2020年高中数学必修5 数列 单元检测卷四(含答案)

合集下载

2020-2021学年北师大版高中数学必修五《数列》单元检测题及答案解析

2020-2021学年北师大版高中数学必修五《数列》单元检测题及答案解析

(新课标)最新北师大版高中数学必修五第一章 数 列(北京师大版必修5)实际用时满分实际得分150分一、选择题(每小题5分,共60分)1.等差数列{}的前n 项和为,=-18,=-52,等比数列{}中,=,=,则的值为A.64B.-64C.128D.-1282.已知{a n }是递增数列,且对任意n ∈N*都有a n =n 2+λn 恒成立,则实数λ的取值范围是( ) A.(-72,+∞) B.(0,+∞) C.(-2,+∞) D.(-3,+∞)3.设数列{}是以2为首项,1为公差的等差数列,数列{}是以1为首项,2为公比的等比数列,则=A.1033B.1034C.2057D.2058 4.等比数列{}的前n 项和为,=1,若4,2,成等差数列,则=A.7B.8C.16D.155.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第()项. A .2 B .4 C .6 D .86.在ABC ∆中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a ++L +310log a =( ) A.12 B.10C.31log 5+D.32log 5+ 8.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A.513B.512C.510D.82259.已知数列{}的通项公式为=1(1)n -- •(4n -3),则它的前100项之和为( )A.200B.-200C.400D.-40010.若数列{}的前n 项和S n =n 2-2n+3,则此数列的前3项依次为 ( ) A.-1,1,3 B.2,1,3 C.6,1,3 D.2,3,611.等差数列{}中,a 1>0,S 5=S 11,则第一个使a n <0的项是( )12.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a Λ=( ) A.)41(16n -- B.)21(16n -- C.)41(332n -- D.)21(332n --二、填空题(每小题4分,共16分)13.三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =_________. 14.在数列{}中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则=_________.15.等比数列{}n a 的前n 项和为21n-,则数列{}2n a 的前n 项和为______________.16.等差数列{}的前n 项和为,且-=8,+=26.记=,如果存在正整数M ,使得对一切正整数n ,≤M 都成立,则M 的最小值是. 三、解答题(本大题共6题,共74分)17.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.18.在数列{}中,=,并且对任意n ∈,n ≥2都有=-成立,令=(n ∈).(1)求数列{}的通项公式;(2)求数列{}的前n 项和.19.已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n 项和,=2,5=2. (1)求{}和{}的通项公式; (2)设=++…+,求.20. 互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.21.已知数列{a n }满足a 1=1,1n a =2a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n}满足114b-•214n b-=(1)n b4b-•…•1a+(n∈N*),证明:{b n}是等差数列.n22.已知函数f(x)=-2x2+22x,数列{}的前n项和为,点(n,)(n∈)均在函数y=f(x)的图象上.(1)求数列{}的通项公式及前n项和;(2)存在k∈,使得++…+<k对任意n∈恒成立,求出k的最小值.第一章数 列(北京师大版必修5)参考答案1.B 解析:因为=(+)=9=-18,=(+)=13=-52,所以=-2,=-4.又=,=,所以=2,=·=-4×16=-64.2.D 解析:由{a n }为递增数列得1n a +-a n =2n+1+λ>0恒成立,即λ>-2n -1在n ≥1时恒成立,只需λ>(-2n -1)max =-3,故选D.3.A 解析:由题意知=n+1,=,则=+1,所以++…+=10+=1033.4.D 解析:设公比为q ,则4,2q ,成等差数列,∴4q=4+,∴q=2,∴==16-1=15.5.B 解析:由题意得,得x=-1或x=-4, 当x=-1时,2x+2=0,故舍去,所以,所以-13 ,所以n=4.6.B 解析:设等差数列为{a n },公差为d,则=-4,=4,所以d=2,所以设等比数列为{b n },公比为q ,则,=9,所以q=3,所以所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.7.B 解析:313231031210log log log log ()a a a a a a +++=L L 5103563log ()log (3)10a a ===.8.C 解析:332112131(1)18,()12,,2,22q a q a q q q q q q ++=+====+得或 而q ∈Z,∴q=2,-2=510.9.B 解析:S 100=a 1+a 2+…+a 100=1-5+9-13+17-…+(4×99-3)-(4×100-3)=(1-5)+(9-13)+…+[(4×99-3)-(4×100-3)]=-4×50=-200.10.B 解析:当n=1时,a 1=S 1=12-2×1+3=2;当n=2时,由S 2=a 1+a 2=22-2×2+3=3,得a 2=1;当n=3时,由S 3=a 1+a 2+a 3=32-2×3+3=6,得a 3=3.11.C 解析:由S 5=S 11 得2a 1+15d =0.又a 1>0,所以d <0.而2=2a 1+2(n -1)d =(2n -17)d <0,所以2n -17>0,即n >8.5.12.C 解析:Θ41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a Λ)41(332n --.13.)2(:1:4- 解析:22222,2,(2),540a c b c b a ab c b a a ab b +==-==--+=,又,4,2a b a b c b ≠∴==-.14.3n 2解析:将点代入直线方程得n a -1-n a =3,由定义知{n a }是以3为首项,以3为公差的等差数列,故n a =3n ,即a n =3n 2.41n -144-1n n -16.2 解析:∵{}为等差数列,由-=8,+=26,得a 1=1,d=4,可解得=2-n ,∴=2-.若≤M 对一切正整数n 恒成立,则只需的最大值≤M 即可.又=2-<2,∴只需2≤M ,故M 的最小值是2.17.解:设这四个数为,a ,aq ,2aq -a,则216,(2)36,a a aq q a aq aq a ⎧=⎪⎨⎪++-=⎩g g ①② 由①,得a 3=216,a=6, ③将③代入②,得q=2 , ∴ 这四个数为3,6,12,18.18.解:(1)当n=1时,==3.当n ≥2时,由=得=1,所以=1.所以数列{}是首项为3,公差为1的等差数列, 所以数列{}的通项公式为=n+2. (2)因为==(),=(1-+++…++)=[-(+)]=.19.解:(1)设{}的公比为q ,由=,得q=4,所以=.设{}的公差为d ,由5=2及=2得d=3, 所以=+(n-1)d=3n-1. (2)因为=1×2+4×5+×8+…+(3n-1),①4=4×2+×5+…+(3n-1),②由②-①,得3=-2-3(4++…+)+(3n-1)=2+(3n-2)·.所以=(n-)·+.20.解:设这三个数为,a ,aq ,∴=-8,即a=-2,∴这三个数为-,-2,-2q.(1)若-2为-和-2q 的等差中项,则+2q=4, ∴-2q+1=0,∴q=1,与已知矛盾;(2)若-2q 为-与-2的等差中项,则+2=4q , ∴2-q -1=0,∴q=-或q=1(舍去), ∴这三个数为4,1,-2;(3)若-为-2q 与-2的等差中项,则2q+2=, ∴+q -2=0,∴q=-2或q=1(舍去), ∴这三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为4,1,-2.21.(1)解: ∵=2+1(n ∈),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +, {}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即-1().(2)证法1:12(...)42.n n b b b n nb +++-∴=122[(...)],n n b b b n nb ∴+++-=① 12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+=③21(1)20.n n nb n b ++-++=④④-③,得2120,n n n nb nb nb ++-+= 即2120,n n n b b b ++-+=, 故{b n }是等差数列.22.解:(1)因为点(n ,)(n ∈)均在函数y=f (x )的图象上,所以=-2+22n.当n=1时,==20; 当n ≥2时,=-=-4n+24. 所以=-4n+24(n ∈).(2)存在k ∈,使得++…+<k 对任意n ∈恒成立,只需k>,由(1)知=-2+22n , 所以=-2n+22=2(11-n ).当n<11时,>0;当n=11时,=0;当n>11时,<0. 所以当n=10或n=11时,++…+有最大值是110. 所以k>110. 又因为k ∈,所以k 的最小值为111.。

高一数学必修5数列单元测试卷

高一数学必修5数列单元测试卷

12. 设 a1= 5,an +1= 2an+3( n≥1), an=_________
13. 数列{ an}的前 n 项和为 Sn= n2+ 3n+ 1,则它的通项公式为
.
14.等差数列 { an}和{bn}的前 n 项和分别为 Sn 与Tn,对一切自然数 n,都有 Sn = 2n , Tn 3n 1
A .甲是真命题,乙是真命题
B.甲是真命题,乙是假命题
C .甲是假命题,乙是真命题
D .甲是假命题,乙是假命题
7.设 Sn 是等差数列 an 的前 n 项和,若 a5 a3
5 ,则 S9 的值为
9
S5
A .1
B .- 1
C.2
1
D.
2
8.在等差数列 a n 中,若 S4 1, S8 4 ,则 a17 a18 a19 a20 的值为
(Ⅱ)求证:数列 { an } 是等差数列;
(Ⅲ)求数列 {| an |} 的前 n 项的和 .
N ) 均在函数 y=- x+12 的图像上 .
21.已知数列{ an}中, Sn 是它的前 n 项和,并且 Sn+1= 4an+ 2(n= 1, 2,… ), a1= 1.(1)设
bn =an +1- 2an(n= 1,2,… )求证{ bn}是等比数列;
数学必修五 二、填空题:
姓名
2
3
11
12
13
14
学号
总分
4
5
6
7
8
9
10
15.__________________ 16 17.____________ _______________
三、解答题:(本大题共 4 小题,共 42 分。解答应写出文字说明,或演算步骤)

2020-2021学年北师大版高中数学必修五《数列》单元检测题及答案解析

2020-2021学年北师大版高中数学必修五《数列》单元检测题及答案解析

(新课标)最新北师大版高中数学必修五第一单元 数列 同步练习一、选择题1.在等差数列{}n a 中,公差21=d ,=100S 145,则99531a a a a ++++Λ的值为( )A .57B .58C .59D .602.已知数列{}n a 的通项公式n a n 226-=,若此数列的前n 项和n S 最大,则n的值为( )A .12B .13C .12或13D .143、已知等差数列}{n a 中,81073=-+a a a ,4412=-a a ,记n n a a a S +++=Λ21,则13S 等于( )A 、156B 、168C 、78D 、152 4.在等差数列{}n a 中,已知前15项和9015=S ,那么8a 等于( ) A .3 B .4 C .6 D .125.一个等比数列前3项之和为48,前6项之和为10,则前110项和为( ) A .-1 B .1 C .0 D .26、已知数列}{n a 的前n 项和bn an S n +=2,且10025=S ,则1412a a +=( ) A 、16 B 、4 C 、8 D 、不确定 7.在等比数列}{n a 中,若2,48,93===q a S n n ,则n 等于( )A .3B .4C .5D .68.一个等差数列共有10项,其中偶数项的和为55,则这个数列的第6项是( )A .9.5B .10C .10.5D .119、已知等比数列的各项均为正数公比1≠q ,设293a a P +=,75a a Q =,则P 与Q 的大小关系是( )A 、Q P =B 、Q P πC 、Q P φD 、无法确定10.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6…第1000项等于( )A .42B .45C .48D .5111.已知关于x 的方程02==-a x x 和)(02b a b x x ≠=+-的四个根组成一个首项为41的等差数列,则b a +等于( )A .7231B .2413C .2411D .8312、已知数列}{n a 满足2121a a a a +=⋅;3232a a a a +=⋅;4343a a a a +=⋅;…;11+++=⋅n n n n a a a a ,则数列}{2n n a a -+是( )A 、等差数列B 、等比数列C 、等差数列又是等比数列D 、非等差数列非等比数列二、填空题13.在等差数列{n a }中,若x a a a =+++1521Λ,y a a a n n n =+++--Λ1314,则=n S _______.14.在100之内的正整数中,能被3整除,又能被5整除的数有_______个. 15.把正整数中被4除余1的数从小到大排成一个数列{}n a ,若它的前n 项和为190=n S ,则n a =________.16.数列{}n a 中,12321+=++++n n a a a a Λ,则数列的通项公式为n a =________.三、解答题17、(12分)各项均为实数的等比数列}{n a 的前n 项和记为n S ,若1010=S ,7030=S ,求40S 。

人教版高中数学必修5《数列》练习题(有答案)

人教版高中数学必修5《数列》练习题(有答案)

②指出 S1, S2, , S12 中哪一个值最大,并说明理由. 解:① S12 6(a1 a12 ) 6(a3 a10 ) 6(2 a3 7 d ) 0
24 7d 0 24 8d 0
d
24
又 S13 13( a1 a13 )
13
Hale Waihona Puke 13(a3 a11)(2 a3 8d ) 0
7
2
2
2
d3
从而 24 d 3 7
三、等比数列
知识要点
1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做
等比数列,这个常数叫做等比数列的公比,记为
q,q 0 .
2. 递推关系与通项公式
递推关系: an 1 qan 通项公式: an a1 q n 1 推广: an am q n m
3. 等比中项: 若三个数 a, b,c 成等比数列, 则称 b 为 a 与 c 的等比中项, 且 b
故第二次相遇是在开始运动后 15 分钟
28(舍去)
1 10.已知数列 an 中, a1 3,前 n 和 Sn (n 1)( an 1) 1.
2
①求证:数列 an 是等差数列;
②求数列 an 的通项公式;
③设数列
1 的前 n 项和为 Tn ,是否存在实数 M ,使得 Tn
an an 1
M 对一切正整数 n 都成立 ?
② Q S12 6( a6 a7) 0 S13 13a7 0 a7 0, a6 0
S6 最大。
1. 已知等差数列 an 中, a7 a9 16, a 4 1,则 a12 等于 ( )
A . 15
B. 30
C. 31
D . 64

2020年高中数学 人教A版 必修5 单元检测卷 数列(含答案解析)

2020年高中数学 人教A版 必修5 单元检测卷 数列(含答案解析)

2020年高中数学 人教A 版 必修5 单元检测卷数列一、选择题1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( )A .667B .668C .669D .6722.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .13.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( )A .1B .2C .4D .84.数列{a n }的通项公式是a n =(n +2)⎝ ⎛⎭⎪⎫910n ,那么在此数列中( ) A .a 7=a 8最大 B .a 8=a 9最大C .有唯一项a 8最大D .有唯一项a 7最大5.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n≥1),则a 6=( )A .3×44B .3×44+1C .44D .44+16.数列{(-1)n·n}的前2 013项的和S 2 013为( )A .-2 013B .-1 017C .2 013D .1 0077.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( )A .1或2B .1或-2C .-1或2D .-1或-28.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值9.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.15810.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )A .(-∞,6)B .(-∞,4]C .(-∞,5)D .(-∞,3]11.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.3812.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A .qB .12qC .(1+q)12D .(1+q)12-1二、填空题13.设{a n }是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是________.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.15.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =______________.16.设数列{a n }的前n 项和为S n (n∈N *),有下列三个命题:①若{a n }既是等差数列又是等比数列,则a n =a n +1;②若S n =a n(a 为非零常数),则{a n }是等比数列;③若S n =1-(-1)n,则{a n }是等比数列. 其中真命题的序号是________.三、解答题17.已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?18.已知等差数列{a n}的首项a1=1,公差d=1,前n项和为S n,b n=1S n.(1)求数列{b n}的通项公式;(2)设数列{b n}前n项和为T n,求T n.19.求数列1,3a,5a2,7a3,…,(2n-1)a n-1的前n项和.20.等差数列{a n}前n项和为S n,已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项公式.21.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.22.已知等差数列{a n }的公差d≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 2成等比数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.答案解析1.答案为:D ;解析:由2 014=1+3(n -1)解得n=672.2.答案为:B ;解析:等差数列前n 项和S n 的形式为S n =an 2+n ,所以λ=-1.3.答案为:A ;解析:因为a 3·a 11=a 27=16,所以a 7=4,所以a 5=a 7q 2=422=1.4.答案为:A ;解析:a n =(n +2)⎝ ⎛⎭⎪⎫910n ,a n +1=(n +3)·⎝ ⎛⎭⎪⎫910n +1,所以a n +1a n =n +3n +2·910,令a n +1a n ≥1,即n +3n +2·910≥1,解得n≤7, 即n≤7时递增,n >7递减,所以a 1<a 2<a 3<…<a 7=a 8>a 9>….所以a 7=a 8最大.5.答案为:A ;解析:由a n +1=3S n ⇒S n +1-S n =3S n ⇒S n +1=4S n ,故数列{S n }是首项为1,公比为4的等比数列,故S n =4n -1,所以a 6=S 6-S 5=45-44=3×44.6.答案为:D ;解析:S 2 013=-1+2-3+4-5+…+2 012-2 013=(-1)+(2-3)+(4-5)+…+(2 012-2 013)=(-1)+(-1)×1 006=-1 007.7.答案为:C ;解析:依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0,所以q 2-q -2=0,(q -2)(q +1)=0.所以q=-1或q=2.8.答案为:C ;解析:由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0,即S 9<S 5.9.答案为:C ;解析:由9S 3=S 6=S 3+q 3S 3,又S 3≠0,所以q 3=8,q=2.故a n =q·q n -1=2n -1,所以1a n =12n -1,所以⎩⎨⎧⎭⎬⎫1a n 的前5项和S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116.10.答案为:B ;解析:数列{a n }的通项公式是关于n(n∈N *)的二次函数,若数列是递减数列,则-λ2·(-2)≤1,即λ≤4.11.答案为:C ;解析:由已知得a 2=1+(-1)2=2,所以a 3·a 2=a 2+(-1)3,所以a 3=12,所以12a 4=12+(-1)4,所以a 4=3,所以3a 5=3+(-1)5,所以a 5=23,所以a 3a 5=12×32=34.12.答案为:D ;解析:设第一年第1个月的生产总值为1,公比为(1+q),该厂一年的生产总值为S 1=1+(1+q)+(1+q)2+…+(1+q)11.则第2年第1个月的生产总值为(1+q)12,第2年全年生产总值S 2=(1+q)12+(1+q)13+…+(1+q)23=(1+q)12S 1,所以该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1=(1+q)12-1.13.答案为:2;解析:设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d=12且a(a -d)(a +d)=48, 解得a=4且d=±2,又{a n }递增,所以d >0,即d=2,所以a 1=2.14.答案为:63;解析:由题意知a 1+a 3=5,a 1a 3=4,又{a n }是递增数列,所以a 1=1,a 3=4,所以q 2=a 3a 1=4,q=2代入等比求和公式得S 6=63.15.答案为:2n -1(n∈N *);解析:当n=1时,S 1=2a 1-1,所以a 1=2a 1-1,所以a 1=1.当n≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1);所以a n =2a n -1,经检验n=1也符合.所以{a n }是等比数列.所以a n =2n -1,n ∈N *.16.答案为:①③;解析:易知①是真命题,由等比数列前n 项和S n =a 1(1-q n)1-q =a 11-q -a 11-q·q n知②不正确,③正确.17.解:(1)设等差数列{a n }的公差为d.因为a 4-a 3=2,所以d=2.又因为a 1+a 2=10,所以2a 1+d=10,故a 1=4. 所以a n =4+2(n -1)=2n +2 (n=1,2,…). (2)设等比数列{b n }的公比为q. 因为b 2=a 3=8,b 3=a 7=16, 所以q=2,b =4.所以b 6=4×26-1=128. 由128=2n +2得n=63,所以b 6与数列{a n }的第63项相等.18.解:因为等差数列{a n }中a 1=1,公差d=1.所以S n =na 1+n (n -1)2d=n 2+n 2.所以b n =2n 2+n.(2)b n =2n 2+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,所以T n =b 1+b 2+b 3+…+b n =2⎝ ⎛1-12+12-13+13-14+…+⎭⎪⎫1n +1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.19.解:当a=1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1,aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n, 两式相减,有:(1-a)S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a-(2n -1)a n,此时S n =2a (1-a n -1)(1-a )2+a n +1-2nan1-a . 综上,S n =⎩⎪⎨⎪⎧n 2,a =1,2a (1-a n -1)(1-a )2+a n +1-2na n 1-a ,a ≠1.20.解:设{a n }的公差为d.由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4. 又S 1=a 1-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d)2=(a 2-d)(4a 2+2d).若a 2=0,则d 2=-2d 2,所以d=0, 此时S n =0,不合题意;若a 2=3,则(6-d)2=(3-d)(12+2d), 解得d=0或d=2.因此{a n }的通项公式为a n =3或a n =2n -1(n∈N *).21.证明:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12,所以a n +1+12a n +12=3,所以⎩⎨⎧⎭⎬⎫a n +12是等比数列,首项为a 1+12=32,公比为3,所以a n +12=32·3n -1,因此{a n }的通项公式为a n =3n-12(n∈N *).(2)由(1)知:a n =3n-12,所以1a n =23n -1,因为当n≥1时,3n -1≥2·3n -1,所以13n -1≤12·3n -1,于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32,所以1a 1+1a 2+…+1a n <32.22. (1)解:因为数列{a n }是等差数列,所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d.依题意,有⎩⎪⎨⎪⎧S 5=70,a 27=a 2a 22.即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d=4.所以数列{a n }的通项公式为a n =4n +2(n∈N *).(2)证明:由(1)可得S n =2n 2+4n.所以1S n =12n 2+4n =12n (n +2)=14(1n -1n +2).所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n =14⎝ ⎛⎭⎪⎫1-13+14⎝ ⎛⎭⎪⎫12-14+14⎝ ⎛⎭⎪⎫13-15+…+14·⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2=14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0,所以T n <38. 因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0,所以数列{T n }是递增数列, 所以T n ≥T 1=16.所以16≤T n <38.。

2020-2021学年北师大版高中数学必修五《数列》单元综合测试题及答案解析

2020-2021学年北师大版高中数学必修五《数列》单元综合测试题及答案解析

(新课标)最新北师大版高中数学必修五五校联盟(强化班)高一《数列》单元测试班级: 姓名:一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( ) A .4 B .2 C .-2 D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .45 4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A .310B .13C .18D .195.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( ) A .120B .105C .90D .75 6.已知等差数列{a n }的前n 项和为S n ,若OC a OA a OB 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200=( )A .100B .101C .200D .2017.设数列{a n }的前n 项和为S n , 已知15a =,且12(1)(1)n n nS n n n S +=+++( n ∈N*), 则过点P(n,n a ) 和Q(n+2,2+n a )( n ∈N*)的直线的一个方向向量的坐标可以是 ( )A .(2,21) B .(-1, -1) C .(21-, -1) D .(2,21--) 8.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .279.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=A .8B .-8C .±8D .9810.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,na 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为( )11.数列{a n }中,若a 1=1,a n+1=2a n +3 (n ≥1),则该数列的通项a n = .12.我们把使乘积a 1·a 2·a 3·…·a n 为整数的数n 叫做“劣数”,则在区间(1,2004)内的所有劣数的和为 .13.设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程24830x x -+=的两根,则=+20072006a a __________.14.已知命题:“若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m ,n ∈N +),则mn ma nb a n m -⋅-⋅=+”.现已知数列{b n }(b n >0,n ∈N +)为等比数列,且b m =a ,b n =b (m ≠n ,m ,n ∈N +),若类比上述结论,则可得到b m+n = .15、若a +b +c ,b +c -a ,c +a -b ,a +b -c 依次成等比数列,公比为q ,则q 3+q 2+q= .三、解答题:本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤. 16.已知等差数列{a n }的首项a 1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项.⑴求数列{a n }与{b n }的通项公式.⑵设数列{c n }对任意正整数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c ,求c 1+c 2+c 3+…+c 2010的值.17.已知f(x +1)=x 2-4,等差数列{a n }中,a 1=f(x -1),a 2=-32,a 3=f(x).求:⑴x 的值;⑵数列{a n }的通项公式a n ;⑶a 2+a 5+a 8+…+a 26.18.正数数列{a n }的前n 项和为S n ,且2S n =a n +1.(1) 试求数列{a n }的通项公式;(2)设b n =1a n ·a n+1,{b n }的前n 项和为T n ,求证:T n <12.19.已知函数f(x)定义在区间(-1,1)上,f(12)=-1,且当x ,y ∈(-1,1)时,恒有f(x)-f(y)=f(x -y 1-xy ),又数列{a n }满足a 1=12,a n+1=2a n 1+a n 2,设b n =1f(a 1)+1f(a 2)+…+1f(a n ). ⑴证明:f(x)在(-1,1)上为奇函数;⑵求f(a n )的表达式;⑶是否存在正整数m ,使得对任意n ∈N ,都有b n <m -84成立,若存在,求出m 的最小值;若不存在,请说明理由.《数列》单元测试卷参考答案1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C .3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =.∴45613345a a a a d d d ++=+++=1312a d+=42.4.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 5.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a aa d a a d =⇒-+=, 将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .6.A . 依题意,a 1+a 200=1,故选A .7.D 解:由条件知n S 1n S n 1n -++=2 ∴{n S n }是等差数列,∴nS n= 5+ (n – 1)×2 = 2n + 3 ∴S n = 2n 2+ 3n ,当n ≥2时,a n = S n = S n – 1 = 4n+1 (a 1也适合)∴k PQ =2a a n 2n -+= 4,设直线PQ 的方向向量为u r = (a , b),则有ab= 4,只有D 符合.8.B 解: 由等差数列性质知S 3、S 6-S 3、S 9-S 6成等差数列,即9,27,S 成等差,所以S=45,选B 9. 4.∵38)]9(1[3112=---=-a a).38()3()(,3,09,9)9)(1(12222222⋅-=--=∴<⋅-==--=a a b b q b b 故而 B 选∴-=810.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .11.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3.12.∵,k n n a a a n n 时=+=+⋯⋯⋅=⋯⋯+)2(log )2(log 4log 3log 213221n +2=2k ,由n =2k-2∈(1,2004)有2≤k ≤10(k ∈Z).故所有劣数的和为(22+23+……+210)-2×9=21)21(49---18=2026.13. 18 2004a Q和2005a 是方程24830x x -+=的两根,故有:200420051232a a ⎧=⎪⎪⎨⎪=⎪⎩或200420053212a a ⎧=⎪⎪⎨⎪=⎪⎩(舍)。

高中数学必修5数列单元测试题含解析

高中数学必修5数列单元测试题含解析

新课标数学必修5第2章数列单元试题一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为()A.34 B.35 C.36 D.37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等*,Nn∈≤36.4,·11=11n+99,由a≤500,解得n差数列,公差为11,数a=110+(n-1)nn∴n≤36.【答案】C2-1(n≥1),则a+a+a+a+a=12.在数列{a}中,a,a=a等于()54n+112nn31A.-1 B.1 C.0 D.2考查数列通项的理解及递推关系.2-1=(a+1)(=aaa-1),【解析】由已知:nn+1nn∴a=0,a=-1,a=0,a=-1.5342【答案】A 3.{a}是等差数列,且a+a+a=45,a+a+a=39,则a+a+a的值是()9432n78156A.24 B.27 C.30 D.33考查等差数列的性质及运用.【解析】a+a+a,a+a+a,a+a+a成等差数列,故a+a+a=2×39-45=33.932394576168【答案】D2f(n)?n*)且f(1)=2,则f(20(n∈N+14.设函数f(x)满足f(n)=)为()2192 D..105 B.97 C95 A.考查递推公式的应用.1?1?f(1)?f(2)??2?1?2)(2??f(3)?fn??)f(n=f【解析】(n+1)-2?2? ?1?1919)??f(20)?f(?2?1?.1)=97(20)=95+f20)-f(1)=…(1+2++19)(f相加得f(2B【答案】*)(n≥3=0-6,a,公差d∈N)的最大值为(,则n中,已知5.等差数列{a}a=n1n8 D.B.6 C.7 A.5考查等差数列的通项.6?+1 n(n-1)d=0=-a【解析】=a+(n1)d,即-6+1n d*.=7d=1时,n取最大值n∵d∈N,当C【答案】2 }从首项到第几项的和最大()=6.设a-n,则数列+10n+11{a nn项.第10项或11项D12C项10A.第项B.第11 .第考查数列求和的最值及问题转化的能力.2 S<0a>0a=0a)-(+1-(n-=【解析】由an+10+11=n)n11,得,而,,S=.1110121011n【答案】C7.已知等差数列{a}的公差为正数,且a·a=-12,a+a=-4,则S为()20n4763A.180 B.-180 C.90 D.-90考查等差数列的运用.2+4xxa联立,即,a是方程4与a·a=-12【解析】由等差数列性质,a+a=a+a=-77674333-12=0的两根,又公差d>0,∴a>aa=2,a=-6,从而得a=-10,d=2,S=180.?2033771【答案】A 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9 B.10 C.19 D.29考查数学建模和探索问题的能力.n(n?1)<200.【解析】1+2+3+…+n<200,即220?19 根.n=20时,剩余钢管最少,此时用去=190显然2【答案】B9.由公差为d的等差数列a、a、a…重新组成的数列a+a,a+a,a+a…是()611524233A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列考查等差数列的性质.【解析】(a+a)-(a+a)=(a-a)+(a-a)=2d.(a+a)-(a+a)=(a-3456422235151a)+(a-a)=2d.依次类推.562【答案】B10.在等差数列{a}中,若S=18,S=240,a=30,则n的值为()-49nnn A.14 B.15 C.16 D.17考查等差数列的求和及运用.9(a?a)91??2(a+4d)=4.【解析】S=18=a+a=491912)n(a?a n1.=16n=240S+4d=2,又a=a+4d.∴=a∴-nn4n12∴n=15.【答案】B二、填空题(本大题共4小题,每小题4分,共16分)2a2*n),则是这个数列的第_________项.(n∈N=1.在数列11{a}中,a,a=+1nn1a?27n考查数列概念的理解及观察变形能力.111111+,∴{}是以=1【解析】由已知得=为首项,公差d=的等差数列.aaaa221n1?nn1221=1+(n-1),∴a=∴=,∴n=6.n a?172n n【答案】612.在等差数列{a}中,已知S=10,S=100,则S .=_________11010100n考查等差数列性质及和的理解.?a+a=-2.(a+a)=-90=45S-S=a+a+…+a(a+a)=45【解析】11010010011010011111110121(a+a)×110=-=S110.11011102【答案】-11013.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.考查等差数列的前n项和公式及等差数列的概念.(n?2)(?9?3),∴n=5.【解析】-21=25【答案】Sa2n n11=_________.,若=,则、14.等差数列{a},{b}的前n项和分别为ST nnnn bT3n?111n 考查等差数列求和公式及等差中项的灵活运用.(a?a)21(a?a)211211aS2?2121221121???.==【解】(b?b)21(b?b)bT3?21?13212112121112221 【答案】32三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a}、{b},则a=3n+2,b=4n-1,令a=b,则3k+2=4m-1.mnnnnk∴3k=3(m-1)+m,∴m被3整除.*),则k=4p-1=3p(p∈N.设m∵k、m∈[1,100].则1≤3p≤100且1≤p≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a}中,若a=25且S=S,求数列前多少项和最大.179n1考查等差数列的前n项和公式的应用.9?(9?1)17(17?1)d=1725+×25+d ×S【解】∵S=,a=25,∴9191722n(n?1)2+169.-13)n(-n,∴d解得=-2S=25+2)=-(n2由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d=-2,数列a为递减数列.n a=25+(n-1)(-2)≥0,即n≤13.5.n∴数列前13项和最大.2-5nn+4,问.17(本小题满分12分)数列通项公式为a=n(1)数列中有多少项是负数?(2)n为何值时,a有最小值?并求出最小值.n考查数列通项及二次函数性质.2-5n+4<0,解得1<na【解】(1)由为负数,得n<4.n*项.3项和第2项为负数,分别是第2,即数列有3或=2n,故N∈n∵.59522)-,∴对称轴为n=n+4=(n-=2.(2)∵a=n5 -5n242*2-5×2+4=-2.或n=3时,a 有最小值,最小值为2又∵n∈N,故当n=2n18.(本小题满分12分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.n(n?1)+51次相遇,依题意得2n+n=70 【解】(1)设n分钟后第22+13n-140=0,解得:n=7,n=-20(舍去)整理得:n∴第1次相遇在开始运动后7分钟.n(n?1)+5n+n=3×70 (2)设n分钟后第2次相遇,依题意有:222+13n-6×70=0,解得:n=15或n整理得:n=-28(舍去)第2次相遇在开始运动后15分钟.1.a=n≥2),(n项和为S,且满足a+2S·S=019.(本小题满分12分)已知数列{a}的前1nnnnn1-21}是等差数列;)求证:{ (1S n(2)求a表达式;n222<1.b +…n≥2),求证:b++b(3)若b=2(1-n)a(nn23n考查数列求和及分析解决问题的能力.【解】(1)∵-a=2SS,∴-S+S=2SS(n≥2)1nn1nn1nnn---11111-=2,又==2,∴{}是以S≠0,∴2为首项,公差为2的等差数列.n aSSSS11nnn1?11=2+(n-1)2=2n,∴S= (2)由(1)n Sn2n1当n≥2 时,a=S-S=-1nnn-)n?1(2n1?(n?1)?12?=a S=,∴n=1时,a=?n1112?-(n?2)?2n(n-1)?1 a=-(1n))由((32)知b=2nn n111111222++…++b=…+<++…+ bb ∴+n32222n)(n?1n332?21?2.111111)+(-)+…+(-)=1-(=1-<1.nn1?n322.。

(完整版)必修5数列》-单元测试卷(有答案)

(完整版)必修5数列》-单元测试卷(有答案)

∴ a1=1,令 n= 2,得 2a2-1=S2= 1+ a2,解得 a2=2.
当 n≥2 时,由 2an-1=Sn,2an-1=Sn-1
两式相减得 2an-2an-1=an,即 an=2an-1,
于是数列 {an}是首项为 1,公比为 2 的等比数列,即 an=2n-1.
∴数列 {an}的通项公式为
word 资料
.
b11≥0,
b 1+10d≥ 0,
∵S11≠ S12,且 S11 最大,∴

b 12 <0 ,
b1+11d<0.
-b1
2
d≥ 10 =- 5,
b1
4
d<- 11=- 11.
2
4
∴- 5≤ d< - 11.
19.解 (1)设 {an}的公差为 d,{bn}的公比为 q ,则 d>0 , q≠ 0, an=3+(n-1)d,bn =qn-1, 依题意有
a1 1-25 ∴ S5= 1-2
=31.∴a1=1,∴ an= 2n-1.
答案 A
11 解析 由 d<0 知, {an}是递减数列,∵ |a3|=|a9|,∴ a3=- a9,即 a3+a9=0.
又 2a6=a3+a9= 0,∴ a6=0. ∴ S5=S6 且最大. 答案 B 12 解析 a,b,c 成等比数列,∴ b2=ac>0. 而 Δ=b2-4ac=ac- 4ac=- 3ac<0.
word 资料
.
19.(12 分 )等差数列 {an}的各项均为正数, a1=3,前 n 项和为 Sn,{b n}为等比数列, b1=1,且 b2S2=64, b 3S3=960.
(1)求 an 与 b +Sn< 4.

(完整版)高二数学必修5数列单元质量检测题及答案

(完整版)高二数学必修5数列单元质量检测题及答案

高二数学必修5《数列》单元质量检测题(时间120分钟,满分150分)一、选择题(每小题5分,共计60分)1.数列252211L ,,,,的一个通项公式是( )A. 33n a n =-B. 31n a n =-C. 31n a n =+D. 33n a n =+2. 已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-3. 2005是数列7,13,19,25,31,,L 中的第( )项.A. 332B. 333C. 334D. 3354. 在等差数列{}n a 中,若45076543=++++a a a a a ,则=+82a a ( )A.45B.75C. 180D.3005. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A.-2B.-3C.-4D.-56. 在等差数列{a n }中,设公差为d ,若S 10=4S 5,则da 1等于( ) A. 21 B.2 C. 41D.4 7. 设数列{a n }和{b n }都是等差数列,其中a 1=25,b 1=75,且a 100+b 100=100,则数列{a n +b n }的前100项之和是( )A.1000B.10000C.1100D.110008.已知等差数列{a n }的公差d =1,且a 1+a 2+a 3+…+a 98=137,那么a 2+a 4+a 6+…+a 98的值等于( )A.97B.95C.93D.919.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.1210. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( )A. 21B. 31C.2D.311. 若数列{a n }的前n 项和为S n =a n -1(a ≠0),则这个数列的特征是( )A.等比数列B.等差数列C.等比或等差数列D.非等差数列12. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32 B. 149 C. 3120 D. 1711 二、填空题(每小题4分,共计16分)13. 数列{a n }的前n 项和为S n =n 2+3n +1,则它的通项公式为 .14. 已知{na 1}是等差数列,且a 2=2-1,a 4=2+1,则a 10= . 15. 在等比数列中,若S 10=10,S 20=30,则S 30= .16. 数列121,241,341,4161,…的前n 项和为 . 三、解答题:17.(本小题满分12分)已知等差数列{a n }中,S n =m ,S m =n (m ≠n ),求S m +n .18.(本题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.求公差d 的取值范围.19. (本题满分12分)已知等差数列{a n }中,a 1=29,S 10=S 20,问这个数列的前多少项和最大?并求此最大值.20.(本题满分12分)设a 1=5,a n +1=2a n +3(n ≥1),求{a n }的通项公式.21.(本题满分12分)求和:1+54+257+…+1523--n n22.(本题满分14分)已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…)求证{b n }是等比数列;(2)设c n =n n a 2(n =1,2…)求证{c n }是等差数列;(3)求数列{a n }的通项公式及前n 项和公式.。

2020年高中数学 人教A版 必修5 章末优化试卷 《数列》(含答案解析)

2020年高中数学 人教A版 必修5 章末优化试卷 《数列》(含答案解析)

2020年高中数学 人教A 版 必修5 章末优化试卷《数列》一、选择题1.在等差数列{a n }中,a 3=-6,a 7=a 5+4,则a 1等于( )A .-10B .-2C .2D .102.在等比数列{a n }中,a 4,a 12是方程x 2+3x +1=0的两根,则a 8等于( )A .1B .-1C .±1D .不能确定3.已知数列{a n }的前n 项和S n =n 2+n ,那么它的通项公式a n =( )A .nB .2nC .2n +1D .n +14.若数列{a n }满足a n =q n (q>0,n ∈N *),则以下命题正确的是( )①{a 2n }是等比数列;②⎩⎨⎧⎭⎬⎫1a n 是等比数列;③{lg a n }是等差数列;④{lg a 2n }是等差数列. A .①③ B .③④ C .②③④ D .①②③④5.已知数列2,x ,y,3为等差数列,数列2,m ,n,3为等比数列,则x +y +mn 的值为( )A .16B .11C .-11D .±116.已知S n =1-2+3-4+5-6+…+(-1)n +1·n,则S 6+S 10+S 15等于( )A .-5B .-1C .0D .67.已知等比数列{a n }的公比为正数,且a 3·a 7=4a 24,a 2=2,则a 1=( )A .1 B. 2 C .2 D.228.设等差数列{a n }的公差d 不为0,a 1=9d.若a k 是a 1与a 2k 的等比中项,则k 等于( )A .2B .4C .6D .89.计算机的成本不断降低,若每隔3年计算机价格降低13,现在价格为8 100元的计算机,9年后的价格可降为( )A .900元B .1 800元C .2 400元D .3 600元10.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或911.设{a n}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99的值为( )A.-78 B.-82 C.-148 D.-18212.定义:称np1+p2+…+p n为n个正数p1,p2,…,p n的“均倒数”,若数列{a n}的前n项的“均倒数”为12n-1,则数列{a n}的通项公式为( )A.2n-1 B.4n-1 C.4n-3 D.4n-5二、填空题13.已知S n是等比数列{a n}的前n项和,a5=-2,a8=16,则S6等于________.14.设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=________.15.在等差数列{a n}中,S n为它的前n项和,若a1>0,S16>0,S17<0,则当n=________时,S n最大.16.已知函数f(x)=x a的图象过点(4,2),令a n=1f n+1+f n,n∈N*.记数列{a n}的前n项和为S n,则S2 016=________.三、解答题17.在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.18.已知等差数列{a n},a6=5,a3+a8=5.(1)求{a n}的通项公式a n;(2)若数列{b n}满足b n=a2n-1,求{b n}的通项公式b n.19.已知等差数列{a n}满足a1+a2=10,a4-a3=2.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7.问:b6与数列{a n}的第几项相等?20.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n.21.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且-a1,S n,a n+1成等差数列.(1)求{a n}的通项公式;(2)设b n=1-S n,问:是否存在a1,使数列{b n}为等比数列?若存在,求出a1的值;若不存在,请说明理由.22.求和:x+3x2+5x3+…+(2n-1)x n(x≠0).答案解析1.答案为:A ;解析:设公差为d ,∴a 7-a 5=2d=4,∴d=2,又a 3=a 1+2d ,∴-6=a 1+4,∴a 1=-10.2.答案为:B ;解析:由题意得,a 4+a 12=-3<0,a 4·a 12=1>0,∴a 4<0,a 12<0,∴a 8<0,又∵a 28=a 4·a 12=1,∴a 8=-1.3.答案为:B ;解析:当n≥2时,a n =S n -S n-1=n 2+n-[(n-1)2+(n-1)]=2n ,当n=1时,a 1=S 1=2,也满足上式,故数列{a n }的通项公式为a n =2n.4.答案为:D ;解析:因为a n =q n (q>0,n ∈N *),所以{a n }是等比数列,因此{a 2n },⎩⎨⎧⎭⎬⎫1a n 是等比数列,{lg a n },{lg a 2n }是等差数列.5.答案为:B ;解析:根据等差中项和等比中项知x +y=5,mn=6,所以x +y +mn=11,故选B.6.答案为:C ;解析:由题意可得S 6=-3,S 10=-5,S 15=-7+15=8,所以S 6+S 10+S 15=0.7.答案为:A ;解析:设{a n }的公比为q ,则有a 1q 2·a 1q 6=4a 21q 6,解得q=2(舍去q=-2),所以由a 2=a 1q=2,得a 1=1.故选A.8.答案为:B ;解析:∵a 2k =a 1a 2k ,∴(8+k)2d 2=9d(8+2k)d ,∴k=4(舍去k=-2).9.答案为:C ;解析:把每次降价后的价格看做一个等比数列,首项为a 1,公比为1-13=23,则a 4=8 100×⎝ ⎛⎭⎪⎫232=2 400.10.答案为:C ;解析:由题意得,120°n+12n(n-1)×5°=180°(n -2),化简整理,得n 2-25n +144=0, 解得n=9或n=16.当n=16时,最大角为120°+(16-1)×5°=195°>180°, 不合题意.∴n≠16.故选C.解析:∵a 1+a 4+a 7+…+a 97=50,d=-2,∴a 3+a 6+a 9+…+a 99=(a 1+2d)+(a 4+2d)+(a 7+2d)+…+(a 97+2d) =(a 1+a 4+a 7+…+a 97)+33×2d=50+33×(-4)=-82.12.答案为:C ;解析:设数列{a n }的前n 项和为S n ,由已知得n a 1+a 2+…+a n =n S n =12n -1, ∴S n =n(2n-1)=2n 2-n.当n≥2时,a n =S n -S n-1=2n 2-n-[2(n-1)2-(n-1)]=4n-3,当n=1时,a 1=S 1=2×12-1=1适合上式,∴a n =4n-3.13.答案为:218; 解析:∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q=-2. 又a 5=a 1q 4,∴a 1=-216=-18,∴S 6=a 11-q 61-q =-18[1--26]1+2=218.14.答案为:15;解析:设等差数列公差为d ,则S 3=3a 1+3×22×d=3a 1+3d=3,a 1+d=1,① 又S 6=6a 1+6×52×d=6a 1+15d=24,即2a 1+5d=8.② 联立①②两式得a 1=-1,d=2,故a 9=a 1+8d=-1+8×2=15.15.答案为:8;解析:∵⎩⎪⎨⎪⎧ S 16=16a 1+a 162=8a 8+a 9>0S 17=17a 1+a 172=17a 9<0,∴a 8>0,而a 1>0,∴数列{a n }是一个前8项均为正,从第9项起为负值的等差数列,从而n=8时,S n 最大.16.答案为: 2 017-1;解析:由f(4)=2可得4α=2,解得α=12,则f(x)=x 12. ∴a n =1f n +1+f n =1n +1+n=n +1-n , S 2 016=a 1+a 2+a 3+…+a 2 016=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)= 2 017-1.17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧ a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧ a 1=1,q =3. 因此a n =3n-1.(2)因为b n =log 3a n =n-1,且为等差数列,所以数列{b n }的前n 项和S n =n b 1+b n 2=n 2-n 2.18.解:(1)设{a n }的首项是a 1,公差为d ,依题意得⎩⎪⎨⎪⎧ a 1+5d =5,2a 1+9d =5,∴⎩⎪⎨⎪⎧ a 1=-20,d =5. ∴a n =5n-25(n ∈N *).(2)∵a n =5n-25,∴b n =a 2n-1=5(2n-1)-25=10n-30,∴b n =10n-30(n ∈N *).19.解:(1)设等差数列{a n }的公差为d. 因为a 4-a 3=2,所以d=2.又因为a 1+a 2=10,所以2a 1+d=10,故a 1=4.所以a n =4+2(n-1)=2n +2(n ∈N *).(2)设等比数列{b n }的公比为q. 因为b 2=a 3=8,b 3=a 7=16,所以q=2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n=63.所以b 6与数列{a n }的第63项相等.20.解:(1)设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+2d =72a 1+10d =26,解得⎩⎪⎨⎪⎧ a 1=3d =2. ∴a n =a 1+(n-1)d=3+2(n-1)=2n +1.S n =na 1+12n(n-1)d=3n +12n(n-1)×2=n 2+2n. (2)由(1)知a n =2n +1,∴b n =1a 2n -1=12n +12-1=14·1n n +1=14⎝ ⎛⎭⎪⎫1n -1n +1, ∴T n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n 4n +1.(1)依题意,得2S n =a n +1-a 1,当n≥2时,有⎩⎪⎨⎪⎧ 2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0, 所以数列{a n }是首项为a 1,公比为3的等比数列.因此,a n =a 1·3n-1(n ∈N *).(2)因为S n =a 11-3n 1-3=12a 1·3n -12a 1,b n =1-S n =1+12a 1-12a 1·3n . 要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2, 所以存在a 1=-2,使数列{b n }为等比数列.22.解:设S n =x +3x 2+5x 3+…+(2n-1)x n ,∴xS n =x 2+3x 3+5x 4+…+(2n-3)x n +(2n-1)x n +1.∴(1-x)S n =x +2x 2+2x 3+…+2x n -(2n-1)x n +1=2(x +x 2+x 3+…+x n )-x-(2n-1)x n +1 =2x 1-x n 1-x-x-(2n-1)x n +1(x≠1), 当x≠1时,1-x≠0,S n =2x 1-x n 1-x 2-x +2n -1x n +11-x. 当x=1时,S n =1+3+5+…+(2n-1)=n 1+2n -12=n 2. 所以S n =⎩⎪⎨⎪⎧ 2x 1-x n 1-x 2-x +2n -1x n +11-x ,x≠1,n 2,x =1.。

(好题)高中数学必修五第一章《数列》测试题(含答案解析)(4)

(好题)高中数学必修五第一章《数列》测试题(含答案解析)(4)

一、选择题1.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40422.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .353.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >4.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .545.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( ) A .2018B .2019C .2020D .20216.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13297.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .23668.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( ) A .23n -B .23n -C .12n -D .12n -9.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--10.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( )A B .2C .14 D .1211.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 15.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________.16.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441x y x =-的图像上,11a =,数列{}n a 通项为__________.17.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.18.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.19.设n S 是等比数列{}n a 的前n 项和,422n n n S S S +++=(*n ∈N ),且12S =,则20202021a a +=______.20.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________.三、解答题21.设数列{}n a 的前n 项和为n S ,点(,)()nS n n N n*∈均在函数32y x =-的图像上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13n n n b a a +=,求数列{}n b 的前n 项和n T . 22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 的前n 项和为n S ,首项11a =,121n n S S +=+. (1)求数列{}n a 的通项公式;(2)设n n b na =,记数列{}n b 的前n 项和为n T ,是否存在正整数n ,使得2021n T =?若存在,求出n 的值;若不存在,说明理由. 24.设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)记数列n a n ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:3n T <. 25.已知数列{}n a 为等差数列,其前n 项和为n S ,且244,22a S ==. (1)求{}n a 的通项公式﹔ (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式; (2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.2.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.3.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.4.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】 因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2.142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:B .本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 7.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 8.C解析:C 【分析】由()*2n n S a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-, ∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.9.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误.因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.10.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c. ∵c 是a ,m 的等比中项, ∴2c am =, ∴22ac c =, ∴12c e a ==.选D . 11.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>,76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-= 又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列,所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.15.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.16.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中n a 换为1n n s s --,整理得到1{}nS 是等差数列,公差2d =,然后由等差数列的通项公式得答案. 【详解】由题意可得:()24,241nn n S a n S =≥- ∴()214,241nn n n S S S n S --=≥-, ∴1140n n n n s s s s ---+=.两边除以1n n s s -,并移向得出1114,(2)n n n S S --=, 1{}nS ∴是等差数列,公差4d =, 11111S a ==. ∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.17.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n a n --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;18.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.19.4或0【分析】设等比数列的公比为q 化简已知得再分类讨论即得解【详解】由已知结合等比数列的性质及通项公式即可直接求解由可得即∴若则此时若则此时故或故答案为:4或0【点睛】本题主要考查等比数列的通项的求解析:4或0 【分析】设等比数列{}n a 的公比为q ,化简已知得()22121n n n n q a a a a +++++=+,再分类讨论即得解. 【详解】由已知结合等比数列的性质及通项公式即可直接求解. 由422n n n S S S +++=可得422n n n n S S S S +++-=-, 即4312n n n n a a a a +++++=+, ∴()22121n n n n qa a a a +++++=+,若210n n a a +++=则1q =-,此时()121n n a -=⋅-,若210n n a a +++≠,则1q =,此时2n a =, 故202020210a a +=或202020214a a +=. 故答案为:4或0 【点睛】本题主要考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平.20.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+=故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.三、解答题21.(Ⅰ)*65()n a n n N =-∈;(Ⅱ)11(1)261n T n =-+. 【分析】(Ⅰ)根据点(,)()nS n n N n*∈均在函数32y x =-的图像上,得到232n S n n =-,再利用数列通项与前n 项和的关系求解.(Ⅱ)由(I )得111()26561n b n n =--+,再利用裂项相消法求解. 【详解】 (Ⅰ)因为点(,)()nS n n N n*∈均在函数32y x =-的图像上, 所以3 2.nS n n=-即232n S n n =-. 当n ≥2时,221(32)3(1)2(1)65n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦; 当1n =时,113121a S ==⨯-=所以*65()n a n n N =-∈.(Ⅱ)由(I )得[]131111()(65)6(1)526561n n n b a a n n n n +===--+--+, 所以1111111(1)()()277136561nn n l T b n n =⎡⎤==-+-+⋯+-⎢⎥-+⎣⎦∑, 11(1)261n =-+. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,整理得1(2)(3)2306n nk k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n nn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)12n n a ;(2)不存在,理由见解析.【分析】(1)根据11n n n a S S ++=-以及等比数列的通项公式可求得结果;(2)利用错位相减法求出n T ,分别对1,2n n ==和3n ≥讨论等式是否成立可得答案. 【详解】(1)由121n n S S +=+①,知2n ≥时,121n n S S -=+②, ①-②得()122n n a a n +=≥,在①式中令12121212n a a a a =⇒+=+⇒=,212a a =, ∴对任意*n ∈N ,均有12n na a +=,∴{}n a 为等比数列,11122n n n a --=⨯=, (2)由(1)得12n n b n -=⋅,所以()01221122232122n n n T n n --=⋅+⋅+⋅++-⋅+⋅,所以()()12212122222122n n n n T n n n --=⋅+⋅++-⋅+-⋅+⋅,所以()12111212222221212nn nnn n nT n n n -⋅--=++++-⋅=-⋅=--⋅-,所以(1)21nn T n =-⋅+,令()()1212021122020nnn n -⋅+=⇒-⋅=,当1n =和2n =时,等式显然不成立;当3n ≥时,方程化为()212505n n --⋅=,左边为偶数,右边等于505为奇数,等式也不成立,故不存在正整数n ,使得2021n T =成立. 【点睛】关键点点睛:利用11n n n a S S ++=-求出通项公式,根据错位相减法求出n T 是解题关键. 24.(1)()2121n a n n =≥-;(2)证明见解析. 【分析】(1)当1n =时,可求1a ,当2n ≥时,可得1213(23)2(1)n a a n a n -+++-=-与已知条件两式相减可得()212n n a -=,检验1a 满足221n a n =-,即可得{}n a 的通项公式; (2)由(1)知()2121n a n n =≥-,所以22111(21)(22)(1)1n a n n n n n n n n n=<==-----,计算其前n 项和即可证明. 【详解】(1)当1n =时,12a =当2n ≥时,1213(23)(21)2n n a a n a n a n -+++-+-=①1213(23)2(1)n a a n a n -+++-=-②①-②得:()212n n a -=. ∴()2221n a n n =≥-. 当1n =时,12a =,上式也成立.∴()2121n a n n =≥- (2)由(1)知()221n a n n n=-. 当1n =时,2na n=, 当2n ≥时,22111(21)(22)(1)1n a n n n n n n n n n=<==----- ∴11111212231n T n n ⎛⎫⎛⎫⎛⎫≤+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭133n =-< 【点睛】 方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.25.(1)32n a n =-;(2)31n nT n =+. 【分析】(1)设等差数列{}n a 的公差为d ,解方程组114434222a d a d +=⎧⎪⎨⨯+=⎪⎩可求d 的值,进而可得{}n a 的通项公式﹔(2)11n n n b a a +=()()1111323133231n n n n ⎫⎛==- ⎪-+-+⎝⎭,利用裂项求和即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由题意知114434222a d a d +=⎧⎪⎨⨯+=⎪⎩,解得113a d =⎧⎨=⎩, 所以()13132n a n n =+-=-. (2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭12n n T b b b111111134473231n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭31n n =+ 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数). (2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.。

(常考题)北师大版高中数学必修五第一章《数列》检测卷(包含答案解析)(4)

(常考题)北师大版高中数学必修五第一章《数列》检测卷(包含答案解析)(4)

一、选择题1.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7662.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭4.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列5.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年6.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .47.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( ) A .23n -B .23n -C .12n -D .12n -8.已知等比数列{}n a 的前n 项和为n S ,若123451111110a a a a a ++++=,则31a =,5S =( )A .10B .15C .20D .259.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n - 10.设{}n a 为等差数列,122a =,n S 为其前n 项和,若1013S S =,则公差d =( ) A .-2B .-1C .1D .211.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .2112.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .5二、填空题13.已知数列{}n a 的各项均不为零,其前n 项和为n S ,且11a =,()12n n n S a a n *+=∈N .若11n n n b a a +=,则数列{}n b 的前n 项和n T =______. 14.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______.15.定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题: ①“等和数列”一定是常数数列;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列; ③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列; ④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =; 其中,正确的命题为__________.(请填出所有正确命题的序号)16.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0.给出下列结论:①0<q<1;②a 1a 99-1<0;③T 49的值是T n 中最大的;④使T n >1成立的最大自然数n 等于98.其中所有正确结论的序号是____________.17.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441x y x =-的图像上,11a =,数列{}n a 通项为__________.18.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.19.已知数列{}n a 的首项为2,且满足1231+=+n n n a a a ,则1n a =__________. 20.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c 可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.三、解答题21.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 22.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 23.已知正项数列{}n a 的前n 项和为n S .若214,n n n a S S a +==+ (1)求证:数列是等差数列;(2)设n b =,求数列{}n b 的前n 项和n T . 24.已知{}n a 是等差数列,{}n b 是各项都为正数的等比数列,121a b ==,再从①2410a a +=;②244b b =;③45b a =这三个条件中选择___________,___________两个作为已知.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和.25.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .26.若数列{}n a 对任意连续三项12,,i i i a a a ++,均有()()2210()i i i i a a a a i N *+++-->∈,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列: ① 等差数列:1,2,3,4,5,;② 等比数列:11111,,,,24816--;(2)跳跃数列{}n a 满足对任意正整数n 均有21195nn a a +-=,求首项1a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.4.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.5.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg 6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元. 故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.6.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.7.C解析:C 【分析】由()*2n n S a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-,∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.8.A解析:A 【分析】对已知等式左侧的式子一、五两项,二、四两项分别通分,结合等比数列的性质再和第三项通分化简可得521234531111110S a a a a a a ++++==,结合3a 的值进而可得结果. 【详解】15123455242212345152433311111110a a a a a a a S a a a a a a a a a a a a a a ++++++++++=++===, 则510S =, 故选:A. 【点睛】本题主要考查了等比数列的性质,利用性质化简是解题的关键,属于中档题.9.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.10.A解析:A 【分析】由题意结合等差数列的性质和前n 项和的定义求解公差即可. 【详解】由题意可得:12111213131030a a a a S S =++=-=, 则120a =,等差数列的公差121022212111a a d --===--. 本题选择A 选项.【点睛】本题主要考查数列的前n 项和与通项公式的关系,等差数列公差的计算等知识,意在考查学生的转化能力和计算求解能力.11.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.12.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.二、填空题13.【分析】由得数列的递推关系数列奇数项成等差数列偶数项成等差数列分别求出通项公式后合并可得然后用裂项相消法求和【详解】∵∴两式相减得又∴由且得因此综上∴故答案为:【点睛】本题考查求等差数列的通项公式裂 解析:1n n + 【分析】由11n n n a S S ++=-得数列{}n a 的递推关系,数列奇数项成等差数列,偶数项成等差数列,分别求出通项公式后,合并可得n a ,然后用裂项相消法求和n T . 【详解】∵12n n n S a a +=,∴1122n n n S a a +++=,两式相减得11121222n n n n n n n a S S a a a a +++++=-=-,又10n a +≠,∴22n n a a +-=, 由1122S a a =且11a =得22a =,因此2112(1)12(1)21n a a n n n -=+-=+-=-,222(1)22(1)2n a a n n n =+-=+-=, 综上,n a n =,*n N ∈,111(1)1n b n n nn ,∴11111111223111n n T n n n n =-+-++-=-=+++. 故答案为:1n n +. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.14.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.15.②【分析】利用等和数列的定义对每一个命题逐一分析判断得解【详解】①等和数列不一定是常数数列如数列是等和数列但是不是常数数列所以该命题错误;②如果一个数列既是等差数列又是等和数列则这个数列一定是常数列解析:② 【分析】利用“等和数列”的定义对每一个命题逐一分析判断得解. 【详解】①“等和数列”不一定是常数数列,如数列1,0,1,0,1,0,1,0,1,0,是“等和数列”,但是不是常数数列,所以该命题错误;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列.如果数列{}n a 是等差数列,所以112(2)n n n a a a n +-+=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以122(2)n n a a n -=≥,所以1(2)n n a a n -=≥,所以这个数列一定是常数列,所以该命题是正确的.③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列. 如果数列{}n a 是等比数列,所以211(2)n n n a a a n +-⋅=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以221(2)n n a a n -=≥,所以1(2)n n a a n -=±≥,所以这个数列不一定是常数列,所以该命题是错误的.④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =,是错误的.举例“等和数列”1,99,1,99,1,其5201505S =≠⨯,所以该命题是错误的. 故答案为:② 【点睛】本题主要考查数列的新定义的理解和应用,考查等差数列和等比数列的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.①②③④【解析】由条件a1>1a49a50-1>0(a49-1)(a50-1)<0可知a49>1a50<1所以0<q<1①对;∵a1a99=<1②对;因为a49>1a50<1所以T49的值是Tn 中最解析:①②③④ 【解析】由条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0可知a 49>1,a 50<1,所以0<q <1,①对;∵a 1a 99=250a <1,②对;因为a 49>1,a 50<1,所以T 49的值是T n 中最大的,③对;∵T n =a 1a 2a 3…a n ,又∵a 1a 98=a 49a 50>1,a 1a 99=250a <1,所以使T n >1成立的最大自然数n 等于98.故填①②③④.17.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中n a 换为1n n s s --,整理得到1{}nS 是等差数列,公差2d =,然后由等差数列的通项公式得答案. 【详解】由题意可得:()24,241nn n S a n S =≥- ∴()214,241nn n n S S S n S --=≥-, ∴1140n n n n s s s s ---+=.两边除以1n n s s -,并移向得出1114,(2)n n n S S --=, 1{}nS ∴是等差数列,公差4d =, 11111S a ==.∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.18.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列,)1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.19.【分析】由已知整理得可得答案【详解】由题知则所以因为所以数列是以为首项为公比的等比数列所以则故答案为:【点睛】本题考查了由递推数列求通项公式的问题关键点是构造数列为等比数列定义形式考查了学生的推理能 解析:532-n【分析】由已知整理得1111332+⎫⎛-=-⎪ ⎝⎭n n a a 可得答案. 【详解】 由题知,113131222++==+n n n n a a a a ,则1111332+⎫⎛-=-⎪ ⎝⎭n n a a , 所以1131123+-=-n na a ,因为11532-=-a , 所以数列13⎧⎫-⎨⎬⎩⎭n a 是以52-为首项,12为公比的等比数列,所以1151135222-⎫⎫⎛⎛-=-⨯=-⨯ ⎪ ⎪⎝⎝⎭⎭n n n a ,则1532=-n n a .故答案为:532-n . 【点睛】本题考查了由递推数列求通项公式的问题,关键点是构造数列为等比数列定义形式,考查了学生的推理能力、计算能力.20.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c =⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+, 当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠,故①错误;②:数列{}n a 的前n 项和21nn S =-, 当1n =时,111211a S ==-=,当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.三、解答题21.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】(1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案. (2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+ 所以123123357212222n n nn S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭ ()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭-从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题.22.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-.【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d , 若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =,所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算. 23.(1)证明见解析;(2)21n nT n =+. 【分析】(1)利用+1+1n n n a S S =-,消去n S,因式分解后得到数列为等差数列,求通项公式; (2)先根据n b =求出2(1)n b n n =+,再拆项为2112()(1)1nb n n n n ==-++,然后求和. 【详解】解:(1)由题意得,1n n n S S a +-=1n n a a +-=∴1=2=1=,∴数列是首项为1,公差为1的等差数列.(2)由(1n =,∴2n a n =,依题意,()211211n b n n n n ⎛⎫===- ⎪++⎝⎭, ∴11111212231n T n n ⎛⎫=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-=⎪++⎝⎭. 【点睛】(1)证明等差(比)数列的方法:定义法和等差(比)中项法; (2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 24.答案见解析 【分析】(1)根据题设条件可得关于基本量的方程组,求解后可得{}n a 的通项公式. (2)利用公式法可求数列{}n b 的前n 项和. 【详解】解:选择条件①和条件②(1)设等差数列{}n a 的公差为d ,∴12411,2410.a a a a d =⎧⎨+=+=⎩解得:11a =,2d =.∴()11221n a n n =+-⨯=-,*N n ∈. (2)设等比数列{}n b 的公比为q ,0q >, ∴21242411, 4.b b q b b b q ==⎧⎨==⎩解得112b =,2q .设数列{}n b 的前n 项和为n S ,∴()1112122122nn n S --==--. 选择条件①和条件③:(1)设等差数列{}n a 的公差为d ,∴12411,2410.a a a a d =⎧⎨+=+=⎩解得:11a =,2d =.∴()11221n a n n =+-⨯=-. (2)459b a ==,设等比数列{}n b 的公比为q ,0q >. ∴213411,9.b b q b b q ==⎧⎨==⎩,解得113b =,3q =. 设数列{}n b 的前n 项和为n S ,∴()1113313136nn n S ---==-. 选择条件②和条件③:(1)设等比数列{}n b 的公比为q ,0q >, ∴21242411, 4.b b q b b b q ==⎧⎨==⎩,解得112b =,2q ,5431242a b =⨯==. 设等差数列{}n a 的公差为d ,∴5144a a d =+=,又11a =,故34d =. ∴()33111444n a n n =+-⨯=+. (2)设数列{}n b 的前n 项和为n S ,由(1)可知()1112122122n n n S --==--. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 25.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n nn T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩,同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】 方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.26.(1)①不是跳跃数列;②是跳跃数列;(2)()()2,23,21-. 【分析】(1)①根据定义可直接判断其不是跳跃数列;②根据定义可直接判断其是跳跃数列; (2)根据条件分1n n a a +>和1n n a a +<两种情况求出n a 的取值范围,再求出首项1a 的取值范围.【详解】(1)①等差数列:1,2,3,4,5,,不满足()()2210()i i i i a a a a i N *+++-->∈,所以不是跳跃数列;②等比数列:11111,,,,24816--,满足()()2210()i i i i a a a a i N *+++-->∈,所以是跳跃数列;(2)由()2111955n n n n a a a a +-=--,得()()22211519195125n n n n n n a a a a a a ++-=----, ()()()22123195125n n n n n n a a a a a a +-=----.若1n n a a +>,则12n n n a a a ++>>,此时2n a ⎫∈⎪⎪⎝⎭;若1n n a a +<,则12n n n a a a ++<<,此时n a ⎛∈ ⎝⎭.若2n a ⎫∈⎪⎪⎝⎭,则21195n n a a +⎛-=∈ ⎝⎭,所以()12,2a ∈-;若53,2n a ⎛+∈ ⎝⎭,则()21192,25n n a a +-=∈-,所以(1a ∈, 所以()()12,23,21a ∈-. 【点睛】 求解等差等比的综合问题,需要分析清楚条件,根据条件描述的等差数列的性质还是等比数列的性质列式,然后再根据数列{}n a 是等差或者等比数列,将式子表示为基本量1,a d 或者1,a q 进行化简计算.。

(常考题)北师大版高中数学必修五第一章《数列》测试(有答案解析)(4)

(常考题)北师大版高中数学必修五第一章《数列》测试(有答案解析)(4)

一、选择题1.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .5B .6C .7D .82.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 3.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( ) A .2018B .2019C .2020D .20214.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈有2233n n S a =-,且112k S <<,则k 的值为( ) A .2或4B .2C .3或4D .65.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a6.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .98.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n9.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019 B .2020 C .2021 D .202210.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .811.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+⎪⎝⎭,则2018S =______. 14.已知等比数列{}n a 中,21a =,58a =-,则{}n a 的前6项和为__________. 15.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 16.已知等差数列{}n a 的前n 项和为()*n S n N∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,当0n S >时,n 的最大值为______.17.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.18.若数列}{n a2*3()n n n N =+∈,则n a =_______.19.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足222n n n S a a =+-.(1)求数列{}n a 的通项公式; (2)若232n nn a a b --=,求数列{}n b 的前n 项和n T . 22.数列{}n a 的前n 项之和为n S ,11a =,11n n a pa +=+(p 为常数) (1)当1p =时,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和;(2)当2p =时,求证数列{}1n a +是等比数列,并求n S .23.设数列{}n a 的前n 项和为n S ,已知14a =,124n n S a n +=+-,*n N ∈. (1)求数列{}n a 的通项公式; (2)设()()122121n n n n a b +-=++,数列{}n b 的前n 项和为n T ,求满足1340nT >的正整数n 的最小值.24.已知正项等比数列{}n a 的前n 项和为653,2,40n S a S S ==+. (1)求数列{}n a 的通项公式;(2)令2log 4n n b a =+,记数列{}n b 的前n 项和为n T ,求n T 的最大值. 25.已知数列{}n a 的首项为4. (1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.26.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A.【点睛】熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键2.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.3.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2.142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.4.A解析:A 【分析】利用递推关系式求出{}n a 的通项公式,再求出{}n a 的前n 项和为n S ,即可求出k 的值. 【详解】对任意的*n N ∈有2233n n S a =-, 可得:1112233a S a ==- ,解得:1=2a -, 当2n ≥时:2233n n S a =-,112233n n S a --=- 两式相减得112233n n n n n S S a a a ---=-=,即12n n a a -=-, 所以{}n a 是首项为2-,公比为2-的等比数列,所以()2nn a =-,()()()212212123nn nS ⎡⎤-⨯--⎣⎦⎡⎤==---⎣⎦--, 所以211(2)123kk S ⎡⎤<=---<⎣⎦, 所以5(219)2k <-<, 当2k =和4k =时不等式成立,所以k 的值为2或4, 故选:A. 【点睛】本题主要考查了由递推公式求通项公式,考查了等比数列前n 项和公式,属于中档题.5.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.8.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124ni n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.9.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.10.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值11.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N*∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.14.【解析】因为已知等比数列中所以则故答案为【方法点睛】本题主要考查等比数列的通项公式属于中档题等比数列基本量的运算是等比数列的一类基本题型数列中的五个基本量一般可以知二求三通过列方程组所求问题可以迎刃 解析:212【解析】因为已知等比数列{}n a 中,所以21a =,58a =-,3528,2a q q a ==-=-,则()()()66121611211212,21122a q a a S q q⎡⎤----⎣⎦==-===---,故答案为212. 【方法点睛】本题主要考查等比数列的通项公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.15.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n n a a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.16.【分析】根据是与的等比中项求出和再根据等差数列的求和公式求出解不等式即可得解【详解】因为是与的等比中项所以所以化简得因为所以因为所以即将代入得解得所以所以由得即解得所以正整数的最大值为故答案为:20解析:【分析】根据690S =,7a 是3a 与9a 的等比中项求出1a 和d ,再根据等差数列的求和公式求出n S ,解不等式0n S >即可得解.【详解】因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅,所以()()()2111628a d a d a d +=++,化简得21100a d d +=,因为0d ≠,所以110a d =-, 因为690S =,所以1656902a d ⨯+=,即15152a d +=, 将110a d =-代入得510152d d -+=,解得2d =-,所以120a =, 所以2(1)20(2)212n n n S n n n -=+⨯-=-+, 由0n S >得2210n n -+>,即2210n n -<,解得021n <<, 所以正整数n 的最大值为20. 故答案为:20 【点睛】关键点点睛:熟练掌握等差数列的通项公式和求和公式以及等比中项的应用是解题关键.17.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-18.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N=-+-∈,与题中的递推关系式相减即可得出()241na n=+,且当1n=时也成立.【详解】数列}{na2*3()n n n N=+∈4=,即116a=2n≥()()2*131()n n n N=-+-∈22n=+,所以()241na n=+(2n≥)当1n=时,116a=适合上式,所以()241na n=+【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.19.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14【分析】本题先求1a、d,再求10a即可解题.【详解】解:因为数列{}n a是等差数列,22a=-,714S=所以217127(71)7142a a dS a d=+=-⎧⎪⎨⨯-=+=⎪⎩,解得142ad=-⎧⎨=⎩,所以101914a a d=+=故答案为:14【点睛】本题考查等差数列的基本量法,是基础题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10【分析】根据条件确定{}n a中项的符号变化规律,即可确定n S最小时对应项数.【详解】7138910111213101103()0S S a a a a a a a a=∴+++++=∴+=17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)1n a n =+;(2)12n n n T -=. 【分析】(1)根据222n n n S a a =+-可得211122n n n S a a +++=+-,两式作差证明{}n a 为等差数列,由此求解出{}n a 的通项公式; (2)先根据232n nn a a b --=求解出{}n b 的通项公式,然后采用错位相减法进行求和,由此求解出n T . 【详解】(1)因为222n n n S a a =+-,所以211122n n n S a a +++=+-, 所以两式作差有:221112n n n n n a a a a a +++=+--,所以()()221111n n n n n n n n a a a a a a a a +++++=-=+-,且0n a >,所以10n n a a ++>,所以11n n a a +-=,所以{}n a 是公差为1的等差数列,且21111222S a a a ==+-,所以12a =或11a =-(舍),所以()2111n a n n =+⋅-=+; (2)因为232n n n a a b --=,所以122nn nb --=, 所以01211012...2222n n n T ---=++++,所以12311012 (22222)n n n T --=++++, 两式作差可得:012311111112+ (2)222222n n n n T ------=++++-, 所以11111222221212n nn n T --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭-⎝⎭=---,所以11112221222n n n n n n T ---⎛⎫-⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】思路点睛:满足等差乘以等比形式的数列{}n a 的前n 项和n S 的求解步骤(错位相减法):(1)先根据数列的通项公式写出数列n S 的一般形式:123...n n S a a a a =++++;(2)将(1)中的关于n S 等式的左右两边同时乘以等比数列的公比()1q ≠;(3)用(1)中等式减去(2)中等式,注意用(1)中等式的第一项减去(2)中等式的第2项,依次类推,得到结果;(4)利用等比数列的前n 项和公式以及相关计算求解出n S . 22.(1)21n n +;(2)证明见解析,122n n S n +=--. 【分析】(1)由已知条件判定数列为等差数列,求得通项公式,进而得到n S ,利用裂项求和法进一步求得n T ;(2)在已知递推关系两边同时加上1,可以证得数列{}1n a +为等比数列,求得通项公式,进而利用分组求和法和等比数列的求和公式计算n S . 【详解】(1)当1p =, 11n n a a +=+,∴数列{}n a 为等差数列,公差1d =,又11a =,∴1(1)1(1)n a a n d n n =+-=+-=,()()1122n n a a n n n S ++∴==,()122211n S n n n n ∴==-++, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和 121112222222221334111n n n T S S S n n n n =++⋯+=-+-+⋯+-=-=+++; (2)当2p =时,121n n a a +=+,1211)12(1n n n a a a +=++=++,又11a =,∴112a +=,∴数列{}1n a +是首相为2,公比为2的等比数列,∴12nn a +=,∴21n n a =-,∴1212(21)(21)...(21)22...2n n n S n=-+-++-=+++-()12122212nn n n +-=-=---.【点睛】本题考查等差数列的判定与求和,等比数列的判定与求和,裂项求和法和分组求和法,难度不大.关键是掌握裂项相消求和方法和利用定义证明等比数列. 23.(1)22nn a =+;(2)6. 【分析】(1)利用1n n n a S S -=-求通项公式; (2)把n b 拆项为1112121n n n b +=-++,然后求和. 【详解】(1)因为124n n S a n +=+-,则()1262n n S a n n -=+-≥,当2n ≥时,112n n n n n a S S a a -+=-=-+,即122n n a a +=-,即()1222n n a a +-=-. ∵122a -=,取1n =,则()21112422a S a a -====-,对()1222n n a a +-=-也成立.所以{}2n a -是首项和公比都为2的等比数列,从而22nn a -=,所以22nn a =+.(2)由题设,()()()()()11112121211212121212121n n n n n n n n n n b +++++-+===-++++++, 则2231111111111212121212121321n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭. 由1111332140n +->+,得11113121340120n +<-=+,即121120n ++>,即12119n +>,则6n ≥.所以正整数n 的最小值为6.【点睛】数列求和常用方法:(1)公式法; (2)倒序相加法;(3)裂项相消法; (2)错位相减法.24.(1)1322nn a -=;(2)最大值为64.【分析】(1)已知条件用1a 和公比q 表示后解得1,a q ,得通项公式;(2)由(1)求得n b ,由0n b ≥求得n T 最大时的n 值,再计算出最大的n T . 【详解】解:(1)设数列{}n a 的公比为(0)q q >,由62a =,有512a q =①,又由5340S S =+,有4540a a +=,得341140a q a q +=②,①÷②有21120q q =+,解得14q =或15q =-(舍去), 由14q =,可求得1112a =,有111113211224n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭,故数列{}n a 的通项公式为1322nn a -=; (2)1322log 24172nn b n -=+=-,若0n b ,可得172n ,可得当18n 且*n ∈N 时0n b >;当9n 且*n ∈N 时0n b <, 故8T 最大,又由115b =,可得887158(2)642T ⨯=⨯+⨯-=, 故n T 的最大值为64. 【点睛】思路点睛:本题考查求等比数列通项公式,求等差数列前n 项和最大值,求等差数列前n 项和的最大值方法:数列{}n b 是等差数列,前n 项和为n T , (1)求出前n 项和n T 的表达式,利用二次函数的性质求得最大值;(2)解不等式0n b ≥,不等式的解集中最大的整数n 就是使得n T 最大的n 值,由此可计算出最大的n T (注意n b =0时,1n n T T -=). 25.(1)22nn a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2n na-通项公式,得出{}n a 的通项公式;(2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=, 因为数列{}2nn a -是等差数列,且公差为2,所以()22212nn a n n -=+-=,则22n n a n =+.(2)选①:设公比为q ,由3248a a -=,得24448qq -=,解得4q =或3-,因为20a >,所以4q =. 故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=.选②:设公比为q ,由364a =,得2464q=,解得4q =±,因为20a >,所以4q =. 故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =.故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.。

(常考题)北师大版高中数学必修五第一章《数列》测试题(有答案解析)(4)

(常考题)北师大版高中数学必修五第一章《数列》测试题(有答案解析)(4)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .544.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 5.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3926.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a7.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12BC .34D8.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .23669.设等差数列{}n a 的前n 项和为n S ,若10a >,81335a a =,则n S 中最大的是( ). A .10SB .11SC .20SD .21S10.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=11.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -12.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+⎪⎝⎭,则2018S =______. 16.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.17.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a =,则n a =_____.18.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.19.已知数列{}n a 满足112a =,()*112n n a a n +=∈N .设2n n n b a λ-=,*n ∈N ,且数列{}n b 是递增数列,则实数λ的取值范围是________.20.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c 可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.三、解答题21.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围.22.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .23.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.24.已知数列{}n a 的前n 项和2n S n =.等比数列{}n b 的前n 项和为n T ,公比1q ≠且653222b b b b -=-,430T =.(1)求数列{}n a ,{}n b 的通项公式;(2)记1122n n n Q a b a b a b =++⋯+,是否存在正整数,(1)m k m k <<,使得m Q 是13Q 与k Q 的等差中项?若存在,求出所有m ,k 的值;若不存在,请说明理由.25.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <. 26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式;(2)设3nn n a b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332.故选:C 【点睛】本题解答的关键利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果.【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==,则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.4.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n na a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.6.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.7.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.8.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 9.C解析:C 【解析】分析:利用等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><,即可作出判定.详解:在等差数列{}n a 中,18130,35a a a >=,则113(7)5(12)a d a d +=+,整理得12390a d +=,即()()1119200a d a d +++=, 所以20210a a +=,又由10a >,所以20210,0a a ><,所以前n 项和n S 中最大是20S ,故选C .点睛:本题考查了等差数列的通项公式,及等差数列的前n 项和n S 的性质,其中解答中根据等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><是解答的关键,着重考查了学生分析问题和解答问题的能力.10.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==-∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=. 故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.11.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m << 则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N*∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+=⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q 为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭.故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.17.【分析】由两本同除以可构造是等差数列由此可求出再利用即可求得【详解】由得是以为首相1为公差的等差数列当时故答案为:【点睛】本题主要考查了由数列的递推关系式求数列的通项公式是常考题型属于中档题解析:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【分析】由11n n n n S S S S ++=⋅-,两本同除以1n n S S +⋅,可构造1n S ⎧⎫⎨⎬⎩⎭是等差数列,由此可求出a 1n S n =,再利用1n n n a S S -=-,即可求得n a 【详解】 由11n n n n S S S S ++=⋅-,得1111n nS S +-= ()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=, 1n S n∴=, 当2n ≥ 时,11111(1)n n n a S S n n n n -=-=-=---, 1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【点睛】本题主要考查了由数列的递推关系式,求数列的通项公式,是常考题型,属于中档题.18.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.19.【分析】根据题意可得数列的通项公式代入表示根据数列是递增数列所以得恒成立参变分离以后计算【详解】由可得数列是首项和公比均为的等比数列所以则又因为是递增数列所以恒成立即恒成立所以所以故答案为:【点睛】解析:3,2⎛⎫-∞ ⎪⎝⎭【分析】根据题意可得数列{}n a 的通项公式,代入表示n b ,根据数列{}n b 是递增数列,所以得10n n b b +->恒成立,参变分离以后计算.【详解】 由()*112n n a a n +=∈N 可得,数列{}n a 是首项和公比均为12的等比数列,所以12n n a =,则()222n n nn b n a λλ-==-,又因为{}n b 是递增数列,所以()()()11122222220n n n n n b b n n n λλλ++=+---=+->-恒成立,即220n λ+->恒成立,所以()min 223n λ<+=,所以32λ<. 故答案为:3,2⎛⎫-∞ ⎪⎝⎭. 【点睛】关于数列的单调性应用的问题,一般需要计算1n n a a +-判断其正负,将不等式再转化为恒成立问题,通过参变分离的方法求解min ()a f n <或者max ()a f n >.20.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c =⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+, 当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠,故①错误;②:数列{}n a 的前n 项和21nn S =-, 当1n =时,111211a S ==-=,当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.三、解答题21.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n n n n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n nn n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立, 所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭, 所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >;当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .22.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S . 【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n nn a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 23.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.24.(1)21n a n =-,2nn b =;(2)不存在,理由见解析.【分析】(1)利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式.利用已知条件求得1,b q ,由此求得数列{}n b 的通项公式.(2)利用错位相减求和法求得n Q ,利用123m k Q Q Q =+列方程,化简后判断不存在符合题意的,m k . 【详解】(1)当1n =时,111a S ==,当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,等式也成立,所以,数列{}n a 的通项公式为21n a n =-. 在等比数列{}n b 中,653222b b b b -=-,即()32(2)10b q q --=,又20b ≠且1q ≠,2q ∴=,()414123012b T -∴==-,12b ∴=,112n n n b b q -∴==.(2)23123252(21)2nn Q n =⨯+⨯+⨯+⋯+-⋅ ①,①×2得:23412123252(23)2(21)2nn n Q n n +=⨯+⨯+⨯+⋯+-⋅+-⋅ ②,-②①得:2312222222(21)2n n n Q n +=--⨯-⨯-⋯-⨯+-⋅1(23)26n n +=-⋅+,13326Q =⨯=,1(23)26k k Q k +=-⋅+,1(23)26m m Q m +=-⋅+,若123m k Q Q Q =+,即112(23)2126(23)26m k m k ++-⋅+=+-⋅+,112(23)2(23)2m k m k ++∴-⋅=-⋅,46223k m m k +-∴=- ③, 又1m k <<,22k m -∴≥,464622323m k k k --<=--, ∴③式不成立,故不存在这样的正整数m ,k 使m Q 是13Q 与k Q 的等差中项.【点睛】如果已知条件是有关n S 与n 的关系式,可利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列的通项公式.如果一个数列是由等差数列乘以等比数列构成,则利用错位相减求和法进行求和. 25.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析.【分析】 (1)利用*1,(1),(2,)n n n n S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】 解:(1)当1n =时,111113a S ==++=; 当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41nb n n n n ==-++, 123n n T b b b b =+++11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.26.(1)21n a n =-;(2)113n n n T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】(1)因为()11313713131692a a S a +===, 所以77513,24a d a a ==-=,解得2d =,所以9(5)221n a n n =+-⋅=-.(2)由(1)得213n nn b -= , 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n n n T n +⎛⎫=++++-- ⎪⎝⎭, 1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--, 122233n n ++=-, 所以113n n n T +=-. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16、等比数列的首项为
a,公比为
q( q
1),
S n
为前
n
项和,求
S 1
S 2

S n
第2页共6页
17、已知:等差数列{ an }中, a4 =14,前 10 项和 S10 185 . (1)求 an ; (2)将{ an }中的第 2 项,第 4 项,…,第 2n 项按原来的顺序排成一个新数列,求此数列 的前 n 项和 Gn .
A.14
B.16
C.18
D.20
1
10
9、 数列{an}的通项公式是 a n = n(n 1) (n∈N*),若前 n 项的和为 11 ,则项数为
第1页共6页
A.12
B.11
C.10
D.9
10、已知{an}的前
n
项和为
S n
1
5
9
13
17
21 …
1 n1 4n 3 ,
S 则 的值是
A.13
B.46
C.76
D. 76
二、填空题,
11、数列 an 的前n项的和 Sn =3n2+ n+1,则此数列的通项公式 a n=__
12、在数列 an 中, a1 1,且对于任意自然数 n,都有 an1 an n ,则 a100 =
13、等比数列{an}中,公比 q
2 , log2
得: a1 a2 a1
3 ,所以
a2 2 ,即 d a2 a1 1 ,所以 an n 。
(Ⅱ)由 bn an pan ,得 bn npn 。所以 Tn p 2 p2 3 p3 (n 1) pn1 npn


p
1时,Tn
n(n 1) 2

当 p 1 时, pTn p2 2 p3 3 p4 (n 1) pn npn1 ,
a4 S10
14 185

a1 3d 14,
10a1
1 2
10 9 9d
185,
a1 d
5 3
an 3n 2
(2)、设新数列为{ bn },由已知, bn 3 2n 2
Gn 3(21 22 23 2n ) 2n 6(2n 1) 2n 3 2n1 2n 6, (n N*)
(2)当 n=1 时,c1=3
当 n≥2 时, cn bn
an1 an ,
cn 2 3n1 ,
3(n 1)
cn
2
3n1
(n
2)
c1 c2 c2006 3 2 3 2 32 2 32005 32006
20、解:(Ⅰ)设等差数列an 的公差为 d
,由 S2n Sn
4n 2 n 1
4、等差数列{an}各项依次递减,且有
a 2
a 4
a 6
45 , a 2
a 4
a 6
15 ,则通项公式
a n
A. 2n 3
B. 2n 3
C. 2n 13
D. 2n 11
5、一个三角形的三个内角 A、B、C 成等差数列,那么 tan A C 的值是
A. 3
B. 3
C. 3 3
D.不确定
a 1
log 2
a 2
log 2
a 3

log 2
a 10
25

则a a … a

1
2
10
14、数列1 1 , 2 1 , 3 1 , … , n 1 , … 的前 n 项和是

2 48
2n
三、解答题,
15、等差数列{an}的公差为 1 ,且前 100 项和 S100=145,求 a1+a3+a5+…+a99 的值 2
18、已知等差数列{an}的首项 a1=1,公差 d>0,且第二项,第五项,第十四项分别是等比数
列{bn}的第二项,第三项,第四项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意自然数 n,均有 c1 b1
c2 b2
c3 b3
cn bn
an1 ,
求 c1+c2+c3+……+c2006 值.
2、数列an , an f (n) 是一个函数,则它的定义域为
A. 非负整数集
B. 正整数集
C. 正整数集或其子集
D. 正整数集或1, 2,3, 4,, n
3、已知数列 an , a1 3 , a2 6 ,且 an2 an1 an ,则数列的第 100 项为
A. 6
B. 3
C. 12
D. 6
19.解 设从 2002 年起,每年平均需新增住房面积为 x 万 m2,则由题设可得下列不等式
500 6 19x 500 (1 0.01)19 24
解得 x 605 .
答 设从 2002 年起,每年平均需新增住房面积为 605 万 m2.
18、解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0) 解得 d=2,∴an=2n-1,bn=3n-1.
20、在等差数列
an
中, a1
1,前 n 项和 Sn
满足条件
S2n Sn
4n 2 , n n 1
1, 2,.
(Ⅰ)求数列an 的通项公式;
(Ⅱ)记 bn an pan ( p 0) ,求数列bn 的前 n 项和 Tn .
第4页共6页
参考答案
DDBCB, BABCD
17、解析:(1)、由
(1 P)Tn
p
p2
p3
pn1
pn
npn1
p(1 pn ) 1 p
npn1
第3页共6页
19、某城市 2001 年底人口为 500 万,人均住房面积为 6 m2,如果该城市每年人口平均增长 率为 1%,则从 2002 年起,每年平均需新增住房面积为多少万 m2,才能使 2020 年底该城市 人均住房面积至少为 24m2?(可参考的数据 1.0118=1.20,1.0119=1.21,1.0120=1.22).
S S 6、等差数列{an}中,
a 1
0,
S n
为前
n
项和,且
3
S 16 ,则 n 取最小值时,n 的

A. 10 或 11
B. 9 或 10
C.10
D.9
7、若一个凸多边形的内角度数成等差数列,最小角为 100°,最大角为 140°,这个凸多
边形的边数为
A.6
B. 8
C.10
D.12
8、 在等比数列{an}中, S4 =1, S8 =3,则 a17 a18 a19 a20 的值是
2020 年高中数学 必修 5 数列 单元测试
一、选择题,
1、数列 1, 8 , 15 , 24 ,的一个通项公式是 5 79
A. an
(1) n
n3 n 2n 1
B. an
(1) n
n(n 3) 2n 1
C. an
(1) n
(n 1)2 1 2n 1
D. an
(1) n
n(n 2) 2n 1
相关文档
最新文档