《概率初步》单元检测试题B
第二十五章《概率初步》综合检测试题B
第二十五章《概率初步》综合检测试题一、选择题(每题3分,共30分)1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( ) A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后摆放,从中任意翻开一张是汉字“自”的概率是( ) A.12 B.13 C.23 D.1610. 袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是( ) A.37 B.316 C.12 D.313图1二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:________________________ ,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13. 在标有1,3,4,6,8的五张卡片中,随机抽取两张,为奇数的概率为14.在4张小卡片上分别写有实数0π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16. 含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.如图,为举办毕业联欢会,小颖设计了一个游戏:•游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母都相同时,他就可以获胜(1)利用画树形图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?20.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图像上的概率是多少?四、能力提升26.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为0.5.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?5.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,为奇数的概率为. 0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是.528.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有粒.4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.910.在中考体育达标跳绳项目测试中,1min跳160次为达标.•小敏记录了他预测时1min跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2 511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
人教版数学九年级上册《概率初步》单元综合检测卷(含答案)
参考答案
一.选择题(共10小题)
1.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
A. B. C. D.1
【答案】A
【解析】
【分析】
根据概率是指某件事发生的可能性为多少解答即可.
【详解】解:此事件发生的概率
故选A.
【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
5.从 ,0,π, ,6这五个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
【答案】C
24.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有 、 、 三张扑克牌,乙手中有 、 、 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.
(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;
(2)求学生乙一局比赛获胜的概率.
25.小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:
故选C
【点睛】此题重点考察学生对必然事件的理解,抓住必然事件一定会发生的要求是解题的关键
3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、9.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )
人教版九年级上册数学《概率初步》单元测试卷(含答案)
人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。
市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。
数学九年级上册《概率初步》单元检测(带答案)
故选D.
6.从分别写有A,B,C,D,E的五张卡片中任取两张,这两张卡片上的字母恰好是按字母顺序相邻的概率是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据题意,先计算从5张卡片中任取2张的取法数目,进而分析这2张上的字母恰好按字母顺序相邻的情况,易得其情况数目,代入公式等可能事件的概率,可得答案.
(1)请用画树状图或列表的方法,写出代数式 所有可能的结果;
(2)求代数式 恰好是分式的概率.
21.甲、乙、丙三位同学进行排球传球练习,球由一个人随机传给另一个人,且每位传球者传球给其余两人的机会是均等的,由甲开始传球,共传三次(每传一个人为一次).
(1)请用树状图表示出传球三次所有等可能的情况;
(2)求传球三次后,球传给丙的பைடு நூலகம்率.
【详解】A选项,某市明天将有 的时间下雨不符合对概率意义的理解,
B选项,某市明天将有 的地区下雨不符合对概率意义的理解,
C选项,某市明天一定会下雨不符合对概率意义的理解,
D选项,某市明天下雨的可能性较大符合对概率意义的理解.
故选D.
【点睛】本题主要考查概率的意义,解决本题的关键是要掌握对概率意义的理解.
(2)如果从3名候选主持人中随机选拔2名,请通过列表或画树状图求选拔 2名主持人恰好是1名男生和1名女生的概率.
20.有三张卡片(形状、大小、颜色、质地都相同),正面分别写上整式x2+1,-x2-2,3,将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式 .
C.钉尖着地的概率约为0.4
人教版数学九年级上学期《概率初步》单元检测带答案
九年级上册数学《概率初步》单元测试卷考试时间:100分钟;满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•徐州期末)下列事件中的不可能事件是()A .常温下加热到100℃水沸腾B .3天内将下雨C .经过交通信号灯的路口遇到红灯D .三根长度分别为2、3、5的木棒摆成三角形2.(3分)(2018秋•阳东区期末)下列说法中正确的是()A .“任意画出一个平行四边形,它是中心对称图形”是必然事件B .“任意画出一个等边三角形,它是轴对称图形”是随机事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.(3分)(2019•铁西区二模)小刚是一名学校足球队的队员,根据以往比赛数据统计,小刚每场比赛进球率为15%,他明天将参加一场学校足球队比赛,下面说法正确的是()A .小刚明天肯定进球B .小刚明天每射球15次必进球1次C .小刚明天有可能进球D .小刚明天一定不能进球4.(3分)(2019•深圳)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A .B .C .D .5.(3分)(2018•徐州)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A .小于B .等于C .大于D .无法确定6.(3分)(2018•河南模拟)从﹣2,3,﹣4,6,5中任意选两个数,记作A 和B ,那么点(A ,B )在函数y =﹣的图象上的概率是()A .B .C .D .7.(3分)(2018•苏州)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A .B .C .D .8.(3分)(2019•河南一模)遵守交通规则是我们义不容辞的责任,我们都知道“红灯停,绿灯行,黄灯等一等”,小明上学要经过两个十字路口,每个路口遇到红、黄,绿灯的机会都相同,小明希望上学时经过每个路口都是绿灯,请问他遇到这样的机会的概率是()A .B .C .D .9.(3分)(2019•武侯区模拟)一个公园有A ,B ,C 三个入口和D ,E二个出口小明进入公园游玩,从“A 口进D 口出”的概率为()A .B .C .D .10.(3分)(2019•顺义区二模)某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A .B .C .D .第Ⅱ卷(非选择题)二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018•娄底模拟)在实数、、、、0.3131131113中任意取一个数,其中恰好是无理数的概率是.12.(3分)(2019•遵义一模)小明有5根小棒,长度分别为3C m,4C m,5C m,6C m,7C m,现从中任选3根小棒,怡好能搭成三角形的概率是13.(3分)(2019•梅州)在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有个.14.(3分)(2019•盐城期中)在如图所示(A ,B ,C 三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A 或B 或C ).15.(3分)(2019秋•武清区期末)为了估计一个不透明的袋子中白球的数量(袋中只有白球),现将5个红球放进去(这些球除颜色外均相同)随机摸出一个球记下颜色后放回(每次摸球前先将袋中的球摇匀),通过多次重复摸球试验后,发现摸到红球的频率稳定于0.2,由此可估计袋中白球的个数大约为.16.(3分)(2019•达州)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.17.(3分)(2019春•青羊区校级期中)有9张卡片,分别写有1,2,3,…,9这九个数字,将他们背面朝上洗匀后,任意抽出一张,记卡片上的数字为 A ,则关于x的不等式组有解的概率为.18.(3分)(2018•宿迁)小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.评卷人得分三.解答题(共5小题,满分46分)19.(8分)(2019春•张家港市期末)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A 的坐标为(x,y).(1)请用表格或树状图列出点A 所有可能的坐标;(2)求点A 在反比例函数y=图象上的概率.20.(8分)(2018•苏州)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).21.(10分)(2018秋•泰兴市校级期中)将图中的A 型、B 型、C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子,放回后再从中摸出一个盒子,求2次摸出的盒子里的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).22.(10分)(2019秋•新市区校级期中)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”、“3”、“3”、“5”、“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖.记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出某同学抽一次奖获一等奖的概率;(2)抽一次奖获一等奖的概率和不获奖的概率相等吗?请说明理由.23.(10分)(2019•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•徐州期末)下列事件中的不可能事件是()A .常温下加热到100℃水沸腾B .3天内将下雨C .经过交通信号灯的路口遇到红灯D .三根长度分别为2、3、5的木棒摆成三角形[分析]根据事件发生的可能性大小判断相应事件的类型即可.[答案]解:常温下加热到100℃水沸腾,是必然事件,故A 不合题意;3天内将下雨是随机事件,故B 不合题意;经过交通信号灯的路口遇到红灯是随机事件,故C 不合题意;三根长度分别为2、3、5的木棒摆成三角形是不可能事件,故D 符合题意,故选:D .[点睛]本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(3分)(2018秋•阳东区期末)下列说法中正确的是()A .“任意画出一个平行四边形,它是中心对称图形”是必然事件B .“任意画出一个等边三角形,它是轴对称图形”是随机事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次[分析]首先利用随机事件以及必然事件的定义对各选项进行判断得出答案.[答案]解:A .“任意画出一个平行四边形,它是中心对称图形”是必然事件,此选项正确;B .“任意画出一个等边三角形,它是轴对称图形”是必然事件,此选项错误;C .“概率为0.0001的事件”是随机事件,此选项错误;D .任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,此选项错误;故选:A .[点睛]此题主要考查了概率的意义与随机事件,正确把握相关事件的定义是解题关键.3.(3分)(2019•铁西区二模)小刚是一名学校足球队的队员,根据以往比赛数据统计,小刚每场比赛进球率为15%,他明天将参加一场学校足球队比赛,下面说法正确的是()A .小刚明天肯定进球B .小刚明天每射球15次必进球1次C .小刚明天有可能进球D .小刚明天一定不能进球[分析]直接利用概率的意义分析得出答案.[答案]解:根据以往比赛数据统计,小刚每场比赛进球率为15%,他明天将参加一场比赛小刚明天有可能进球.故选:C .[点睛]此题主要考查了概率的意义,正确理解概率的意义是解题关键.4.(3分)(2019•深圳)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A .B .C .D .[分析]根据概率是所求情况数与总情况数之比,可得答案.[答案]解:第3个小组被抽到的概率是,故选:A .[点睛]本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(2018•徐州)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A .小于B .等于C .大于D .无法确定[分析]利用概率的意义直接得出答案.[答案]解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B .[点睛]此题主要考查了概率的意义,正确把握概率的定义是解题关键.6.(3分)(2018•河南模拟)从﹣2,3,﹣4,6,5中任意选两个数,记作A 和B ,那么点(A ,B )在函数y =﹣的图象上的概率是()A .B .C .D .[分析]利用树状图展示所有20种等可能的结果数,再根据反比例函数图象上点的坐标特征判断点(A ,B )在函数y=﹣的图象上点有4,然后根据概率公式求解.[答案]解:画树状图为:共有20种等可能的结果数,其中点(A ,B )在函数y=﹣的图象上点有4,所以点(A ,B )在函数y=﹣的图象上的概率==.故选:B .[点睛]本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.(3分)(2018•苏州)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A .B .C .D .[分析]根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.[答案]解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C .[点睛]本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.8.(3分)(2019•河南一模)遵守交通规则是我们义不容辞的责任,我们都知道“红灯停,绿灯行,黄灯等一等”,小明上学要经过两个十字路口,每个路口遇到红、黄,绿灯的机会都相同,小明希望上学时经过每个路口都是绿灯,请问他遇到这样的机会的概率是()A .B .C .D .[分析]画树状图列出所有等可能结果,从中找到到经过每个路口都是绿灯的结果数,根据概率公式计算可得.[答案]解:画树状图如下:由树状图知,共有9种等可能结果,其中经过每个路口都是绿灯的只有1种结果,所以经过每个路口都是绿灯的概率为,故选:D .[点睛]本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2019•武侯区模拟)一个公园有A ,B ,C 三个入口和D ,E二个出口小明进入公园游玩,从“A 口进D 口出”的概率为()A .B .C .D .[分析]依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.[答案]解:根据题意画树形图:共有6种等情况数,其中“A 口进D 口出”有一种情况,从“A 口进D 口出”的概率为;故选:D .[点睛]此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019•顺义区二模)某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A .B .C .D .[分析]先求出等车时间不超过10分钟的时间,再根据概率公式求解即可.[答案]解:等车时间不超过10分钟的时间段是7:50~8:00,8:20~8:30,一共20分钟,7:50至8:30一共40分钟,则他等车时间不超过10分钟的概率是20÷40=.故选:B .[点睛]本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018•娄底模拟)在实数、、、、0.3131131113中任意取一个数,其中恰好是无理数的概率是.[分析]根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.[答案]解:∵从数、、、、0.3131131113中任意取一个数,一共五种情况,并且出现每种可能都是等可能的,其中无理数的情况有、两种,∴取到的数是无理数的概率为.故答案为:.[点睛]此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.同时考查了无理数的定义.12.(3分)(2019•遵义一模)小明有5根小棒,长度分别为3C m,4C m,5C m,6C m,7C m,现从中任选3根小棒,怡好能搭成三角形的概率是[分析]首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.[答案]解:其中的任意三条组合有:3C m、4C m、5C m;3C m、4C m、6C m;3C m、4C m、7C m;3C m、5C m、6C m;3C m、5C m、7C m;3C m、6C m、7C m;4C m、5C m、6C m;4C m、5C m、7C m;4C m、6C m、7C m;5C m、6C m、7C m十种情况.根据三角形的三边关系,其中的3C m、4C m、5C m;3C m、4C m、6C m;3C m、5C m、6C m;3C m、5C m、7C m;3C m、6C m、7C m;4C m、5C m、6C m;4C m、5C m、7C m;4C m、6C m、7C m;5C m、6C m、7C m 这九种情况能搭成三角形.所以怡好能搭成三角形的概率是,故答案为:.[点睛]此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.13.(3分)(2019•梅州)在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有15个.[分析]设口袋中小球共有x个,根据概率公式得到=,然后利用比例性质求出x即可.[答案]解:设口袋中小球共有x个,根据题意得=,解得x=15,所以口袋中小球共有15个.故答案为15.[点睛]本题考查了概率公式:随机事件A 的概率P(A )=事件A 可能出现的结果数除以所有可能出现的结果数.14.(3分)(2019•盐城期中)在如图所示(A ,B ,C 三个区域)的图形中随机地撒一把豆子,豆子落在 A 区域的可能性最大(填A 或B 或C ).[分析]根据哪个区域的面积大落在那个区域的可能性就大解答即可.[答案]解:由题意得:S A >S B >S C ,故落在A 区域的可能性大,故答案为:A .[点睛]本题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.15.(3分)(2019秋•武清区期末)为了估计一个不透明的袋子中白球的数量(袋中只有白球),现将5个红球放进去(这些球除颜色外均相同)随机摸出一个球记下颜色后放回(每次摸球前先将袋中的球摇匀),通过多次重复摸球试验后,发现摸到红球的频率稳定于0.2,由此可估计袋中白球的个数大约为20个.[分析]根据口袋中有5个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.[答案]解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.2,口袋中有5个红球,∵假设有x个白球,∴=0.2,解得:x=20,∴口袋中有白球约有20个.故答案为:20个.[点睛]此题主要考查了利用频率估计随机事件的概率,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.16.(3分)(2019•达州)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.[分析]根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.[答案]解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.[点睛]本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P(A )=.17.(3分)(2019春•青羊区校级期中)有9张卡片,分别写有1,2,3,…,9这九个数字,将他们背面朝上洗匀后,任意抽出一张,记卡片上的数字为A ,则关于x的不等式组有解的概率为.[分析]由关于x的不等式组有解,可求得A >3.5,然后利用概率公式求解即可求得答案.[答案]解:,由①得:x≥2,由②得:x<,∵关于x的不等式组有解,∴>2,解得:A >3.5,∴A =4,5,6,7,8,9,∴使关于x的不等式组有解的概率为:=.故答案为.[点睛]此题考查了解一元一次不等式组与概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.(3分)(2018•宿迁)小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是1.[分析]从小明拿到第7根火柴着手,进行倒推,就能找到小明保证获胜的方法.[答案]解:若小明第一次取走1根,小丽也取走1根,小明第二次取2根,小丽不论取走1根还是两根,小明都将取走最后一根,若小明第一次取走1根,小丽取走2根,小明第二次取1根,小丽不论取走1根还是两根,小明都将取走最后一根,由小明先取,且小明获胜是必然事件,故答案为:1.[点睛]本题考查了随机事件,关键是得到如何让小明获得最后的取火柴权.三.解答题(共5小题,满分46分)19.(8分)(2019春•张家港市期末)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A 的坐标为(x,y).(1)请用表格或树状图列出点A 所有可能的坐标;(2)求点A 在反比例函数y=图象上的概率.[分析](1)横坐标的可能性有两种,纵标的可能性有3种,则A 点的可能性有六种,画出树状图即可;(2)根据点A 要在反比例函数y=的图象,则横纵坐标的乘积为2,从而可以选出符合条件的A 点,算出概率.[答案]解:(1)根据题意,可以画出如下的树状图:则点A 所有可能的坐标有:(1,﹣1)、(1,0)、(1,2)、(﹣2,﹣1)、(﹣2,0)、(﹣2,﹣2);(2)在反比例函数y=图象上的坐标有:(1,2)、(﹣2,﹣1),所以点A 在反比例函数y=图象上的概率为:.[点睛]本题考查了概率、反比函数上点的特征,题目难度不大,解题的关键是对用树状图或者列表法求概率的熟练掌握和对反比例函数点的特征的熟悉.20.(8分)(2018•苏州)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).[分析](1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.[答案]解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.[点睛]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2018秋•泰兴市校级期中)将图中的A 型、B 型、C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子,放回后再从中摸出一个盒子,求2次摸出的盒子里的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).[分析](1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.[答案]解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A 型矩形纸片的概率为;(2)画树状图如下:由树状图知,共有9种等可能结果,其中2次摸出的盒子里的纸片能拼成一个新矩形的有7种结果,所以2次摸出的盒子里的纸片能拼成一个新矩形的概率为.[点睛]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2019秋•新市区校级期中)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”、“3”、“3”、“5”、“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖.记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出某同学抽一次奖获一等奖的概率;(2)抽一次奖获一等奖的概率和不获奖的概率相等吗?请说明理由.[分析](1)首先根据题意列表得出所有等可能结果,然后由表格求得所有等可能的结果与该同学获得一等奖的情况,再利用概率公式即可求得答案;(2)根据概率公式求出不获奖(即|x|=0)的概率,据此可得答案.[答案]解:(1)列表如下:如图所示,一共有20种等可能情况,其中获得一等奖的情况有2种,故获一等奖的概率P =.(2)相等,理由如下:由表可知,不获奖的情况有2钟,所以抽一次奖不获奖的概率为=,所以抽一次奖获一等奖的概率和不获奖的概率相等.[点睛]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)(2019•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)[分析](1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.(2)解题思路同上.[答案]解:(1)甲同学的方案不公平.理由如下:列表法,2345小明小刚。
第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)
北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。
北师大版七年级下册第6章概率初步单元检测数学试题
北师大版七年级下第六单元《概率初步》单元检测一、单选题1. 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是()A. 3个球中至少有1个黑球B. 3个球中至少有1个白球C. 3个球中至少有2个黑球D. 3个球中至少有2个白球2. 下列说法中,正确的是()A. 任意投掷一枚质地均匀的硬币30次,出现正面朝上的次数一定是15次B. 为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图C. “太阳东升西落”是不可能事件D. 调查某班40名学生的身高情况宜采用普查3. 在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A. 必然事件B. 随机事件C. 不可能事件D. 确定性事件4. 下列说法中:①如果一个事件发生的可能性很小,那么它的概率为0;②如果一个事件发生的可能性很大,那么它的概率为1;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间;其中,正确的说法有()A. 1个B. 2个C. 3个D. 0个5. 在写有1至10的10张卡片中,如果第1次抽出写有3的卡片后(不放回),第2次任意抽取1张是奇数卡片的可能性是()A. 59B.49C.25D. 126. 在抛掷硬币的试验中,下列结论正确的是()A. 经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B. 抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C. 抛掷50000次硬币,可得“正面向上”的频率为0.5D. 若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5187. 在4个相同的袋子中,装有除颜色外完全相同的10个球,任意摸出1个球,摸到红球可能性最大的是()A. 1个红球,9个白球B. 2个红球,8个白球C. 5个红球,5个白球D. 6个红球,4个白球8. 小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,再掷一次,正面朝上的概率是()A. 13B.23C. 12D. 19. 在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球和黑球共()A. 12个B. 16个C. 20个D. 30个10. “文明丰都·幸福你我”,丰都正在积极创建全国文明城市.丰都宏运公司楼顶公益广告牌上“文明丰都”几个字是霓红灯,几个字一个接一个亮起来(亮后不熄灭)直至全部亮起来再循环,当路人一眼望去,能够看到几个字全在的概率是()A. 13B.14C.15D.16二、填空题11. 下列事件是必然事件的是________.①射击一次,中靶;②100件某种产品中有2件次品,从中任取1件恰好是次品;③太阳从东方升起;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12. 某公交车站共有1路、3路、16路三路车停靠,已知1路车8分钟一辆;3路车5分钟一辆、16路车10分钟一辆,则在某一时刻,小明去公交车站最先等到______路车的可能性最大.13. 在一个不透明的袋子里,装有2个红球和3个白球,这些球除颜色外没有任何区别,现从这个袋子中随机摸出一个球,摸到红球的概率是_____.14. 一个不透明的箱子中有4个红球和若干个黄球,若任意摸出一个球,摸出红球的概率是25,则黄球个数是_____个.15. 某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16. 一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为________.17. 有一个样本共有50个数据,分成若干组后,其中有一小组的频率是0.4,则该组的频数是_____.18. 如图,甲、乙、丙3人站在55 网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率是__________.19. 不透明的口袋中有黑白围棋子若干颗,已知随机摸出一颗是白棋子的概率为310,若加入10颗白棋子,随机摸出一颗是白棋子的概率为13,口袋中原来有______颗围棋子.20. 在一个不透明的布袋中有白球和黑球共20个,这些球除颜色外都相同.小明将布袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回布袋中.不断重复这一过程,共摸了100次球,发现有40次摸到黑球,则布袋中黑球的个数可能为________.三、解答题21. 目前某市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如图所示的统计图:(1)这次调查的家长总数为__________人,家长表示“不赞同”的人数为__________人;(2)请把条形统计图补充完整;(3)表示家长“无所谓”的扇形圆心角的度数是__________;(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是多少?22. 某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数60122240298604m落在“可乐”区域的频率0.60.610.60.590.604mn(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近 ,假如你去转动该转盘一次,你获得“可乐”的概率约是 ;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?23. 某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其他120.10请根据以上图表信息,解答下列问题:(1)频数分布表中的m=_________,n=_________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为_________.24. 某校在“爱心捐款”活动中,同学们都献出了自己的爱心,他们的捐款额有5元、10元、15元、20元四种情况,根据随机抽样统计数据绘制了图1和图2两幅尚不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样的学生人数是________,捐款10元的人数是________;(2)本次捐款金额的中位数是________元;(3)已知捐款金额为5元的6名同学中有4名男生和2名女生,若从这6名同学中随机抽取一名进行访谈,且每一名同学被抽到的可能性相同,则恰好抽到男生的概率是________;(4)该校学生总人数为1000人,请估计该校一共捐款________元.25. 2022年10月12日“天宫课堂”第三课在中国空间站开讲并直播,神舟十四号三位航天员相互配合,生动演示了微重力环境下的四个实验:A .毛细效应实验;B .水球变“懒”实验;C .太空趣味饮水;D .会调头的扳手.某校九年级数学兴趣小组成员为研究“九年级学生对这四个实验中最感兴趣的是哪一个?”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)本次被调查的学生有 人;扇形统计图中D 所对应的圆心角的度数为 ;(2)请补全条形统计图;(3)该校九年级共有650名学生,请估计该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有多少人?(4)李老师计划从小明、小刚、小兰、小婷四位学生中随机抽取两人参加学校的微重力模拟实验,请用树状图法或列表法求出恰好抽中小刚、小兰两人的概率.26. 某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛,根据比赛成绩(满分100分,参赛学生成绩均高于80分)绘制了如下尚不完整的统计图表.比赛成绩频数分布表 成绩分组(单位:分) 频数 频率 8085x ≤<600.12 8590x ≤<a 0.3 9095x ≤<240c 95100x ≤≤500.1 合计b1请根据以上信息解答下列问题:(1)频数分布表中,b = ,c = ;(2)补全频数分布直方图;(3)学校计划从成绩在95分以上的同学中随机选择15名同学,到某社区开展文明礼仪知识宣传,取得98分好成绩的小丽被选中的概率是多少?27. 2022年3月23日“天宫课堂”第二课在中国空间站开讲并直播,神舟十三号三位航天员相互配合,生动演示了微重力环境下的四个实验:A .太空“冰雪”实验B .液桥演示实验C .水油分离实验D .太空抛物实验我校九年级数学兴趣小组成员“对这四个实验中最感兴趣的是哪一个”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)在这次调查活动中,兴趣小组采取的调查方式是_______;(填写“普查”或“抽样调查”)(2)本次被调查的学生有______人;扇形统计图中D 所对应的m =______;(3)我校九年级共有650名学生,请估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有______人;(4)十三班被调查的学生中对A .太空“冰雪”实验最感兴趣的有5人,其中有3名男生和2名女生,现从这5名学生中随意抽取1人进行观后感谈话,每人被抽到的可能性相同,恰好抽到女生的概率是______.28. 国家规定,中小学生每天在校体育活动时间不低于1h ,为了解这项政策的落实情况,有关部门就“你每天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t (h )进行分组(A 组:0.5t <,B 组:0.51t ≤<,C 组:1 1.5t ≤<,D 组: 1.5t ≥),绘制成如图所示的两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生为__________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是多少(4)若当天在校学生为1200人,请估计在当天达到国家规定体育活动时间的学生有多少人?北师大版七年级下第六单元《概率初步》单元检测一、单选题【1题答案】【答案】A【解析】【分析】根据袋子中球的个数以及每样球的个数对摸出的3个球的颜色进行分析即可.【详解】解:袋中一共6个球,有4个黑球和2个白球,从中一次摸出3个球,可能3个都是黑球,也可能2个黑球1个白球,也可能2个白球1个黑球,不可能3个都是白球,因此3个球中至少有1个白球、3个球中至少有2个黑球,3个球中至少有2个白球是随机件,3个球中至少有1个黑球是必然事件,故A正确.故选:A.【点睛】本题考查了确定事件及随机事件,解题的关键是熟练掌握事件的分类,事件分为随机事件和确定事件,而确定事件又分为必然事件和不可能事件.【2题答案】【答案】D【解析】【分析】依据随机事件、扇形统计图、必然事件及普查的相关概念及性质进行判断即可【详解】解:A、任意投掷一枚质地均匀的硬币30次是随机事件,出现正面朝上的次数可能是15次,选项说法错误,不符合题意;B、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,选项说法错误,不符合题意;C、“太阳东升西落”是必然事件,选项说法错误,不符合题意;D、调查某班40名学生的身高情况宜采用普查,选项说法正确,符合题意;故选:D.【点睛】本题考查了随机事件、扇形统计图、必然事件及普查的相关概念及性质;解题的关键是正确掌握相关概念即性质.【3题答案】【答案】B【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:对方出“剪刀”.这个事件是是随机事件,故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【4题答案】【答案】A【解析】【分析】表示一个事件发生的可能性大小的数,叫做该事件的概率,不可能事件的概率是0,必然事件的概率是1,随机事件的概率大于0且小于1.【详解】①如果一个事件发生的可能性很小,也有可能发生,那么它的概率接近于0,故①错误;②如果一个事件发生的可能性很大,那么它的概率接近于1,故②错误;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间,故③正确,故正确的只有③一个,故选:A.【点睛】本题考查随机事件发生的可能性大小,是基础考点,难度较易,掌握相关知识是解题关键.【5题答案】【答案】B【解析】【分析】用剩余的奇数卡片张数除以剩下的卡片总张数即为所求的可能性.【详解】解:1至10共10个数,奇数卡片共有5张,抽出一张后,还有4张,第2次任意抽取1张是奇数卡片的可能性49.故选:B.【点睛】本题考查概率,解题关键是明确概率的意义,准确运用概率公式进行计算.【6题答案】【答案】A【解析】【分析】根据频率的概念与计算公式逐项判断即可得.【详解】A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,此项正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率可能不同,此项错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,此项错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为10.5180.482-=,此项错误;故选:A.【点睛】本题考查了频率的概念与计算公式,掌握理解频率的概念是解题关键.【7题答案】【答案】D【解析】【分析】根据概率的计算方法,比较概率的大小即可求解.【详解】解:A选项,1个红球,9个白球,摸到红球的概率为11 1910=+;B选项,2个红球,8个白球,到红球的概率为221 28105==+;C选项,5个红球,5个白球,到红球的概率为551 55102==+;D选项,6个红球,4个白球,到红球的概率为663 64105==+;∵1113 10525<<<,∴摸到红球可能性最大的是“6个红球,4个白球”,故选:D.【点睛】本题主要考查概率的计算,掌握概率的计算方法,比较概率大小的方法是解题的关键.【8题答案】【答案】C【解析】【分析】根据概率公式进行计算即可.【详解】解:掷均匀硬币时,有正面朝上和反面朝上,两种等可能的情况,因此掷一次,正面朝上的概率是12,故C正确.故选:C.【点睛】本题主要考查了应用概率公式计算概率,解题的关键是熟练掌握概率公式.【9题答案】【答案】B【解析】【分析】设白球和黑球共x个,根据概率公式得41040x=求得x即可.【详解】设白球和黑球共x个,根据题意,得41040x=,解得16x=故选B.【点睛】本题考查了概率公式的应用,熟练掌握概率公式是解题的关键.【10题答案】【答案】B【解析】【分析】根据概率公式进行计算即可.【详解】解:由题意,得:共有4种等可能的情况,其中几个字全在的结果有1种,∴14P ;故选B.【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.二、填空题【11题答案】【答案】③④##④③【解析】【分析】根据必然事件与随机事件的定义,即可一一判定【详解】解:①射击一次,中靶,属于随机事件;②100件某种产品中有2件次品,从中任取1件恰好是次品,属于随机事件;③太阳从东方升起,属于必然事件;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球,属于必然事件.故答案为:③④.【点睛】本题考查了必然事件与随机事件的定义,熟练掌握和运用必然事件与随机事件的定义是解决本题的关键.【12题答案】【答案】3【解析】【分析】根据题意分析出哪路车间隔时间最长,哪路车间隔时间最短,据此解答即可.【详解】解:∵1路车8分钟一辆,3路车5分钟一辆,16路车10分钟一辆,∴3路车间隔时间最短,16路车间隔时间最长,∴小明去公交车站最先等到3路车的可能性最大.故填3.【点睛】本题主要考查了事件可能性大小的判断,掌握可能性等于所求情况数与总情况数之比是解答本题的关键.【13题答案】【答案】2 5【分析】根据题意,确定出符合条件的可能数,和出现的总可能数,利用概率定义求解即可.【详解】根据题意可得:一个不透明的盒子中装有2个红球和3个白球,共5个,摸到红球的概率为:25.故答案为:25.【点睛】本题考查简单的概率计算,熟练掌握概率公式是解题关键.【14题答案】【答案】6【解析】【详解】设这个箱子中黄球的个数为x个,再根据概率公式求出x的值即可.【分析】解:设这个箱子中黄球的个数为x个,根据题意得:424+5x=,解得6x=,经检验,6x=是方程的解.故答案为:6.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.【15题答案】【答案】0.1【解析】【分析】根据概率的计算公式即可求解.【详解】解:一等奖10个,共准备了100张奖券,∴抽一张奖券中一等奖的概率为100.1 100=,故答案为:0.1.【点睛】本题主要考查概率的计算,理解并掌握概率的计算方法是解题的关键.【16题答案】【答案】60【分析】直接用频率乘以总数即可.【详解】由题意可知红球的个数约为20030%=60⨯,故答案为60.【点睛】本题考查了根据频率求总数,熟记频率⨯总数=个数是解题的关键.【17题答案】【答案】20【解析】【分析】由公式:频率=频数总数据,得:频数=总数据×频率,即可求出答案.【详解】解:由题意得:该组的频数为:50×0.4=20.故答案为20.【点睛】本题考查了频数与频率,难度一般,能够灵活运用频率=频数总数据这一公式是解决本题的关键.【18题答案】【答案】211【解析】【分析】由题意得空格有55322⨯-=(个),则小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的空格有6个,再由概率公式求解即可.【详解】解:甲、乙、丙3人站在55⨯网格中的三个格子中,空格有:55322⨯-=(个),则小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的空格有4个,∴小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率为422211==,故答案为:211.【点睛】本题考查了概率公式,由题意得出与图中3人均不在同一行或同一列的空格的个数是解题的关键.【19题答案】【答案】200【解析】【分析】分别设出原来口袋中黑白棋子的个数,再根据概率公式列方程组解答即可.【详解】解:设原来口袋中分别有黑白棋子的个数分别为x 、y ,则310101103y x y y x y ⎧=⎪+⎪⎨+⎪=⎪++⎩,解得14060x y =⎧⎨=⎩,∴x +y =200,故口袋中原来有200颗围棋子.故答案为:200【点睛】此题主要考查了概率公式,关键是根据概率=所求情况数与总情况数之比来列方程.【20题答案】【答案】8【解析】【分析】根据概率公式先求出摸到黑球的概率,再乘以总球的个数即可得出答案.【详解】解:∵共摸了100次球,发现有40次摸到黑球,∴摸到黑球的概率为0.4,∴口袋中白球和黑球共20个,∴袋中的黑球大约有28×0.4=8(个);故答案为:8.【点睛】本题考查了用样本估计总体的知识,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.三、解答题【21题答案】【答案】(1)600,80;(2)见解析;(3)24°;(4)3 5 .【解析】【分析】(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解;(4)根据扇形统计图即可得到恰好是“赞同”的家长的概率.【详解】(1)这次调查的家长总数为360÷60%=600(人),很赞同的人数有600×20%=120(人),“不赞同”的人数为600-120-360-40=80(人).(2)补全条形统计图如下.(3)表示家长“无所谓”的扇形圆心角的度数是360°×40600=24°.(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是360 600=35.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【22题答案】【答案】(1)0.6;472;(2)0.6;0.6;(3)144°【解析】【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1−0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【详解】解:(1)298÷500≈0.6;0.59×800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次数60122240298472604m落在“可乐”区域的频率0.60.610.60.60.590.604mn(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【23题答案】【答案】(1)24,0.30;(2)108°.【解析】【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;【详解】解:(1)∵喜欢篮球的是30人,频率是0.25,∴样本数=30÷0.25=120,∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是36人,∴m=0.20×120=24,n=36÷120=0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为(1)24,0.30;(2)108°.【点睛】本题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.【24题答案】【答案】(1)50,18(2)15 (3)2 3(4)13000【解析】【分析】(1)根据总人数×百分比=某项人数计算总人数;用总人数减去已知三部分的人数即可求出捐款10元的人数;(2)根据中位数的定义即可得出学生捐款金额的中位数;(3)根据概率公式求解即可;(4)用总人数乘以每人平均捐款钱数即可得出答案.【小问1详解】由于捐15元的有16人,所占比例为32%,本次抽样的学生人数是1632%50÷=(人);506161018---=人;故答案为:50,18;【小问2详解】把这数从小到大排列,中位数是第25、26个数的平均数,则中位数是1515152+=(元);故答案为:15;【小问3详解】∵6名同学中有4名男生和2名女生,∴P (恰好抽到男生)=4263=.故答案为:23;【小问4详解】6518101615102010001300050⨯+⨯+⨯+⨯⨯=元.故答案为:13000.【点睛】此题考查了条形统计图与扇形统计图的综合,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【25题答案】【答案】(1)50;36︒(2)B 实验最感兴趣的人数为:501020515---=(人),补全统计图见解析 (3)该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有195人 (4)16【解析】【分析】(1)用对C 实验最感兴趣的人数除以其所占的百分比可得本次被调查的学生人数;用360°乘以被调查的学生中对D 实验最感兴趣的人数所占的百分比,即可得扇形统计图中D 所对应的圆心角的度数;(2)用被调查的学生总人数分别减去对A ,C ,D 实验最感兴趣的人数,可求出B 实验最感兴趣的人数,补全条形统计图即可;(3)根据用样本估计总体,用650乘以被调查的学生中对B .水球变“懒”实验最感兴趣的人数所占的百分比,即可得出答案;(4)画树状图得出所有等可能的结果数和恰好抽中小刚、小兰两人的结果数,再利用概率公式可得出答案.【小问1详解】解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650︒⨯=︒.故答案为:50;36︒.【小问2详解】解:B 实验最感兴趣的人数为:501020515---=(人),。
第25章_概率初步单元试题AB卷(含答案)-
第25章 概率初步测试题(A )(时间:45分钟 分数:100分)一、选择题(每小题3分,共30分)1、实验中学初三年级进行了一次数学测验,参考人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是( ) A 、抽取前100名同学的数学成绩; B 、抽取后100名同学的数学成绩; C 、抽取(1)、(2)两班同学的数学成绩; D 、抽取各班学号为3号的倍数的同学的数学成绩2、从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A 、20种B 、8种C 、 5种D 、13种 3、一只小狗在如图25—A —1的方砖上走来走去,最终停在阴 影方砖上的概率是( ) A 、154 B 、31 C 、51 D 、1524、下列事件发生的概率为0的是( )A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上;B 、今年冬天黑龙江会下雪;C 、随意掷两个均匀的骰子,朝上面的点数之和为1;D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
5、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物满100元,那么他中一等奖的概率是 ( ) A 、1001 B 、10001C 、100001D 、100001116、(2004·浙江金华)有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图25—A —2),从中任意一张是数字3的概率是( )A 、61B 、31C 、21D 、327、盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A 、 41B 、 31C 、 32D 、 21图25—A —1图25—A —28、如图25—A —3,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )A 、21B 、83C 、41D 、319、如图25—A —4,一小鸟受伤后,落在阴影部分的概率为( ) A .21B .31C .41D .110、连掷两次骰子,它们的点数都是4的概率是( )A 、61 B 、41 C 、161 D 、 二、填空题(每小题3分,共30分)11、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是___12、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______. 13、王刚的身高将来会长到4米,这个事件得概率为_____。
九年级数学 第25章 概率初步单元水平测试B卷(含答案)
第25章《概率初步》水平测试(B )(满分100分,时间90分钟)山东 张玉印一、选择题(每小题3分,共24分)1.天气台预报明天下雨的概率为70%,则下列理解正确的是( ). A.明天30%的地区会下雨; B.明天30%的时间会下雨C.明天出行不带雨伞一定会被淋湿;D.明天出行不带雨伞被淋湿的可能性很大 2.下列成语所描述的事件是必然事件的是( ).A .水中捞月B .拔苗助长C .守株待兔D .瓮中捉鳖 3.如图,等腰梯形ABCD 中,AB//CD ,E 、F 、M 、N 分别是AB 、CD 、DE 、CE 中点,AB=2CD .如果向这个梯形区域内随意投掷绿豆,那么豆子恰好落入四边形EMFN 区域内(不包含边界)的概率是( ) A 、B 、C 、D 、 4.下列事件:(1)阴天会下雨;(2)随机掷一枚均匀的硬币,正面朝上;(3)12名同学中,有两人的出生月份相同;(4)2008年奥运会在北京举行。
其中不确定事件有( ). A.1个 B.2个 C.3个 D.4个5. 同时抛掷两枚质地均匀的正方体骰子(骰子每一面的点数分别是从1到6这六个数字中的一个),以下说法正确的是( ).A .掷出两个1点是不可能事件B .掷出两个骰子的点数和为6是必然事件C .掷出两个6点是随机事件D .掷出两个骰子的点数和为14是随机事件 6.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ). A.1B.C.D.7. 已知函数,令、1、、2、、3、、4、、5,可得函数图象上的十个点.在这十个点中随机取两个点、,则P 、Q 两点在同一反比例函数图象上的415152611213235-=x y 21=x 2325272911()P x y ,22()Q x y ,6题图1 6题图23题图概率是( )A .B .C .D .8.投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的概率等于出现“点数为偶数”的概率. ②只要连掷6次,一定会“出现一点”. ③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大. ④连续投掷3次,出现的点数之和不可能等于19. 其中正确的见解有 ( ).A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分) 9.“太阳每天从东方升起”,这是一个 事件(填“确定”或“不确定”). 10.四张不透明的卡片为 2 ,, , ,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为______. 11.从8、12、18、42中随机抽取一个根式与2是同类二次根式的概率是__________. 12.要把北京奥运的5个吉祥物“福娃”放在展桌上,有2个位置如图已定,其它3个“福娃”在各种不同位置放置的情况下,“迎迎”和“贝贝”的位置不相邻这一事件发生的概率为 .13.从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是_____________.14.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球. 15.如图,小李和小陈做转盘游戏,他们同时分别转动一个转盘,当两个转盘都停下来时,指针所指的数字都是奇数的概率是 . 16.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢。
八年级数学上册概率初步单元检测B卷课标试题
第25章全章概率初步单元检测〔满分是100分,时间是40分钟〕[B卷命题人:周新宇单位:增城中学]姓名学号班别一、选择题〔本大题一一共10小题,每一小题3分,满分是30分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.〕1、以下事件是随机事件的是〔〕〔A〕早晨的太阳从升起〔B〕早晨的太阳从西方升起〔C〕2021年亚运会在举行〔D〕掷一枚质地均匀的硬币一次,恰好正面朝上2、以下事件为确定事件的是〔〕〔A〕掷一枚六个面分别标有1~6的均匀骰子,骰子停顿转动后偶数点朝上;〔B〕从一副扑克牌中任意抽取一张牌,红色是红桃;〔C〕任意选择电视的某一频道,正在播放动画片;〔D〕在同一年出生的367名学生中,至少有两人的生日在同一天.3、一只小鸟自由自在地在空中飞行,然后随意落在如下图的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是 ( )〔A〕12〔B〕13〔C〕14〔D〕154、一个口袋里有黑球10个和假设干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,一共试验200次,其中有120次摸到黄球,由此估计袋中的〔第3题〕黄球有 ( ) 〔A 〕15个〔B 〕30个 〔C 〕6个 〔D 〕10个5、在2a □4a □4的空格□中,任意填上“+〞或者“-〞,在所得到的代数式中,能构成完全平方式的概率是〔 〕 〔A 〕1; 〔B 〕21; 〔C 〕31; 〔D 〕41.二.填空题(每一小题4分,一共20分)6. 布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全一样,从袋中任意摸出一个球,摸出的球是白球..的概率是 . 7. 全班有50人,其中男生24人,女生26人,从中随机抽取一人,抽到男生的概率是 。
8. 随机掷一枚均匀的硬币两次,两次都是正面朝上的概率是.9. 甲、乙两人玩抽扑克牌游戏,游戏规那么是:从牌面数字分别为5、6、7的三张扑克牌中。
数学九年级上学期《概率初步》单元检测卷附答案
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
[答案]A
[解析]
[分析]
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
[详解]A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
A B. C. D.
[答案]B
[解析]
试题分析:画树状图为:
共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率= .
故选B.
考点:列表法与树状图法
3.根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是()
A.该市明天一定会下雨B.该市明天有80%地区会降雨
A. B. C. D.
5.下列事件中.属于必然事件的是()
A.抛掷一枚1元硬币落地后.有国徽的一面向上
B.打开电视任选一频道,正在播放襄阳新闻
C.到一条绕段两端点距离相等的点在该线段的垂直平分线上
D.某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖
6.小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )
C.该市明天有80%的时间会降雨D.该市明天下雨的可能性很大
[答案]D
[解析]
根据题意,可知明天降雨的可能性比较大,可知该市明天有可能下雨,且可能性比较大,与下雨的时间、区域没有关系.
故选D.
4.在1000张奖券中,有1个一等奖,4个二等奖,15个三等奖.从中任意抽取1张,获奖的概率为()
人教版数学九年级上册《概率初步》单元检测卷(含答案)
C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀 正六面体骰子,向上的面点数是偶数
7.从﹣3,﹣1,0,2四个数中任选两个,则这两个数的乘积为负数的概率为( )
A B. C. D.
8.用2,3,4三个数字排成一个三位数,则排出 数是偶数的概率为()
∴从﹣3,﹣1,0,2四个数中任选两个,则这两个数的乘积为负数的概率为:
故选B
【点睛】本题考查列表法和树状图法,解题的关键是明确题意,把题目中的所有可能性写出来.
8.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为()
A. B. C. D.
【答案】D
【解析】
【分析】
首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234,324,342,432;然后直接利用概率公式求解即可求得答案.
A. B. C. D.
二、填空题(每小题3分,共24分)
11.从小明、小聪、小慧和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是________.
12.如图,A,B是固定箭头的两个转盘.均被分成三个面积相等的扇形,转盘A上的扇形分别写有数字1,6,8,转盘B上的扇形分别写有数字4,5,7.如果你和小亮各选择其中一个转盘,同时将它们转动,规定如果转盘停止时,箭头指的数字较大者获胜.你认为选择________转盘(填A或B).
【详解】根据题意列出所有可能的情况,如下:
共有6种情况,必须闭合开关 灯炮才发光,即能让灯泡发光的概率是 .
故选B.
人教版数学九年级上册《概率初步》单元检测(附答案)
9.在一个不透明的布袋中,红色、黑色的球共有 个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在 附近,则口袋中红球的个数很可能是( )
9.在一个不透明的布袋中,红色、黑色的球共有 个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在 附近,则口袋中红球的个数很可能是( )
A.2个B.5个C.8个D.10个
10.一个不透明的口袋里装有除颜色外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球个数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )
16.有 张看上去无差别的卡片,上面分别写着 , , , , , ,随机抽取 张后,放回并混在一起,再随机抽取 张,则两次取出的数字都是奇数的概率为________.
17.一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为.
18.小明和爸爸今年五一节准备到峨眉山去游玩,他们选择了报国寺、伏虎寺、清音阁三个景点去游玩.如果他们各自在这三个景点中任选一个景点作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择报国寺为第一站的概率是.
人教版九年级上学期数学《概率初步》单元综合检测题(带答案)
[解析]
[分析]
根据被染红的球的可能性求出抽取的红球的可能数量,再对各选项判断即可得解.
[详解]解:由题意得,抽到的红球的数量可能为20× =4个,
所以,抽到的红球可能是4个,也可能多于4个或少于4个,
说法”红球一定刚好4个”,”红球不可能少于4个”,”抽到的白球一定比红球多”都过于武断,不正确.
故选A.
[点睛]本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
8.100个白色乒乓球中有20个被染红,随机抽取20个球,下列结论正确的是( )
A. 红球一定刚好4个B. 红球不可能少于4个C. 红球可能多于4个D. 抽到的白球一定比红球多
15.小勇第一次抛一枚质地均匀 硬币时正面向上,他第二次再抛这枚硬币时,正面向
上的概率是.
16.五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是________
17.若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________.
18.10件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是______.
∴ .
故选D.
[点睛]本题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
7.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是( )
A.12B.16C.20D.30
九年级上册数学《概率初步》单元综合测试(含答案)
点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
6.以下说法合理的是()
A. 小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%
B. 抛掷一枚普通的正六面体骰子,出现6的概率是 的意思是每6次就有1次掷得6
【分析】
根据概率的意义即可求出答案.
【详解】A.“明天的降水概率为80%”,只能说明有很大机会下雨,而不能说明有80%的时间降雨,故A错误;
C.“某彩票中奖概率是1%”,只能说明中奖的机会很小,故C错误;
D.小明上次的体育测试成绩与这次测试成绩并没有任何关系,故D错误.
故答案选:B.
【点睛】本题考察的知识点是概率的意义,解题的关键是熟练的掌握概率的意义.
C. 某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖
D. 在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为
【答案】D
【解析】
【分析】
直接利用概率 意义分别分析得出答案.
【详解】解:A、小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%,不合理;
5.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()
A B. C. D.
6.以下说法合理的是()
A.小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%
B.抛掷一枚普通的正六面体骰子,出现6的概率是 的意思是每6次就有1次掷得6
7.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()
人教版九年级上册数学《概率初步》单元综合测试含答案
B. 摸出的4个球中至少有一个球是黑球
C. 摸出的4个球中至少有两个球是黑球
D. 摸出的4个球中至少有两个球
【答案】B
【解析】
试题分析:必然事件就是一定发生的事件,因此,
A、是随机事件,故A选项错误;
B、是必然事件,故B选项正确;
C、是随机事件,故C选项错误;
D、是随机事件,故D选项错误.
24. 如图所示的方格地面上,标有编号1、2、3的3
个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飞行 小鸟,将随意地落在图中所示的方格地面上,求
小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,
则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
26.从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下表中部分数据:
(1)将数据表补充完整;
(2)从上表中可以估计出现方块的概率是________(精确到0.01);
(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出 两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表法或画树状图法)加以分析说明.
(1)求事件“转动一次,得到的数恰好是0”发生的概率;
(2)写出此情景下一个不可能发生的事件.
(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章《概率初步》综合检测试题一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( ) A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( ) A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( ) A.12 B.14 C.16 D.18图1 图2二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?20.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为( ) AA .12个B .9个C .6个D .3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法( ) CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是( )B A.37 B.316 C.12 D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是( ) D A.532 B.38 C.1532 D.17325.某同学期中考试全班第一,则期末考试 .(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为 . 0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 . 52 8.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有 粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张.910.在中考体育达标跳绳项目测试中,1min 跳160次为达标.•小敏记录了他预测时1min 跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
(2)在上述情况下,这一部分同学这两道题的平均得分约是多少?(1)161,166.(2)这两题得分的平均数=6×161+3×83+0×169=1.5. 答:这两题得分的平均数是1.5分12.如图,为举办毕业联欢会,小颖设计了一个游戏:•游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母都相同时,他就可以获得一次指定..一位到会者为大家表演节目的机会.(1)利用画树形图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少? 方法二:即游戏共有6种结果.(2)参加一次游戏,获得这种指定机会的概率是16. 参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05.21,(1)1.5千克.(2)1021002⨯=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =6. 26,【参考答案】(1)设袋中有黄球m 个,由题意得21122=++m ,解得1=m ,故袋中有黄球1个;(2) ∵第一次摸球蓝黄红2红1∴61122)(==两次都摸到红球P .(3)设小明摸到红球有x 次,摸到黄球有y 次,则摸到蓝球有)6(y x --次,由题意得 20)6(35=--++y x y x ,即72=+y x ∴x y 27-=∵x 、y 、y x --6均为自然数∴当1=x 时,06,5=--=y x y ;当2=x 时,16,3=--=y x y ;当3=x 时,26,1=--=y x y .综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次或2次、3次、1次或3次、1次、2次.。