,∴QN∥EF,∴AC∥EF;(3)∵CK平分∠ACP,GK平分∠AGP,∴∠1=∠2,∠3=∠4,∵∠AKC+∠KAC=159°,∵∠1=180°﹣159°=21°,∴∠PQH=4∠PCK+2∠PHQ=4∠2+2∠5=84°+2∠5,由(2)知∠ACP+∠PHQ=∠CQH,即42°+∠5=180°﹣∠PQH,∴180°﹣42°﹣∠5=84°+2∠5,∴∠5=18°,过K作KM∥AC,∵AC∥EF,∴KM∥AC∥EF,∴∠CKM=∠1,∠GKM=∠3.∴∠CKG=∠1+∠3=21°+∠3.∵AB∥CD,∠CKG=∠CHQ,∴∠EGA=∠EHC,即2∠3=∠5+∠CHQ=∠5+∠CKG=∠5+∠3+21°,∴∠3=∠5°+21°=18°+21°=39°,∵AC∥EF,∴∠BAC=∠EGA=2∠3=78°.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.【分析】(1)过点P作PF∥AB,推出∠PEC=∠EPF,进而得PF∥CD,根据平行公理的推论即可得证;(2)分别过点P和点E作PF∥AB,EM∥CD,推出∠PEM=∠FPE,进而得PF∥EM,根据平行公理的推论即可得证;(3)过点E作EN∥AB,根据(1)(2)的思路证∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG =β,PEG=γ,则∠BFG=α+10°,结合角平分线的定义及(2)的条件得2β+2γ=90°+α,接着分别用含α的式子代替β和γ,代入2β+2γ=90°+α求出α的值即可.【解答】解:(1)证明:过点P作PF∥AB,∴∠B=∠BPF,∵∠B+∠PEC=∠BPE=∠BPF+∠EPF,∴∠PEC=∠EPF,∴PF∥CD,∴AB∥CD;(2)证明:如图2,分别过点P和点E作PF∥AB,EM∥CD,∴∠ABP=∠BPF,∠MEH=∠EHD,∵∠ABP+∠PEH=∠P+∠EHD,即∠ABP+∠PEM+∠MEH=∠BPF+∠FPE+∠EHD,∴∠PEM=∠FPE,∴PF∥EM,∴EM∥AB,∴AB∥CD;(3)如图3,过点E作EN∥AB,由(2)得AB∥CD,∴EN∥CD,∠BFE=∠FEN,∠NEH=∠EHD,∴∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG=β,PEG=γ,则∠BFG=α+10°,∵BG、EF分别是∠ABP、∠PEH的角平分线,∴∠ABP=2β,∠PEH=2γ,∵BP⊥PE,∴∠P=90°,由(2)得∠ABP+∠PEH=∠P+∠EHD,∴2β+2γ=90°+α,∵∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,∴γ=α+10°+α=2α+10°,∵∠BGE=36°,∠FGB=180°﹣(∠BFG+∠FBG),∠FGB=180°﹣∠BGE,∴∠BFG+∠FBG=∠BGE=36°,∴α+10°+β=36°,∴β=26°﹣α,∴2(26°﹣α)+2(2α+10°)=90°+α,∴α=18°.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MPA+∠PQF的度数.【分析】(1)由平行线的性质得出∠A=∠ABE,∠A=∠ADF,即可得出结论;(2)过点A作AG平分∠BAD,由角平分线定义得出∠DAG=∠BAG=∠BAD,∠ABM=∠ABE,∠ADN=∠ADF,证出∠ABM=∠DAG=∠BAG=∠ADN,得出BM∥AG,DN∥AG,即可得出结论;(3)设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,得出∠BAD=100°,∠BAQ=100°+x,由平行线的性质得出∠BAC=∠GCA=50°+x,求出∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,由平行线的性质得出∠MPH=∠ABM=50°,∠HPA=∠PAB =80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,求出∠MPA=∠MPH+∠HPA=50°+8°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,即可得出答案.【解答】(1)证明:∵AD∥EC,AB∥CF,∴∠A=∠ABE,∠A=∠ADF,∴∠ABE=∠ADF;(2)证明:过点A作AG平分∠BAD,如图2所示:则∠DAG=∠BAG=∠BAD,∵射线BM,射线DN分别平分∠ABE和∠ADF,∴∠ABM=∠ABE,∠ADN=∠ADF,∵∠ABE=∠ADF=∠BAD,∴∠ABM=∠DAG=∠BAG=∠ADN,∴BM∥AG,DN∥AG,∴BM∥DN;(3)解:∵AQ平分∠GAD,∴∠GAQ=∠QAD,设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,∴∠BAD=100°,∴∠BAQ=100°+x,∵AB∥CF,∴∠BAC=∠GCA=50°+x,∵∠BAP+∠BAQ=180°,∴∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,如图3所示:∵AD∥EC,∴∠BAD=∠ABE=100°,∠ABM=∠ABE=50°,∴∠MPH=∠ABM=50°,∠HPA=∠PAB=80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,∴∠MPA=∠MPH+∠HPA=50°+80°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,∴∠MPA+∠PQF=130°﹣x+100°+x=230°.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【分析】(1)过点E作EH∥AB,证明∠A=∠AEF,再根据已知条件证明∠D=∠DEF,从而证明EF ∥CD,最后根据平行公理的推论证明结论即可;(2)先根据平行线的性质证明∠A=∠EHG,再根据外角性质证明∠A=∠D+∠AED,通过变换得出结论即可;(3)设AE与CD交于点H,∠EAI=x,把∠BAI和∠EAB都用x表示出来,然后根据已知条件,找出角与角之间的关系,最后得出∠CHE=∠CDE+∠AED,列出关于x的方程,求出x,最后根据∠EKD=∠AKI=180°﹣∠EAI﹣∠I,求出答案即可.【解答】(1)证明:如图所示:过点E作EH∥AB,∴∠A=∠AEF,∵∠A+∠D=∠AED,∠AED=∠AEF+∠DEF,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(2)证明:∵AB∥CD,∴∠A=∠EHG,∵∠EHG=∠D+∠AED,∴∠A=∠D+∠AED,∴∠A﹣∠D=∠AED;(3)解:设AE与CD交于点H,∠EAI=x,则∠BAI=,,∵AB∥CD,∴∠EHC=∠EAB=,∵∠I=∠AED=25°,∠EKI=∠EAI+∠I=∠EDI+∠AED,∴x+25°=∠EDI+25°,∴∠EDI=x,∵∠EDI=∠CDE,∴∠CDI=,∵∠CHE=∠CDE+∠AED,∴,解得:x=60°,∴∠EKD=∠AKI=180°﹣∠EAI﹣∠I=180°﹣60°﹣25°=95°.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED 的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF(两直线平行,内错角相等);∵EF∥AB,AB∥CD(已知);∴EF∥CD(平行于同一条直线的两直线平行);∴∠CDE=(∠DEF)(两直线平行,内错角相等);又∵∠BED=∠BEF+∠DEF(角的和与差);∴∠BED=∠ABE+∠CDE(等量代换);∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC 之间满足的数量关系.【分析】问题解决:两直线平行,内错角相等;平行于同一条直线的两直线平行;∠DEF;两直线平行,内错角相等;角的和与差;等量代换;问题迁移:(1)∠APC=a+β,理由见解析;(2)∠APC=α﹣β或∠APC=β﹣α【分析】问题解决:根据过程填写依据即可;问题迁移:(1)过点P作PQ∥AB,可证∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ+∠CPQ 即可求解;(2)①当P在BN上时,过点P作PQ∥AB,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC =∠CPQ﹣∠APQ,即可求解;②当P在OD上时,过点P作PQ∥CD,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ﹣∠CPQ,即可求解.【解答】问题解决:解:过点E作EF∥AB,∴∠ABE=∠BEF(两直线平行,内错角相等),∵AB∥CD(已知),∴EF∥CD(平行于同一条直线的两直线平行),∴∠CDE=∠DEF(两直线平行,内错角相等),又∵∠BED=∠BEF+∠DEF(角的和与差),∴∠BED=∠ABE+∠CDE(等量代换),∵∠ABE=40°,∠CDE=60°(已知),∴∠BED=∠ABE+∠CDE=100°(等量代换),问题迁移:(1)解:∠APC=a+β,理由:过点P作PQ∥AB,∴∠APQ=∠BAP(两直线平行,内错角相等),∵AB∥CD(已知),∴PQ∥CD(平行于同一直线的两直线平行),∴∠CPQ=∠DCP(两直线平行,内错角相等),又∵∠APC=∠APQ+∠CPQ(角的和与差),∴∠APC=∠BAP+∠DCP(等量代换),∵∠BAP=α,∠DCP=β(已知),∴∠APC=α+β(等量代换),(2)如图所示:解:①如图,当P在BN上时,∠APC=β﹣α,理由:过点P作PQ∥AB,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠CPQ﹣∠APQ,∴∠APC=∠DCP﹣∠BAP,∵∠BAP=α,∠DCP=β,∴∠APC=β﹣α;②如图,当P在OD上时,∠APC=α﹣β,理由:过点P作PQ∥CD,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠BAP﹣∠DCP,∵∠BAP=α,∠DCP=β,∴∠APC=α﹣β.。

平行线中的拐点(拐角)问题专题

平行线中的拐点(拐角)问题专题
①已知:AB∥CD,结论:∠AEC+∠A+∠C=360°
证明: 过点E作EF,使得EF∥AB
B
A
∵AB∥CD
1
F
E
∴EF∥CD
2
∴∠A+∠1=180°,∠C+∠2=180°
D
C
∵∠1+∠2=∠AEC ∴∠A+∠C+∠AEC=∠A+∠1+∠C+∠2=360°
②已知:∠AEC+∠A+∠C=360°,结论:AB∥CD
B
A 证明: 过点E作EF,使得EF∥AB
∴∠A=∠1
E1
F
2
∵∠AEC=∠1+∠2 ,且∠AEC=∠A+∠C ∴∠2=∠C
D
C
∴EF∥CD
∴AB∥CD
模型1:平行线间的“M”模型(猪手)
模型1:平行线间的“M”模型(猪手)
模型1:平行线间的“M”模型(猪手)
模型2:平行线间的“铅笔”模型(子弹头)
B
A
证明: 过点E作EF,使得EF∥AB
∵AB∥CD
D
C
∴EF∥CD
E
F ∴∠A=∠AEF,∠C=∠CEF ∵∠AEC=∠CEF-∠AEF
∴∠AEC=∠C-∠A
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
第二章 相交线与平行线
平行线中的拐点问题
模型1:平行线间的“M”模型(猪手)
①已知:AB∥CD,结论:∠AEC=∠A+∠C
B
A 证明: 过点E作EF,使得EF∥AB

(完整版)平行线拐点问题

(完整版)平行线拐点问题

如图1,直线AC // BD,直线AC、BD及直线AB把平面分成(1 )、(2 )、(3 )、(4 )、( 5)、(6 )六个部分.点P是其中的一个动点,连接PA、PB,观察/ APB、/PAC、/PBD三个角.规定:直线AC、BD、AB 上的各点不属于( 1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.当动点P落在第(1 )部分时,可得:/ APB= ZPAC+ ZPBD,请阅读下面的解答过程,并在相应的括号内填注理由过点P 作EF// AC,如图2因为AC // BD (已知),EF// AC (所作),所以EF/ BD ______ .所以Z BPE= ZPBD _____ .同理Z APE= ZPAC.因此Z APE+ ZBPE= ZPAC+ ZPBD ______ ,即Z APB= ZPAC+ ZPBD .(1 )当动点P落在第(2)部分时,Z APB、/PAC、Z PBD之间的关系是怎样的?请直接写出Z APB、Z PAC、Z PBD之间满足的关系式,不必说明理由.(2 )当动点P在第(3)部分时,Z APB、Z PAC、Z PBD之间的关系是怎样的?请直接写出相应的结论.(3)当动点P在第(4)部分时,Z APB、Z PAC、Z PBD之间的关系是怎样的?请直接写出相应的结论.② ①5⑴ A②① ⑤ d c aa a Pb b b d c②如果点P 在A,B 两点之间运动 ,问/ 1,Z 2, / 3的关系是否变化 ③如果点p 在线段AB 外侧运动时,试探究/ 1,2 2,2 3之间的关系,不用说理由(点P 和A,B 不重合) ①试找出2 1,2 2,2 3之间的关系 ,并说岀理a,、 2、如图,已知直线 a// c,且 c 和 ~D备用图b 分别交于M 、N 两点,点P 在AB 上.。

专题:巧解平行线中的拐点问题(解析版)

专题:巧解平行线中的拐点问题(解析版)

七年级下册数学《第五章 相交线与平行线》专题 巧解平行线中的拐点问题【例题1】(2022春•内乡县期末)如图,AB ∥CD ,∠1=45°,∠2=30°,则∠3的度数为( )A .55°B .75°C .80°D .105°【分析】过点E作EM∥AB,利用平行线的性质得出∠3=∠1+∠2=75°.【解答】解:过点E作EM∥AB,如图所示,∵AB∥EM.∴∠HEM=∠1=45°.∵AB∥CD.∴EM∥CD.∴∠GEM=∠2=30°.∴∠3=∠HEM+∠GEM=75°.故选:B.【点评】本题主要考查了平行线的性质,熟练运用平行线的性质是解题的关键.【变式1-1】(2022春•香洲区校级期中)如图,已知AB∥DE,∠B=150°,∠D=145°,则∠C= 度.【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF⇒∠1=180°﹣∠B=30°,CF∥ED⇒∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.【变式1-2】(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【分析】先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补,即可得出结论.【解答】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【点评】此题主要考查了平行线的性质,作出PA∥a,根据平行线的性质得出相等(或互补)的角是解决问题的关键.【变式1-3】(2022春•信都区期末)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是 ,根据这个思路可得∠AEC= .【分析】根据平行公理推论得到EF∥AB,再根据平行线的x性质求解即可.【解答】解:过E点作EF∥CD,∵AB∥CD,∴EF∥AB(平行于同一直线的两直线平行),∴∠EAB+∠AEF=180°,∵EF∥CD,∴∠CEF+∠ECD=180°,∵∠EAB=80°,∠ECD=110°,∴∠AEF=100°,∠CEF=70°,∴∠AEC=∠AEF﹣∠CEF=30°.故答案为:平行于同一直线的两直线平行;30°.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.【变式1-4】如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.【分析】过C作CF∥AB,得到AB∥DE∥CF,根据平行线的性质推出∠1+∠ACF=180°,∠2+∠DCF=180°,求出∠ACF、∠DCF的度数,根据∠3=180°﹣∠ACF﹣∠DCF,即可求出答案.【解答】解:过C作CF∥AB,∴AB∥DE∥CF,∴∠1+∠ACF=180°,∠2+∠DCF=180°,∵∠1=120°,∠2=110°,∴∠ACF=60°,∠DCF=70°,∴∠3=180°﹣∠ACF﹣∠DCF,=180°﹣60°﹣70°=50°,答:∠3的度数是50°.【点评】本题主要考查对平行线的性质平行公理及推论,邻补角的定义等知识点的理解和掌握,能灵活运用性质进行推理是解此题的关键.【变式1-5】如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.【分析】过点C作CF∥AB,由平行公理的推论得出CF∥DE,再由平行线的性质求得∠4的度数为70°,再根据CF∥AB得∠3=∠1=25°,最后由角的和差求出∠BCD的度数即可.【解答】解:如图:过点C作CF∥AB,∵CF∥AB∴∠3=∠1=25°∴DF∥CE,∵∠4+∠2=180°,又∵∠2=110°,∴∠4=180°﹣∠2=180°﹣110°=70°,∴∠BCD=∠3+∠4=25°+70°=95°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式1-6】(2021秋•南召县期末)课堂上老师呈现一个问题:下面提供三种思路:思路一:过点F作MN∥CD(如图(1));思路二:过点P作PN∥EF,交AB于点N;思路三:过点O作ON∥FG,交CD于点N.解答下列问题:(1)根据思路一(图(1)),可求得∠EFG的度数为 ;(2)根据思路二、思路三分别在图(2)和图(3)中作出符合要求的辅助线;(3)请你从思路二、思路三中任选其中一种,试写出求∠EFG的度数的解答过程.【分析】(1)过F作MN∥CD,根据平行线的性质以及垂线的定义,即可得到∠EFG的度数;(2)由图可得,思路二辅助线的做法为过P作PN∥EF;思路三辅助线的做法为过O作ON∥FG;(3)若选择思路二,过P作PN∥EF,根据平行线的性质,可得∠NPD的度数,再根据∠1的度数以及平行线的性质,即可得到∠EFG的度数;若选择思路三,过O作ON∥FG,先根据平行线的性质,得到∠BON的度数,再根据平行线的性质以及垂线的定义,即可得到∠EFG的度数.【解答】解:(1)如图(1),过F作MN∥CD,∵MN∥CD,∠1=30°,∴∠2=∠1=30°,∵AB∥CD,∴AB∥MN,∵AB⊥EF,∴∠3=∠4=90°,∴∠EFG=∠3+∠2=90°+30°=120°.故答案为:120°;(2)由图可得,思路二辅助线的做法为过P作PN∥EF;思路三辅助线的做法为过O作ON∥FG;(3)若选择思路二,理由如下:如图(2),过P作PN∥EF,∵PN∥EF,EF⊥AB,∴∠ONP=∠EOB=90°,∵AB∥CD,∴∠NPD=∠ONP=90°,又∵∠1=30°,∴∠NPG=90°+30°=120°,∵PN∥EF,∴∠EFG=∠NPG=120°;若选择思路三,理由如下:如图(3),过O 作ON ∥FG ,∵ON ∥FG ,∠1=30°,∴∠PNO =∠1=30°,∵AB ∥CD ,∴∠BON =∠PNO =30°,又∵EF ⊥AB ,∴∠EON =∠EOB +∠BON =90°+30°=120°,∵ON ∥FG ,∴∠EFG =∠EON =120°.【点评】本题考查平行线的性质,熟练掌握平行线的性质并正确作出辅助线是解题关键.【例题2】如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2等于( )A .40°B .35°C .36°D .30°【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB +∠ABD =180°,然后计算即可得解.【解答】解:如图,过点A 作l 1的平行线AC ,过点B 作l 2的平行线BD ,则∠3=∠1,∠4=∠2,∵l 1∥l 2,∴AC ∥BD ,∴∠CAB +∠ABD =180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.【变式2-1】(2022春•新洲区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°【分析】过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.【解答】解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选:C.【点评】本题考查了平行线的性质,此类题目难点在于过拐点作平行线.【变式2-2】如图所示,若AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数是 .【分析】过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可.【解答】解:如图1,过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°.故答案为:900°.【点评】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式2-3】(2022春•金湖县期末)如图,AB∥CD,E、F分别是AB、CD上的点,EH、FH分别是∠AEG 和∠CFG的角平分线.若∠G=110°,则∠H= °.【分析】过点G作GM∥AB,根据平行线的性质可得∠AEG+∠EGM=180°,再结合已知可得CD∥GM,然后利用平行线的性质可得∠CFG+∠MGF=180°,从而可得∠AEG+∠CFG=250°,再利用角平分线的定义可得∠HEG+∠GFH=125°,最后利用四边形的内角和定理进行计算即可解答.【解答】解:过点G作GM∥AB,∴∠AEG+∠EGM=180°,∵AB∥CD,∴CD∥GM,∴∠CFG+∠MGF=180°,∴∠AEG+∠EGM+∠CFG+∠MGF=360°,∵∠EGF=∠EGM+∠MGF=110°,∴∠AEG+∠CFG=360°﹣∠EGF=250°,∵EH、FH分别是∠AEG和∠CFG的角平分线,∴∠HEG=12∠AEG,∠GFH=12∠CFG,∴∠HEG+∠GFH=12∠AEG+12∠CFG=125°,∴∠H=360°﹣∠HEG﹣∠HFG﹣∠EGF=125°,故答案为:125.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式2-4】(2022春•潜山市月考)如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM= ;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为 .(用含n的式子表示)【分析】(1)过点M作MP∥AB,则AB∥CD∥MP,根据两直线平行,内错角相等可得答案;(2)过点N作NQ∥AB,则AB∥CD∥NQ,根据两直线平行内错角相等和角平分线的定义可得答案.【解答】解:(1)过点M作MP∥AB,∵AB∥CD,∴AB∥CD∥MP,∴∠1=∠MEB,∠2=∠MFD,∵∠M=∠1+∠2=90°,∴∠MEB+∠MFD=90°,∵∠AEM+∠MEB+∠CFM+∠MFD=180°+180°=360°,∴∠AEM+∠CFM=360°﹣90°=270°.故答案为:270°;(2)过点N作NQ∥AB,∵AB∥CD,∴AB∥CD∥NQ,∴∠3=∠NEB,∠4=∠NFD,∴∠NEB+∠NFD=∠3+∠4=∠ENF,∵∠BEM与∠DFM的角平分找交于点N,∵∠NEB=12∠MEB,∠DFN=12∠MFD,∴∠3+∠4=∠BEN+∠DFN=12(∠MEB+∠MFD),由(1)得,∠MEB+∠MFD=∠EMF,∴∠ENF=12∠EMF=12n°.故答案为:12 n°.【点评】本题考查平行线的性质,熟练掌握平行线的性质定理和角平分线的定义是解题关键.【变式2-5】(1)填空:如图1,MA1∥NA2,则∠A1+∠A2= °.如图2,MA1∥NA3,则∠A1+∠A2+∠A3= °.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4= °.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5= °.(2)归纳:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n= °.(3)应用:如图6,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.【分析】(1)①根据平行线的性质:两直线平行,同旁内角互补,可得结论;②根据平行于同一条直线的两条直线平行,把此问题转化为上题形式,可得结论;③在上题的基础上,多加一个180°,思路不变,可得结论;④在③的基础上,多加一个180°,思路不变,可得结论;(2)通过观察图形,寻找规律:两个A点时,结论是1×180°,三个A点时,结论是2×180°,四个A点时,结论是3×180°,所以n个A点时,即可得结论.(3)运用上述结论和角平分线定义可得结论.【解答】解:(1)如图1,∵MA1∥NA2,∴∠A1+∠A2=180°.如图2,过点A2作A2C1∥A1M,∵MA1∥NA3,∴A2C1∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A3=180°,∴∠A1+∠A2+∠A3=360°.如图3,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,∵MA1∥NA4,∴A2C1∥A3C2∥A1M∥NA4,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A4=180°,∴∠A1+∠A2+∠A3+∠A4=540°.如图4,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,过点A4作A4C3∥A1M,∵MA1∥NA5,∴A2C1∥A3C2∥A4C3∥NA5,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A3A4C3=180°∠C3A4A5+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=720°.故答案为:180;360;540;720;(2)∵∠A1+∠A2=180°=1×180°∠A1+∠A2+∠A3=360°=2×180°∠A1+∠A2+∠A3+∠A4=540°=3×180°∴∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)°.故答案为:180(n﹣1);(3)根据上述结论得:∠BFD=∠ABF+∠CDF,∠ABE+∠E+∠CDE=360°,又∵∠ABE和∠CDE的平分线相交于F,∴2∠ABF+∠E+2∠CDF=360°,即2(∠ABF+∠CDF)+∠E=360°,∴2(∠ABF+∠CDF)=360°﹣∠E=360°﹣80°=280°,∴∠ABF+∠CDF=12×280°=140°,即∠BFD=140°.【点评】本题考查了平行线的性质和判定,解题时注意:平行线的性质是由平行关系来寻找角的数量关系.平行线的判定是由角的数量关系判断两直线的位置关系;还要注意规律性问题的探究过程.【例题3】小华在学习“平行线的性质”后,对图中∠B,∠D和∠BOD的关系进行了探究:(1)如图1,AB∥CD,点O在AB,CD之间,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;小华添加了过点O的辅助线OM,并且OM∥CD请帮助他写出解答过程;(2)如图2,若点O在CD的上侧,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;(3)如图3,若点O在AB的下侧,试探究∠B,∠D和∠BOD之间有什么关系?请直接写出它们的关系式.【分析】(1)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可;(2)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可;(3)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可.【解答】解:(1)∠BOD=∠D+∠B,理由是:∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠DOB=∠DOM+∠BOM=∠B+∠D;(2)∠B=∠BOD+∠D,理由是:如图:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠B=∠BOM=∠DOM+∠DOB=∠D+∠DOB;(3)∠D=∠DOB+∠B,理由是:如图:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠D=∠DOM=∠BOM+∠DOB=∠B+∠DOB.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,证明过程类似.【变式3-1】如图,已知∠1=70°,∠2=30°, EF平分∠BEC,∠BEF=50°,求证:AB∥CD.【分析】先过点E在∠BEC的内部作EM∥AB,求出∠BME的度数,根据角平分线求出∠BEC的度数,从而求出∠CEM的度数,然后根据∠CEM=∠2,利用内错角相等,两直线平行得出EM∥AB.【解答】证明:如图,过点E在∠BEC的内部作EM∥AB,∵EF平分∠BEC,∠BEF=50°,∴∠BEC=2∠BEF=2×50°=100°,∵EM//AB,∴∠BEM=∠1=70°,∴∠CEM=∠BEC﹣∠BEM=100°﹣70°=30°,∵∠2=30°,∴∠CEM=∠2,.∴EM∥CD,又∵EM∥AB∴AB∥CD.【点评】本题考查平行线的性质,角平分线等知识,解题的关键是过点E在∠BEC的内部作EM//AB.【变式3-2】如图,点E在线段AC上,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【分析】过点E在∠BED的内部作EM∥AB,先根据平行线的性质得出∠1=∠BEM,∠DEM=∠2然后根据∠AEC=180°得出∠1+∠BEM+∠DEM+∠2=180°,从而得到∠BEM+∠DEM=90°,即可证明BE⊥DE.【解答】证明:过点E在∠BED的内部作EM∥AB,则∠B=∠BEM,∵∠1=∠B,∴∠1=∠BEM,又∵AB∥CD,EM∥CD,∴∠D=∠DEM,∵∠2=∠D,∠DEM=∠2,∴∠1+∠BEM+∠DEM+∠2=180°,∴∠BEM+∠DEM=90°,即∠BED=90,∴BE⊥DE.【点评】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3-3】(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式3-4】(2022秋•驿城区校级期末)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC 度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=45°+55°=100°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【解答】解:过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=45°,∠CPE=180°﹣∠C=55°,∴∠APC=45°+55°=100°;(1)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当点P在A、M两点之间时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当点P在B、O两点之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.【变式3-5】阅读下面内容,并解答问题在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,C于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)直线EG,FG有何关系?请补充结论:求证:“ ”,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择 题,并写出解答过程.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,求∠EMF的度数.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,请猜想∠EOF与∠EPF满足的数量关系,并证明它.【分析】(1)利用平行线的性质以及三角形的内角和定理解决问题即可.(2)A、利用基本结论,∠M=∠BEM+∠DFM求解即可.B、利用基本结论∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP求解即可.【解答】解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠GEF=12∠BEF,∠GFE=12∠DFE,∴∠GEF+∠GFE=12∠BEF+12∠DFE=12(∠BEF+∠DFE)=12×180°=90°,在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为:EG⊥GF;(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=12(∠BEG+∠DFG)=45°,∴∠EMF=∠BEM+∠MFD=45°,B.结论:∠EOF=2∠EPF.理由:如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为:A或B.【点评】本题考查平行线的性质,命题与定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【例题4】(2022秋•小店区校级期末)(1)问题背景:如图1,已知AB ∥CD ,点P 的位置如图所示,连结PA ,PC ,试探究∠APC 与∠A 、∠C 之间的数量关系,以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点P 作PE ∥AB∵AB ∥CD (已知),∴PE ∥CD ( ),∴∠A =∠APE ,∠C =∠CPE ( ),∴∠A +∠C = + (等式的性质).即∠APC ,∠A ,∠C 之间的数量关系是 .(2)类比探究:如图2,已知AB ∥CD ,线段AD 与BC 相交于点E ,点B 在点A 右侧.若∠ABC =41°,∠ADC =78°,则∠AEC = .(3)拓展延伸:如图3,若∠ABC 与∠ADC 的角平分线相交于点F ,请直接写出∠BFD 与∠AEC 之间的数量关系 .【分析】(1)利用题干中的思路,依据两条直线平行的判定,平行线的性质和等式的性质解答即可;(2)利用类比的方法,依据(1)的思路与方法解答即可;(3)利用类比的方法,依据(1)的思路与方法分别计算∠BFD 与∠AEC ,观察结论即可得出结论.【解答】解:(1)过点P 作PE ∥AB ,∵AB ∥CD (已知),∴PE ∥CD(平行于同一直线的两直线平行),∴∠A=∠APE,∠C=∠CPE(两直线平行,内错角相等),∴∠A+∠C=∠APE+∠CPE(等式的性质).即∠APC,∠A,∠C之间的数量关系是:∠APC=∠A+∠C.故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;∠APE;∠CPE;∠APC=∠A+∠C;(2)过点E作EP∥AB,如图,∵AB∥CD(已知),∴∠ADC=∠BAD=78°,∴PE∥CD,∴∠BAD=∠AEP=78°,∠ABC=∠PEC=41°,∴∠AEC=∠AEP+∠PEC=78°+41°=119°,故答案为:119°;(3)由(2)知:∠AEC=∠ABC+∠ADC,∵DF,BF分别是∠ABC,∠ADC的平分线,∴∠ABC=2∠ABF,∠ADC=2∠FDC,∴∠AEC=2(∠ABF+∠FDC).过点F作FP∥AB,如图,则∠ABF=∠BFP,∵AB∥CD,∴FP∥CD,∴∠PFD=∠FDC,∴∠BFD=∠BFP+∠PFD=∠ABF+∠FDC,∴2∠BFD=∠AEC,故答案为:2∠BFD=∠AEC.【点评】本题主要考查了平行线的判定与性质,利用类比的方法解答是解题的关键.【变式4-1】(2021秋•长春期末)小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.【分析】猜想:过点P作PH∥AC,然后得到BD∥PH,从而得到∠PAC=∠APH,∠PBD=∠BPH,然后得到∠APB的度数;拓展:分情况讨论,当点P在线段CD上时,当点P在射线DF上时,当点P在射线CE上时,然后过点P 作PH∥AC,再利用平行线的性质进行探究角之间的数量关系.【解答】解:猜想:如图1,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH+∠BPH=∠PAC+∠PBD,∵∠PAC=15°,∠PBD=40°,∴∠APB=15°+40°=55°.拓展:①如图1,当点P在线段CD上时,由猜想可知,∠APB=∠PAC+∠PBD;②如图2,当点P在射线DP上时,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH﹣∠BPH=∠PAC﹣∠PBD;③如图3,当点P在射线CE上时,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠BPH﹣∠APH=∠PBD﹣∠PAC;综上所述,∠PAC、∠APB、∠PBD之间的数量关系为∠APB=∠PAC+∠PBD或∠APB=∠PAC﹣∠PBD或∠APB =∠PBD﹣∠PAC.【点评】本题考查了平行线的性质,解题的关键是熟练作出辅助线构造平行线,然后通过平行线的性质得到内错角相等.【变式4-2】(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD 之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为 ;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF =100°时,请直接写出∠OEA与∠OFC的数量关系.【分析】(1)①②根据平行线的性质,以及角平分线的定义即可求解;(2)过点O作OT∥AB,则OT∥CD,设∠OFC=∠OFG=β,∠OEH=∠HEA=α,∠G=∠BEG+∠GFD=α+180°﹣2β,根据平行线的性质求得α+β=80°,进而根据3∠OEA﹣∠OFC=3β﹣(β﹣2a)=2β+2α﹣160°即可求解.【解答】解:(1)①如图,分别过点G,P作GN∥AB,PM∥AB,∴∠BEG=∠EGN,∵AB∥CD,∴∠NGF=∠GFD,∴∠EGF=∠BEG+∠GFD,同理可得∠EPF=∠BEP+∠PFD,∵EG⊥FG,∴∠EGF=90°,∵EP平分∠BEG,FP平分∠DFG;∴∠BEP=12∠BEG,∠PFD=12∠GFD,∴∠EPF=12(∠BEG+∠GFD)=12∠EGF=45°,故答案为:45°;②如图,过点Q作QR∥CD,∵∠BEG=40°,∵EG恰好平分∠BEQ,FD恰好平分∠GFQ,∠GEQ=∠BEG=40°,∠GFD=∠QFD,设∠GFD=∠QFD=α,∵QR∥CD,AB∥CD,∴∠EQR=180°﹣∠QEB=180°﹣2∠QEG=100°,∵CD∥QR,∴∠DFQ+∠FQR=180°,∴α+∠FQR=180°,∴α+∠FQE=80°,∴∠FQE=80°﹣α,由①可知∠G=2∠P=∠BEG+∠GFD=40°+α,∴∠FQE+2∠P=80°﹣α+40°+α=120°;(2)结论:∠OEA+2∠PFC=160°.理由:∵在AB的上方有一点O,若FO平分∠GFC,线段GE的延长线平分∠OEA,设H为线段GE的延长线上一点,∴∠OFC=∠OFG,∠OEH=∠HEA,设∠OFC=∠OFG=β,∠OEH=∠HEA=α,如图,过点O作OT∥AB,则OT∥CD,∴∠TOF=∠OFC=β,∠TOE=∠OEA=2α,∴∠EOF=β﹣2α,∵∠HEA=∠BEG=a,∠GFD=180°﹣2β,由(1)可知∠G=∠BEG+∠GFD=α+180°﹣2β,∵∠EOF+∠EGF=100°,∴β﹣2α+α+180°﹣2β=100°,∴α+β=80°,∴12∠OEA+∠OFC=80°,∴∠OEA+2∠PFC=160°.【点评】本题考查了平行线的性质,以及角平分线的定义,掌握平行线的性质是解题的关键.【变式4-3】(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.小明说明的过程是这样的:“过点P作PE∥AB,…”请按照小明的思路写出完整的解答说明过程.(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.请在①②任选一个问题进行解答.(3)如图4,若a∥b,直接写出图中x的度数(不用说理).【分析】(1)过点P作PE∥AB,根据平行线的性质,两直线平行,同旁内角互补,可得∠BAP+∠APE=180°,∠DCP+CPE=180°,根据等式的性质可得∠BAP+∠APE+∠DCP+CPE=360°,即可得出答案;(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,根据平行线的性质,两直线平行,同旁内角互补,∠BAP+∠APE=180°,∠EPQ+∠PQF=180°,∠FQC+∠QCD=180°,根据等式的性质可得∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,即可得出答案;(3)如图4,根据平行线模型﹣锯齿模型定理,朝向左边的角的和=朝向右边的角的和,根据邻补角的定义,120°角的邻补角为60°,所以可列x+48°=60°+30°+30°,求出x即可得出答案.【解答】解:(1)过点P作PE∥AB,∵AB∥PE,∴∠BAP+∠APE=180°,∵CD∥PE,∴∠DCP+CPE=180°,∴∠BAP+∠APE+∠DCP+CPE=360°,∴∠BAP+∠APC+∠PCD=360°;(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,∵PE∥AB,∴∠BAP+∠APE=180°,∵AB∥CD,∴PE∥QF,∴∠EPQ+∠PQF=180°,∵QF∥CD,∴∠FQC+∠QCD=180°,∵∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,∴∠BAP+∠APQ+∠PQC+∠QCD=540°;(3)x=72°.【点评】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键.【变式4-4】(2022春•兴国县期末)【感知】(1)如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF 的度数.小乐想到了以下方法,请帮忙完成推理过程.解:如图①,过点P作PM∥AB,【探究】(2)如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数;【应用】(3)如图③,在以上【探究】条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.(4)已知直线a∥b,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接AD,BC,∠ABC的平分线与∠ADC的平分线所在的直线交于点E,设∠ABC=α,∠ADC=β(α≠β),请画出图形并求出∠BED的度数(用含α,β的式子表示).【分析】(1)根据平行线的性质与判定可求解;(2)过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;(3)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;(4)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.【解答】解:(1)如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等),∵AB∥CD,∴PM∥CD(平行于同一直线的两条直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补),∵∠PFD=130°,∴∠2=180°﹣130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;(2)如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°(等式的性质).(3)如图③所示,∵EG是∠PEA的平分线,FG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GFC=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等),∠G=∠MGF﹣∠MGE=60°﹣25°=35°;(4)当点A在B左侧时,如图,过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠ABE=∠BEF=12α,∠CDE=∠DEF=12β,∴∠BED=∠BEF+∠DEF=αβ2,当点A在B右侧时,点E在AB和CD外时,点E在AB上方时,如图,过点E作EF∥AB,则EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠DEF=∠CDE=12β,∠ABG=∠BEF=12α,∴∠BED=∠BEF﹣∠DEF=α−β2,当点A在B右侧时,点E在AB和CD外时,点E在AB下方时,同理可求∠BED=β−α2,当点A在B右侧时,点E在AB和CD内时,过点E作EF∥AB,则EF∥CD,∴∠DEF+∠CDE=180°,∠ABE=∠BEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠CDE=12β,∠ABE=∠BEF=12α,∴∠DEF=180°−12β,∴∠BED=∠DEF+∠BEF=180°−12β+12α,或∠BED=360°﹣(∠DEF+∠BEF)=180°+12β−12α,综上,∠BED的度数为αβ2或α−β2或180°−12β+12α或180°+12β−12α.【点评】本题考查了平行线的判定与性质、平行公理及推论,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。

人教版 七年级数学下册平行线中的“拐点”问题

人教版 七年级数学下册平行线中的“拐点”问题

A
B
F
E
C
D
此时点E在两 条平行线的上 方,你还能通 过添加平行线 来解决这一问
题吗
E
A
B
C
D
图5
F A
E B
结论:∠E= ∠ ABE-∠D
C
D
解:过点E 作EF∥AB ∵AB∥CD(已知) ∴AB∥CD∥EF ∴∠ABE+∠BEF=180°∴∠FED+∠D=180° ∵∠FED=∠BEF+∠BED ∴∠BEF+ ∠BED+∠D=180° ∴∠ABE= ∠BED +∠D
过点E 作EF∥AB
∴∠FEB=∠B ∵AB∥CD(已知) ∴CD∥EF ∴∠FED=∠D ∵∠FEB=∠FED+∠BED ∴∠ABE= ∠D +∠BED
结论:∠E= ∠ ABE-∠D
E
F
A
B
C
D
结论:∠E= ∠D-∠ ABE
A
B
C 图6 D E
当点E在如图所示
的位置时,此时,
A
B
你还可以添加平行
E
145°
A
C
225º
M
1
a
P2
3
N

E
B
A
MαB
F

C
D
N
G
A
B
P
C
D
15º 25
°
1 0 1 2 3 4 5 6 7 8 9 10 11
孝感市文昌中学学生专用尺
Cm
2
A
B
平行线性 质与判定 “拐点”问

C
D

平行线的拐点问题归纳总结

平行线的拐点问题归纳总结

平行线的拐点问题归纳总结平行线是数学中一个非常重要的概念,它们在几何学和代数学中都有广泛的应用。

特别是在几何学中,平行线的性质和拐点问题一直备受关注。

本文将对平行线的拐点问题进行归纳总结,并讨论其相关应用。

一、平行线的概念和性质在几何学中,两条直线被称为平行线,如果它们位于同一个平面中且没有交点。

根据平行线的性质,我们可以得出以下结论:1. 平行线之间的距离始终保持相等。

2. 平行线与同一条直线的交点与对应角之和为180度。

3. 平行线与平行线之间的内角、外角关系特殊。

这些性质为平行线的拐点问题的研究提供了基础。

二、平行线的拐点问题拐点是两个平行线相交后再相交一次的点,也被称为反拐点。

为了更好地理解平行线的拐点问题,我们将从一维、二维和三维的角度来分析。

1. 一维拐点问题一维拐点问题是指两条平行线在一维空间中的相交问题。

显然,两条平行线在一维空间中永远不会相交,因此没有拐点存在。

2. 二维拐点问题二维拐点问题是指两条平行线在二维平面中的相交问题。

当我们在平行线上引入一点,并以这个点为顶点作两条射线时,这两条射线可能与另一条平行线相交。

这种情况下,我们可以得到一个拐点。

3. 三维拐点问题三维拐点问题是指两条平行线在三维空间中的相交问题。

与二维情况类似,在平行线上引入一个平面,并以这个平面为基准作两个平面时,这两个平面可能与另一条平行线相交,从而产生一个拐点。

三、平行线拐点问题的应用平行线的拐点问题在数学和物理学中有着广泛的应用。

以下是一些具体的应用场景:1. 几何学中的角度问题:通过研究平行线的拐点,我们可以更好地理解和计算一些几何学中的角度问题,如内角、外角和对应角等。

2. 折线的设计和分析:在图形设计和计算机图形学中,我们经常需要处理复杂的折线,平行线的拐点问题为折线的设计和分析提供了重要的参考依据。

3. 光学中的反射和折射:平行线的拐点问题在光学中有重要应用。

通过研究平行线的反射和折射现象,我们可以更好地理解光的传播和折射规律。

七年级数学下册-解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)(解析版)

七年级数学下册-解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)(解析版)

第03讲解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)目录【考点一平行线中含一个拐点问题】 (1)【考点二平行线中含两个拐点问题】 (11)【考点三平行线中含多个拐点问题】 (21)【考点四平行线中在生活上含拐点问题】 (27)【考点一平行线中含一个拐点问题】例题:(2023上·广东揭阳·八年级统考期末)如图,直线【答案】134︒/134度【分析】本题主要考查利用平行线的性质求解相关角度,两直线平行内错角相等,直接过点∠进行分割转移,最后利用邻补角的概念,直接求出线把E【详解】见试题解答内容∴C FEC ∠=∠,BAE FEA ∠=∠,∵44C ∠=︒,90AEC ∠=︒;∴44FEC ∠=︒,904446BAE AEF ∠=∠=︒-︒=︒,∴118018046134BAE ∠=︒-∠=︒-︒=︒;故答案为:134︒.【变式训练】【答案】180APD A ∠=︒+∠-【分析】过点P 作PM AB ∥,从而可得PM CD ∥,然后利用平行线的性质可得A APM ∴∠=∠,AB CD ∥ ,PM CD ∴∥,【答案】25︒/25度【分析】本题主要考查等边三角形的性质,平行线的判定与性质,过点平行线的性质可得结论.【详解】解:过点B 作BF ∴35,ABF α∠=∠=︒∵ABC 是等边三角形,∴60,ABC ∠=︒∴FBC ABC ABF ∠=∠-∠∵12l l ∥,【答案】(1)见解析;(2)F BMF DNF ∠=∠-∠;(3)20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;∥,根据平行线的性质即可得到结论;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论.(3)如图③,过C作CG AB【详解】(1)证明:如图①,过点E作EF AB∥,则MEF BME∠=∠,∥,又∵AB CD∥,∴EF CD∴∠=∠,NEF DNE∴∠=∠+∠,MEN MEF NEF∠=∠+∠;即MEN BME DNE(2)解:BMF MFN FND∠=∠+∠.,证明:如图②,过F作FK AB∴∠=∠,BMF MFK∥,∵AB CD,∴FK CD∴∠=∠,FND KFN∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND即:BMF MFN FND∠=∠+∠.故答案为:BMF MFN FND∠=∠+∠;∥,(3)如图③,过C作CG AB18060∴∠=︒-∠=︒,GCA BAC∥,∵AB DE∥,∴CG DEGCD CDE∴∠=∠=︒,80∴∠=︒,20ACD故答案为:20.4.(2023上·七年级课时练习)已知AB CD ,点E 为,AB CD 之外任意一点.(1)如图1,探究BED ∠与,B D ∠∠之间的数量关系,并说明理由;(2)如图2,探究CDE ∠与,B BED ∠∠之间的数量关系,并说明理由.【拓展变式】如图,“抖空竹”是国家级非物质文化遗产.在“抖空竹”的一个瞬间如图1所示,将图1抽象成一个数学问题:如图2,若,70,110AB CD EAB ECD ︒∠=∠=︒∥,则E ∠=_______________.【答案】(1)B BED D ∠=∠+∠,理由见解析;(2)CDE B BED ∠=∠+∠,理由见解析;[拓展变式]40︒.【分析】(1)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得,BEF B D DEF ∠=∠∠=∠,进而得出结论;(2)理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得B BEF ∠=∠,CDE DEF ∠=∠,进而得出结论;(3)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质得出180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒,进而即可求解.【详解】解:(1)B BED D ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.,BEF B D DEF ∴∠=∠∠=∠.BEF BED DEF ∠=∠+∠ ,B BED D ∴∠=∠+∠.(2)CDE B BED ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.B BEF ∴∠=∠,CDE DEF ∠=∠.DEF BEF BED ∠=∠+∠ ,CDE B BED ∴∠=∠+∠.【拓展变式】过点E 作EF AB ∥,则AB CD EF ∥∥.70,110EAB ECD ︒︒∠=∠= 180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒11070AEC AEF CEF ∴∠=∠-∠=︒-︒=40︒,故答案为:40︒.【点睛】本题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.5.(2023上·吉林长春·七年级统考期末)如图,AB CD ∥,点E 、F 分别在直线AB 、CD 上,点P 是AB 、CD 之间的一个动点.【感知】如图①,当点P 在线段EF 左侧时,若50AEP ∠=︒,70PFC ∠=︒,求EPF ∠的度数.分析:从图形上看,由于没有一条直线截AB 与CD ,所以无法直接运用平行线的性质,这时需要构造出“两条直线被第三条直线所截”的基本图形,过点P 作PG AB ∥,根据两条直线都和第三条直线平行,那么这两条直线也互相平行,可知PG CD ∥,进而求出EPF ∠的度数.【探究】如图②,当点P 在线段EF 右侧时,AEP ∠、EPF ∠、PFC ∠之间的数量关系为______.【答案】感知:120︒探究:360AEP EPF PFC ∠+∠+∠=︒【分析】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.感知:过点P 作PG AB ∥,根据猪脚模型,即可解答;探究:过点P 作PG AB ∥,根据铅笔模型,即可解答.【详解】感知:解:过点P 作PG AB ∥,50EPG AEP ∴∠=∠=︒,AB CD ∥ ,PG CD ∴∥,70GPF PFC ∴∠=∠=︒,5070120EPF EPG GPF ∴∠=∠+∠=︒+︒=︒,EPF ∠∴的度数为120︒;探究:解:过点P 作PG AB ∥,180EPG AEP ∴∠+∠=︒,AB CD ∥ ,PG CD ∴∥,180GPF PFC ∴∠+∠=︒,360AEP EPG FPG PFC ∴∠+∠+∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒,【答案】(1)90;(2)①56︒②见解析;(3)12290∠+∠=︒,理由见解析.【分析】(1)利用角平分线的定义可得,112PAC BAC ∠=∠=∠,122PCA ∠=∠=性质,求解即可;(2)①根据垂直可得90ACP ∠=︒,从而得到ACD ∠的度数,利用平行线的性质得到求解;②利用角平分线的定义和平行线的性质,求解即可;(3)根据角平分线的定义可得22ACD ∠=∠,再根据平行线的性质可得ACD ∠+∠∠=∠+∠.(完成下面的填空部分)(1)【基础问题】如图1,试说明:AGD A D证明:过点G作直线MN AB∥,∵72∠=︒AFC ,∴18072108GAB ∠=︒-︒=∵AH 平分GAB ∠,∴1122HAB GAB ∠=∠=【考点二平行线中含两个拐点问题】例题:如图所示,AB CD ∥、BEFD 是AB 、CD 之间的一条折线,则∠1+∠2+∠3+∠4=_____.【答案】540︒【分析】连接BD ,根据平行线的性质由AB ∥CD 得到∠ABD +∠CDB =180°,根据四边形的内角和得到∠2+∠3+∠EBD +∠FBD =360°,于是得到结论.【详解】解:连接BD ,如图,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∵∠2+∠3+∠EBD +∠FBD =360°,∴∠2+∠3+∠EBD +∠FDB +∠ABD +∠CDB =540°,即∠1+∠2+∠3+∠4=540°.故答案为:540°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式训练】【答案】34︒/34度【分析】过E 作EG AB ∥BED BEG DEG ∠=∠+∠AB CD ∥ ,AB EG FH CD ∴∥∥∥ABE BEG ∴∠=∠,DEG ∠DFH CDF ∠=∠,BFH ∠【答案】②③④【分析】①过点E作EF∥AB,由平行线的性质即可得出结论;②过点点E作EF∥AB,由平行线的性质即可得出结论;③如图3,过点C作CD∥AB,延长AB到G,由平行线的性质可得出180④过点P作PF∥AB,由平行线的性质可得出∠A=∠CPF+∠APC=∠C+②如图2,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠A =∠AEF ,∠C =∠CEF ,∴∠A +∠C =∠CEF +∠AEF =∠AEC ,则②正确;③如图3,过点C 作CD ∥AB ,延长AB 到G ,∵AB ∥EF ,∴AB ∥EF ∥CD ,∴∠DCF =∠EFC ,由②的结论可知∠GBH +∠HCD =∠BHC ,又∵180GBH ABH =︒-∠∠,∠HCD =∠HCF -∠DCF∴180°-∠ABH +∠HCF -∠DCF =∠BHC ,∴180°-∠ABH +∠HCF -∠EFC =∠BHC ,∴180x αβγ︒-+-=∠∠∠∠,故③正确;④如图4,过点P 作PF ∥AB ,∵AB ∥CD ,∴AB ∥PF ∥CD ,∴∠A =∠APF ,∠C =∠CPF ,∴∠A =∠CPF +∠APC =∠C +∠APC ,则④正确;故答案为:②③④.【点睛】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.3.(23·24八年级上·广东江门·阶段练习)(1)如图①,如果AB CD ∥,求证:APC A C ∠=∠+∠.(2)如图②,AB CD ∥,根据上面的推理方法,直接写出A P Q C ∠+∠+∠+∠=___________.(3)如图③,AB CD ∥,若ABP x BPQ y PQC z QCD m ∠=∠=∠=∠=,,,,则m =___________(用x 、y 、z 表示).【答案】(1)见解析;(2)540︒;(3)x z y+-【分析】(1)过P 作PM AB ∥,利用平行线的判定与性质证明即可;(2)过点P 作PE AB ∥,过点Q 作QF AB ∥,根据平行线的性质即可求解;(3)过点P 作PN AB ∥,过点Q 作QM AB ∥,根据平行线的性质求解即可.【详解】(1)证明:过P 作PM AB ∥,如图,∴A APM ∠=∠,∵PM AB AB CD ∥,∥(已知),∴PM CD ∥,∴C CPM ∠=∠,∵APC APM CPM ∠=∠+∠,∴APC A C ∠=∠+∠;(2)如图,过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴180A APE ∠+∠=︒,180EPQ PQF ∠+∠=︒,=180FQC QCD ∠+∠︒,∴=540A APQ PQC C ∠+∠+∠+∠︒,故答案为:540︒;(3)过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴B BPE ∠=∠,QPE PQF ∠=∠,=FQC C ∠∠,∴=B PQC C BPQ ∠+∠∠+∠,即=x z m y ++,∴=m x z y +-,故答案为:x z y +-.【点睛】本题考查平行线的判定与性质,灵活运用平行线的性质和判定是解题的关键.4.(2023下·海南省直辖县级单位·七年级统考期末)如图1,AB CD ∥,点P 为直线AB CD ,间一点,点E ,F 分别是直线AB CD ,上的点,连接EP FP ,.(1)【证明推断】求证:EPF AEP CFP ∠=∠+∠,请完善下面的证明过程,并在()内填写依据.证明:过点P 作直线MN AB ∥,MN AB ∥ (已作),AEP EPN ∴∠=∠(______),又MN AB ∥ ,AB CD ∥(已知)∴______,(______)CFP FPN ∴∠=∠,AEP CFP EPN FPN ∴∠+∠=∠+∠=______.(2)如图2,若AEP ∠的平分线与PFC ∠的平分线交于点Q .①【类比探究】试猜想EPF ∠与EQF ∠之间的关系,并说明理由;②【结论运用】若240BEP DFP ∠+∠=︒,求EQF ∠的度数.(3)【拓展认知】如图3,直线AB CD ∥,点P ,H 为直线AB CD 、间的点,请直接写出AEP ∠,PHF ∠,EPH ∠,HFD ∠的数量关系:______.【答案】(1)两直线平行,内错角相等;MN CD ∥;平行于同一直线的两直线平行;EPF∠(3)过点P、H作m∥【点睛】本题考查平行的性质,角平分线的定义,添加合适的辅助线是解题关键.5.(2023上·重庆九龙坡·八年级重庆市育才中学校考开学考试)如图CD 上,点O 在直线AB 、CD 之间,且(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN ∠-(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线FH 分别于点M 、N ,且80FMN ENM ∠-∠=︒,直接写出m 的值.【答案】(1)280︒(2)50︒(2)解:如图2,过点M ,AB CD∥∴∥∥∥,AB MK NI CD∠∴∠=∠,KMN BEM EMK∴∠-∠=∠EMN FNM EMK(3)解:如图3,设直线FH∥,AB CD∴∠=∠,AHF DFHAHF EPH PEH∠=∠+∠=∴∠=∠+∠,DFH EPH AEG【点睛】本题考查了平行线的性质,角平分线的性质及三角形的外角性质,熟练掌握平行线的性质、角平分线的性质及三角形的外角性质并正确作出辅助线是解题关键.【考点三平行线中含多个拐点问题】例题:如图,直线AB CD ∥,则23415∠+∠+∠-∠-∠的度数为___________°.【答案】360【分析】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,根据平行线的判定得出EF ∥GH ∥MN ∥AB ∥CD ,根据平行线的性质得出即可.【详解】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,如图所示:∵CD ∥AB ,∴EF ∥GH ∥MN ∥AB ∥CD ,∴∠1=∠BEF ,∠GEF +∠EGH =180°,∠HGM +∠GMN =180°,∠NMC =∠5,∵∠2=∠BEF +∠GEF ,∠3=∠EGH +∠HGM ,∠4=∠GMN +∠NMC ,∴23415∠+∠+∠-∠-∠BEF GEF EGH HGM GMN NMC BEF NMC=∠+∠+∠+∠+∠+∠-∠-∠360GEF EGH HGM GMN =∠+∠+∠+∠=︒.故答案为:360.【点睛】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式训练】【答案】88︒/88度【分析】本题考查平行线的性质、角平分线的定义等,解题的关键是会添加常用辅助线(即过2.(2023上·七年级课时练习)观察图形:已知a b ,在图1中,可得12∠+∠=_______________度,在图度……按照以上规律,则112n P P ∠+∠+∠++∠= _______________【答案】180,360,()1801n +.【详解】解:如图1,∵a b ,∴12180∠+∠= ;如图2,过1P 作11PQ a ,∵a b ,∴11PQ a b ,∴111180APQ ∠+∠=︒,112180BPQ ∠+∠=︒,∴112360APB ∠+∠+∠=;同理可得:112180(1)n P P n ∠+∠+∠++∠=+ ;故答案为:180,360,()1801n +.【点睛】本题考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.3.如图:(1)如图1,1l ∥2l ,若65P ∠= ,计算并直接写出A B ∠∠+的大小.(2)如图2,在图1的基础上,将直线PB 变成折线PQB ,证明:180A B Q P ∠∠∠∠++=+(3)如图3,在图2的基础上,继续将且线BQ 变成折现BMQ .请你写出一条关于1∠、2345∠∠∠∠,,,的数量关系(无需证明直接写出)【答案】(1)65°(2)见解析(3)∠1+∠3+∠5=∠2+∠4【分析】(l )过P 作PE ∥l 1,根据平行线的性质和角的和差即可得到结论;(2)过点P 、Q 分别作l 1和l 2的平行线分别记为l 3和l 4,根据平行线的性质和等量代换即可得到结论;(3)分别过P ,Q ,M 作PC ∥l 1,QD ∥l 1,ME ∥l 1,根据平行线的性质和角的和差即可得到结论.(1)解:过P作PE∥l1∵l1∥l2∴PE∥l2∥l1∴∠A=∠1,∠B=∠2∴∠APB=∠1+∠2=∠A+∠B=65°即∠A+∠B=65°;(2)证明:过点P、Q分别作l1和l2的平行线分别记为l3和l4∵l1∥l2∴l1∥l2∥l3∥l4∵l1∥l3(已知)∴∠A=∠1(两直线平行,内错角相等)∵l3∥l4(已知)∴∠2=∠3(两直线平行,内错角相等)∵l2∥l4(已知)∴∠4+∠B=180°(两直线平行,同旁内角互补)∴∠A+∠3+∠4+∠B=∠1+∠2+180°又∵∠1+∠2=∠P,∠3+∠4=∠Q∴∠A+∠B+∠Q=∠P+180°.(3)解:如图,分别过P,Q,M作PC∥l1,QD∥l1,ME∥l1,∵12l l ∥,∴12////////PC QD ME l l ∴∠1=∠APC ,∠QPC =∠PQD ∴∠2=∠1+∠PQD ,∠4=∠∴∠2+∠4=∠1+∠PQD +∠5∴∠1+∠3+∠5=∠2+∠4.【点睛】本题考查了平行线的性质及平行公理的推论,熟练掌握平行线的性质是解题的关键.4.猜想说理:(1)如图,AB CD EF ∥∥形说明理由:拓展应用:(2)如图4,若AB CD ,则A C AFC ∠+∠+∠=(3)在图5中,若1n A B A D ∥,请你用含n 的代数式表示【答案】(1)A C AFC ∠∠∠+=;A C AFC ∠-∠∠=;∠(2)360(3)-1180n ⨯︒()【分析】(1)根据平行线的性质可直接得到结论;度数;通过前面的计算,找出规律.利用规律得到有n 个折点的结论;【详解】解:(1)如图1:A C AFC ∠∠∠+=,如图2:A C AFC ∠-∠∠=,如图3:C A AFC ∠-∠∠=,如图1说明理由如下:∵AB CD EF ∥∥,∴A AFE C EFC ∠∠∠∠=,=,∴A C AFE EFC ∠∠∠∠+=+,即A C AFC ∠∠∠+=;(2)如下图:过F 作FH AB ∥,∴180A AFH ∠∠︒+=,又∵AB CD ∥,∴CD FH ∥,∴180C CFH ∠∠︒+=,∴360A AFH C CFH ∠∠∠∠︒+++=,即360A C AFC ∠∠∠︒++=;故答案为:360;(3)如下图:AB CD ∥,过E 作EG AB ∥,过F 作FH AB ∥,∵AB CD ∥,∴AB EG FH CD ∥∥∥,∴180A AEG ∠∠︒+=,180GEF EFH ∠∠︒+=,180HFC C ∠∠︒+=,∴1803A AEG GEF EFH HFC C ∠∠∠∠∠∠︒⨯+++++=,即540A AEF EFC C ∠∠∠∠︒+++=;综上所述:由当平行线AB 与CD 间没有点的时候,180A C ∠∠︒+=,当A 、C 之间加一个折点F 时,2180A AFC C ∠∠∠⨯︒++=;当A 、C 之间加二个折点E 、F 时,则3180A AEF EFC C ∠∠∠∠⨯︒+++=;以此类推,如图5,1n A B A D ∥,当1A 、5A 之间加三个折点234A A A 、、时,则123454180A A A A A ∠+∠∠∠∠⨯︒+++=;…当1A 、n A 之间加n 个折点231n A A A -⋯、、时,则123-1180n A A A A n ∠∠∠⋯∠⨯︒+++=(),即1234n ∠∠∠∠∠+++++L 的度数是-1180n ⨯︒().【点睛】本题是探索型试题,主要考查了平行线的性质,根据题意作出辅助线,利用平行线的性质及三角形外角的性质等知识求解是解答此题的关键.【考点四平行线中在生活上含拐点问题】例题:(2023·广东深圳·校考模拟预测)“绿水青山,就是金山银山”在两个景区之间建立上的一段观光索道如图所示,索道支撑架均为互相平行(AM CN ∥),且每两个支撑架之间的索道均是直的,若65MAB ∠=︒,55NCB ∠=︒,则ABC ∠=()A .110︒B .115︒C .120︒D .125︒【答案】C 【分析】过点B 作∥BD AM ,则BD AM CN ∥∥,由平行线的性质可得65ABD MAB ∠=∠=︒,55CBD NCB ∠=∠=︒,由此进行计算即可得到答案.【详解】解:如图,过点B 作∥BD AM ,,AM CN ∥,A BD M CN ∴∥∥,65MAB ∠=︒,55NCB ∠=︒,65ABD MAB ∴∠=∠=︒,55CBD NCB ∠=∠=︒,6555120ABC ABD CBD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行,内错角相等是解此题的关键.【变式训练】1.(2023下·山西临汾·七年级统考期中)图①是某种青花瓷花瓶,图②是其抽象出来的简易轮廓图,已知AG EF ,AB DE ∥,若120DEF ∠=︒,则A ∠的度数为()A .60°B .65°C .70°D .75°【答案】A 【分析】连接CF ,根据AB CF ,AG EF 可得出CFE BAG ∠=∠,再由平行线的性质即可得出结论.【详解】解:连接CF ,延长AG 交CF 于点H ,作MN AG ,如图AB CF DE ∥∥,120DEF ∠=︒18012060CEF ∴∠=︒-︒=︒,AHF BAG∠=∠∵AG EF ,AG MN∥∴AHF MNF ∴∠=∠,EF MN∥60CFE FNM BAG ∴∠=∠=∠=︒.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解题的关键.2.(2023下·浙江台州·七年级统考期末)如图是路政工程车的工作示意图,工作篮底部AB 与支撑平台CD 平行.若130∠=︒,3150∠=︒,则2∠=()A .60︒B .50︒【答案】C 【分析】过2∠顶点作直线l 【详解】解:如图所示,过∠∵工作篮底部与支撑平台平行、直线∴直线l 支撑平台 工作篮底部,∴1430∠=∠=︒,53180∠+∠=︒∴230∠=︒,∴24560∠=∠+∠=︒,故选:C .【答案】100︒/100度【分析】过点D 作DG AB ∥,过点【详解】解:过点D 作DG ∥∵EF MN ⊥,∴90MFE ∠=︒,∵AB MN ∥,∴AB DG EH MN ∥∥∥,∴180ACD CDG ∠+∠=︒,DEH GDE ∠=∠,90HEF MFE ∠=∠=︒∵120,110DEF BCD ∠=︒∠=︒,∴30GDE DEH ︒∠=∠=,18011070CDG ∠︒=︒-︒=,∴100CDE CDG GDE =∠+∠=︒∠.故答案为:100︒【点睛】本题考查了平行线的判定和性质,解题的关键是过拐点构造平行线.。

初中数学 中考复习 第01讲—平行线的五大拐点模型

初中数学 中考复习  第01讲—平行线的五大拐点模型

模型一:铅笔头模型基础(1)如图,若CD AB //,此时,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证360=∠+∠+∠E D B(2)反之,如图,若360=∠+∠+∠E D B ,直线AB 与CD 有什么位置关系?请证明解答:如图,过点E 作AB l //得证CD l //则CD AB //总结:①辅助线:过拐点作平行线②若CD AB //,则360=∠+∠+∠E D B③若360=∠+∠+∠E D B ,则CD AB //模型一:铅笔头模型进阶如图,两直线CD AB ,平行,则=∠+∠+∠+∠+∠+∠654321解答:如图,过F 作AB l //1,过G 作12//l l ,过H 作23//l l ,过I 作34//l l 得证900654321=∠+∠+∠+∠+∠+∠总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线②)1(180121-=∠+∠+⋅⋅⋅+∠+∠-n A A A A n n【2-n 个拐点】模型二:锯齿模型基础(1)如图,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗?解答:如图,过点E 作AB l //得证E D B ∠=∠+∠(2)在图中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系?解答:如图,过点E 作AB l //1,过点F 作AB l //2,过点G 作AB l //3得证G E ∠+∠=D F B ∠+∠+∠(3)在图中,若CD AB //,又得到什么结论?解答:同理可得n n E E E D F F F B ∠++∠+∠=∠+∠++∠+∠+∠- 21121总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型二:锯齿模型进阶【例1】如图所示,已知CD AB //,BE 平分ABC ∠,DE 平分ADC ∠,求证:)(21C A E ∠+∠=∠解答:①方法一:锯齿模型【锯齿ABEDC 】如图,过点E 作AB EF //+转化思想得证 ②方法二:8字模型(详解见第2讲)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③转化思想【例2】如图,已知CD AB //,EAB EAF ∠=∠41,ECD ECF ∠=∠41,求证: AEC AFC ∠=∠43解答:锯齿BAECD+锯齿BAFCD ;过点E 作AB GE //,过点F 作CD HF //+方程思想【βα,表示角度】得证总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③方程思想【例3】如图,CD AB //,61=∠BED ,ABE ∠的平分线与CDE ∠的平分线交于点F ,则=∠DFB ( ) A.149B.5.149C.150D.5.150解答:锯齿CDFBA+铅笔头CDEBA ;得证B总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②铅笔头模型:角之和=180×(拐点个数+1)③锯齿模型:所有朝左的角之和等于所有朝右的角之和【例4】如图,已知点P 是矩形ABCD 内一点(不含边界),设21,θθ=∠=∠PBA PAD ,43,θθ=∠=∠PDC PCB ,若 50,80=∠=∠CPD APB ,则( )A. 30)()(3241=+-+θθθθB.40)()(3142=+-+θθθθC.70)()(4321=+-+θθθθ D.180)()(4321=+++θθθθ解答:锯齿ADPCB+锯齿DAPBC ;得证A总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型三:臭脚模型基础如图,若CD AB //,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证B E D ∠=∠+∠臭脚模型基础(汇总)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型三:臭脚模型进阶如图,直线CD AB //,50,30,90,30=∠=∠=∠=∠CNP HMN FGH EFA ,则GHM ∠的大小是解答:①方法一:如图,过点H 作AB QH //则有铅笔头AFGHQ+臭脚QHMNC 得证 40=∠GHM ②方法二:锯齿BFGHMND 得证40=∠GHM 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型四:蛇型基础如图,若D C B CD AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠-∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型五:蜗牛模型基础如图,若D C B DE AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠+∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线。

(完整版)平行线间拐点问题--知识点匹配

(完整版)平行线间拐点问题--知识点匹配

题目:已知:如图,AB ∥CD ,求证:∠B +∠D +∠F =∠E +∠G.题型:解答题 难度:4.0方法技巧:巧用平行线的性质添辅助线,解决拐点问题思路启发:这里出现了平行线间的“拐点”,分别过点E 、F 、G 作AB 的平行线,利用平行线的性质可证得结论.解答过程:证明:如图,分别过点E 、F 、G 作AB 的平行线EH 、FM 、GN ,∵AB ∥CD ,∴AB ∥EH ∥FM ∥GN ∥CD ,∴∠B =∠1,∠2=∠3,∠4=∠5,∠6=∠D ,∴∠B +∠D +∠3+∠4=∠1+∠2+∠5+∠6,即∠B +∠D +∠EFG =∠BEF +∠FGD.答案:略 归纳总结:本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,解题的方法是利用经过平行线间的“拐点”,作已知平行线的平行线,然后根据平行线的性质得到相应的结论.题目:如图,点A 、B 分别在直线CM 、DN 上,CM ∥DN.(1)如图1,连接AB ,则∠CAB +∠ABD =____;(2)如图2,点1P 是直线CM 、DN 内部的一个点,连接1AP 、1BP .则1CAP Ð、1APB Ð、1PBD Ð之和是多少?并说明.(3)如图3,点1P 、2P 是直线CM 、DN 内部的点,连接1AP 、12PP 、2P B .试求1CAP Ð+∠12APP +12PP B Ð+2P BD Ð的度数;(4)按以上规律,请直接写出1CAP Ð+12APPÐ+…+5P BD Ð的度数(不必写出过程). 题型:解答题 难度:4.2方法技巧:巧用平行线的性质添辅助线,解决拐点问题思路启发:(1)直接根据“两直线平行,同旁内角互补”得到结论;(2)过点1P 作1P H CM ∥,然后根据平行的性质得到11=180180CAP +︒+=︒∠∠1,∠2∠DBP ,结合图形,根据112APB +=∠∠∠即可得到结论;(3)利用(2)的方法,分别过“拐点12,P P ”作CM 、CN 的平行线即可得到结论;(4)用上面题目得到的规律直接写出答案即可.解答过程:(1)∵CM ∥DN.∴∠CAB +∠ABD =180°;(2)点1P 作平行于CM 和DN 的平行线1P H , ∴11=180180CAP +︒+=︒∠∠1,∠2∠DBP ,∴1111112180180360CAP APB PBD CAP PBD o o???????+=?;(3)过点1P 、2P 作平行于CM 和DN 的平行线, 根据(2)的求解可知,平行线间有一个“拐点”时,内角和的度数为(1+1)×180°, 这里有两个“拐点”,则1CAP Ð+∠12APP +12PP B Ð+2P BD Ð=3×180°=540°;(4)由上可得,1125CAP APP P BD???…=6×180°=1080°. 答案:(1)180°(2)360°(3)540°(4)1080°归纳总结:对于本题考查了平行线的性质,这里解题的关键是根据题目中有平行线间的“拐点”,那么求解问题的方法就是经过“拐点”作已知平行线的平行线,然后根据平行线的性质,利用“两直线平行,同旁内角互补”求解问题.题目:如图,直线AB ∥CD ,∠EFA =30°,∠FGH =90°,∠HMN =30°,∠CNP =50°.试求∠GHM 的大小.题型:解答题 难度:4.5方法技巧:巧用平行线的性质添辅助线,解决拐点问题思路启发:根据AB ∥CD ,利用旋转的思想,得到AB 经过分别以F 、G 、H 、M 、N 为旋转中心,分别旋转得到EG ,GH 、HM 、MN 、CD ,然后根据顺时针旋转的角度=逆时针旋转的角度相等得到关于∠GHM 的方程求解.解答过程:解:设∠GHM=x :∵AB 以点F 为旋转中心顺时针旋转30°得到EG ,FG 以点G 为旋转中心逆时针旋转90°得到GH ,HG 以点H 为旋转中心顺时针旋转x 得到HM ,HM 以点M 为旋转中心逆时针旋转30°得到MN ,MN 以点N 为旋转中心顺时针旋转50°得到CD ,又AB ∥CD ,∴上述旋转过程中顺时针旋转的角度=逆时针旋转的角度,∴30°+x+50°=90°+30°,解得x=40°,∴∠GHM=40°.答案:40°归纳总结:本题考查了平行线的性质,旋转的定义.要注意区别,这里不是一般的“平行线中间有拐点”的问题.这里可以利用“扭转直线”的方法得到顺时针扭转的角度和=逆时针扭转的角度和来建立方程求解.。

专题01 平行线中的拐点问题(原卷版)

专题01 平行线中的拐点问题(原卷版)

七年级数学下册解法技巧思维培优专题01 平行线中的拐点问题典例题型一内凹型1.(2020•福州三模)如图,已知AB∥DE,∠A=40°,∠ACD=100°,则∠D的度数是( )A.40°B.50°C.60°D.80°2.(2020•覃塘区期末)如图,直线12∥12,∠A=125°,∠B=85°,则∠1+∠2= .3.(2020•濉溪期末)如图所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度数是( )A.62°B.64°C.57.5°D.60°典例题型二外凹型4.(2020•沙坪坝区校级月考)如图,a∥b,∠1=55°,∠2=130°,则∠3=( )A.100°B.105°C.110°D.115°5.(2020•黄冈期末)某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD 平行于地面AE,若∠BCD=150°,则∠ABC= °.6.(2020•梁子湖区期末)如图,如果AB∥CD,那么角α,β,γ之间的关系式为( )A.α+β+γ=360°B.α﹣β+γ=180°C.α+β+γ=180°D.α+β﹣γ=180°典例题型三外错型7.(2020•凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135°B.125°C.115°D.105°8.(2020•襄汾期末)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是( )A.110°B.115°C.120°D.125°9.(2020•鸡东期末)如图,已知直线a∥b,则∠1、∠2、∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°典例题型四综合型10.(2020•文登区期末)如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为( )A.97°B.117°C.125°D.152°11.(2020•北碚区期末)如图,一条公路修到湖边时需绕道,第一次拐角∠B=120°,第二次拐角∠C=140°,为了保持公路AB与DE平行,则第三次拐角∠D的度数应为( )A.130°B.140°C.150°D.160°12.(2020•潜江期末)如图,AB∥CD,∠BED=60°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB的度数是 .巩固练习1.(2020•新乡二模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A.80°B.90°C.100°D.102°2.(2020•高明区期末)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°3.(2020•宿豫区期中)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB =65°,则∠AEN等于( )A.25°B.50°C.65°D.70°4.(2020•稷山校级一模)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是( )A.77°B.97°C.103°D.113°5.(2020•温岭市一模)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30°B.40°C.50°D.60°6.(2020•遂宁期末)如图,∠BCD=95°,AB∥DE,则∠α与∠β满足( )A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°7.(2020•河南模拟)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E处,若∠AGE=34°.则∠BHQ等于( )A.73°B.34°C.45°D.30°8.(2020•孟津期末)如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°9.(2020•福州期末)如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=( )A.43°B.57°C.47°D.45°10.(2020•沙坪坝区校级期末)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1= °.11.(2020•泉州期末)如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于 .。

平行线拐点问题六种模型题型

平行线拐点问题六种模型题型

平行线常见四种易错题型分析七年级下学期,平行线常见四种易错题型分析,早点掌握避免出错。

平行线的性质定理用来证明角相等或角互补,判定定理是通过角相等或互补证明两条直线平行。

我们还介绍了平行线四大拐点模型:“铅笔”模型、“猪蹄”模型、“臭脚”模型、“骨折”模型,这四类模型的共通点是需要做辅助线,做辅助线的方法比较多,通用的方法为:过拐点作已知直线的平行线。

平行线间拐点问题基本模型有三种: 第一种铅笔模型;第二种M型;第三种猪手模型。

解题思路:过拐点作已知直线的平行线。

本篇内容,我们接着介绍平行线中常见的六种易错题型,早掌握避免遇到时出错。

一、性质定理与判定定理的区分在刚开始学习写证明题时,要求我们做到每一步都有理有据,因此需要在每一步后面写上得到的理由,写理由时一定要分清是性质定理还是还是判定定理。

很多学生刚开始学时,不知道使用哪个定理,分不清什么是性质定理,什么是判定定理。

要分清它们,只要注意:(1)由角得到直线平行,是判定定理,选择①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行,这三个定理之一。

(2)由平行的直线得到角的关系,是性质定理,选择①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补,这三个定理之一。

【分析】先由垂直的定义得到:∠2=∠3,然后由同位角相等,两直线平行得到:EF∥BD,再由两直线平行,同位角相等得到:∠4=∠5,然后根据等量代换得到:∠1=∠5,再根据内错角相等,两直线平行得到:DG∥BC,最后由两直线平行,同位角相等即可证∠ADG=∠C.二、三线八角理解不透彻很多学生遇到两条平行线被第三条直线所截时,会找同位角、内错角、同旁内角,但是遇到两条相交线被第三条直线所截时,却不会找了,主要原因就是对“三线八角”理解不透彻。

要想准确地解决这类问题,首先要明确三种角的位置特点,在前一篇文章中我们特地介绍过,七年级下学期,三线八角、平行线的性质与判定定理,掌握解题诀窍其次要搞清楚被哪条直线所截。

初中数学三角形中的倒角模型-平行线-拐点模型及参考答案

初中数学三角形中的倒角模型-平行线-拐点模型及参考答案

三角形中的倒角模型-平行线+拐点模型近年来各地中考中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

平行线+拐点模型在初中数学几何模块中属于基础工具类问题,也是学生必须掌握的一块内容,熟悉这些模型可以快速得到角的关系,求出所需的角。

本专题就平行线+拐点模型(猪蹄模型(M型)、铅笔头模型、牛角模型、羊角模型、“5”字模型)进行梳理及对应试题分析,方便掌握。

拐点(平行线)模型的核心是一组平行线与一个点,然后把点与两条线分别连起来,就构成了拐点模型,这个点叫做拐点,两条线的夹角叫做拐角。

通用解法:见拐点作平行线;基本思路:和差拆分与等角转化。

模型1:猪蹄模型(M型)【模型解读】图1图2图3如图1,①已知:AM∥BN,结论:∠APB=∠A+∠B;②已知:∠APB=∠A+∠B,结论:AM∥BN.如图2,已知:AM∥BN,结论:∠P1+∠P3=∠A+∠B+∠P2.如图3,已知:AM∥BN,结论:∠P1+∠P3+...+∠P2n+1=∠A+∠B+∠P2+...+∠P2n.1(2022·河南洛阳·统考二模)如图,AB∥CD,∠ABM=30°,∠CDM=45°,则∠BMD的度数为()A.105°B.90°C.75°D.70°2(2023春·安徽蚌埠·九年级校联考期中)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO =46°,∠OCD=88°,则∠BOC的度数为()A.116°B.124°C.134°D.135°3(2023春·四川泸州·七年级校考期末)如图所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γB.β+γ-αC.180°-α-γ+βD.180°+α+β-γ4(2023·广东深圳·校联考模拟预测)北京冬奥会掀起了滑雪的热潮,谷爱凌的励志故事也激励着我们青少年,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,如果不想体验人仰马翻的感觉,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB ∥CD ,当人脚与地面的夹角∠CDE =60°时,求出此时上身AB 与水平线的夹角∠BAF 的度数为()A.60°B.45°C.50°D.55°5(2023春·河南驻马店·九年级专题练习)已知AB ∥CD ,∠EAF =13∠EAB ,∠ECF =13∠ECD ,若∠E =66°,则∠F 为()A.23°B.33°C.44°D.46°6(2022·浙江七年级期中)如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知AB ⎳CD ,请问∠B ,∠D ,∠E 有何关系并说明理由;(2)如图(3)所示,已知AB ⎳CD ,请问∠B ,∠E ,∠D 又有何关系并说明理由;(3)如图(4)所示,已知AB ⎳CD ,请问∠E +∠G 与∠B +∠F +∠D 有何关系并说明理由.模型2:铅笔头模型图1图2图3如图1,①已知:AM∥BN,结论:∠1+∠2+∠3=360°;②已知:∠1+∠2+∠3=360°,结论:AM∥BN.如图2,已知:AM∥BN,结论:∠1+∠2+∠3+∠4=540°如图3,已知:AM∥BN,结论:∠1+∠2+⋯+∠n=(n-1)180°.7(2023·广东·统考二模)如图所示,已知AB∥EF,那么∠BAC+∠ACE+∠CEF=()A.180°B.270°C.360°D.540°8(2023·山西吕梁·校联考模拟预测)如图,这是路政工程车的工作示意图,工作篮底部与支撑平台平行.若∠1=32°,∠2=62°,则∠3的度数为()A.118°B.148°C.150°D.162°9(2023·河南三门峡·校联考一模)如图,图1是某小区车库门口的“曲臂直杆道闸”,可抽象为图2所示的数学图形.已知CD垂直地面上的直线DF于点D,当车牌被自动识别后,曲臂直杆道闸的BC段将绕点C 缓慢向上抬高,AB段则一直保持水平状态上升(即AB始终平行于DF).在该运动过程中,当∠ABC=112°时,∠BCD的度数是()A.112°B.138°C.158°D.128°10(2023春·新疆·七年级校考阶段练习)如图,如果AB∥CD,那么∠B+∠F+∠E+∠D=°.11(2022春·河北保定·七年级校考期中)如图,已知A1B∥A n C,则∠A1+∠A2+∠A3=,则∠A1+∠A2 +⋅⋅⋅+∠A n等于(用含n的式子表示).模型3:牛角模型图1图2如图1,已知:AB∥DE,结论:α=β-γ.如图2,已知:AB∥DE,结论:α=β+γ-180°.12(2023·安徽滁州·校联考二模)如图,若AB∥CD,则()A.∠1=∠2+∠3B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1-∠2+∠3=180°13(2023·江苏·七年级假期作业)如图,若AB ⎳CD ,则∠1+∠3-∠2的度数为14(2022·湖北洪山·七年级期中)如图,已知AB ∥CD ,P 为直线AB ,CD 外一点,BF 平分∠ABP ,DE 平分∠CDP ,BF 的反向延长线交DE 于点E ,若∠FED =a ,试用a 表示∠P 为.15(2023春·广东深圳·九年级校校考期中)已知直线AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,(1)问题提出:如图1,∠A =120°,∠C =130°.求∠APC 的度数:(2)问题迁移:如图2,写出∠APC ,∠A ,∠C 之间的数量关系,并说明理由:(3)问题应用:如图3,∠EAH :∠HAB =1:3,∠ECH =20°,∠DCH =60°,求∠H ∠E的值.16(2023·余干县八年级期末)已知直线AB ∥CD ,(1)如图1,直接写出∠BME 、∠E 、∠END 的数量关系为;(2)如图2,∠BME 与∠CNE 的角平分线所在的直线相交于点P ,试探究∠P 与∠E 之间的数量关系,并证明你的结论;(3)如图3,∠ABM =1n ∠MBE ,∠CDN =1n∠NDE ,直线MB 、ND 交于点F ,则∠F=.∠E模型4:羊角模型图1图2如图1,已知:AB∥DE,结论:α=γ-β.如图2,已知:AB∥DE,结论:α+β+γ=180°.17(2023春·上海·七年级专题练习)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为.18(2022·江苏七年级期中)如图所示,已知AB∥CD,∠A=50°,∠C=∠E.则∠C等于()A.20°B.25°C.30°D.40°19(2023春·浙江·七年级专题练习)已知AB⎳CD,求证:∠B=∠E+∠D20(2023·河南·统考三模)如图,已知AB∥DE,∠ABC=150°,∠CDE=75°,则∠BCD的度数为()A.55°B.60°C.45°D.50°21(2023·河北沧州·校考模拟预测)如图,∠A=58°,∠D=122°,∠1=3∠2,∠2=25°,点P是BC上一点.(1)∠DFE的度数为;(2)若∠BFP=50°.则CE与PF(填“平行”或“不平行”).模型5:蛇形模型(“5”字模型)基本模型:如图,AB∥CD,结论:∠1+∠3-∠2=180°.图1图2如图1,已知:AB∥DE,结论:α=β+180°-γ.如图2,已知:AB∥DE,结论:α=γ+180°-β.22(2023·四川广元·统考三模)珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE等于()A.50°B.40°C.30°D.20°23(2023·湖南长沙·九年级校联考期中)如图,若AB∥CD,∠α=65°,∠γ=25°,则∠β的度数是()A.115°B.130°C.140°D.150°24(2023·河南周口·校联考三模)如图,AB∥EF,∠B=100°,∠CDE=25°,则∠BCD的度数是()A.125°B.75°C.95°D.105°25(2023·陕西西安·校考模拟预测)如图,AB∥CD,CD∥EF,CE平分∠BCD,若∠ABC=58°,则∠CEF 的度数为()A.131°B.141°C.151°D.161°26(2023·江西·九年级校考阶段练习)如图∠BAC=10°,∠ACD=125°,CD⊥EF于点D,将AB绕点A 逆时针旋转α,使AB∥EF,则α的最小值为.课后专项训练1(2023·山东临沂·统考二模)如图,a∥b,∠1=45°,则∠2的度数为()A.105°B.125°C.135°D.145°2(2023春·安徽·九年级专题练习)如图,已知:AB∥EF,∠B=∠E,求证:BC∥DE.在证明该结论时,需添加辅助线,则以下关于辅助线的作法不正确的是()A.延长BC交FE的延长线于点GB.连接BEC.分别作∠BCD,∠CDE的平分线CG,DHD.过点C作CG∥AB(点G在点C左侧),过点D作DH∥EF(点H在点D左侧)3(2023·浙江台州·统考一模)如图是路政工程车的工作示意图,工作篮底部与支撑平台平行.若∠1= 30°,∠2=50°,则∠3的度数为( ).A.130°B.140°C.150°D.160°4(2023·江苏·八年级假期作业)如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=( ).A.630°B.720°C.800°D.900°5(2023·辽宁抚顺·统考三模)如图,若AB∥CD∥EF,∠1=15°,∠2=60°,那么∠BCE=()A.120°B.125°C.130°D.135°6(2022·安徽芜湖·七年级期中)如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A.30°B.35°C.36°D.45°7(2023·内蒙古呼伦贝尔·统考三模)如图是一款手推车的平面示意图,其中AB ∥CD ,∠1=24°,∠3=148°,则∠2的度数为()A.56B.66C.98D.1048(2023春·重庆江津·七年级校联考期中)如图,AB ⎳CD ,∠ABE =12∠EBF ,∠DCE =13∠ECF ,设∠ABE =α,∠E =β,∠F =γ,则α,β,γ的数量关系是()A.4β-α+γ=360°B.3β-α+γ=360°C.4β-α-γ=360°D.3β-2α-γ=360°9(2022·江苏七年级期末)如图,AB ∥CD ,则∠1+∠3-∠2的度数等于.10(2023·湖南长沙·校联考二模)如图所示,AB∥DE,∠1=130°,∠2=36°,则∠3=度.11(2022·四川成都·七年级期末)已知直线AB∥DE,射线BF、DG分别平分∠ABC,∠EDC,两射线反向延长线交于点H,请写出∠H,∠C之间的数量关系:.12(2022·黑龙江·七年级月考)如图,AB⎳CD,E是CD上的点,过点E作EF⎳DP,若∠PEF=∠PEH,EG平分∠DEH,∠B=152°,∠PEG=65°,则∠BPD=.13(2023·浙江·九年级专题练习)如图,已知AB∥DE,∠BCD=30°,∠CDE=138°,求∠ABC的度数.14(2023春·重庆南岸·九年级校考期中)在数学课上老师提出了如下问题:如图,∠B=160°,当∠A与∠D满足什么关系时,BC∥DE?小明认为∠D-∠A=20°时BC∥DE,他解答这个问题的思路和步骤如下,请根据小明的思路完成下面的作图与填空:15(2023春·河北廊坊·七年级校考阶段练习)(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.16(2023秋·广东江门·八年级校考阶段练习)(1)如图①,如果AB∥CD,求证:∠APC=∠A+∠C.(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示).17(2023春·山东淄博·九年级校考期中)如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=30°,∠DCE=20°,则∠AEC=;如图1,若∠BAE=α,∠DCE=β,则∠AEC=;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC的数量关系,并说明理由.18(2022·湖南株洲市八年级期末)已知直线a∥b,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图1,当点P在线段EF上运动时,试说明∠1+∠3=∠2;(提示:过点P作PM∥a)(2)当点P在线段EF外运动时有两种情况,①如图2写出∠1,∠2,∠3之间的关系并给出证明.②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).19(2023·内蒙古鄂尔多斯·七年级校考期中)问题探究:如下面四个图形中,AB∥CD.(1)分别说出图1、图2、图3、图4中,∠1与∠2、∠3三者之间的关系.(2)请你从中任选一个加以说明理由.解决问题:(3)如图5所示的是一探照灯灯碗的纵剖面,从位于O点的灯泡发出两束光线OB、OC经灯碗反射后平行射出.如果∠ABO=57°,∠DCO=44°,那么∠BOC=°.20(2023春·湖北黄冈·七年级校考期中)如图,已知:点A、C、B不在同一条直线,AD∥BE(1)求证:∠B+∠C-∠A=180°:(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE=.21(2023春·广东·七年级专题练习)(1)如图1,AB∥CD,∠ABE=45°,∠CDE=21°,直接写出∠BED 的度数.(2)如图2,AB∥CD,点E为直线AB,CD间的一点,BF平分∠ABE,DF平分∠CDE,写出∠BED与∠F之间的关系并说明理由.(3)如图3,AB与CD相交于点G,点E为∠BGD内一点,BF平分∠ABE,DF平分∠CDE,若∠BGD=60°,∠BFD=95°,直接写出∠BED的度数.22(2023春·福建三明·七年级校考期中)探索:小明在研究数学问题:已知AB⎳CD,AB和CD都不经过点P,探索∠P与∠A、∠C的数量关系.发现:在图1中,∠APC=∠A+∠C;如图5小明是这样证明的:过点Р作PQ⎳AB∴∠APQ=∠A∵PQ⎳AB,AB⎳CD.∴PQ⎳CD∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C(1)为小明的证明填上推理的依据;(2)理解:①在图2中,∠P与∠A、∠C的数量关系为;②在图3中,若∠A=30°,∠C=70°,则∠P的度数为;(3)拓展:在图4中,探究∠P与∠A、∠C的数量关系,并说明理由.23(2023春·山东·七年级专题练习)如图1,直线AB⎳CD,点P在两平行线之间,点E在AB上,点F 在CD上,连接PE,PF.(1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤,并说明理由)(2)如图2,若点P,Q在直线AB与CD之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4=.(不需说明理由,请直接写出答案)(3)如图3,在图1的基础上,作P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°,则∠P1= (用含x,y的式子表示).若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2;P3E平分∠P2EB,P3F平分∠P2 FD,可得∠P3⋯,依次平分下去,则∠Pn=.(用含x,y的式子表示)三角形中的倒角模型-平行线+拐点模型近年来各地中考中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
1
a
P
2 3
b
N
3
知识点一:‘凸’出来的模型
学以致用
2、如图,AB//CD,FG⊥CD于N,若∠EMB=α,则
∠EFG=( B )。 A
A.180°-α B.90°+α
C.180°+α D.270°-α C

E Mα B
F
D N
G
4
知识点二:‘凹’进去的模型
新知究
A
B
P
例2、已知AB∥DE,试问∠B、∠E、
(1) 由基本图形二,你能得到∠F与∠1+∠3的关系吗? (2)由基本图形一,你能得到∠ABE+∠CDE的值吗? (3)由BF和DF分别平分∠ABE和∠CDE,你能得到
∠1+∠3 与∠ABE+∠CDE的关系吗?
11
知识点三:“猪手图”模型
学以致用
变式:将上题中的∠ABE的平分线改为它
140º
的补∠ABG的角平分线,其它条件不变,
14
思维导图
平行线性 质与判定
“拐点” 问题
‘凸’出来的模型 ‘凹’进去的模型 “猪手图”模型
15
综合应用
如图所示,已知CD∥EF,∠C+∠F=∠ABC,求 证:AB∥GF.
16
综合应用
(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F. 当∠PEQ=70°时,请求出∠PFQ的度数.
孝感市文昌中学学生专用尺 2
Cm
7
知识点三:“猪手图”模型
新知究
P1 A
C
F
B D
A
C
1
P
解:过点P作PF∥AB,则PF∥CD(

∴∠CPF+∠C=180°∠1+∠A=180°(

∴∠CPF=180°-∠C ,∠1=180°-∠A
∴∠APC=∠CPF-∠1
=(180°-∠C)-(180°-∠A)=∠A-∠C
C
D
∴∠A+∠1 =180o,∠C+∠ 2=180o(两直线平行,同旁内角互补)
又∵∠A=100°,∠C=110°(已知)
∴ ∠ 1 = 80 °, ∠2 = 70 ° (等量代换)
∴∠AEC=∠1+∠2= 80 ° + 70 °=150 °
2
知识点一:‘凸’出来的模型
学以致用
1、如图,a//b,M、N分别在a、b上,P为两平行线间一点, 如果∠3= 135° ,∠2=60°那么∠1= 165º。
C
∠BCE有什么关系。
A
解:过点C作CF∥AB,
C
则_∠_B_=_∠__1_ ( 两直线平行,内错角相等 )
又∵AB∥DE,AB∥CF,
D
∴_C_F_∥__D_E____( 平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等) ∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B D
F
8
知识点三:“猪手图”模型
新知究
A
B
C
D
P
∠APC=∠A-∠C
P
A
B
C
D
∠APC=∠C-∠A
9
知识点三:“猪手图”模型
归纳总结
当“拐点”在平行线的外部时,“拐角” 等于两个边角之差.
(即:折角=大边角-小边角)
10
知识点三:“猪手图”模型
学以致用
例3:已知AB∥CD,∠ABE和∠CDE的平分 线相交于F,∠E = 140º,则∠F= 11。0°
5.3 平行线的性质
5.3.1:平行线的性质 ----“拐点”问题
a 1 3
b2
1
知识点一:‘凸’出来的模型
A
B
P
例1 已知:如图,AB//CD,∠A=100°
C
D
∠C=110°求∠AEC的度数
A
B
解:过点E作EF//AB
1
∵AB//Cቤተ መጻሕፍቲ ባይዱ,EF//AB(已知)
E2
F
∴ CD // EF 。(平行于同一直线的两直线平行)
则∠F= 20°。
12
知识点三:“猪手图”模型
拓展提升
已知:如图,AB//CD,试解决下列问题: (1)∠1+∠2=_1_8_0°; (2)∠1+∠2+∠3=_36_0_° ; (3)∠1+∠2+∠3+∠4=_ 54_0°_ ; (4)试探究∠1+∠2+∠3+∠4+…+∠n= 180°(n-1) ;
D
B
1
F
2
E
5
知识点二:‘凹’进去的模型
学以致用
1、如图,AB∥CD,∠A=65°- α ,∠P=80°+α,
∠C=60°-α,则α= 15°。
A
B
P
C
D
6
知识点二:‘凹’进去的模型
学以致用
2、如图,有一块含有45°角的三角尺放在直尺上,如果
∠2=20°,那么∠1= 25°。
1
0 1 2 3 4 5 6 7 8 9 10 11
A 1
BA 1
BA 1
B
A 1
B
E2
E2
E2
2 C
3
D
C
F 34
D
C
Nn
D
C
D
13
拓展提升 “牙齿”模型
(1)如图1,已知AB∥CD,求证:∠BED= ∠1+∠2. (2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、 ∠BEG之间数量关系,并加以证明. (3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、 与∠2、∠4、∠6之间的关系.
某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b. 他们发现这个结论运用很广,请你利用这个结论解决以下问题: 已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ. (1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系,并说明理由; (2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,求出∠PFQ的度数;
3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的 反向延长线交PF于点F.当∠PEQ=70°时,请求出∠PFQ的度数.
蓦然回首
对自己说,你有什么收获? 对同学说,你有什么温馨提示? 对老师说,你还有什么困惑?
18
相关文档
最新文档